1
|
Dressler TL, Anlauf-Dunn K, Chandler A, Eliason EJ. Beyond latitude: thermal tolerance and vulnerability of a broadly distributed salmonid across a habitat temperature gradient. CONSERVATION PHYSIOLOGY 2025; 13:coaf030. [PMID: 40313657 PMCID: PMC12043440 DOI: 10.1093/conphys/coaf030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/03/2025] [Accepted: 04/15/2025] [Indexed: 05/03/2025]
Abstract
Salmonid fishes are a focal point of conservation physiology due to their high value to humans and ecosystems, and their susceptibility to decline from climate change. A significant challenge in conserving these fishes is that populations of the same species can be locally adapted to vastly different habitats within their wild ranges and can therefore have unique tolerance or vulnerability to environmental stressors within those habitats. Within the state of Oregon, USA, summer steelhead (Oncorhynchus mykiss) inhabit both cool, coastal waters most typically associated with Pacific salmonids and arid, inland environments where temperatures are more extreme. Here, we utilized streamside physiological experiments paired with habitat temperature monitoring to assess the thermal tolerance and vulnerability of four populations of summer steelhead from distinct thermal habitats. All populations had unique responses of critical thermal maximum, aerobic scope and exercise recovery to temperature. Despite populations from warm habitats exhibiting higher thermal tolerance than populations from cooler habitats, summer steelhead from warm habitats appear to be more vulnerable to the physiological consequences of warming based on the extreme temperatures they already experience during the summer. These results demonstrate an example of thermal physiology varying between populations within the same portion of their latitudinal range and highlight the need for habitat-specific conservation strategies for this species.
Collapse
Affiliation(s)
- Terra L Dressler
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA
- Stillwater Sciences, 996 S. Seaward Ave, Suite 102, Ventura, CA 93001, USA
| | - Kara Anlauf-Dunn
- Conservation and Recovery, Oregon Department of Fish and Wildlife, 28655 Highway 34, Corvallis, OR 97333, USA
| | - Andrea Chandler
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA
- Conservation and Recovery, Oregon Department of Fish and Wildlife, 28655 Highway 34, Corvallis, OR 97333, USA
| | - Erika J Eliason
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
2
|
Hampuwo B, Duenser A, Lahnsteiner F. Effects of elevated temperature on gene expression, energy metabolism, and physiology in brown trout, Salmo trutta. CONSERVATION PHYSIOLOGY 2025; 13:coaf025. [PMID: 40270876 PMCID: PMC12015096 DOI: 10.1093/conphys/coaf025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/25/2025]
Abstract
Given the imminent threat of global warming and rising water temperatures in Austria, this study investigated the effects of elevated temperature on gene expression, energy reserves, and cellular energy status in brown trout (Salmo trutta), a species particularly sensitive to increasing water temperature. A total of 250 fish were placed in four stream channels under flow-through conditions. Two channels were maintained at 9 °C as controls, while the other two had their temperature gradually increased to 20 °C over seven days and then maintained at 20 °C for 21 days. Sampling was conducted on day 1, after the temperature reached 20 °C, and the last day of high-temperature exposure on day 21. At each sampling point growth, hepatosomatic index and the fat content of the viscera were measured and/or calculated, and liver samples were taken for gene expression and metabolite analyses. Elevated temperature significantly increased the expression of genes related to cellular stress response (hsp70, hsp90 aa1, cat, and casp8) compared to controls. However, there was no significant difference in the expression of genes associated with lipid and carbohydrate metabolism (d5fad and pfkfb4). Furthermore, there was a decrease in energy storage indicated by a decrease in the hepatosomatic index, glycogen, triglycerides and ATP in the liver as well as the fat content of the viscera. Cellular energy status also significantly decreased, as indicated by the calculated adenylate energy charge. Physiologically, this culminated in suppression of growth in the treatment group after 21 days. This study shows that elevated temperature leads to significant trade-offs in brown trout, which may lead to ecological consequences over the long run. These findings offer critical insights into the physiological impacts of elevated temperature that help evaluate the species' acclimation to rising water temperature and inform the development of effective conservation strategies in a warming world.
Collapse
Affiliation(s)
- Buumba Hampuwo
- Federal Agency for Water Management, Institute for Water Ecology, Fisheries and Lake Research, Scharfling 18, A-5310 Mondsee, Austria
- Institute of Hydrobiology and Aquatic Ecosystem Management (IHG) 1180 Wien, Gregor-Mendel-Straße
| | - Anna Duenser
- Federal Agency for Water Management, Institute for Water Ecology, Fisheries and Lake Research, Scharfling 18, A-5310 Mondsee, Austria
| | - Franz Lahnsteiner
- Federal Agency for Water Management, Institute for Water Ecology, Fisheries and Lake Research, Scharfling 18, A-5310 Mondsee, Austria
| |
Collapse
|
3
|
Gilbert MJH, Hardison EA, Farrell AP, Eliason EJ, Anttila K. Measuring maximum heart rate to study cardiac thermal performance and heat tolerance in fishes. J Exp Biol 2024; 227:jeb247928. [PMID: 39450710 DOI: 10.1242/jeb.247928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
The thermal sensitivity of heart rate (fH) in fishes has fascinated comparative physiologists for well over a century. We now know that elevating fH is the primary mechanism through which fishes increase convective oxygen delivery during warming to meet the concomitant rise in tissue oxygen consumption. Thus, limits on fH can constrain whole-animal aerobic metabolism. In this Review, we discuss an increasingly popular methodology to study these limits, the measurement of pharmacologically induced maximum fH (fH,max) during acute warming of an anaesthetized fish. During acute warming, fH,max increases exponentially over moderate temperatures (Q10∼2-3), but this response is blunted with further warming (Q10∼1-2), with fH,max ultimately reaching a peak (Q10≤1) and the heartbeat becoming arrhythmic. Because the temperatures at which these transitions occur commonly align with whole-animal optimum and critical temperatures (e.g. aerobic scope and the critical thermal maximum), they can be valuable indicators of thermal performance. The method can be performed simultaneously on multiple individuals over a few hours and across a broad size range (<1 to >6000 g) with compact equipment. This simplicity and high throughput make it tractable in lab and field settings and enable large experimental designs that would otherwise be impractical. As with all reductionist approaches, the method does have limitations. Namely, it requires anaesthesia and pharmacological removal of extrinsic cardiac regulation. Nonetheless, the method has proven particularly effective in the study of patterns and limits of thermal plasticity and holds promise for helping to predict and mitigate outcomes of environmental change.
Collapse
Affiliation(s)
- Matthew J H Gilbert
- Institute of Arctic Biology and Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Emily A Hardison
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Anthony P Farrell
- Department of Zoology and Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Erika J Eliason
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Katja Anttila
- University of Turku, Department of Biology, 20014 Turku, Finland
| |
Collapse
|
4
|
Van Wert JC, Birnie-Gauvin K, Gallagher J, Hardison EA, Landfield K, Burkepile DE, Eliason EJ. Despite plasticity, heatwaves are costly for a coral reef fish. Sci Rep 2024; 14:13320. [PMID: 38858427 PMCID: PMC11164959 DOI: 10.1038/s41598-024-63273-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/27/2024] [Indexed: 06/12/2024] Open
Abstract
Climate change is intensifying extreme weather events, including marine heatwaves, which are prolonged periods of anomalously high sea surface temperature that pose a novel threat to aquatic animals. Tropical animals may be especially vulnerable to marine heatwaves because they are adapted to a narrow temperature range. If these animals cannot acclimate to marine heatwaves, the extreme heat could impair their behavior and fitness. Here, we investigated how marine heatwave conditions affected the performance and thermal tolerance of a tropical predatory fish, arceye hawkfish (Paracirrhites arcatus), across two seasons in Moorea, French Polynesia. We found that the fish's daily activities, including recovery from burst swimming and digestion, were more energetically costly in fish exposed to marine heatwave conditions across both seasons, while their aerobic capacity remained the same. Given their constrained energy budget, these rising costs associated with warming may impact how hawkfish prioritize activities. Additionally, hawkfish that were exposed to hotter temperatures exhibited cardiac plasticity by increasing their maximum heart rate but were still operating within a few degrees of their thermal limits. With more frequent and intense heatwaves, hawkfish, and other tropical fishes must rapidly acclimate, or they may suffer physiological consequences that alter their role in the ecosystem.
Collapse
Affiliation(s)
- Jacey C Van Wert
- Department of Ecology, Evolution & Marine Biology, University of California, Santa Barbara, CA, 93106, USA.
| | - Kim Birnie-Gauvin
- Department of Ecology, Evolution & Marine Biology, University of California, Santa Barbara, CA, 93106, USA
- Section for Freshwater Fisheries and Ecology, National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | - Jordan Gallagher
- Department of Ecology, Evolution & Marine Biology, University of California, Santa Barbara, CA, 93106, USA
| | - Emily A Hardison
- Department of Ecology, Evolution & Marine Biology, University of California, Santa Barbara, CA, 93106, USA
| | - Kaitlyn Landfield
- Department of Ecology, Evolution & Marine Biology, University of California, Santa Barbara, CA, 93106, USA
| | - Deron E Burkepile
- Department of Ecology, Evolution & Marine Biology, University of California, Santa Barbara, CA, 93106, USA
- Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Erika J Eliason
- Department of Ecology, Evolution & Marine Biology, University of California, Santa Barbara, CA, 93106, USA
| |
Collapse
|
5
|
Montgomery DW, Finlay J, Simpson SD, Engelhard GH, Birchenough SNR, Wilson RW. Respiratory acidosis and O 2 supply capacity do not affect the acute temperature tolerance of rainbow trout ( Oncorhynchus mykiss). CONSERVATION PHYSIOLOGY 2024; 12:coae026. [PMID: 38779432 PMCID: PMC11109029 DOI: 10.1093/conphys/coae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/06/2024] [Accepted: 04/15/2024] [Indexed: 05/25/2024]
Abstract
The mechanisms that determine the temperature tolerances of fish are poorly understood, creating barriers to disentangle how additional environmental challenges-such as CO2-induced aquatic acidification and fluctuating oxygen availability-may exacerbate vulnerability to a warming climate and extreme heat events. Here, we explored whether two acute exposures (~0.5 hours or ~72 hours) to increased CO2 impact acute temperature tolerance limits in a freshwater fish, rainbow trout (Oncorhynchus mykiss). We separated the potential effects of acute high CO2 exposure on critical thermal maximum (CTmax), caused via either respiratory acidosis (reduced internal pH) or O2 supply capacity (aerobic scope), by exposing rainbow trout to ~1 kPa CO2 (~1% or 10 000 μatm) in combination with normoxia or hyperoxia (~21 or 42 kPa O2, respectively). In normoxia, acute exposure to high CO2 caused a large acidosis in trout (blood pH decreased by 0.43 units), while a combination of hyperoxia and ~1 kPa CO2 increased the aerobic scope of trout by 28%. Despite large changes in blood pH and aerobic scope between treatments, we observed no impacts on the CTmax of trout. Our results suggest that the mechanisms that determine the maximum temperature tolerance of trout are independent of blood acid-base balance or the capacity to deliver O2 to tissues.
Collapse
Affiliation(s)
| | - Jennifer Finlay
- Biosciences, Stocker Road, University of Exeter, Exeter, EX4 4QD, UK
| | - Stephen D Simpson
- Biosciences, Stocker Road, University of Exeter, Exeter, EX4 4QD, UK
| | - Georg H Engelhard
- International Marine Climate Change Centre (iMC3), Centre for Environment, Fisheries & Aquaculture Science (Cefas), Pakefield Road, Lowestoft, NR33 0HT, UK
- School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Silvana N R Birchenough
- International Marine Climate Change Centre (iMC3), Centre for Environment, Fisheries & Aquaculture Science (Cefas), Pakefield Road, Lowestoft, NR33 0HT, UK
| | - Rod W Wilson
- Biosciences, Stocker Road, University of Exeter, Exeter, EX4 4QD, UK
| |
Collapse
|
6
|
Li H, Yu H, Zhang X, Huang W, Zhang C, Wang C, Gao Q, Dong S. Temperature acclimation improves high temperature tolerance of rainbow trout (Oncorhynchus mykiss) by improving mitochondrial quality and inhibiting apoptosis in liver. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169452. [PMID: 38135090 DOI: 10.1016/j.scitotenv.2023.169452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/16/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
Global warming is threatening the survival and growth of cold-water fish, and the methods to improve the high-temperature adaptability of cold-water fish need to be explored urgently. This study aims to explore the mechanism of improving high temperature tolerance of rainbow trout by temperature acclimation (TA). Rainbow trout were acclimated by two modes at 22 °C, including fluctuating TA (FA) and constant TA (CA), and thereafter subjected to heat stress (HS) at 25 °C. Results showed that TA markedly increased the critical temperature maximum (CTmax) of rainbow trout. Secondly, the levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in serum and malondialdehyde (MDA) in liver of CA + HS group significantly decreased compared to those in HS group without TA, indicating the reduction of liver injury by CA. Moreover, HS significantly induced ROS production and reduced mitochondrial membrane potential (MMP) in rainbow trout liver, but TA reduced the levels of ROS and increased the MMP in liver of rainbow trout after HS, indicating the reduced oxidative stress and mitochondrial damage. Furthermore, TA up-regulated the expression of genes related to mitochondrial autophagy, fusion, fission and biogenesis, as well as the expression of marker proteins of autophagy (LC3II) and mitophagy (Parkin) in the liver, so as to maintain mitochondrial homeostasis. Moreover, TA also inhibited the occurrence of apoptosis (decrease in bax/bcl-2), which may be owing to the reduced ROS and mitochondrial damage by TA. Interestingly, CA significantly up-regulated the genes expression of methyltransferase in the liver, which may inhibit the genes or transcription factors related to oxidative stress and apoptosis by DNA methylation. In conclusion, TA increased the upper limit of heat tolerance of rainbow trout by improving mitochondrial quality and inhibiting apoptosis in liver. This study will provide an effective solution to the risk of high temperature in cold-water fish culture.
Collapse
Affiliation(s)
- Hao Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712700, China
| | - Haibo Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712700, China.
| | - Xiaotian Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712700, China
| | - Wenhao Huang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712700, China
| | - Cheng Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712700, China
| | - Chi Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712700, China
| | - Qinfeng Gao
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Shuanglin Dong
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao 266100, China
| |
Collapse
|
7
|
Kraskura K, Hardison EA, Eliason EJ. Body size and temperature affect metabolic and cardiac thermal tolerance in fish. Sci Rep 2023; 13:17900. [PMID: 37857749 PMCID: PMC10587238 DOI: 10.1038/s41598-023-44574-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023] Open
Abstract
Environmental warming is associated with reductions in ectotherm body sizes, suggesting that larger individuals may be more vulnerable to climate change. The mechanisms driving size-specific vulnerability to temperature are unknown but are required to finetune predictions of fisheries productivity and size-structure community responses to climate change. We explored the potential metabolic and cardiac mechanisms underlying these body size vulnerability trends in a eurythermal fish, barred surfperch. We acutely exposed surfperch across a large size range (5-700 g) to four ecologically relevant temperatures (16 °C, 12 °C, 20 °C, and 22 °C) and subsequently, measured their metabolic capacity (absolute and factorial aerobic scopes, maximum and resting metabolic rates; AAS, FAS, MMR, RMR). Additionally, we estimated the fish's cardiac thermal tolerance by measuring their maximum heart rates (fHmax) across acutely increasing temperatures. Barred surfperch had parallel hypoallometric scaling of MMR and RMR (exponent 0.81) and a weaker hypoallometric scaling of fHmax (exponent - 0.05) across all test temperatures. In contrast to our predictions, the fish's aerobic capacity was maintained across sizes and acute temperatures, and larger fish had greater cardiac thermal tolerance than smaller fish. These results demonstrate that thermal performance may be limited by different physiological constraints depending on the size of the animal and species of interest.
Collapse
Affiliation(s)
- Krista Kraskura
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, 93106, USA.
| | - Emily A Hardison
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, 93106, USA
| | - Erika J Eliason
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, 93106, USA
| |
Collapse
|
8
|
Abstract
The collective directional movement of animals occurs over both short distances and longer migrations, and is a critical aspect of feeding, reproduction and the ecology of many species. Despite the implications of collective motion for lifetime fitness, we know remarkably little about its energetics. It is commonly thought that collective animal motion saves energy: moving alone against fluid flow is expected to be more energetically expensive than moving in a group. Energetic conservation resulting from collective movement is most often inferred from kinematic metrics or from computational models. However, the direct measurement of total metabolic energy savings during collective motion compared with solitary movement over a range of speeds has yet to be documented. In particular, longer duration and higher speed collective motion must involve both aerobic and non-aerobic (high-energy phosphate stores and substrate-level phosphorylation) metabolic energy contributions, and yet no study to date has quantified both types of metabolic contribution in comparison to locomotion by solitary individuals. There are multiple challenging questions regarding the energetics of collective motion in aquatic, aerial and terrestrial environments that remain to be answered. We focus on aquatic locomotion as a model system to demonstrate that understanding the energetics and total cost of collective movement requires the integration of biomechanics, fluid dynamics and bioenergetics to unveil the hydrodynamic and physiological phenomena involved and their underlying mechanisms.
Collapse
Affiliation(s)
- Yangfan Zhang
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - George V Lauder
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| |
Collapse
|
9
|
Dressler TL, Han Lee V, Klose K, Eliason EJ. Thermal tolerance and vulnerability to warming differ between populations of wild Oncorhynchus mykiss near the species' southern range limit. Sci Rep 2023; 13:14538. [PMID: 37666931 PMCID: PMC10477306 DOI: 10.1038/s41598-023-41173-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/23/2023] [Indexed: 09/06/2023] Open
Abstract
Fish habitat temperatures are increasing due to human impacts including climate change. For broadly distributed species, thermal tolerance can vary at the population level, making it challenging to predict which populations are most vulnerable to warming. Populations inhabiting warm range boundaries may be more resilient to these changes due to adaptation or acclimatization to warmer temperatures, or they may be more vulnerable as temperatures may already approach their physiological limits. We tested functional and critical thermal tolerance of two populations of wild Oncorhynchus mykiss near the species' southern range limit and, as predicted, found population-specific responses to temperature. Specifically, the population inhabiting the warmer stream, Piru Creek, had higher critical thermal maxima and higher functional thermal tolerance compared to the population from the cooler stream, Arroyo Seco. Arroyo Seco O. mykiss are more likely to experience a limitation of aerobic scope with warming. Piru Creek O. mykiss, however, had higher resting metabolic rates and prolonged exercise recovery, meaning that they could be more vulnerable to warming if prey or dissolved oxygen become limited. Temperature varies widely between streams near the O. mykiss southern range limit and populations will likely have unique responses to warming based on their thermal tolerances and metabolic requirements.
Collapse
Affiliation(s)
- T L Dressler
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, 93106, USA
| | - V Han Lee
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, 93106, USA
| | - K Klose
- U.S. Forest Service, Los Padres National Forest, 1980 Old Mission Drive, Solvang, CA, 93463, USA
| | - E J Eliason
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, 93106, USA.
| |
Collapse
|
10
|
Amat‐Trigo F, Andreou D, Gillingham PK, Britton JR. Behavioural thermoregulation in cold-water freshwater fish: Innate resilience to climate warming? FISH AND FISHERIES (OXFORD, ENGLAND) 2023; 24:187-195. [PMID: 37063475 PMCID: PMC10100141 DOI: 10.1111/faf.12720] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/16/2022] [Accepted: 11/09/2022] [Indexed: 06/19/2023]
Abstract
Behavioural thermoregulation enables ectotherms to access habitats providing conditions within their temperature optima, especially in periods of extreme thermal conditions, through adjustments to their behaviours that provide a "whole-body" response to temperature changes. Although freshwater fish have been detected as moving in response to temperature changes to access habitats that provide their thermal optima, there is a lack of integrative studies synthesising the extent to which this is driven by behaviour across different species and spatial scales. A quantitative global synthesis of behavioural thermoregulation in freshwater fish revealed that across 77 studies, behavioural thermoregulatory movements by fish were detected both vertically and horizontally, and from warm to cool waters and, occasionally, the converse. When fish moved from warm to cooler habitats, the extent of the temperature difference between these habitats decreased with increasing latitude, with juvenile and non-migratory fishes tolerating greater temperature differences than adult and anadromous individuals. With most studies focused on assessing movements of cold-water salmonids during summer periods, there remains an outstanding need for work on climatically vulnerable, non-salmonid fishes to understand how these innate thermoregulatory behaviours could facilitate population persistence in warming conditions.
Collapse
Affiliation(s)
- Fatima Amat‐Trigo
- Department of Life and Environmental Sciences, Faculty of Science and TechnologyBournemouth UniversityPooleUK
| | - Demetra Andreou
- Department of Life and Environmental Sciences, Faculty of Science and TechnologyBournemouth UniversityPooleUK
| | - Phillipa K. Gillingham
- Department of Life and Environmental Sciences, Faculty of Science and TechnologyBournemouth UniversityPooleUK
| | - J. Robert Britton
- Department of Life and Environmental Sciences, Faculty of Science and TechnologyBournemouth UniversityPooleUK
| |
Collapse
|
11
|
Rzhechitskiy Y, Gurkov A, Bolbat N, Shchapova E, Nazarova A, Timofeyev M, Borvinskaya E. Adipose Fin as a Natural “Optical Window” for Implantation of Fluorescent Sensors into Salmonid Fish. Animals (Basel) 2022; 12:ani12213042. [PMID: 36359166 PMCID: PMC9654777 DOI: 10.3390/ani12213042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Simple Summary Novel optical sensors require implantation into the most transparent organs in order to ensure the most reliable and rapid monitoring of animal health. Widely farmed salmonid fish, such as rainbow trout, have highly translucent adipose fin, which we tested here and showed its high potential as the implantation site for the fluorescent sensors. The filamentous sensors were convenient to inject into the fin, and their optical signal was easily detectable using a simple hand-held device even without immobilization of the fish. Responsiveness of the sensors inside the adipose fin to bodily changes was shown under induced acidosis of fish fluids. The obtained results characterize adipose fin as the favorable site for implantation of optical sensors into salmonids for real-time tracking animal physiological status in basic research and aquaculture. Abstract Implantable optical sensors are emerging tools that have the potential to enable constant real-time monitoring of various internal physiological parameters. Such a possibility will open new horizons for health control not only in medicine, but also in animal husbandry, including aquaculture. In this study, we analyze different organs of commonly farmed rainbow trout (Oncorhynchus mykiss) as implantation sites for fluorescent sensors and propose the adipose fin, lacking an endoskeleton, as the optimal choice. The fin is highly translucent due to significantly thinner dermis, which makes the detectable fluorescence of an implanted sensor operating at the visible light range by more than an order of magnitude higher relative to the skin. Compared to the proximal parts of ray fins, the adipose fin provides easy implantation and visualization of the sensor. Finally, we tested fluorescent pH sensors inside the adipose fin and demonstrated the possibility of acquiring their signal with a simple hand-held device and without fish anesthesia. All these features will most likely make the adipose fin the main “window” into the internal physiological processes of salmonid fish with the help of implantable optical sensors.
Collapse
Affiliation(s)
| | - Anton Gurkov
- Institute of Biology, Irkutsk State University, 664025 Irkutsk, Russia
- Baikal Research Centre, 664003 Irkutsk, Russia
| | - Nadezhda Bolbat
- Institute of Biology, Irkutsk State University, 664025 Irkutsk, Russia
| | - Ekaterina Shchapova
- Institute of Biology, Irkutsk State University, 664025 Irkutsk, Russia
- Baikal Research Centre, 664003 Irkutsk, Russia
| | - Anna Nazarova
- Institute of Biology, Irkutsk State University, 664025 Irkutsk, Russia
| | - Maxim Timofeyev
- Institute of Biology, Irkutsk State University, 664025 Irkutsk, Russia
| | - Ekaterina Borvinskaya
- Institute of Biology, Irkutsk State University, 664025 Irkutsk, Russia
- Correspondence:
| |
Collapse
|
12
|
Ignatz EH, Sandrelli RM, Tibbetts SM, Colombo SM, Zanuzzo FS, Loveless AM, Parrish CC, Rise ML, Gamperl AK. Influence of Supplemental Dietary Cholesterol on Growth Performance, Indices of Stress, Fillet Pigmentation, and Upper Thermal Tolerance of Female Triploid Atlantic Salmon ( Salmo salar). AQUACULTURE NUTRITION 2022; 2022:6336060. [PMID: 36860469 PMCID: PMC9973203 DOI: 10.1155/2022/6336060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/01/2022] [Indexed: 06/01/2023]
Abstract
The salmon aquaculture industry must be proactive at developing mitigation tools/strategies to offset the potential negative impacts of climate change. Therefore, this study examined if additional dietary cholesterol could enhance salmon production at elevated temperatures. We hypothesized that supplemental cholesterol could aid in maintaining cell rigidity, reducing stress and the need to mobilize astaxanthin muscle stores, and improving salmon growth and survival at high rearing temperatures. Accordingly, postsmolt female triploid salmon were exposed to an incremental temperature challenge (+0.2°C day-1) to mimic conditions that they experience in sea cages in the summer, with temperature held at both 16 and 18°C for several weeks [i.e., 3 weeks at 16°C, followed by an increase at 0.2°C day-1 to 18°C (10 days), then 5 weeks at 18°C] to prolong their exposure to elevated temperatures. From 16°C onwards, the fish were fed either a control diet, or one of two nutritionally equivalent experimental diets containing supplemental cholesterol [+1.30%, experimental diet #1 (ED1); or +1.76%, experimental diet #2 (ED2)]. Adding cholesterol to the diet did not affect the salmon's incremental thermal maximum (ITMax), growth, plasma cortisol, or liver stress-related transcript expression. However, ED2 appeared to have a small negative impact on survival, and both ED1 and ED2 reduced fillet "bleaching" above 18°C as measured using SalmoFan™ scores. Although the current results suggest that supplementing salmon diets with cholesterol would have few/minimal benefits for the industry, ≤ 5% of the female triploid Atlantic salmon used in this study irrespective of diet died before temperature reached 22°C. These latter data suggest that it is possible to produce all female populations of reproductively sterile salmon that can withstand summer temperatures in Atlantic Canada.
Collapse
Affiliation(s)
- Eric H. Ignatz
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL, Canada A1C 5S7
| | - Rebeccah M. Sandrelli
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL, Canada A1C 5S7
| | - Sean M. Tibbetts
- National Research Council of Canada, Aquatic and Crop Resource Development Research Centre, Halifax, NS, Canada B3H 3Z1
| | - Stefanie M. Colombo
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada B2N 5E3
| | - Fábio S. Zanuzzo
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL, Canada A1C 5S7
| | - Ashley M. Loveless
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL, Canada A1C 5S7
| | - Christopher C. Parrish
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL, Canada A1C 5S7
| | - Matthew L. Rise
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL, Canada A1C 5S7
| | - A. Kurt Gamperl
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL, Canada A1C 5S7
| |
Collapse
|
13
|
Vasdravanidis C, Alvanou MV, Lattos A, Papadopoulos DK, Chatzigeorgiou I, Ravani M, Liantas G, Georgoulis I, Feidantsis K, Ntinas GK, Giantsis IA. Aquaponics as a Promising Strategy to Mitigate Impacts of Climate Change on Rainbow Trout Culture. Animals (Basel) 2022; 12:ani12192523. [PMID: 36230264 PMCID: PMC9559468 DOI: 10.3390/ani12192523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Climate change and overexploitation of natural resources drive the need for innovative food production within a sustainability corridor. Aquaponics, combining the technology of recirculation aquaculture systems (RAS) and hydroponics in a closed-loop network, could contribute to addressing these problems. Aquaponic systems have lower freshwater demands than agriculture, greater land use efficiency, and decreased environmental impact combined with higher fish productivity. Rainbow trout is one of the major freshwater fish cultured worldwide, which, however, has not yet been commercially developed in aquaponics. Nevertheless, research conducted so far indicates that the trout species represents a good candidate for aquaponics. Abstract The impact of climate change on both terrestrial and aquatic ecosystems tends to become more progressively pronounced and devastating over the years. The sector of aquaculture is severely affected by natural abiotic factors, on account of climate change, that lead to various undesirable phenomena, including aquatic species mortalities and decreased productivity owing to oxidative and thermal stress of the reared organisms. Novel innovative technologies, such as aquaponics that are based on the co-cultivation of freshwater fish with plants in a sustainable manner under the context of controlled abiotic factors, represent a promising tool for mitigating the effect of climate change on reared fish. The rainbow trout (Oncorhynchus mykiss) constitutes one of the major freshwater-reared fish species, contributing to the national economies of numerous countries, and more specifically, to regional development, supporting mountainous areas of low productivity. However, it is highly vulnerable to climate change effects, mainly due to the concrete raceways, in which it is reared, that are constructed on the flow-through of rivers and are, therefore, dependent on water’s physical properties. The current review study evaluates the suitability, progress, and challenges of developing innovative and sustainable aquaponic systems to rear rainbow trout in combination with the cultivation of plants. Although not commercially developed to a great extent yet, research has shown that the rainbow trout is a valuable experimental model for aquaponics that may be also commercially exploited in the future. In particular, abiotic factors required in rainbow trout farming along, with the high protein proportion required in the ratios due to the strict carnivorous feeding behavior, result in high nitrate production that can be utilized by plants as a source of nitrogen in an aquaponic system. Intensive farming of rainbow trout in aquaponic systems can be controlled using digital monitoring of the system parameters, mitigating the obstacles originating from extreme temperature fluctuations.
Collapse
Affiliation(s)
- Christos Vasdravanidis
- Department of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, 53100 Florina, Greece
| | - Maria V. Alvanou
- Department of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, 53100 Florina, Greece
| | - Athanasios Lattos
- Oecon Group, Business & Development Consultants, Frixou 9, 54627 Thessaloniki, Greece
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Dimitrios K. Papadopoulos
- Oecon Group, Business & Development Consultants, Frixou 9, 54627 Thessaloniki, Greece
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioanna Chatzigeorgiou
- Oecon Group, Business & Development Consultants, Frixou 9, 54627 Thessaloniki, Greece
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, 57001 Thessaloniki, Greece
| | - Maria Ravani
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, 57001 Thessaloniki, Greece
| | - Georgios Liantas
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, 57001 Thessaloniki, Greece
| | - Ioannis Georgoulis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Konstantinos Feidantsis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Georgios K. Ntinas
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, 57001 Thessaloniki, Greece
| | - Ioannis A. Giantsis
- Department of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, 53100 Florina, Greece
- Correspondence:
| |
Collapse
|
14
|
Pettinau L, Lancien F, Zhang Y, Mauduit F, Ollivier H, Farrell AP, Claireaux G, Anttila K. Warm, but not hypoxic acclimation, prolongs ventricular diastole and decreases the protein level of Na +/Ca 2+ exchanger to enhance cardiac thermal tolerance in European sea bass. Comp Biochem Physiol A Mol Integr Physiol 2022; 272:111266. [PMID: 35772648 DOI: 10.1016/j.cbpa.2022.111266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 10/17/2022]
Abstract
One of the physiological mechanisms that can limit the fish's ability to face hypoxia or elevated temperature, is maximal cardiac performance. Yet, few studies have measured how cardiac electrical activity and associated calcium cycling proteins change with acclimation to those environmental stressors. To examine this, we acclimated European sea bass for 6 weeks to three experimental conditions: a seasonal average temperature in normoxia (16 °C; 100% air sat.), an elevated temperature in normoxia (25 °C; 100% air sat.) and a seasonal average temperature in hypoxia (16 °C; 50% air sat.). Following each acclimation, the electrocardiogram was measured to assess how acclimation affected the different phases of cardiac cycle, the maximal heart rate (fHmax) and cardiac thermal performance during an acute increase of temperature. Whereas warm acclimation prolonged especially the diastolic phase of the ventricular contraction, reduced the fHmax and increased the cardiac arrhythmia temperature (TARR), hypoxic acclimation was without effect on these functional indices. We measured the level of two key proteins involved with cellular relaxation of cardiomyocytes, i.e. sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) and Na+/Ca2+ exchanger (NCX). Warm acclimation reduced protein level of both NCX and SERCA and hypoxic acclimation reduced SERCA protein levels without affecting NCX. The changes in ventricular NCX level correlated with the observed changes in diastole duration and fHmax as well as TARR. Our results shed new light on mechanisms of cardiac plasticity to environmental stressors and suggest that NCX might be involved with the observed functional changes, yet future studies should also measure its electrophysiological activity.
Collapse
Affiliation(s)
- Luca Pettinau
- Department of Biology, University of Turku, 20014 Turku, Finland.
| | - Frédéric Lancien
- Université de Bretagne Occidentale, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzané, France
| | - Yangfan Zhang
- Department of Zoology, Faculty of Land and Food System, University of British Columbia, Vancouver, British Columbia, Canada. https://twitter.com/theYangfanZHANG
| | - Florian Mauduit
- Université de Bretagne Occidentale, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzané, France
| | - Hélène Ollivier
- Université de Bretagne Occidentale, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzané, France
| | - Anthony P Farrell
- Department of Zoology, Faculty of Land and Food System, University of British Columbia, Vancouver, British Columbia, Canada
| | - Guy Claireaux
- Université de Bretagne Occidentale, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzané, France
| | - Katja Anttila
- Department of Biology, University of Turku, 20014 Turku, Finland. https://twitter.com/anttilaLab
| |
Collapse
|
15
|
Dichiera A. Aussie trout handle the heat. J Exp Biol 2022. [DOI: 10.1242/jeb.243485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Gilbert MJ, Adams OA, Farrell AP. A sudden change of heart: Warm acclimation can produce a rapid adjustment of maximum heart rate and cardiac thermal sensitivity in rainbow trout. Curr Res Physiol 2022; 5:179-183. [PMID: 35373148 PMCID: PMC8965757 DOI: 10.1016/j.crphys.2022.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 11/30/2022] Open
Abstract
Warm acclimation in fish is often characterized by an increase in heat tolerance and a reduction in physiological rates to improve the scope to respond to additional challenges including further warming. The speed of these responses can determine their effectiveness. However, acclimation rates vary across levels of biological organization and are poorly understood in part because most research is conducted after an acclimation period of >3 weeks, when acclimation is presumed to be complete. Here we show that when rainbow trout were transferred from 10 to 18 °C, over 50% of the total reduction of maximum heart rate (ƒHmax) (i.e. the thermal compensation at moderate temperatures) occurred within 72 h, with further compensation occurring more gradually over the following 25 days. Also, the ability to increase ƒHmax with acute warming improved within 24 h resulting in a 30% rise in peak ƒHmax, but this ultimately declined again with prolonged (28 days) exposure to 18 °C. In contrast with some previous studies, upper critical temperatures for ƒHmax did not increase. Nonetheless, we demonstrate that rapid cardiac plasticity is possible in rainbow trout and likely blunts the impacts of thermal variation over relatively short timescales, such as that associated with heat waves and migration between water bodies.
Collapse
Affiliation(s)
- Matthew J.H. Gilbert
- Department of Zoology, University of British Columbia, #4200 - 6270, University Blvd, Vancouver, BC, V6T 1Z4, Canada
| | - Olivia A. Adams
- Department of Zoology, University of British Columbia, #4200 - 6270, University Blvd, Vancouver, BC, V6T 1Z4, Canada
| | - Anthony P. Farrell
- Department of Zoology, University of British Columbia, #4200 - 6270, University Blvd, Vancouver, BC, V6T 1Z4, Canada
- Faculty of Land and Food Systems, University of British Columbia, 2357 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|