1
|
Gamba R, Negri S, Bono A, Cavalletto S, Crivellaro A, Piermattei A, Canale L, Chicarella A, Ughetti M, Motta R, Ascoli D, Bonifacio E, Secchi F. Prescribed burning has negligible effects on the plant-soil system in Pinus sylvestris L. forests of the European Alps. Sci Rep 2025; 15:12076. [PMID: 40204964 PMCID: PMC11982388 DOI: 10.1038/s41598-025-97239-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 04/03/2025] [Indexed: 04/11/2025] Open
Abstract
The current increase in large wildfires is a socio-economic and ecological threat, particularly in populated mountain regions. Prescribed burning is a fuel management technique based on the planned application of fire to achieve land management goals; still, little is known about its potential impacts on tree physiology and soil properties in the European Alps, where it has never been applied. In spring 2022, we tested the effects of prescribed burning for fire hazard reduction in a dry conifer forest dominated by Scots pine (Pinus sylvestris L.). We generated an intensity gradient by manipulating surface fuels at the base of selected trees and evaluated prescribed burning effects on branch hydraulic conductivity, wood anatomy and soil physico-chemical properties in the short- and mid-term, up to one year after the treatment, with controls outside the treated area. The results showed that prescribed burning led to an effective surface fuel load reduction, and the plant-soil system was resistant, despite being affected by a considerable lack of rainfall. We conclude that even a high-intensity prescribed burning can be considered sustainable for reducing fire hazard in Scots pine forests of the European Alps, with these findings being extendable to similar forest ecosystems.
Collapse
Affiliation(s)
- Rachele Gamba
- Department of Agricultural, Forest and Food Sciences, University of Torino, Largo Braccini 2, 10095, Grugliasco, Italy
| | - Sara Negri
- Department of Agricultural, Forest and Food Sciences, University of Torino, Largo Braccini 2, 10095, Grugliasco, Italy.
| | - Alessia Bono
- Department of Agricultural, Forest and Food Sciences, University of Torino, Largo Braccini 2, 10095, Grugliasco, Italy.
| | - Silvia Cavalletto
- Department of Agricultural, Forest and Food Sciences, University of Torino, Largo Braccini 2, 10095, Grugliasco, Italy
| | - Alan Crivellaro
- Department of Agricultural, Forest and Food Sciences, University of Torino, Largo Braccini 2, 10095, Grugliasco, Italy
- Forest Biometrics Laboratory, Faculty of Forestry, "Stefan Cel Mare" University of Suceava, Str. Universitatii 13, 720229, Suceava, Romania
| | - Alma Piermattei
- Department of Agricultural, Forest and Food Sciences, University of Torino, Largo Braccini 2, 10095, Grugliasco, Italy
- Forest Biometrics Laboratory, Faculty of Forestry, "Stefan Cel Mare" University of Suceava, Str. Universitatii 13, 720229, Suceava, Romania
| | - Linda Canale
- Department of Agricultural, Forest and Food Sciences, University of Torino, Largo Braccini 2, 10095, Grugliasco, Italy
| | - Alberto Chicarella
- Department of Agricultural, Forest and Food Sciences, University of Torino, Largo Braccini 2, 10095, Grugliasco, Italy
| | - Manuel Ughetti
- Department of Agricultural, Forest and Food Sciences, University of Torino, Largo Braccini 2, 10095, Grugliasco, Italy
| | - Renzo Motta
- Department of Agricultural, Forest and Food Sciences, University of Torino, Largo Braccini 2, 10095, Grugliasco, Italy
| | - Davide Ascoli
- Department of Agricultural, Forest and Food Sciences, University of Torino, Largo Braccini 2, 10095, Grugliasco, Italy
| | - Eleonora Bonifacio
- Department of Agricultural, Forest and Food Sciences, University of Torino, Largo Braccini 2, 10095, Grugliasco, Italy
| | - Francesca Secchi
- Department of Agricultural, Forest and Food Sciences, University of Torino, Largo Braccini 2, 10095, Grugliasco, Italy
| |
Collapse
|
2
|
Zambonini D, Savi T, Rosner S, Petit G. Consistent decrease in conifer embolism resistance from the stem apex to base resulting from axial trends in tracheid and pit traits. FRONTIERS IN PLANT SCIENCE 2024; 15:1414448. [PMID: 38988629 PMCID: PMC11234846 DOI: 10.3389/fpls.2024.1414448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/03/2024] [Indexed: 07/12/2024]
Abstract
Introduction Drought-induced embolism formation in conifers is associated with several tracheid and pit traits, which vary in parallel from stem apex to base. We tested whether this axial anatomical variability is associated with a progressive variation in embolism vulnerability along the stem from apex to base. Methods We assessed the tracheid hydraulic diameter (Dh), mean pit membrane area (PMA) and the xylem pressure at 50% loss of conductivity (P50) on longitudinal stem segments extracted at different distances from the stem apex (DFA) in a Picea abies and an Abies alba tree. Results In both trees, Dh and PMA scaled with DFA 0.2. P50 varied for more than 3 MPa from the treetop to the stem base, according to a scaling of -P50 with DFA-0.2 . The largest Dh, PMA and P50 variation occurred for DFA<1.5 m. PMA and Dh scaled more than isometrically (exponent b=1.2). Pit traits vary proportionally with tracheid lumen diameter. Discussion and conclusions Apex-to-base trends in tracheid and pit traits, along with variations in P50, suggest a strong structure-function relationship that is influenced by DFA. Although the effect of DFA on P50 has not been extensively explored previously, we propose that analyzing the relationship between P50 and DFA could be crucial for a comprehensive assessment of embolism vulnerability at the individual level.
Collapse
Affiliation(s)
- Dario Zambonini
- Dept. Territorio e Sistemi Agro-Forestali, Università degli Studi di Padova, Legnaro (PD), Italy
| | - Tadeja Savi
- Department of Integrative Biology and Biodiversity Research, University of Natural Resources and Life Sciences, Vienna (BOKU), Institute of Botany, Vienna, Austria
| | - Sabine Rosner
- Department of Integrative Biology and Biodiversity Research, University of Natural Resources and Life Sciences, Vienna (BOKU), Institute of Botany, Vienna, Austria
| | - Giai Petit
- Dept. Territorio e Sistemi Agro-Forestali, Università degli Studi di Padova, Legnaro (PD), Italy
| |
Collapse
|
3
|
Petruzzellis F, Tordoni E, Di Bonaventura A, Tomasella M, Natale S, Panepinto F, Bacaro G, Nardini A. Turgor loss point and vulnerability to xylem embolism predict species-specific risk of drought-induced decline of urban trees. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:1198-1207. [PMID: 34704333 PMCID: PMC10078640 DOI: 10.1111/plb.13355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Increasing frequency and severity of drought events is posing risks to trees' health, including those planted in urban settlements. Drought-induced decline of urban trees negatively affects ecosystem services of urban green spaces and implies cost for maintenance and removal of plants. We aimed at identifying physiological traits that can explain and predict the species-specific vulnerability to climate change in urban habitats. We assessed the relationships between long-term risk of decline of different tree species in a medium-sized town and their key indicators of drought stress tolerance, i.e. turgor loss point (TLP) and vulnerability to xylem embolism (P50 ). Starting from 2012, the study area experienced several summer seasons with positive anomalies of temperature and negative anomalies of precipitation. This trend was coupled with increasing percentages of urban trees showing signs of crown die-back and mortality. The species-specific risk of decline was higher for species with less negative TLP and P50 values. The relationship between species-specific risk of climate change-induced decline of urban trees and key physiological indicators of drought tolerance confirms findings obtained in natural forests and highlights that TLP and P50 are useful indicators for species selection for tree plantation in towns, to mitigate negative impacts of climate change.
Collapse
Affiliation(s)
- F. Petruzzellis
- Dipartimento di Scienze della VitaUniversità di TriesteTriesteItalia
- Dipartimento di Scienze agroalimentari, ambientali e animaliUniversità di UdineUdineItalia
| | - E. Tordoni
- Dipartimento di Scienze della VitaUniversità di TriesteTriesteItalia
- Institute of Ecology and Earth ScienceUniversity of TartuTartuEstonia
| | - A. Di Bonaventura
- Dipartimento di Scienze della VitaUniversità di TriesteTriesteItalia
| | - M. Tomasella
- Dipartimento di Scienze della VitaUniversità di TriesteTriesteItalia
| | - S. Natale
- Dipartimento di Scienze della VitaUniversità di TriesteTriesteItalia
| | - F. Panepinto
- Unità Tecnica Alberature e ParchiServizio Strade e Verde PubblicoComune di TriesteTriesteItalia
| | - G. Bacaro
- Dipartimento di Scienze della VitaUniversità di TriesteTriesteItalia
| | - A. Nardini
- Dipartimento di Scienze della VitaUniversità di TriesteTriesteItalia
| |
Collapse
|
4
|
Xing J, Li M, Li J, Shen W, Li P, Zhao J, Zhang Y. Stem canker pathogen Botryosphaeria dothidea inhibits poplar leaf photosynthesis in the early stage of inoculation. FRONTIERS IN PLANT SCIENCE 2022; 13:1008834. [PMID: 36204063 PMCID: PMC9530914 DOI: 10.3389/fpls.2022.1008834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
Fungal pathogens can induce canker lesions, wilting, and even dieback in many species. Trees can suffer serious physiological effects from stem cankers. In this study, we investigated the effects of Botryosphaeria dothidea (B. dothidea) on Populus bolleana (P. bolleana) leaves photosynthesis and stomatal responses, when stems were inoculated with the pathogen. To provide experimental and theoretical basis for preventing poplar canker early. One-year-old poplar stems were inoculated with B. dothidea using an epidermal scraping method. In the early stage of B. dothidea inoculation (2-14 days post inoculation, dpi), the gas exchange, stomatal dynamics, hormone content, photosynthetic pigments content, chlorophyll fluorescence parameters, and non-structural carbohydrate (NSC) were evaluated to elucidate the pathophysiological mechanism of B. dothidea inhibiting photosynthesis. Compared with the control groups, B. dothidea noteworthily inhibited the net photosynthetic rate (P n), stomatal conductance (G s), intercellular CO2 concentration (C i), transpiration rate (T r), and other photosynthetic parameters of poplar leaves, but stomatal limit value (L s) increased. Consistent with the above results, B. dothidea also reduced stomatal aperture and stomatal opening rate. In addition, B. dothidea not only remarkably reduced the content of photosynthetic pigments, but also decreased the maximum photochemical efficiency (F v/F m), actual photochemical efficiency (Φ PSII), electron transfer efficiency (ETR), and photochemical quenching coefficient (q P). Furthermore, both chlorophyll and Φ PSII were positively correlated with P n. In summary, the main reason for the abated P n under stem canker pathogen was that B. dothidea not merely inhibited the stomatal opening, but hindered the conversion of light energy, electron transfer and light energy utilization of poplar leaves. In general, the lessened CO2 and P n would reduce the synthesis of photosynthetic products. Whereas, sucrose and starch accumulated in poplar leaves, which may be due to the local damage caused by B. dothidea inoculation in phloem, hindering downward transport of these products.
Collapse
|
5
|
Potential Impacts of Climate Change on the Habitat Suitability of the Dominant Tree Species in Greece. PLANTS 2022; 11:plants11121616. [PMID: 35736767 PMCID: PMC9228314 DOI: 10.3390/plants11121616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/12/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022]
Abstract
Climate change is affecting species distribution and ecosystem form and function. Forests provide a range of ecosystem services, and understanding their vulnerability to climate change is important for designing effective adaptation strategies. Species Distribution Modelling (SDM) has been extensively used to derive habitat suitability maps under current conditions and project species distribution shifts under climate change. In this study, we model the current and future habitat suitability of the dominant tree species in Greece (Abies cephalonica, Abies borisii-regis, Pinus brutia, Pinus halepensis, Pinus nigra, Quercus ilex, Quercus pubescens, Quercus frainetto and Fagus sylvatica), based on species-specific presence data from the EU-Forest database, enhanced with data from Greece that is currently under-represented in terms of tree species occurrence points. By including these additional presence data, areas with relatively drier conditions for some of the study species were included in the SDM development, yielding a potentially lower vulnerability under climate change conditions. SDMs were developed for each taxon using climate and soil data at a resolution of ~1 km2. Model performance was assessed under current conditions and was found to adequately simulate potential distributions. Subsequently, the models were used to project the potential distribution of each species under the SSP1-2.6 and SSP5-8.5 scenarios for the 2041–2070 and 2071–2100 time periods. Under climate change scenarios, a reduction in habitat-suitable areas was predicted for most study species, with higher elevation taxa experiencing more pronounced potential habitat shrinkages. An exception was the endemic A. cephalonica and its sister species A. borisii-regis, which, although currently found at mid and high elevations, seem able to maintain their potential distribution under most climate change scenarios. Our findings suggest that climate change could significantly affect the distribution and dynamics of forest ecosystems in Greece, with important ecological, economic and social implications, and thus adequate mitigation measures should be implemented.
Collapse
|
6
|
Species Mixing Proportion and Aridity Influence in the Height–Diameter Relationship for Different Species Mixtures in Mediterranean Forests. FORESTS 2022. [DOI: 10.3390/f13010119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Estimating tree height is essential for modelling and managing both pure and mixed forest stands. Although height–diameter (H–D) relationships have been traditionally fitted for pure stands, attention must be paid when analyzing this relationship behavior in stands composed of more than one species. The present context of global change makes also necessary to analyze how this relationship is influenced by climate conditions. This study tends to cope these gaps, by fitting new H–D models for 13 different Mediterranean species in mixed forest stands under different mixing proportions along an aridity gradient in Spain. Using Spanish National Forest Inventory data, a total of 14 height–diameter equations were initially fitted in order to select the best base models for each pair species-mixture. Then, the best models were expanded including species proportion by area (mi) and the De Martonne Aridity Index (M). A general trend was found for coniferous species, with taller trees for the same diameter size in pure than in mixed stands, being this trend inverse for broadleaved species. Regarding aridity influence on H–D relationships, humid conditions seem to beneficiate tree height for almost all the analyzed species and species mixtures. These results may have a relevant importance for Mediterranean coppice stands, suggesting that introducing conifers in broadleaves forests could enhance height for coppice species. However, this practice only should be carried out in places with a low probability of drought. Models presented in our study can be used to predict height both in different pure and mixed forests at different spatio-temporal scales to take better sustainable management decisions under future climate change scenarios.
Collapse
|
7
|
Valeriano C, Gazol A, Colangelo M, González de Andrés E, Camarero JJ. Modeling Climate Impacts on Tree Growth to Assess Tree Vulnerability to Drought During Forest Dieback. FRONTIERS IN PLANT SCIENCE 2021; 12:672855. [PMID: 34512680 PMCID: PMC8426521 DOI: 10.3389/fpls.2021.672855] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 08/02/2021] [Indexed: 06/12/2023]
Abstract
Forest dieback because of drought is a global phenomenon threatening particular tree populations. Particularly vulnerable stands are usually located in climatically stressing locations such as xeric sites subjected to seasonal drought. These tree populations show a pronounced loss of vitality, growth decline, and high mortality in response to extreme climate events such as heat waves and droughts. However, dieback events do not uniformly affect stands, with some trees showing higher symptoms of drought vulnerability than other neighboring conspecifics. In this study, we investigated if trees showing different vulnerabilities to dieback showed lower growth rates (Grs) and higher sensitivities to the climate in the past using dendroecology and the Vaganov-Shashkin (VS) process-based growth model. We studied two Pinus pinaster stands with contrasting Grs showing recent dieback in the Iberian System, north-eastern Spain. We compared coexisting declining (D) and non-declining (ND) trees with crown defoliation values above and below the 50% threshold, respectively. The mean growth rate was lower in D than in ND trees in the two stands. The two vigor classes showed a growth divergence prior to the dieback onset and different responsiveness to climate. The ND trees were more responsive to changes in spring water balance and soil moisture than D trees, indicating a loss of growth responsiveness to the climate in stressed trees. Such an interaction between water availability and vigor was reflected by the VS-model simulations, which provided evidence for the observation that growth was mainly limited by low soil moisture in both sites. Such an interaction between water availability and vigor was reflected by the VS-model simulations, which provided evidence for the observation that growth was mainly limited by low soil moisture in both sites. The presented comparisons indicated different stand vulnerabilities to drought contingent on-site conditions. Further research should investigate the role played by environmental conditions and individual features such as access to soil water or hydraulic traits and implement them in process-based growth models to better forecast dieback.
Collapse
Affiliation(s)
- Cristina Valeriano
- Instituto Pirenaico de Ecología (IPE-CSIC), Zaragoza, Spain
- Departamento de Sistemas Naturales e Historia Forestal, Universidad Politécnica de Madrid, Madrid, Spain
| | - Antonio Gazol
- Instituto Pirenaico de Ecología (IPE-CSIC), Zaragoza, Spain
| | - Michele Colangelo
- Instituto Pirenaico de Ecología (IPE-CSIC), Zaragoza, Spain
- School of Agricultural, Forest, Food and Environmental Sciences, University of Basilicata, Potenza, Italy
| | | | | |
Collapse
|
8
|
Feng F, Losso A, Tyree M, Zhang S, Mayr S. Cavitation fatigue in conifers: a study on eight European species. PLANT PHYSIOLOGY 2021; 186:1580-1590. [PMID: 33905499 PMCID: PMC8260135 DOI: 10.1093/plphys/kiab170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/27/2021] [Indexed: 06/12/2023]
Abstract
After drought-induced embolism and repair, tree xylem may be weakened against future drought events (cavitation fatigue). As there are few data on cavitation fatigue in conifers available, we quantified vulnerability curves (VCs) after embolism/repair cycles on eight European conifer species. We induced 50% and 100% loss of conductivity (LC) with a cavitron, and analyzed VCs. Embolism repair was obtained by vacuum infiltration. All species demonstrated complete embolism repair and a lack of any cavitation fatigue after 50% LC . After 100% LC, European larch (Larix decidua), stone pine (Pinus cembra), Norway spruce (Picea abies), and silver fir (Abies alba) remained unaffected, while mountain pine (Pinus mugo), yew (Taxus baccata), and common juniper (Juniperus communis) exhibited 0.4-0.9 MPa higher vulnerability to embolism. A small cavitation fatigue observed in Scots pine (Pinus sylvestris) was probably biased by incomplete embolism repair, as indicated by a correlation of vulnerability shifts and conductivity restoration. Our data demonstrate that cavitation fatigue in conifers is species-specific and depends on the intensity of preceding LC. The lack of fatigue effects after moderate LC, and relevant effects in only three species after high LC, indicate that conifers are relatively resistant against cavitation fatigue. This is remarkable considering the complex and delicate conifer pit architecture and may be important considering climate change projections.
Collapse
Affiliation(s)
- Feng Feng
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China
- Qinling National Forest Ecosystem Research Station, Huoditang, Ningshan, Shaanxi 711600, China
| | - Adriano Losso
- Department of Botany, University of Innsbruck, Innsbruck 6020, Austria
| | - Melvin Tyree
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Shuoxin Zhang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China
- Qinling National Forest Ecosystem Research Station, Huoditang, Ningshan, Shaanxi 711600, China
| | - Stefan Mayr
- Department of Botany, University of Innsbruck, Innsbruck 6020, Austria
| |
Collapse
|
9
|
Marusig D, Tombesi S. Abscisic Acid Mediates Drought and Salt Stress Responses in Vitis vinifera-A Review. Int J Mol Sci 2020; 21:E8648. [PMID: 33212767 PMCID: PMC7698233 DOI: 10.3390/ijms21228648] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/09/2020] [Accepted: 11/15/2020] [Indexed: 12/18/2022] Open
Abstract
The foreseen increase in evaporative demand and reduction in rainfall occurrence are expected to stress the abiotic constrains of drought and salt concentration in soil. The intensification of abiotic stresses coupled with the progressive depletion in water pools is a major concern especially in viticulture, as most vineyards rely on water provided by rainfall. Because its economical relevance and its use as a model species for the study of abiotic stress effect on perennial plants, a significant amount of literature has focused on Vitis vinifera, assessing the physiological mechanisms occurring under stress. Despite the complexity of the stress-resistance strategy of grapevine, the ensemble of phenomena involved seems to be regulated by the key hormone abscisic acid (ABA). This review aims at summarizing our knowledge on the role of ABA in mediating mechanisms whereby grapevine copes with abiotic stresses and to highlight aspects that deserve more attention in future research.
Collapse
Affiliation(s)
| | - Sergio Tombesi
- Dipartimento di Scienze delle Produzioni Vegetali Sostenibili, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy;
| |
Collapse
|