1
|
Touyz RM, Steckelings UM. Editorial related to the special issue: "Extrarenal functions of the renin-angiotensin-system". Acta Physiol (Oxf) 2025; 241:e70027. [PMID: 40083222 DOI: 10.1111/apha.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 03/16/2025]
Affiliation(s)
- Rhian M Touyz
- Cardiovascular Health Across the Life Span, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Department of Family Medicine, McGill University, Montreal, Quebec, Canada
| | - U Muscha Steckelings
- Institute of Molecular Medicine, Cardiovascular & Renal Research Unit, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
2
|
González-Correa C, Moleón J, Miñano S, Robles-Vera I, de la Visitación N, Guerra-Hernández E, Toral M, Jiménez R, Duarte J, Romero M. Protective Effect of Dietary Fiber on Blood Pressure and Vascular Dysfunction Through Regulation of Sympathetic Tone and Immune Response in Genetic Hypertension. Phytother Res 2025; 39:1858-1875. [PMID: 40122676 DOI: 10.1002/ptr.8484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/17/2025] [Accepted: 02/22/2025] [Indexed: 03/25/2025]
Abstract
The mechanisms underlying the antihypertensive effect of dietary fibers remain poorly understood. This study investigates whether dietary fiber supplementation can prevent cardiovascular damage and high blood pressure in a genetic model of neurogenic hypertension. Six-week-old male spontaneously hypertensive rats (SHR) and their respective normotensive control, Wistar Kyoto rats (WKY), were divided into four groups: Untreated WKY, untreated SHR, SHR treated with resistant starch (SHR + RS), and SHR treated with inulin-type fructans (SHR + ITF) for 12 weeks. Additionally, a faecal microbiota transplantation (FMT) experiment was conducted, transferring faecal content from treated SHR donors to recipient SHRs. A diet rich in RS fiber reduced vascular oxidative stress, inflammation, and high blood pressure. These protective effects were associated with a reshaped gut microbiota, leading to increased short-chain fatty acid production, reduced endotoxemia, decreased sympathetic activity, and a restored balance between Th17 and Treg lymphocytes in mesenteric lymph nodes and aorta. Elevated plasma levels of acetate and butyrate in the SHR + RS group correlated with increased expression of aortic GPR41, GRP43 and PPARδ. Conversely, ITF treatment failed to prevent hypertension or endothelial dysfunction in SHR. FMT from the SHR + RS group to recipient SHR partially replicated these beneficial effects. This study highlights the antihypertensive benefits of dietary insoluble RS fiber, which are attributed to enhanced short-chain fatty acids production in the gut. This leads to improved gut permeability, reduced sympathetic tone, and diminished vascular T-cell accumulation. Therefore, dietary interventions with RS fiber may offer promising therapeutic strategies for preventing hypertension.
Collapse
Affiliation(s)
- Cristina González-Correa
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, Ibs.GRANADA, Granada, Spain
| | - Javier Moleón
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, Ibs.GRANADA, Granada, Spain
| | - Sofía Miñano
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Iñaki Robles-Vera
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Néstor de la Visitación
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | | | - Marta Toral
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, Ibs.GRANADA, Granada, Spain
| | - Rosario Jiménez
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, Ibs.GRANADA, Granada, Spain
- Ciber de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Juan Duarte
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, Ibs.GRANADA, Granada, Spain
- Ciber de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Miguel Romero
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, Ibs.GRANADA, Granada, Spain
| |
Collapse
|
3
|
Molina PA, Edell CJ, Dunaway LS, Kellum CE, Muir RQ, Jennings MS, Colson JC, De Miguel C, Rhoads MK, Buzzelli AA, Harrington LE, Meza-Perez S, Randall TD, Botta D, Müller DN, Pollock DM, Maynard CL, Pollock JS. Aryl Hydrocarbon Receptor Activation Promotes Effector CD4+ T Cell Homeostasis and Restrains Salt-Sensitive Hypertension. FUNCTION 2025; 6:zqaf001. [PMID: 39779302 PMCID: PMC11931625 DOI: 10.1093/function/zqaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 12/18/2024] [Accepted: 01/06/2025] [Indexed: 01/11/2025] Open
Abstract
Excess dietary salt and salt-sensitivity contribute to cardiovascular disease. Distinct T cell phenotypic responses to high salt and hypertension, as well as influences from environmental cues, are not well understood. The aryl hydrocarbon receptor (AhR) is activated by dietary ligands, promoting T cell and systemic homeostasis. We hypothesized that activating AhR supports CD4+ homeostatic functions, such as cytokine production and mobilization, in response to high salt intake while mitigating salt-sensitive hypertension. In the intestinal mucosa, we demonstrate that a high-salt diet (HSD) is a key driving factor, independent of hypertension, in diminishing interleukin 17A (IL-17A) production by CD4+ T (Th17) cells without disrupting circulating cytokines associated with Th17 function. Previous studies suggest that hypertensive patients and individuals on a HSD are deficient in AhR ligands or agonistic metabolites. We found that activating AhR augments Th17 cells during experimental salt-sensitive hypertension. Further, we demonstrate that activating AhR in vitro contributes to sustaining Th17 cells in the setting of excess salt. Using photoconvertible Kikume Green-Red mice, we also revealed that HSD drives CD4+ T cell mobilization. Next, we found that excess salt augments T cell mobilization markers, validating HSD-driven T cell migration. Also, we found that activating AhR mitigates HSD-induced T cell migration markers. Using telemetry in a model of experimental salt-sensitivity, we found that activating AhR prevents the development of salt-sensitive hypertension. Collectively, stimulating AhR through dietary ligands facilitates immunologic and systemic functions amid excess salt intake and restrains the development of salt-sensitive hypertension.
Collapse
Affiliation(s)
- Patrick A Molina
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology,
Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Claudia J Edell
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology,
Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Luke S Dunaway
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology,
Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Cailin E Kellum
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology,
Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Rachel Q Muir
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Melissa S Jennings
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Jackson C Colson
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology,
Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Carmen De Miguel
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology,
Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Megan K Rhoads
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology,
Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Ashlyn A Buzzelli
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Laurie E Harrington
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Selene Meza-Perez
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Troy D Randall
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Davide Botta
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35223, USA
- Immunology Institute, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Dominik N Müller
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Str. 10
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Lindenberger Weg 80, Berlin 13092, Germany
| | - David M Pollock
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology,
Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Craig L Maynard
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Jennifer S Pollock
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology,
Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| |
Collapse
|
4
|
Dasinger JH, Abais-Battad JM, McCrorey MK, Van Beusecum JP. Recent advances on immunity and hypertension: the new cells on the kidney block. Am J Physiol Renal Physiol 2025; 328:F301-F315. [PMID: 39853324 DOI: 10.1152/ajprenal.00309.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/26/2024] [Accepted: 01/20/2025] [Indexed: 01/26/2025] Open
Abstract
Over the past 50 years, the contribution of the immune system has been identified in the development of hypertension and renal injury. Both human and experimental animal models of hypertension have demonstrated that innate and adaptive immune cells, along with their cytokines and chemokines, modulate blood pressure fluctuations and end organ renal damage. Numerous cell types of the innate immune system, specifically monocytes, macrophages, and dendritic cells, present antigenic peptides to T cells, promoting inflammation and the elevation of blood pressure. These T cells and other adaptive immune cells migrate to vascular and tubular cells of the kidney and promote end-organ fibrosis, damage, and ultimately hypertensive injury. Through the development of high-throughput screening, novel renal and immune cell subsets have been identified as possible contributors and regulators of renal injury and hypertension. In this review, we will consider classical immunological cells and their contribution to renal inflammation, and novel cell subsets, including renal stromal cells, that could potentially shed new light on renal injury and hypertension. Finally, we will discuss how interorgan inflammation contributes to the development of hypertension and hypertension-related multiorgan damage, and explore the clinical implications of the immunological components of renal injury and hypertension.
Collapse
Affiliation(s)
- John Henry Dasinger
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
| | - Justine M Abais-Battad
- Department of Physiology, Medical College of Georgia, August University, Augusta, Georgia, United States
| | - Marice K McCrorey
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Justin P Van Beusecum
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
- Department of Research and Development, Ralph H. Johnson VA Healthcare System, Charleston, South Carolina, United States
| |
Collapse
|
5
|
Wang G, He Q, Shuai W, Yang H, Kong B, Lu S, Gong Y. The gut microbial metabolite phenylacetylglutamine increases susceptibility to atrial fibrillation after myocardial infarction through ferroptosis and NLRP3 inflammasome. Apoptosis 2025; 30:210-225. [PMID: 39627575 DOI: 10.1007/s10495-024-02046-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2024] [Indexed: 02/06/2025]
Abstract
Myocardial infarction (MI) is an important risk factor for the development of atrial fibrillation (AF), and the gut microbial metabolite phenylacetylglutamine (PAGln) is strongly associated with the prognosis of MI patients. However, whether PAGln is involved in the regulation of AF after MI is currently unknown. Therefore, the present study aimed to explore the effect of PAGln on the susceptibility to AF after MI. MI model was constructed by surgically ligating the left anterior descending branch of the coronary artery. PAGln was administered by intraperitoneal injection for 7 consecutive days starting after surgery and then investigated by histopathologic, molecular biological, and electrophysiologic studies. Myocardial ischemia resulted in intestinal barrier dysfunction and significantly increased circulating levels of PAGln. Compared with the myocardial ischemia group, administration of PAGln significantly exacerbated atrial fibrosis and atrial electrical remodeling in mice after myocardial ischemia, as evidenced by shortening of the ERP (at varying pacing cycle lengths of 40, 60, 80, and 100), ion channel remodeling (Nav1.5, Cav1.2, and Kv1.5), and decreased expression of CX40, which led to an increase in the susceptibility to AF (54.5% vs. 90.9%, P < 0.05). In addition, administration of PAGln further exacerbated MI-induced intestinal barrier dysfunction compared with the MI group. Mechanistically, PAGln may affect atrial remodeling and AF susceptibility after MI by modulating ferroptosis and NLRP3 inflammasome. The present study preliminarily reveals that the gut microbial metabolite PAGln exacerbates post-MI AF remodeling and AF susceptibility, possibly through ferroptosis and activation of NLRP3 inflammasome.
Collapse
Affiliation(s)
- Guangji Wang
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qin He
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Shuai
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Hongjie Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Bin Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Shimin Lu
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Yang Gong
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, China.
- Cardiovascular Research Institute of Wuhan University, Wuhan, China.
- Hubei Key Laboratory of Cardiology, Wuhan, China.
| |
Collapse
|
6
|
Thakkar B, Dadhaniya H, Dudhat K. Exploring hypertension-linked diseases: a comprehensive review of innovative drug combinations with enhanced therapeutic potential. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03819-3. [PMID: 39888363 DOI: 10.1007/s00210-025-03819-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/14/2025] [Indexed: 02/01/2025]
Abstract
Hypertension, a prevalent cardiovascular condition affecting a substantial portion of the global population, remains a formidable health challenge associated with a multitude of complications. This review article provides a comprehensive examination of hypertension, its various complications, and the emergence of a novel management technique that shows promising potential in transforming the therapeutic landscape. Over the years, conventional treatment approaches, encompassing lifestyle modifications, dietary interventions, and pharmacotherapy, have been the mainstay in managing hypertension. However, these strategies fall short in achieving optimal blood pressure control and preventing complications in a significant number of patients. Consequently, the medical community has ventured into exploring innovative management techniques to tackle this unmet medical need. The focal point of this review centers on the emergence of a new management technique for hypertension that exhibits promise in preclinical and clinical studies. The latest research findings shed light on the efficacy and safety of this innovative approach, which encompasses pharmaceutical agents, medical devices, and non-invasive interventions. Through critical analysis and discussion, we explore the potential impact of these novel strategies on hypertension management and patient outcomes. In conclusion, this review article provides a comprehensive overview of hypertension, its complications, and the promising emergence of innovative management techniques. By acknowledging the complexity of hypertension and the potential of new therapeutic avenues, we aspire to pave the way for improved patient care, enhanced quality of life, and ultimately, the mitigation of hypertension-related morbidity and mortality.
Collapse
Affiliation(s)
- Bhavesh Thakkar
- School of Pharmacy, RK University, Kasturbadham, Rajkot, Gujarat, 360020, India
| | - Hetvi Dadhaniya
- School of Pharmacy, RK University, Kasturbadham, Rajkot, Gujarat, 360020, India
| | - Kiran Dudhat
- School of Pharmacy, RK University, Kasturbadham, Rajkot, Gujarat, 360020, India.
| |
Collapse
|
7
|
Ng YH, Koay YC, Marques FZ, Kaye DM, O’Sullivan JF. Leveraging metabolism for better outcomes in heart failure. Cardiovasc Res 2024; 120:1835-1850. [PMID: 39351766 PMCID: PMC11630082 DOI: 10.1093/cvr/cvae216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/26/2024] [Accepted: 08/07/2024] [Indexed: 12/11/2024] Open
Abstract
Whilst metabolic inflexibility and substrate constraint have been observed in heart failure for many years, their exact causal role remains controversial. In parallel, many of our fundamental assumptions about cardiac fuel use are now being challenged like never before. For example, the emergence of sodium-glucose cotransporter 2 inhibitor therapy as one of the four 'pillars' of heart failure therapy is causing a revisit of metabolism as a key mechanism and therapeutic target in heart failure. Improvements in the field of cardiac metabolomics will lead to a far more granular understanding of the mechanisms underpinning normal and abnormal human cardiac fuel use, an appreciation of drug action, and novel therapeutic strategies. Technological advances and expanding biorepositories offer exciting opportunities to elucidate the novel aspects of these metabolic mechanisms. Methodologic advances include comprehensive and accurate substrate quantitation such as metabolomics and stable-isotope fluxomics, improved access to arterio-venous blood samples across the heart to determine fuel consumption and energy conversion, high quality cardiac tissue biopsies, biochemical analytics, and informatics. Pairing these technologies with recent discoveries in epigenetic regulation, mitochondrial dynamics, and organ-microbiome metabolic crosstalk will garner critical mechanistic insights in heart failure. In this state-of-the-art review, we focus on new metabolic insights, with an eye on emerging metabolic strategies for heart failure. Our synthesis of the field will be valuable for a diverse audience with an interest in cardiac metabolism.
Collapse
Affiliation(s)
- Yann Huey Ng
- Cardiometabolic Medicine, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Room 3E71 D17, Camperdown, NSW 2006, Australia
- Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Office 3E72, Camperdown, NSW 2006, Australia
| | - Yen Chin Koay
- Cardiometabolic Medicine, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Room 3E71 D17, Camperdown, NSW 2006, Australia
- Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Office 3E72, Camperdown, NSW 2006, Australia
| | - Francine Z Marques
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash University, Melbourne, VIC 3800, Australia
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, VIC 3800, Australia
- Victorian Heart Institute, Monash University, Melbourne, VIC 3800, Australia
| | - David M Kaye
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, VIC 3800, Australia
- Department of Cardiology, Alfred Hospital, Melbourne, VIC 3004, Australia
- Monash-Alfred-Baker Centre for Cardiovascular Research, Monash University, Melbourne, VIC 3800, Australia
| | - John F O’Sullivan
- Cardiometabolic Medicine, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Room 3E71 D17, Camperdown, NSW 2006, Australia
- Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Office 3E72, Camperdown, NSW 2006, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
- Department of Medicine, Technische Univeristat Dresden, 01062 Dresden, Germany
| |
Collapse
|
8
|
Berillo O, Schiffrin EL. Advances in Understanding of the Role of Immune Cell Phenotypes in Hypertension and Associated Vascular Disease. Can J Cardiol 2024; 40:2321-2339. [PMID: 39154911 DOI: 10.1016/j.cjca.2024.08.270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024] Open
Abstract
Many studies in the past 20 years have identified a contribution of inflammation and immune mechanisms to the pathophysiology of hypertension. Innate and adaptive immunity participate in this process. Among innate immune cells, macrophages and monocytes as well as dendritic cells, myeloid-derived suppressor cells, and neutrophils directly or via formation of neutrophil extracellular traps, play roles in the modulation of the inflammatory response in hypertension. Among adaptive immune cells, T and B cells have been implicated to varying degrees, particularly interleukin (IL)-17- and interferon γ-producing T lymphocytes, antagonized by T regulatory lymphocytes that are anti-inflammatory via production of IL-10. Among T cells that produce abundant IL-17, γδ T cells are unconventional T lymphocytes that are infrequent in the circulation in contrast to the much more abundant circulating αβ T lymphocytes, but are found mostly in tissues, and appear to play a role in triggering and sustaining inflammation in hypertension leading to vascular and renal injury. This review will provide an overview of these different immune cell phenotypes involved in the immune pathophysiology of hypertension and associated vascular disease.
Collapse
Affiliation(s)
- Olga Berillo
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, Montreal, Quebec, Canada
| | - Ernesto L Schiffrin
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, Montreal, Quebec, Canada; Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
9
|
Arendshorst WJ, Vendrov AE, Kumar N, Ganesh SK, Madamanchi NR. Oxidative Stress in Kidney Injury and Hypertension. Antioxidants (Basel) 2024; 13:1454. [PMID: 39765782 PMCID: PMC11672783 DOI: 10.3390/antiox13121454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/09/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025] Open
Abstract
Hypertension (HTN) is a major contributor to kidney damage, leading to conditions such as nephrosclerosis and hypertensive nephropathy, significant causes of chronic kidney disease (CKD) and end-stage renal disease (ESRD). HTN is also a risk factor for stroke and coronary heart disease. Oxidative stress, inflammation, and activation of the renin-angiotensin-aldosterone system (RAAS) play critical roles in causing kidney injury in HTN. Genetic and environmental factors influence the susceptibility to hypertensive renal damage, with African American populations having a higher tendency due to genetic variants. Managing blood pressure (BP) effectively with treatments targeting RAAS activation, oxidative stress, and inflammation is crucial in preventing renal damage and the progression of HTN-related CKD and ESRD. Interactions between genetic and environmental factors impacting kidney function abnormalities are central to HTN development. Animal studies indicate that genetic factors significantly influence BP regulation. Anti-natriuretic mechanisms can reset the pressure-natriuresis relationship, requiring a higher BP to excrete sodium matched to intake. Activation of intrarenal angiotensin II receptors contributes to sodium retention and high BP. In HTN, the gut microbiome can affect BP by influencing energy metabolism and inflammatory pathways. Animal models, such as the spontaneously hypertensive rat and the chronic angiotensin II infusion model, mirror human essential hypertension and highlight the significance of the kidney in HTN pathogenesis. Overproduction of reactive oxygen species (ROS) plays a crucial role in the development and progression of HTN, impacting renal function and BP regulation. Targeting specific NADPH oxidase (NOX) isoforms to inhibit ROS production and enhance antioxidant mechanisms may improve renal structure and function while lowering blood pressure. Therapies like SGLT2 inhibitors and mineralocorticoid receptor antagonists have shown promise in reducing oxidative stress, inflammation, and RAAS activity, offering renal and antihypertensive protection in managing HTN and CKD. This review emphasizes the critical role of NOX in the development and progression of HTN, focusing on its impact on renal function and BP regulation. Effective BP management and targeting oxidative stress, inflammation, and RAAS activation, is crucial in preventing renal damage and the progression of HTN-related CKD and ESRD.
Collapse
Affiliation(s)
- Willaim J. Arendshorst
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA;
| | - Aleksandr E. Vendrov
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (A.E.V.); (N.K.); (S.K.G.)
| | - Nitin Kumar
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (A.E.V.); (N.K.); (S.K.G.)
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Santhi K. Ganesh
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (A.E.V.); (N.K.); (S.K.G.)
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nageswara R. Madamanchi
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (A.E.V.); (N.K.); (S.K.G.)
| |
Collapse
|
10
|
R Muralitharan R, Nakai ME, Snelson M, Zheng T, Dinakis E, Xie L, Jama H, Paterson M, Shihata W, Wassef F, Vinh A, Drummond GR, Kaye DM, Mackay CR, Marques FZ. Influence of angiotensin II on the gut microbiome: modest effects in comparison to experimental factors. Cardiovasc Res 2024; 120:1155-1163. [PMID: 38518247 PMCID: PMC11368123 DOI: 10.1093/cvr/cvae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/12/2023] [Accepted: 01/08/2024] [Indexed: 03/24/2024] Open
Abstract
AIMS Animal models are regularly used to test the role of the gut microbiome in hypertension. Small-scale pre-clinical studies have investigated changes to the gut microbiome in the angiotensin II hypertensive model. However, the gut microbiome is influenced by internal and external experimental factors, which are not regularly considered in the study design. Once these factors are accounted for, it is unclear if microbiome signatures are reproduceable. We aimed to determine the influence of angiotensin II treatment on the gut microbiome using a large and diverse cohort of mice and to quantify the magnitude by which other factors contribute to microbiome variations. METHODS AND RESULTS We conducted a retrospective study to establish a diverse mouse cohort resembling large human studies. We sequenced the V4 region of the 16S rRNA gene from 538 samples across the gastrointestinal tract of 303 male and female C57BL/6J mice randomized into sham or angiotensin II treatment from different genotypes, diets, animal facilities, and age groups. Analysing over 17 million sequencing reads, we observed that angiotensin II treatment influenced α-diversity (P = 0.0137) and β-diversity (i.e. composition of the microbiome, P < 0.001). Bacterial abundance analysis revealed patterns consistent with a reduction in short-chain fatty acid producers, microbial metabolites that lower blood pressure. Furthermore, animal facility, genotype, diet, age, sex, intestinal sampling site, and sequencing batch had significant effects on both α- and β-diversity (all P < 0.001). Sampling site (6.8%) and diet (6%) had the largest impact on the microbiome, while angiotensin II and sex had the smallest effect (each 0.4%). CONCLUSION Our large-scale data confirmed findings from small-scale studies that angiotensin II impacted the gut microbiome. However, this effect was modest relative to most of the other factors studied. Accounting for these factors in future pre-clinical hypertensive studies will increase the likelihood that microbiome findings are replicable and translatable.
Collapse
Affiliation(s)
- Rikeish R Muralitharan
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash University, 18 Innovation Walk, Clayton, 3800 Melbourne, Australia
- Institute for Medical Research, Ministry of Health Malaysia, Kuala Lumpur, Malaysia
- Victorian Heart Institute, Monash University, 631 Blackburn Road, Clayton, 3800 Melbourne, Australia
| | - Michael E Nakai
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash University, 18 Innovation Walk, Clayton, 3800 Melbourne, Australia
| | - Matthew Snelson
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash University, 18 Innovation Walk, Clayton, 3800 Melbourne, Australia
- Victorian Heart Institute, Monash University, 631 Blackburn Road, Clayton, 3800 Melbourne, Australia
| | - Tenghao Zheng
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash University, 18 Innovation Walk, Clayton, 3800 Melbourne, Australia
| | - Evany Dinakis
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash University, 18 Innovation Walk, Clayton, 3800 Melbourne, Australia
| | - Liang Xie
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash University, 18 Innovation Walk, Clayton, 3800 Melbourne, Australia
| | - Hamdi Jama
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash University, 18 Innovation Walk, Clayton, 3800 Melbourne, Australia
| | - Madeleine Paterson
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash University, 18 Innovation Walk, Clayton, 3800 Melbourne, Australia
| | - Waled Shihata
- Heart Failure Research Group, Baker Heart and Diabetes Institute, 75 Commercial Road, 3004 Melbourne, Australia
| | - Flavia Wassef
- Centre for Cardiovascular Biology and Disease Research (CCBDR), La Trobe Institute of Medical Science (LIMS), Bundoora, Victoria, Australia
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
| | - Antony Vinh
- Centre for Cardiovascular Biology and Disease Research (CCBDR), La Trobe Institute of Medical Science (LIMS), Bundoora, Victoria, Australia
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
| | - Grant R Drummond
- Centre for Cardiovascular Biology and Disease Research (CCBDR), La Trobe Institute of Medical Science (LIMS), Bundoora, Victoria, Australia
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
| | - David M Kaye
- Heart Failure Research Group, Baker Heart and Diabetes Institute, 75 Commercial Road, 3004 Melbourne, Australia
- Department of Cardiology, Alfred Hospital, Melbourne, Australia
- Central Clinical School, Faculty of Medicine Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - Charles R Mackay
- Infection and Immunity Program, Monash Biodiscovery Institute, Monash University, Melbourne, Australia
- Department of Biochemistry, Monash University, Melbourne, Australia
- School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Francine Z Marques
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash University, 18 Innovation Walk, Clayton, 3800 Melbourne, Australia
- Victorian Heart Institute, Monash University, 631 Blackburn Road, Clayton, 3800 Melbourne, Australia
- Heart Failure Research Group, Baker Heart and Diabetes Institute, 75 Commercial Road, 3004 Melbourne, Australia
| |
Collapse
|
11
|
Wang R, Li B, Huang B, Li Y, Liu Q, Lyu Z, Chen R, Qian Q, Liang X, Pu X, Wu Y, Chen Y, Miao Q, Wang Q, Lian M, Xiao X, Leung PSC, Gershwin ME, You Z, Ma X, Tang R. Gut Microbiota-Derived Butyrate Induces Epigenetic and Metabolic Reprogramming in Myeloid-Derived Suppressor Cells to Alleviate Primary Biliary Cholangitis. Gastroenterology 2024; 167:733-749.e3. [PMID: 38810839 DOI: 10.1053/j.gastro.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 03/29/2024] [Accepted: 05/08/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND & AIMS Gut dysbiosis and myeloid-derived suppressor cells (MDSCs) are implicated in primary biliary cholangitis (PBC) pathogenesis. However, it remains unknown whether gut microbiota or their metabolites can modulate MDSCs homeostasis to rectify immune dysregulation in PBC. METHODS We measured fecal short-chain fatty acids levels using targeted gas chromatography-mass spectrometry and analyzed circulating MDSCs using flow cytometry in 2 independent PBC cohorts. Human and murine MDSCs were differentiated in vitro in the presence of butyrate, followed by transcriptomic, epigenetic (CUT&Tag-seq and chromatin immunoprecipitation-quantitative polymerase chain reaction), and metabolic (untargeted liquid chromatography-mass spectrometry, mitochondrial stress test, and isotope tracing) analyses. The in vivo role of butyrate-MDSCs was evaluated in a 2-octynoic acid-bovine serum albumin-induced cholangitis murine model. RESULTS Decreased butyrate levels and defective MDSC function were found in patients with incomplete response to ursodeoxycholic acid, compared with those with adequate response. Butyrate induced expansion and suppressive activity of MDSCs in a manner dependent on PPARD-driven fatty acid β-oxidation (FAO). Pharmaceutical inhibition or genetic knockdown of the FAO rate-limiting gene CPT1A abolished the effect of butyrate. Furthermore, butyrate inhibited HDAC3 function, leading to enhanced acetylation of lysine 27 on histone H3 at promoter regions of PPARD and FAO genes in MDSCs. Therapeutically, butyrate administration alleviated immune-mediated cholangitis in mice via MDSCs, and adoptive transfer of butyrate-treated MDSCs also displayed protective efficacy. Importantly, reduced expression of FAO genes and impaired mitochondrial physiology were detected in MDSCs from ursodeoxycholic acid nonresponders, and their impaired suppressive function was restored by butyrate. CONCLUSIONS We identify a critical role for butyrate in modulation of MDSC homeostasis by orchestrating epigenetic and metabolic crosstalk, proposing a novel therapeutic strategy for treating PBC.
Collapse
Affiliation(s)
- Rui Wang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Bo Li
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Bingyuan Huang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Yikang Li
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Qiaoyan Liu
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Zhuwan Lyu
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Ruiling Chen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Qiwei Qian
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Xueying Liang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Xiting Pu
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Yi Wu
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Yu Chen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Qi Miao
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Qixia Wang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Disease, Shanghai, China; Division of Infectious Diseases, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Lian
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Xiao Xiao
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Patrick S C Leung
- Division of Rheumatology, Department of Medicine, Allergy and Clinical Immunology, University of California at Davis, Davis, California
| | - M Eric Gershwin
- Division of Rheumatology, Department of Medicine, Allergy and Clinical Immunology, University of California at Davis, Davis, California
| | - Zhengrui You
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Disease, Shanghai, China.
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Disease, Shanghai, China; Institute of Aging & Tissue Regeneration, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Ruqi Tang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Disease, Shanghai, China.
| |
Collapse
|
12
|
Li J, Wang S, Yan K, Wang P, Jiao J, Wang Y, Chen M, Dong Y, Zhong J. Intestinal microbiota by angiotensin receptor blocker therapy exerts protective effects against hypertensive damages. IMETA 2024; 3:e222. [PMID: 39135690 PMCID: PMC11316932 DOI: 10.1002/imt2.222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 08/15/2024]
Abstract
Dysbiosis of the gut microbiota has been implicated in hypertension, and drug-host-microbiome interactions have drawn considerable attention. However, the influence of angiotensin receptor blocker (ARB)-shaped gut microbiota on the host is not fully understood. In this work, we assessed the alterations of blood pressure (BP), vasculatures, and intestines following ARB-modified gut microbiome treatment and evaluated the changes in the intestinal transcriptome and serum metabolome in hypertensive rats. Hypertensive patients with well-controlled BP under ARB therapy were recruited as human donors, spontaneously hypertensive rats (SHRs) receiving normal saline or valsartan were considered animal donors, and SHRs were regarded as recipients. Histological and immunofluorescence staining was used to assess the aorta and small intestine, and 16S rRNA amplicon sequencing was performed to examine gut bacteria. Transcriptome and metabonomic analyses were conducted to determine the intestinal transcriptome and serum metabolome, respectively. Notably, ARB-modified fecal microbiota transplantation (FMT), results in marked decreases in systolic BP levels, collagen deposition and reactive oxygen species accumulation in the vasculature, and alleviated intestinal structure impairments in SHRs. These changes were linked with the reconstruction of the gut microbiota in SHR recipients post-FMT, especially with a decreased abundance of Lactobacillus, Aggregatibacter, and Desulfovibrio. Moreover, ARB-treated microbes contributed to increased intestinal Ciart, Per1, Per2, Per3, and Cipc gene levels and decreased Nfil3 and Arntl expression were detected in response to ARB-treated microbes. More importantly, circulating metabolites were dramatically reduced in ARB-FMT rats, including 6beta-Hydroxytestosterone and Thromboxane B2. In conclusion, ARB-modified gut microbiota exerts protective roles in vascular remodeling and injury, metabolic abnormality and intestinal dysfunctions, suggesting a pivotal role in mitigating hypertension and providing insights into the cross-talk between antihypertensive medicines and the gut microbiome.
Collapse
Affiliation(s)
- Jing Li
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
- Department of Cardiology, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Si‐Yuan Wang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
- Department of Cardiology, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Kai‐Xin Yan
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
- Department of Cardiology, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Pan Wang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
- Department of Cardiology, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Jie Jiao
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
- Department of Cardiology, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Yi‐Dan Wang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
- Department of Cardiology, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Mu‐Lei Chen
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
- Department of Cardiology, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Ying Dong
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
- Department of Cardiology, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Jiu‐Chang Zhong
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
- Department of Cardiology, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
13
|
Dinakis E, O'Donnell JA, Marques FZ. The gut-immune axis during hypertension and cardiovascular diseases. Acta Physiol (Oxf) 2024; 240:e14193. [PMID: 38899764 DOI: 10.1111/apha.14193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/04/2024] [Accepted: 06/06/2024] [Indexed: 06/21/2024]
Abstract
The gut-immune axis is a relatively novel phenomenon that provides mechanistic links between the gut microbiome and the immune system. A growing body of evidence supports it is key in how the gut microbiome contributes to several diseases, including hypertension and cardiovascular diseases (CVDs). Evidence over the past decade supports a causal link of the gut microbiome in hypertension and its complications, including myocardial infarction, atherosclerosis, heart failure, and stroke. Perturbations in gut homeostasis such as dysbiosis (i.e., alterations in gut microbial composition) may trigger immune responses that lead to chronic low-grade inflammation and, ultimately, the development and progression of these conditions. This is unsurprising, as the gut harbors one of the largest numbers of immune cells in the body, yet is a phenomenon not entirely understood in the context of cardiometabolic disorders. In this review, we discuss the role of the gut microbiome, the immune system, and inflammation in the context of hypertension and CVD, and consolidate current evidence of this complex interplay, whilst highlighting gaps in the literature. We focus on diet as one of the major modulators of the gut microbiota, and explain key microbial-derived metabolites (e.g., short-chain fatty acids, trimethylamine N-oxide) as potential mediators of the communication between the gut and peripheral organs such as the heart, arteries, kidneys, and the brain via the immune system. Finally, we explore the dual role of both the gut microbiome and the immune system, and how they work together to not only contribute, but also mitigate hypertension and CVD.
Collapse
Affiliation(s)
- Evany Dinakis
- Hypertension Research Laboratory, School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Joanne A O'Donnell
- Hypertension Research Laboratory, School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Francine Z Marques
- Hypertension Research Laboratory, School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Victorian Heart Institute, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
14
|
Pitt B, Diez J. Possible Role of Gut Microbiota Alterations in Myocardial Fibrosis and Burden of Heart Failure in Hypertensive Heart Disease. Hypertension 2024; 81:1467-1476. [PMID: 38716665 DOI: 10.1161/hypertensionaha.124.23089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Epidemiological studies have revealed that hypertensive heart disease is a major risk factor for heart failure, and its heart failure burden is growing rapidly. The need to act in the face of this threat requires first an understanding of the multifactorial origin of hypertensive heart disease and second an exploration of new mechanistic pathways involved in myocardial alterations critically involved in cardiac dysfunction and failure (eg, myocardial interstitial fibrosis). Increasing evidence shows that alterations of gut microbiota composition and function (ie, dysbiosis) leading to changes in microbiota-derived metabolites and impairment of the gut barrier and immune functions may be involved in blood pressure elevation and hypertensive organ damage. In this review, we highlight recent advances in the potential contribution of gut microbiota alterations to myocardial interstitial fibrosis in hypertensive heart disease through blood pressure-dependent and blood pressure-independent mechanisms. Achievements in this field should open a new path for more comprehensive treatment of myocardial interstitial fibrosis in hypertensive heart disease and, thus, for the prevention of heart failure.
Collapse
Affiliation(s)
- Bertram Pitt
- Department of Medicine, University of Michigan School of Medicine, Ann Arbor (B.P.)
| | - Javier Diez
- Department of Cardiovascular Diseases, Center for Applied Medical Research and School of Medicine, University of Navarra, Pamplona, Spain (J.D.)
| |
Collapse
|
15
|
Guzik TJ, Nosalski R, Maffia P, Drummond GR. Immune and inflammatory mechanisms in hypertension. Nat Rev Cardiol 2024; 21:396-416. [PMID: 38172242 DOI: 10.1038/s41569-023-00964-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/20/2023] [Indexed: 01/05/2024]
Abstract
Hypertension is a global health problem, with >1.3 billion individuals with high blood pressure worldwide. In this Review, we present an inflammatory paradigm for hypertension, emphasizing the crucial roles of immune cells, cytokines and chemokines in disease initiation and progression. T cells, monocytes, macrophages, dendritic cells, B cells and natural killer cells are all implicated in hypertension. Neoantigens, the NLRP3 inflammasome and increased sympathetic outflow, as well as cytokines (including IL-6, IL-7, IL-15, IL-18 and IL-21) and a high-salt environment, can contribute to immune activation in hypertension. The activated immune cells migrate to target organs such as arteries (especially the perivascular fat and adventitia), kidneys, the heart and the brain, where they release effector cytokines that elevate blood pressure and cause vascular remodelling, renal damage, cardiac hypertrophy, cognitive impairment and dementia. IL-17 secreted by CD4+ T helper 17 cells and γδ T cells, and interferon-γ and tumour necrosis factor secreted by immunosenescent CD8+ T cells, exert crucial effector roles in hypertension, whereas IL-10 and regulatory T cells are protective. Effector mediators impair nitric oxide bioavailability, leading to endothelial dysfunction and increased vascular contractility. Inflammatory effector mediators also alter renal sodium and water balance and promote renal fibrosis. These mechanisms link hypertension with obesity, autoimmunity, periodontitis and COVID-19. A comprehensive understanding of the immune and inflammatory mechanisms of hypertension is crucial for safely and effectively translating the findings to clinical practice.
Collapse
Affiliation(s)
- Tomasz J Guzik
- Centre for Cardiovascular Sciences, University of Edinburgh, Edinburgh, UK.
- Department of Medicine and Omicron Medical Genomics Laboratory, Jagiellonian University, Collegium Medicum, Kraków, Poland.
- Africa-Europe Cluster of Research Excellence (CoRE) in Non-Communicable Diseases & Multimorbidity, African Research Universities Alliance ARUA & The Guild, Glasgow, UK.
| | - Ryszard Nosalski
- Centre for Cardiovascular Sciences, University of Edinburgh, Edinburgh, UK
| | - Pasquale Maffia
- Africa-Europe Cluster of Research Excellence (CoRE) in Non-Communicable Diseases & Multimorbidity, African Research Universities Alliance ARUA & The Guild, Glasgow, UK
- School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Grant R Drummond
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, Victoria, Australia
- Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
16
|
Zhang T, Huo H, Zhang Y, Tao J, Yang J, Rong X, Yang Y. Th17 cells: A new target in kidney disease research. Int Rev Immunol 2024; 43:263-279. [PMID: 38439681 DOI: 10.1080/08830185.2024.2321901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/26/2023] [Accepted: 01/09/2024] [Indexed: 03/06/2024]
Abstract
Type 17 T helper (Th17) cells, which are a subtype of CD4+ T helper cells, secrete pro-inflammatory cytokines such as IL-17A, IL-17F, IL-21, IL-22, and GM-CSF, which play crucial roles in immune defence and protection against fungal and extracellular pathogen invasion. However, dysfunction of Th17 cell immunity mediates inflammatory responses and exacerbates tissue damage. This pathological process initiated by Th17 cells is common in kidney diseases associated with renal injury, such as glomerulonephritis, lupus nephritis, IgA nephropathy, hypertensive nephropathy, diabetic kidney disease and acute kidney injury. Therefore, targeting Th17 cells to treat kidney diseases has been a hot topic in recent years. This article reviews the mechanisms of Th17 cell-mediated inflammation and autoimmune responses in kidney diseases and discusses the related clinical drugs that modulate Th17 cell fate in kidney disease treatment.
Collapse
Affiliation(s)
- Tao Zhang
- Key Laboratory of Glucolipid Metabolic Disorder, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Ministry of Education, Guangzhou, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou Higher Education Mega Center, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hongyan Huo
- Key Laboratory of Glucolipid Metabolic Disorder, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Ministry of Education, Guangzhou, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou Higher Education Mega Center, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yinghui Zhang
- Key Laboratory of Glucolipid Metabolic Disorder, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Ministry of Education, Guangzhou, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou Higher Education Mega Center, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jie Tao
- Key Laboratory of Glucolipid Metabolic Disorder, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Ministry of Education, Guangzhou, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou Higher Education Mega Center, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Junzheng Yang
- Guangdong Nephrotic Drug Engineering Technology Research Center, The R&D Center of Drug for Renal Diseases, Consun Pharmaceutical Group, Guangzhou, Guangdong, China
| | - Xianglu Rong
- Key Laboratory of Glucolipid Metabolic Disorder, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Ministry of Education, Guangzhou, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou Higher Education Mega Center, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yiqi Yang
- Key Laboratory of Glucolipid Metabolic Disorder, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Ministry of Education, Guangzhou, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou Higher Education Mega Center, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
17
|
Huang X, Hu L, Long Z, Wang X, Wu J, Cai J. Hypertensive Heart Disease: Mechanisms, Diagnosis and Treatment. Rev Cardiovasc Med 2024; 25:93. [PMID: 39076964 PMCID: PMC11263885 DOI: 10.31083/j.rcm2503093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/19/2023] [Accepted: 11/22/2023] [Indexed: 07/31/2024] Open
Abstract
Hypertensive heart disease (HHD) presents a substantial global health burden, spanning a spectrum from subtle cardiac functional alterations to overt heart failure. In this comprehensive review, we delved into the intricate pathophysiological mechanisms governing the onset and progression of HHD. We emphasized the significant role of neurohormonal activation, inflammation, and metabolic remodeling in HHD pathogenesis, offering insights into promising therapeutic avenues. Additionally, this review provided an overview of contemporary imaging diagnostic tools for precise HHD severity assessment. We discussed in detail the current potential treatments for HHD, including pharmacologic, lifestyle, and intervention devices. This review aimed to underscore the global importance of HHD and foster a deeper understanding of its pathophysiology, ultimately contributing to improved public health outcomes.
Collapse
Affiliation(s)
- Xuewei Huang
- Department of Cardiology, The Third Xiangya Hospital, Central South University, 410013 Changsha, Hunan, China
| | - Lizhi Hu
- Xiangya School of Medicine, Central South University, 410013 Changsha, Hunan, China
| | - Zhuojun Long
- Xiangya School of Medicine, Central South University, 410013 Changsha, Hunan, China
| | - Xinyao Wang
- Xiangya School of Medicine, Central South University, 410013 Changsha, Hunan, China
| | - Junru Wu
- Department of Cardiology, The Third Xiangya Hospital, Central South University, 410013 Changsha, Hunan, China
| | - Jingjing Cai
- Department of Cardiology, The Third Xiangya Hospital, Central South University, 410013 Changsha, Hunan, China
| |
Collapse
|
18
|
Abstract
Salt (sodium chloride) is an essential nutrient required to maintain physiological functions. However, for most people, daily salt intake far exceeds their physiological need and is habitually greater than recommended upper thresholds. Excess salt intake leads to elevation in blood pressure which drives cardiovascular morbidity and mortality. Indeed, excessive salt intake is estimated to be responsible for ≈5 million deaths per year globally. For approximately one-third of otherwise healthy individuals (and >50% of those with hypertension), the effect of salt intake on blood pressure elevation is exaggerated; such people are categorized as salt sensitive and salt sensitivity of blood pressure is considered an independent risk factor for cardiovascular disease and death. The prevalence of salt sensitivity is higher in women than in men and, in both, increases with age. This narrative review considers the foundational concepts of salt sensitivity and the underlying effector systems that cause salt sensitivity. We also consider recent updates in preclinical and clinical research that are revealing new modifying factors that determine the blood pressure response to high salt intake.
Collapse
Affiliation(s)
- Matthew A Bailey
- Edinburgh Kidney, University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, United Kingdom (M.A.B., N.D.)
| | - Neeraj Dhaun
- Edinburgh Kidney, University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, United Kingdom (M.A.B., N.D.)
- Department of Renal Medicine, Royal Infirmary of Edinburgh, United Kingdom (N.D.)
| |
Collapse
|
19
|
Saleem M, Masenga SK, Ishimwe JA, Demirci M, Ahmad T, Jamison S, Albritton CF, Mwesigwa N, Porcia Haynes A, White J, Neikirk K, Vue Z, Hinton A, Arshad S, Desta S, Kirabo A. Recent Advances in Understanding Peripheral and Gut Immune Cell-Mediated Salt-Sensitive Hypertension and Nephropathy. Hypertension 2024; 81:436-446. [PMID: 38164753 PMCID: PMC10922672 DOI: 10.1161/hypertensionaha.123.22031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Hypertension is the primary modifiable risk factor for cardiovascular, renal, and cerebrovascular diseases and is considered the main contributing factor to morbidity and mortality worldwide. Approximately 50% of hypertensive and 25% of normotensive people exhibit salt sensitivity of blood pressure, which is an independent risk factor for cardiovascular disease. Human and animal studies demonstrate that the immune system plays an important role in the etiology and pathogenesis of salt sensitivity of blood pressure, kidney damage, and vascular diseases. Antigen-presenting and adaptive immune cells are implicated in salt-sensitive hypertension and salt-induced renal and vascular injury. Elevated sodium activates antigen-presenting cells to release proinflammatory cytokines including IL (interleukin) 6, tumor necrosis factor-α, IL-1β, and accumulate isolevuglandin-protein adducts. In turn, these activate T cells release prohypertensive cytokines including IL-17A. Moreover, high-salt intake is associated with gut dysbiosis, leading to inflammation, oxidative stress, and blood pressure elevation but the mechanistic contribution to salt-sensitivity of blood pressure is not clearly understood. Here, we discuss recent advances in research investigating the cause, potential biomarkers, and therapeutic targets for salt-sensitive hypertension as they pertain to the gut microbiome, immunity, and inflammation.
Collapse
Affiliation(s)
- Mohammad Saleem
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sepiso K Masenga
- Mulungushi University, School of Medicine and Health Sciences, HAND Research Group, Livingstone, Zambia
| | - Jeanne A Ishimwe
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mert Demirci
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Taseer Ahmad
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Punjab, Pakistan
| | - Sydney Jamison
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
- School of Graduate Studies, Meharry Medical College, Nashville, TN, USA
| | - Claude F. Albritton
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
- School of Graduate Studies, Meharry Medical College, Nashville, TN, USA
| | - Naome Mwesigwa
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alexandria Porcia Haynes
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jalyn White
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
- Spelman College Department of Chemistry and Biochemistry, Atlanta, GA, USA
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Suha Arshad
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Selam Desta
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Annet Kirabo
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology
- Vanderbilt Institute for Infection, Immunology and Inflammation
- Vanderbilt Institute for Global Health
| |
Collapse
|
20
|
Anandakumar H, Rauch A, Wimmer MI, Yarritu A, Koch G, McParland V, Bartolomaeus H, Wilck N. Segmental patterning of microbiota and immune cells in the murine intestinal tract. Gut Microbes 2024; 16:2398126. [PMID: 39254265 PMCID: PMC11404582 DOI: 10.1080/19490976.2024.2398126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/03/2024] [Accepted: 08/23/2024] [Indexed: 09/11/2024] Open
Abstract
The intestine exhibits distinct characteristics along its length, with a substantial immune cell reservoir and diverse microbiota crucial for maintaining health. This study investigates how anatomical location and regional microbiota influence intestinal immune cell abundance. Using conventionally colonized and germ-free mice, segment-specific immune cell composition and microbial communities were assessed. Metagenomic sequencing analyzed microbiome variations, while flow cytometry and immunofluorescence examined immune cell composition. Microbiome composition varied significantly along the intestine, with diversity and abundance increasing from upper to lower segments. Immune cells showed distinct segment-specific patterning influenced by microbial colonization and localization. T cell subsets displayed varied dependence on microbiome presence and anatomical location. This study highlights locoregional differences in intestinal immune cell and microbiome composition, identifying immune subsets susceptible to microbiota presence. The findings provide context for understanding immune cell alterations in disease models.
Collapse
Affiliation(s)
- Harithaa Anandakumar
- Experimental and Clinical Research Center, Cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Department of Nephrology and Internal Intensive Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Ariana Rauch
- Experimental and Clinical Research Center, Cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Department of Nephrology and Internal Intensive Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Moritz I Wimmer
- Experimental and Clinical Research Center, Cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Department of Nephrology and Internal Intensive Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Alex Yarritu
- Experimental and Clinical Research Center, Cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Department of Nephrology and Internal Intensive Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Gudrun Koch
- Experimental and Clinical Research Center, Cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Victoria McParland
- Experimental and Clinical Research Center, Cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Department of Nephrology and Internal Intensive Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Hendrik Bartolomaeus
- Experimental and Clinical Research Center, Cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Department of Nephrology and Internal Intensive Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Nicola Wilck
- Experimental and Clinical Research Center, Cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Department of Nephrology and Internal Intensive Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| |
Collapse
|
21
|
Perrotta S, Carnevale D. Brain-Splenic Immune System Interactions in Hypertension: Cellular and Molecular Mechanisms. Arterioscler Thromb Vasc Biol 2024; 44:65-75. [PMID: 37942610 DOI: 10.1161/atvbaha.123.318230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 10/20/2023] [Indexed: 11/10/2023]
Abstract
Hypertension represents a major worldwide cause of death and disability, and it is becoming increasingly clear that available therapies are not sufficient to reduce the risk of major cardiovascular events. Various mechanisms contribute to blood pressure increase: neurohormonal activation, autonomic nervous system imbalance, and immune activation. Of note, the brain is an important regulator of blood pressure levels; it recognizes the peripheral perturbation and organizes a reflex response by modulating immune system and hormonal release to attempt at restoring the homeostasis. The connection between the brain and peripheral organs is mediated by the autonomic nervous system, which also modulates immune and inflammatory responses. Interestingly, an increased autonomic nervous system activity has been correlated with an altered immune response in cardiovascular diseases. The spleen is the largest immune organ exerting a potent influence on the cardiovascular system during disease and is characterized by a dense noradrenergic innervation. Taken together, these aspects led to hypothesize a key role of neuroimmune mechanisms in the onset and progression of hypertension. This review discusses how the nervous and splenic immune systems interact and how the mechanisms underlying the neuroimmune cross talk influence the disease progression.
Collapse
Affiliation(s)
- Sara Perrotta
- Department of Angiocardioneurology and Translational Medicine, Unit of Neuro and Cardiovascular Pathophysiology, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Neuromed, Pozzilli, Italy (S.P., D.C.)
| | - Daniela Carnevale
- Department of Angiocardioneurology and Translational Medicine, Unit of Neuro and Cardiovascular Pathophysiology, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Neuromed, Pozzilli, Italy (S.P., D.C.)
- Department of Molecular Medicine, "Sapienza" University of Rome, Italy (D.C.)
| |
Collapse
|
22
|
Behrens F, Bartolomaeus H, Wilck N, Holle J. Gut-immune axis and cardiovascular risk in chronic kidney disease. Clin Kidney J 2024; 17:sfad303. [PMID: 38229879 PMCID: PMC10790347 DOI: 10.1093/ckj/sfad303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Indexed: 01/18/2024] Open
Abstract
Patients with chronic kidney disease (CKD) suffer from marked cardiovascular morbidity and mortality, so lowering the cardiovascular risk is paramount to improve quality of life and survival in CKD. Manifold mechanisms are hold accountable for the development of cardiovascular disease (CVD), and recently inflammation arose as novel risk factor significantly contributing to progression of CVD. While the gut microbiome was identified as key regulator of immunity and inflammation in several disease, CKD-related microbiome-immune interaction gains increasing importance. Here, we summarize the latest knowledge on microbiome dysbiosis in CKD, subsequent changes in bacterial and host metabolism and how this drives inflammation and CVD in CKD. Moreover, we outline potential therapeutic targets along the gut-immune-cardiovascular axis that could aid the combat of CVD development and high mortality in CKD.
Collapse
Affiliation(s)
- Felix Behrens
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), a cooperation of Charité – Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Institute of Physiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Hendrik Bartolomaeus
- Experimental and Clinical Research Center (ECRC), a cooperation of Charité – Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
- Department of Nephrology und Intensive Medical Care, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Nicola Wilck
- Experimental and Clinical Research Center (ECRC), a cooperation of Charité – Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
- Department of Nephrology und Intensive Medical Care, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Johannes Holle
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), a cooperation of Charité – Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| |
Collapse
|
23
|
Avellaneda-Franco L, Xie L, Nakai M, Barr JJ, Marques FZ. Dietary fiber intake impacts gut bacterial and viral populations in a hypertensive mouse model. Gut Microbes 2024; 16:2407047. [PMID: 39340212 PMCID: PMC11567275 DOI: 10.1080/19490976.2024.2407047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/19/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
The gut microbiome is an emerging factor in preventing hypertension, yet the influence of gut bacteriophages, viruses infecting bacteria, on this condition remains unclear. Bacteriophage-bacteria interactions, which impact the gut microbiome, are influenced differentially by temperate and virulent bacteriophages. However, the standard technique for studying viral populations, viral-like particles (VLPs)-metagenomes, often overlook prophages, the intracellular stage of temperate bacteriophages, creating a knowledge gap. To address this, we investigated alterations in extracellular and intracellular bacteriophages, alongside bacterial populations, in the angiotensin II-hypertension model. We sequenced VLPs and bulk DNA from cecal-colonic samples collected from male C57BL/6J mice implanted with minipumps containing saline or angiotensin II. We assembled 106 bacterial and 816 viral genomes and found that gut viral and bacterial populations remained stable between hypertensive and normotensive mice. A higher number of temperate viruses were observed across all treatments. Although temperate viruses outnumbered virulent viruses, sequencing of both VLPs and bulk revealed that virions from virulent viruses were more abundant in the murine gut. We then evaluated the impact of low- and high-fiber intake on gut microbiome composition in the angiotensin II model. Fiber intake significantly influenced the gut microbiome composition and hypertension development. Mice receiving high-fiber had lower blood pressure, a higher bacterial-encoded carbohydrate-associated enzyme, and a higher total relative abundance of temperate viruses than those receiving low-fiber. Our findings suggest that phages are not associated with hypertension development in the angiotensin II model. However, they support a complex diet-bacteria/phage interaction that may be involved in blood pressure regulation.
Collapse
Affiliation(s)
| | - Liang Xie
- School of Biological Sciences, Monash University, Melbourne, Australia
- Precision Medicine Translational Research Programme, Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Michael Nakai
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - Jeremy J. Barr
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - Francine Z. Marques
- School of Biological Sciences, Monash University, Melbourne, Australia
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, Australia
- Victorian Heart Institute, Monash University, Melbourne, Australia
| |
Collapse
|
24
|
Jia X, Chen Q, Wu H, Liu H, Jing C, Gong A, Zhang Y. Exploring a novel therapeutic strategy: the interplay between gut microbiota and high-fat diet in the pathogenesis of metabolic disorders. Front Nutr 2023; 10:1291853. [PMID: 38192650 PMCID: PMC10773723 DOI: 10.3389/fnut.2023.1291853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024] Open
Abstract
In the past two decades, the rapid increase in the incidence of metabolic diseases, including obesity, diabetes, dyslipidemia, non-alcoholic fatty liver disease, hypertension, and hyperuricemia, has been attributed to high-fat diets (HFD) and decreased physical activity levels. Although the phenotypes and pathologies of these metabolic diseases vary, patients with these diseases exhibit disease-specific alterations in the composition and function of their gut microbiota. Studies in germ-free mice have shown that both HFD and gut microbiota can promote the development of metabolic diseases, and HFD can disrupt the balance of gut microbiota. Therefore, investigating the interaction between gut microbiota and HFD in the pathogenesis of metabolic diseases is crucial for identifying novel therapeutic strategies for these diseases. This review takes HFD as the starting point, providing a detailed analysis of the pivotal role of HFD in the development of metabolic disorders. It comprehensively elucidates the impact of HFD on the balance of intestinal microbiota, analyzes the mechanisms underlying gut microbiota dysbiosis leading to metabolic disruptions, and explores the associated genetic factors. Finally, the potential of targeting the gut microbiota as a means to address metabolic disturbances induced by HFD is discussed. In summary, this review offers theoretical support and proposes new research avenues for investigating the role of nutrition-related factors in the pathogenesis of metabolic disorders in the organism.
Collapse
Affiliation(s)
- Xiaokang Jia
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Qiliang Chen
- School of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Huiwen Wu
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Hongbo Liu
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Chunying Jing
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Aimin Gong
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Yuanyuan Zhang
- The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
25
|
Vallianou NG, Kounatidis D, Panagopoulos F, Evangelopoulos A, Stamatopoulos V, Papagiorgos A, Geladari E, Dalamaga M. Gut Microbiota and Its Role in the Brain-Gut-Kidney Axis in Hypertension. Curr Hypertens Rep 2023; 25:367-376. [PMID: 37632662 DOI: 10.1007/s11906-023-01263-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2023] [Indexed: 08/28/2023]
Abstract
PURPOSE OF REVIEW The role of the gut microbiota in modulating blood pressure is increasingly being recognized, currently. The purpose of this review is to summarize recent findings about the mechanisms involved in hypertension with regard to the phenomenon of "gut dysbiosis." RECENT FINDINGS Gut dysbiosis, i.e., the imbalance between the gut microbiota and the host, is characterized by a disruption of the tight junction proteins, such as occludins, claudins, and JAMs (junctional adhesion molecules), resulting in increased gut permeability or the so called "leaky gut." Due to the influence of genetic as well as environmental factors, various metabolites produced by the gut microbiota, such as indole and p-cresol, are increased. Thereby, uremic toxins, such as indoxyl sulfates and p-cresol sulfates, accumulate in the blood and the urine, causing damage in the podocytes and the tubular cells. In addition, immunological mechanisms are implicated as well. In particular, a switch from M2 macrophages to M1 macrophages, which produce pro-inflammatory cytokines, occurs. Moreover, a higher level of Th17 cells, releasing large amounts of interleukin-17 (IL-17), has been reported, when a diet rich in salt is consumed. Therefore, apart from the aggravation of uremic toxins, which may account for direct harmful effects on the kidney, there is inflammation not only in the gut, but in the kidneys as well. This crosstalk between the gut and the kidney is suggested to play a crucial role in hypertension. Notably, the brain is also implicated, with an increasing sympathetic output. The brain-gut-kidney axis seems to be deeply involved in the development of hypertension and chronic kidney disease (CKD). The notion that, by modulating the gut microbiota, we could regulate blood pressure is strongly supported by the current evidence. A healthy diet, low in animal protein and fat, and low in salt, together with the utilization of probiotics, prebiotics, synbiotics, or postbiotics, may contribute to our fight against hypertension.
Collapse
Affiliation(s)
| | | | - Fotis Panagopoulos
- Evangelismos General Hospital, 45-47 Ipsilantou str, 10676, Athens, Greece
| | | | | | | | - Eleni Geladari
- Evangelismos General Hospital, 45-47 Ipsilantou str, 10676, Athens, Greece
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias str, Athens, Greece
| |
Collapse
|
26
|
Aryal S, Manandhar I, Mei X, Yeoh BS, Tummala R, Saha P, Osman I, Zubcevic J, Durgan DJ, Vijay-Kumar M, Joe B. Combating hypertension beyond genome-wide association studies: Microbiome and artificial intelligence as opportunities for precision medicine. CAMBRIDGE PRISMS. PRECISION MEDICINE 2023; 1:e26. [PMID: 38550938 PMCID: PMC10953772 DOI: 10.1017/pcm.2023.13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/15/2023] [Accepted: 04/04/2023] [Indexed: 11/03/2024]
Abstract
The single largest contributor to human mortality is cardiovascular disease, the top risk factor for which is hypertension (HTN). The last two decades have placed much emphasis on the identification of genetic factors contributing to HTN. As a result, over 1,500 genetic alleles have been associated with human HTN. Mapping studies using genetic models of HTN have yielded hundreds of blood pressure (BP) loci but their individual effects on BP are minor, which limits opportunities to target them in the clinic. The value of collecting genome-wide association data is evident in ongoing research, which is beginning to utilize these data at individual-level genetic disparities combined with artificial intelligence (AI) strategies to develop a polygenic risk score (PRS) for the prediction of HTN. However, PRS alone may or may not be sufficient to account for the incidence and progression of HTN because genetics is responsible for <30% of the risk factors influencing the etiology of HTN pathogenesis. Therefore, integrating data from other nongenetic factors influencing BP regulation will be important to enhance the power of PRS. One such factor is the composition of gut microbiota, which constitute a more recently discovered important contributor to HTN. Studies to-date have clearly demonstrated that the transition from normal BP homeostasis to a state of elevated BP is linked to compositional changes in gut microbiota and its interaction with the host. Here, we first document evidence from studies on gut dysbiosis in animal models and patients with HTN followed by a discussion on the prospects of using microbiota data to develop a metagenomic risk score (MRS) for HTN to be combined with PRS and a clinical risk score (CRS). Finally, we propose that integrating AI to learn from the combined PRS, MRS and CRS may further enhance predictive power for the susceptibility and progression of HTN.
Collapse
Affiliation(s)
- Sachin Aryal
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Ishan Manandhar
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Xue Mei
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Beng S. Yeoh
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Ramakumar Tummala
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Piu Saha
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Islam Osman
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Jasenka Zubcevic
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - David J. Durgan
- Integrative Physiology & Anesthesiology, Baylor College of Medicine, Houston, TX, USA
| | - Matam Vijay-Kumar
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Bina Joe
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| |
Collapse
|
27
|
Abstract
A large body of evidence has emerged in the past decade supporting a role for the gut microbiome in the regulation of blood pressure. The field has moved from association to causation in the last 5 years, with studies that have used germ-free animals, antibiotic treatments and direct supplementation with microbial metabolites. The gut microbiome can regulate blood pressure through several mechanisms, including through gut dysbiosis-induced changes in microbiome-associated gene pathways in the host. Microbiota-derived metabolites are either beneficial (for example, short-chain fatty acids and indole-3-lactic acid) or detrimental (for example, trimethylamine N-oxide), and can activate several downstream signalling pathways via G protein-coupled receptors or through direct immune cell activation. Moreover, dysbiosis-associated breakdown of the gut epithelial barrier can elicit systemic inflammation and disrupt intestinal mechanotransduction. These alterations activate mechanisms that are traditionally associated with blood pressure regulation, such as the renin-angiotensin-aldosterone system, the autonomic nervous system, and the immune system. Several methodological and technological challenges remain in gut microbiome research, and the solutions involve minimizing confounding factors, establishing causality and acting globally to improve sample diversity. New clinical trials, precision microbiome medicine and computational methods such as Mendelian randomization have the potential to enable leveraging of the microbiome for translational applications to lower blood pressure.
Collapse
|
28
|
Jiang F, Cai M, Peng Y, Li S, Liang B, Ni H, Lin Y. Changes in the gut microbiome of patients with type a aortic dissection. Front Microbiol 2023; 14:1092360. [PMID: 36910178 PMCID: PMC9992204 DOI: 10.3389/fmicb.2023.1092360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/09/2023] [Indexed: 02/24/2023] Open
Abstract
Objective To investigate the characteristic changes in the gut microbiota of patients with type A aortic dissection (AAD) and provide a theoretical basis for future microbiome-oriented interventional studies. Methods High-throughput 16S rDNA sequencing was performed on the stool samples of patients with and without (healthy control subjects) AAD. Using alpha and beta diversity analysis, we compared the gut microbiota composition of 20 patients with AAD and 20 healthy controls matched for gender, age, BMI, and geographical region. The accuracy of AAD prediction by differential microbiome was calculated using the random forest machine learning model. Targeted measurement of the plasma concentration of short-chain fatty acids (SCFAs), which are the main metabolites of the gut microbiome, was performed using gas chromatography-mass spectrometry (GC-MS). Spearman's correlation analysis was conducted to determine the relationships of gut microbiome and SCFAs with the clinical characteristics of subjects. Results The differences in gut microbiota alpha diversity between patients with AAD and the healthy controls were not statistically significant (Shannon index: p = 0.19; Chao1: p = 0.4); however, the microbiota composition (beta diversity) was significantly different between the two groups (Anosim, p = 0.001). Bacteroidota was enriched at the phylum level, and the SCFA-producing genera Prevotella, Porphyromonas, Lachnospiraceae, and Ruminococcus and inflammation-related genera Fenollaria and Sutterella were enriched at the genus level in the AAD group compared with those in the control group. The random forest model could predict AAD from gut microbiota composition with an accuracy of 87.5% and the area-under-curve (AUC) of the receiver operating characteristic curve was 0.833. The SCFA content of patients with AAD was higher than that of the control group, with the difference being statistically significant (p < 0.05). The different microflora and SCFAs were positively correlated with inflammatory cytokines. Conclusion To the best of our knowledge, this is the first demonstration of the presence of significant differences in the gut microbiome of patients with AAD and healthy controls. The differential microbiome exhibited high predictive potential toward AAD and was positively correlated with inflammatory cytokines. Our results will assist in the development of preventive and therapeutic treatment methods for patients with AAD.
Collapse
Affiliation(s)
- Fei Jiang
- Department of Cardiac Surgery, Union Hospital, Fujian Medical University, Fuzhou, China.,Department of Nursing, Union Hospital, Fujian Medical University, Fuzhou, China.,Fujian Provincial Special Reserve Talents Laboratory, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Meiling Cai
- Department of Cardiac Surgery, Union Hospital, Fujian Medical University, Fuzhou, China.,Department of Nursing, Union Hospital, Fujian Medical University, Fuzhou, China.,Fujian Provincial Special Reserve Talents Laboratory, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Yanchun Peng
- Department of Nursing, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Sailan Li
- Department of Cardiac Surgery, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Bing Liang
- Department of Physical Examination, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Hong Ni
- Department of Nursing, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Yanjuan Lin
- Department of Cardiac Surgery, Union Hospital, Fujian Medical University, Fuzhou, China.,Department of Nursing, Union Hospital, Fujian Medical University, Fuzhou, China.,Department of Physical Examination, Union Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|