1
|
Yang Z, Cao Y, Kong L, Xi J, Liu S, Zhang J, Cheng W. Small molecules as modulators of the proteostasis machinery: Implication in cardiovascular diseases. Eur J Med Chem 2024; 264:116030. [PMID: 38071793 DOI: 10.1016/j.ejmech.2023.116030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/25/2023] [Accepted: 12/03/2023] [Indexed: 12/30/2023]
Abstract
With the escalating prevalence of cardiovascular diseases, the substantial socioeconomic burden on healthcare systems is intensifying. Accumulating empirical evidence underscores the pivotal role of the proteostasis network in regulating cardiac homeostasis and function. Disruptions in proteostasis may contribute to the loss of protein function or the acquisition of toxic functions, which are intricately linked to the development of cardiovascular ailments such as atrial fibrillation, heart failure, atherosclerosis, and cardiac aging. It is widely acknowledged that the proteostasis network encompasses molecular chaperones, autophagy, and the ubiquitin proteasome system (UPS). Consequently, the proteostasis network emerges as an appealing target for therapeutic interventions in cardiovascular diseases. Numerous small molecules, acting as modulators of the proteostasis machinery, have exhibited therapeutic efficacy in managing cardiovascular diseases. This review centers on elucidating the role of the proteostasis network in various cardiovascular diseases and explores the potential of small molecules as therapeutic agents.
Collapse
Affiliation(s)
- Zhiheng Yang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yu Cao
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, 310023, China
| | - Limin Kong
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Jianjun Xi
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, 310023, China
| | - Shourong Liu
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, 310023, China.
| | - Jiankang Zhang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, China.
| | - Weiyan Cheng
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
2
|
Chronic Microcystin-LR-Induced α-Synuclein Promotes Neuroinflammation Through Activation of the NLRP3 Inflammasome in Microglia. Mol Neurobiol 2023; 60:884-900. [PMID: 36385231 DOI: 10.1007/s12035-022-03134-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/08/2022] [Indexed: 11/17/2022]
Abstract
Microcystin-LR (MC-LR) has been confirmed to cause blood-brain barrier disruption and enter the brain tissue, resulting in non-negligible toxic effects. However, the neurotoxicity of MC-LR is mainly unknown. This study revealed that MC-LR disrupted the function of the ubiquitin-proteasome system in neurons, which inhibited the degradation of α-synuclein (α-syn), leading to its release from neurons for transport into microglia. α-Syn is the main component of Lewy bodies, which has been identified as one of the main pathological features of Parkinson's disease (PD). In vitro, we observed that α-syn mediated by MC-LR activated HMC3 cells and polarized them towards M1 type. In addition, we confirmed that α-syn was transported into HMC3 cells through TLR4 receptors and activated the NLRP3 inflammasome, which in turn enhanced the maturation and release of IL-18 and IL-1β. In the mouse models of chronic MC-LR exposure, a large number of inflammatory factors (IL-6, IL-1β, and TNF-α) were deposited in brain tissue, and activation of NLRP3 in microglia was also observed in the midbrain. Collectively, MC-LR exposure promoted the pathological spread of α-syn from cell to cell, activated NLRP3 inflammasome in microglia, and generated neuroinflammation, in which the TLR4 receptor played a substantial effect.
Collapse
|
3
|
Liu L, Yang T, Jiang Q, Sun J, Gu L, Wang S, Li Y, Chen B, Zhao D, Sun R, Wang Q, Wang H, Wang L. Integrated transcriptomic and proteomic analysis reveals potential targets for heart regeneration. BIOMOLECULES AND BIOMEDICINE 2023; 23:101-113. [PMID: 35997993 PMCID: PMC9901893 DOI: 10.17305/bjbms.2022.7770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/03/2022] [Indexed: 02/08/2023]
Abstract
Research on the regenerative capacity of the neonatal heart could open new avenues for the treatment of myocardial infarction (MI). However, the mechanism of cardiac regeneration remains unclear. In the present study, we constructed a mouse model of heart regeneration and then performed transcriptomic and proteomic analyses on them. Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and Gene Set Enrichment Analysis (GSEA) of differentially expressed genes (DEGs) were conducted. Western blot (WB) and qPCR analyses were used to validate the hub genes expression. As a result, gene expression at the mRNA level and protein level is not the same. We identified 3186 DEGs and 42 differentially expressed proteins (DEPs). Through functional analysis of DEGs and DEPs, we speculate that biological processes such as ubiquitination, cell cycle, and oxygen metabolism are involved in heart regeneration. Integrated transcriptomic and proteomic analysis identified 19 hub genes and Ankrd1, Gpx3, and Trim72 were screened out as potential regulators of cardiac regeneration through further expression verification. In conclusion, we combined transcriptomic and proteomic analyses to characterize the molecular features during heart regeneration in neonatal mice. Finally, Ankrd1, Gpx3, and Trim72 were identified as potential targets for heart regeneration therapy.
Collapse
Affiliation(s)
- Liu Liu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tongtong Yang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiqi Jiang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiateng Sun
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lingfeng Gu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Sibo Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yafei Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bingrui Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Di Zhao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Rui Sun
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiming Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China,Correspondence to Hao Wang: ; Liansheng Wang:
| | | |
Collapse
|
4
|
Pathophysiology of heart failure and an overview of therapies. Cardiovasc Pathol 2022. [DOI: 10.1016/b978-0-12-822224-9.00025-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
5
|
Zhang Y, Hu W, Liu Q, Ma Z, Hu S, Zhang Z, Jia H, He X. Expression of immunoproteasome subunits in the brains of Toxoplasma gondii-infected mice. Exp Mol Pathol 2021; 123:104684. [PMID: 34547302 DOI: 10.1016/j.yexmp.2021.104684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 08/11/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Abstract
The immunoproteasomes are specific proteasomes that clear oxidant-damaged proteins under inflammatory conditions in various diseases. Toxoplasma gondii (T. gondii) infects the central nervous system and causeencephalitis. However, the relationship between the immunoproteasomes and brain inflammation during T. gondii infection is not well characterized. In this study, we established an in vivo mouse model of T. gondii PLK strain infection via intraperitoneal injection and evaluated the expression of immunoproteasome subunits in the brains of infected mice. The results demonstrated that first, pathological changes in the brains of infected mice increase in severity over time. Second, following T. gondii infection, activated microglia and astrocytes undergo a series of functional alterations and morphological transformations, including proliferation and migration. Third, T. gondii infection induces expression of inflammatory cytokines, including IFN-γ, IL-1β, TNF-α, and IL-6. Fourth, the immunoproteasome subunits low-molecular-weight polypeptide 2 (LMP2), LMP7, and LMP10 mRNA and protein levels are significantly upregulated in T. gondii-infected mouse brains, as shown by RT-qPCR and western blot analysis, compared with that in vehicle-treated brains, and their expression is localized in the microglia, astrocytes, and neurons of T. gondii-infected brains, as determined via immunofluorescence staining. Furthermore, the western blot mean gray value for the immunoproteasome subunits and the positive microglia and astrocyte immunohistochemical signals in the brains of T. gondii-infected mice were positively correlated, indicating that the observed relationships were highly significant. Therefore, it was concluded that the induction of the immunoproteasomes is a pathogenic mechanism underlying T. gondii infection-induced inflammation.
Collapse
Affiliation(s)
- Yongli Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wei Hu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Qiang Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China; Nanchong Key Laboratory of Disease Prevention, Control and Detection in Livestock and Poultry, Nanchong Vocational and Technical College, Nanchong, China
| | - Zelin Ma
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Shouping Hu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhuo Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Honglin Jia
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xijun He
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| |
Collapse
|
6
|
Li YF, Wang YX, Wang H, Ma Y, Wang LS. Posttranslational Modifications: Emerging Prospects for Cardiac Regeneration Therapy. J Cardiovasc Transl Res 2021; 15:49-60. [PMID: 34031843 DOI: 10.1007/s12265-021-10135-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/07/2021] [Indexed: 11/30/2022]
Abstract
Heart failure (HF) following ischemic heart disease (IHD) remains a hard nut to crack and a leading cause of death worldwide. Cardiac regeneration aims to promote cardiomyocyte (CM) proliferation by transitioning the cell cycle state of CMs from arrest to re-entry. Protein posttranslational modifications (PTMs) have recently attracted extensive attention in the field of cardiac regeneration due to their reversibility and effects on the stability, activity, and subcellular localization of target proteins. The balance of PTMs is disrupted when neonatal CMs withdraw from the cell cycle, resulting in significant dysfunction of downstream substrate protein localization, expression, and activity, ultimately limiting the maintenance of cardiac regeneration ability. In this review, we summarize recent research concerning the role of PTMs in cardiac regeneration, while focusing on phosphorylation, acetylation, ubiquitination, glycosylation, methylation, and neddylation, and the effects of these modifications on CM proliferation, which may provide potential targets for future treatments for IHD.
Collapse
Affiliation(s)
- Ya-Fei Li
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Ya-Xin Wang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Hao Wang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yao Ma
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Lian-Sheng Wang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
7
|
Lino CA, Demasi M, Barreto-Chaves ML. Ubiquitin proteasome system (UPS) activation in the cardiac hypertrophy of hyperthyroidism. Mol Cell Endocrinol 2019; 493:110451. [PMID: 31112742 DOI: 10.1016/j.mce.2019.110451] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/13/2019] [Accepted: 05/17/2019] [Indexed: 11/16/2022]
Abstract
Ubiquitin proteasome system (UPS) is the main proteolytic pathway in eukaryotic cells. Changes in proteasome expression and activity have been associated to cardiovascular diseases as cardiac hypertrophy. Considering that cardiac hypertrophy is commonly associated to hyperthyroidism condition, the present study aimed to investigate the contribution of UPS in cardiac hypertrophy induced by thyroid hormones. Hyperthyroidism was induced in male Wistar rats by intraperitoneal injections of triiodothyronine (T3; 7 μg/100 g of body weight) for 7 days and confirmed by raised levels of total T3 and decreased levels of total T4. In addition, systolic blood pressure and heart rate were significantly increased in hyperthyroid group. Cardiac hypertrophy was confirmed in hyperthyroid group by increased heart weight/tibia length ratio and by increased α-MHC/β-MHC relative expression. Both catalytic (20SPT) and regulatory subunits (19SPT) of the constitutive proteasome were upregulated in hyperthyroid hearts. In addition, the transcripts that encode immunoproteasome subunits were also elevated. Furthermore, ATP-dependent chymotrypsin-like activity (26SPT) was significantly increased in hyperthyroid group. Despite the upregulation and activation of UPS in hyperthyroid hearts, the content of polyubiquitinated proteins was unaltered in relation to control. Together, these results evidence the activation of cardiac proteasome by thyroid hormones, which possibly contribute to the maintenance of protein quality control and regulation of cardiac hypertrophy in response to thyroid hormones.
Collapse
Affiliation(s)
- Caroline Antunes Lino
- Laboratory of Cellular Biology and Functional Anatomy, Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Marilene Demasi
- Laboratory of Biochemistry and Biophysics, Butantan Institute, Sao Paulo, Brazil
| | - Maria Luiza Barreto-Chaves
- Laboratory of Cellular Biology and Functional Anatomy, Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
8
|
The initiation of puberty in Atlantic salmon brings about large changes in testicular gene expression that are modulated by the energy status. BMC Genomics 2019; 20:475. [PMID: 31185904 PMCID: PMC6558769 DOI: 10.1186/s12864-019-5869-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 05/31/2019] [Indexed: 02/08/2023] Open
Abstract
Background When puberty starts before males reach harvest size, animal welfare and sustainability issues occur in Atlantic salmon (Salmo salar) aquaculture. Hallmarks of male puberty are an increased proliferation activity in the testis and elevated androgen production. Examining transcriptional changes in salmon testis during the transition from immature to maturing testes may help understanding the regulation of puberty, potentially leading to procedures to modulate its start. Since differences in body weight influence, via unknown mechanisms, the chances for entering puberty, we used two feed rations to create body weight differences. Results Maturing testes were characterized by an elevated proliferation activity of Sertoli cells and of single undifferentiated spermatogonia. Pituitary gene expression data suggest increased Gnrh receptor and gonadotropin gene expression, potentially responsible for the elevated circulating androgen levels in maturing fish. Transcriptional changes in maturing testes included a broad variety of signaling systems (e.g. Tgfβ, Wnt, insulin/Igf, nuclear receptors), but also, activation of metabolic pathways such as anaerobic metabolism and protection against ROS. Feed restriction lowered the incidence of puberty. In males maturing despite feed restriction, plasma androgen levels were higher than in maturing fish receiving the full ration. A group of 449 genes that were up-regulated in maturing fully fed fish, was up-regulated more prominently in testis from fish maturing under caloric restriction. Moreover, 421 genes were specifically up-regulated in testes from fish maturing under caloric restriction, including carbon metabolism genes, a pathway relevant for nucleotide biosynthesis and for placing epigenetic marks. Conclusions Undifferentiated spermatogonia and Sertoli cell populations increased at the beginning of puberty, which was associated with the up-regulation of metabolic pathways (e.g. anaerobic and ROS pathways) known from other stem cell systems. The higher androgen levels in males maturing under caloric restriction may be responsible for the stronger up-regulation of a common set of (449) maturation-associated genes, and the specific up-regulation of another set of (421) genes. The latter opened regulatory and/or metabolic options for initiating puberty despite feed restriction. As a means to reduce the incidence of male puberty in salmon, however, caloric restriction seems unsuitable. Electronic supplementary material The online version of this article (10.1186/s12864-019-5869-9) contains supplementary material, which is available to authorized users.
Collapse
|
9
|
Li J, Wang S, Zhang YL, Bai J, Lin QY, Liu RS, Yu XH, Li HH. Immunoproteasome Subunit β5i Promotes Ang II (Angiotensin II)–Induced Atrial Fibrillation by Targeting ATRAP (Ang II Type I Receptor–Associated Protein) Degradation in Mice. Hypertension 2019; 73:92-101. [PMID: 30571551 DOI: 10.1161/hypertensionaha.118.11813] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Atrial fibrillation (AF) is the most common type of cardiac arrhythmia and increases the risk of stroke, heart failure, and death. Ang II (angiotensin II) triggers AF, mainly through stimulation of the AT1R (Ang II type I receptor). The immunoproteasome is a highly efficient proteolytic machine derived from the constitutive proteasome, but the role it plays in regulating AT1R activation and triggering AF remains unknown. Here, we show that among the catalytic subunits, β5i (PSMB8) expression, and chymotrypsin-like activity were the most significantly upregulated in atrial tissue of Ang II–infused mice or serum from patients with AF. β5i KO (β5i knockout) in mice markedly attenuated Ang II-induced AF incidence, atrial fibrosis, inflammatory response, and oxidative stress compared with WT (wild type) animals, but injection with recombinant adeno-associated virus serotype 9–β5i increased these effects. Moreover, we found that ATRAP (AT1R-associated protein) was a target of β5i. Overexpression of ATRAP significantly attenuated Ang II-induced atrial remodeling and AF in recombinant adeno-associated virus serotype 9–β5i-injected mice. Mechanistically, Ang II upregulated β5i expression to promote ATRAP degradation, which resulted in activation of AT1R-mediated NF-κB signaling, increased NADPH oxidase activity, increased TGF (transforming growth factor)-β1/Smad signaling, and altered the expression of Kir2.1 and CX43 (connexin 43) in the atria, thereby affecting atrial remodeling and AF. In summary, this study identifies β5i as a negative regulator of ATRAP stability that contributes to AT1R activation and to AF, highlighting that targeting β5i activity may represent a potential therapeutic approach for the treatment of hypertensive AF.
Collapse
Affiliation(s)
- Jing Li
- From the Department of Cardiology, Institute of Heart and Vascular Diseases (J.L.), Second Affiliated Hospital of Dalian Medical University, China
| | - Shuai Wang
- Department of Ophthalmology (S.W.), Second Affiliated Hospital of Dalian Medical University, China
| | - Yun-Long Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, China (Y.-L.Z., J.B., H.-H.L.)
| | - Jie Bai
- Department of Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, China (Y.-L.Z., J.B., H.-H.L.)
| | - Qiu-Yue Lin
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, China (Q.-Y. L., X.-H.Y., H.-H.L.)
| | - Rui-Sheng Liu
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (R.-S.L.)
| | - Xiao-Hong Yu
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, China (Q.-Y. L., X.-H.Y., H.-H.L.)
| | - Hui-Hua Li
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, China (Q.-Y. L., X.-H.Y., H.-H.L.)
- Department of Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, China (Y.-L.Z., J.B., H.-H.L.)
| |
Collapse
|
10
|
Gupta I, Varshney NK, Khan S. Emergence of Members of TRAF and DUB of Ubiquitin Proteasome System in the Regulation of Hypertrophic Cardiomyopathy. Front Genet 2018; 9:336. [PMID: 30186311 PMCID: PMC6110912 DOI: 10.3389/fgene.2018.00336] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 08/03/2018] [Indexed: 01/10/2023] Open
Abstract
The ubiquitin proteasome system (UPS) plays an imperative role in many critical cellular processes, frequently by mediating the selective degradation of misfolded and damaged proteins and also by playing a non-degradative role especially important as in many signaling pathways. Over the last three decades, accumulated evidence indicated that UPS proteins are primal modulators of cell cycle progression, DNA replication, and repair, transcription, immune responses, and apoptosis. Comparatively, latest studies have demonstrated a substantial complexity by the UPS regulation in the heart. In addition, various UPS proteins especially ubiquitin ligases and proteasome have been identified to play a significant role in the cardiac development and dynamic physiology of cardiac pathologies such as ischemia/reperfusion injury, hypertrophy, and heart failure. However, our understanding of the contribution of UPS dysfunction in the plausible development of cardiac pathophysiology and the complete list of UPS proteins regulating these afflictions is still in infancy. The recent emergence of the roles of TNF receptor-associated factor (TRAFs) and deubiquitinating enzymes (DUBs) superfamily in hypertrophic cardiomyopathy has enhanced our knowledge. In this review, we have mainly compiled the TRAF superfamily of E3 ligases and few DUBs proteins with other well-documented E3 ligases such as MDM2, MuRF-1, Atrogin-I, and TRIM 32 that are specific to myocardial hypertrophy. In this review, we also aim to highlight their expression profile following physiological and pathological stimulation leading to the onset of hypertrophic phenotype in the heart that can serve as biomarkers and the opportunity for the development of novel therapies.
Collapse
Affiliation(s)
- Ishita Gupta
- Structural Immunology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.,Drug Discovery Research Center, Translational Health Science and Technology Institute, Faridabad, India
| | - Nishant K Varshney
- Drug Discovery Research Center, Translational Health Science and Technology Institute, Faridabad, India
| | - Sameena Khan
- Drug Discovery Research Center, Translational Health Science and Technology Institute, Faridabad, India
| |
Collapse
|
11
|
Li J, Wang S, Bai J, Yang XL, Zhang YL, Che YL, Li HH, Yang YZ. Novel Role for the Immunoproteasome Subunit PSMB10 in Angiotensin II-Induced Atrial Fibrillation in Mice. Hypertension 2018; 71:866-876. [PMID: 29507100 DOI: 10.1161/hypertensionaha.117.10390] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/14/2017] [Accepted: 02/11/2018] [Indexed: 11/16/2022]
Abstract
Angiotensin II (Ang II) and inflammation are associated with pathogenesis of atrial fibrillation (AF), but the underlying molecular mechanisms of these events remain unknown. The immunoproteasome has emerged as a critical regulator of inflammatory responses. Here, we investigated its role in Ang II-induced AF in immunosubunit PSMB10 (also known as β2i or LMP10) knockout (KO) mice. AF was induced by Ang II infusion (2000 ng/min per kg). PSMB10 expression and trypsin-like activity were increased in atrial tissues and serum from Ang II-treated mice or serum from patients with AF. Moreover, Ang II-infused wild-type (WT) mice had a higher AF and increased atrial fibrosis, reactive oxygen species production, and inflammation compared with saline-treated WT animals. These effects were attenuated in PSMB10 KO mice but were aggravated in recombinant adeno-associated virus serotype 9-PSMB10-treated mice. Administration of IKKβ-specific inhibitor IMD 0354 reduced Ang II-induced AF, reactive oxygen species production, inflammation, and NF-kB (nuclear factor-kB) activation. Mechanistically, Ang II infusion upregulated PSMB10 expression to promote PTEN (phosphatase and tensin homolog deleted on chromosome ten) degradation and AKT1 activation, which not only activated TGF-β-Smad2/3 signaling leading to cardiac fibrosis but also induced IKKβ activation and ubiquitin-mediated degradation of IkBα ultimately resulting in activation of NF-kB target genes (IL [interleukin]-1β, IL-6, NOX [NADPH oxidase] 2, NOX4, and CX43 [connexin 43]). Overall, our study identifies immunosubunit PSMB10 as a novel regulator that contributes to Ang II-induced AF and suggests that inhibition of PSMB10 may represent a potential therapeutic target for treating hypertensive AF.
Collapse
Affiliation(s)
- Jing Li
- From the Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, China (J.L., X.-L.Y., Y.-L.Z., Y.-Z.Y., H.-H.L.); Department of Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, China (J.B., H.-H.L.); and Department of Ophthalmology (S.W.) and Department of Radiotherapy Oncology (Y.-L.C.), The Second Affiliated Hospital of Dalian Medical University, China
| | - Shuai Wang
- From the Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, China (J.L., X.-L.Y., Y.-L.Z., Y.-Z.Y., H.-H.L.); Department of Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, China (J.B., H.-H.L.); and Department of Ophthalmology (S.W.) and Department of Radiotherapy Oncology (Y.-L.C.), The Second Affiliated Hospital of Dalian Medical University, China
| | - Jie Bai
- From the Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, China (J.L., X.-L.Y., Y.-L.Z., Y.-Z.Y., H.-H.L.); Department of Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, China (J.B., H.-H.L.); and Department of Ophthalmology (S.W.) and Department of Radiotherapy Oncology (Y.-L.C.), The Second Affiliated Hospital of Dalian Medical University, China
| | - Xiao-Lei Yang
- From the Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, China (J.L., X.-L.Y., Y.-L.Z., Y.-Z.Y., H.-H.L.); Department of Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, China (J.B., H.-H.L.); and Department of Ophthalmology (S.W.) and Department of Radiotherapy Oncology (Y.-L.C.), The Second Affiliated Hospital of Dalian Medical University, China
| | - Yun-Long Zhang
- From the Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, China (J.L., X.-L.Y., Y.-L.Z., Y.-Z.Y., H.-H.L.); Department of Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, China (J.B., H.-H.L.); and Department of Ophthalmology (S.W.) and Department of Radiotherapy Oncology (Y.-L.C.), The Second Affiliated Hospital of Dalian Medical University, China
| | - Yi-Lin Che
- From the Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, China (J.L., X.-L.Y., Y.-L.Z., Y.-Z.Y., H.-H.L.); Department of Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, China (J.B., H.-H.L.); and Department of Ophthalmology (S.W.) and Department of Radiotherapy Oncology (Y.-L.C.), The Second Affiliated Hospital of Dalian Medical University, China
| | - Hui-Hua Li
- From the Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, China (J.L., X.-L.Y., Y.-L.Z., Y.-Z.Y., H.-H.L.); Department of Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, China (J.B., H.-H.L.); and Department of Ophthalmology (S.W.) and Department of Radiotherapy Oncology (Y.-L.C.), The Second Affiliated Hospital of Dalian Medical University, China.
| | - Yan-Zong Yang
- From the Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, China (J.L., X.-L.Y., Y.-L.Z., Y.-Z.Y., H.-H.L.); Department of Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, China (J.B., H.-H.L.); and Department of Ophthalmology (S.W.) and Department of Radiotherapy Oncology (Y.-L.C.), The Second Affiliated Hospital of Dalian Medical University, China.
| |
Collapse
|
12
|
Ghosh R, Hwang SM, Cui Z, Gilda JE, Gomes AV. Different effects of the nonsteroidal anti-inflammatory drugs meclofenamate sodium and naproxen sodium on proteasome activity in cardiac cells. J Mol Cell Cardiol 2016; 94:131-144. [PMID: 27049794 DOI: 10.1016/j.yjmcc.2016.03.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/10/2016] [Accepted: 03/28/2016] [Indexed: 02/06/2023]
Abstract
The use of nonsteroidal anti-inflammatory drugs (NSAIDs) like meclofenamate sodium (MS), used to reduce pain, has been associated with an increased risk of cardiovascular disease (CVD). Naproxen (NAP), another NSAID, is not associated with increased risk of CVD. The molecular mechanism(s) by which NSAIDs induce CVD is unknown. We investigated the effects of MS and NAP on protein homeostasis and cardiotoxicity in rat cardiac H9c2 cells and murine neonatal cardiomyocytes. MS, but not NAP, significantly inhibited proteasome activity and reduced cardiac cell viability at pharmacological levels found in humans. Although proteasome subunit gene and protein expression were unaffected by NSAIDs, MS treated cell lysates showed higher 20S proteasome content, while purified proteasomes from MS treated cells had lower proteasome activity and higher levels of oxidized subunits than proteasomes from control cells. Addition of exogenous proteasome to MS treated cells improved cell viability. Both MS and NAP increased ROS production, but the rate of ROS production was greater in MS than in NAP treated cells. The ROS production is likely from mitochondria, as MS inhibited mitochondrial Complexes I and III, major sources of ROS, while NAP inhibited Complex I. MS also impaired mitochondrial membrane potential while NAP did not. Antioxidants were able to prevent the reduced cell viability caused by MS treatment. These results suggest that NSAIDs induce cardiotoxicity by a ROS dependent mechanism involving mitochondrial and proteasome dysfunction and may explain why some NSAIDs should not be given to patients for long periods.
Collapse
Affiliation(s)
- Rajeshwary Ghosh
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA 95616, United States
| | - Soyun M Hwang
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA 95616, United States
| | - Ziyou Cui
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA 95616, United States
| | - Jennifer E Gilda
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA 95616, United States
| | - Aldrin V Gomes
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA 95616, United States; Department of Physiology and Membrane Biology, University of California, Davis, CA 95616, United States.
| |
Collapse
|
13
|
Berthiaume J, Kirk J, Ranek M, Lyon R, Sheikh F, Jensen B, Hoit B, Butany J, Tolend M, Rao V, Willis M. Pathophysiology of Heart Failure and an Overview of Therapies. Cardiovasc Pathol 2016. [DOI: 10.1016/b978-0-12-420219-1.00008-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
14
|
Ranek MJ, Zheng H, Huang W, Kumarapeli AR, Li J, Liu J, Wang X. Genetically induced moderate inhibition of 20S proteasomes in cardiomyocytes facilitates heart failure in mice during systolic overload. J Mol Cell Cardiol 2015; 85:273-81. [PMID: 26116868 PMCID: PMC4530032 DOI: 10.1016/j.yjmcc.2015.06.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 06/16/2015] [Accepted: 06/18/2015] [Indexed: 10/23/2022]
Abstract
The in vivo function status of the ubiquitin-proteasome system (UPS) in pressure overloaded hearts remains undefined. Cardiotoxicity was observed during proteasome inhibitor chemotherapy, especially in those with preexisting cardiovascular conditions; however, proteasome inhibition (PsmI) was also suggested by some experimental studies as a potential therapeutic strategy to curtail cardiac hypertrophy. Here we used genetic approaches to probe cardiac UPS performance and determine the impact of cardiomyocyte-restricted PsmI (CR-PsmI) on cardiac responses to systolic overload. Transgenic mice expressing an inverse reporter of the UPS (GFPdgn) were subject to transverse aortic constriction (TAC) to probe myocardial UPS performance during systolic overload. Mice with or without moderate CR-PsmI were subject to TAC and temporally characterized for cardiac responses to moderate and severe systolic overload. After moderate TAC (pressure gradient: ~40mmHg), cardiac UPS function was upregulated during the first two weeks but turned to functional insufficiency between 6 and 12weeks as evidenced by the dynamic changes in GFPdgn protein levels, proteasome peptidase activities, and total ubiquitin conjugates. Severe TAC (pressure gradients >60mmHg) led to UPS functional insufficiency within a week. Moderate TAC elicited comparable hypertrophic responses between mice with and without genetic CR-PsmI but caused cardiac malfunction in CR-PsmI mice significantly earlier than those without CR-PsmI. In mice subject to severe TAC, CR-PsmI inhibited cardiac hypertrophy but led to rapidly progressed heart failure and premature death, associated with a pronounced increase in cardiomyocyte death. It is concluded that cardiac UPS function is dynamically altered, with the initial brief upregulation of proteasome function being adaptive; and CR-PsmI facilitates cardiac malfunction during systolic overload.
Collapse
Affiliation(s)
- Mark J Ranek
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD 57069, USA.
| | - Hanqiao Zheng
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD 57069, USA.
| | - Wei Huang
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD 57069, USA.
| | - Asangi R Kumarapeli
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD 57069, USA.
| | - Jie Li
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD 57069, USA.
| | - Jinbao Liu
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD 57069, USA; State Key Lab of Respiratory Disease, Protein Modification and Degradation Lab, Department of Pathophysiology, Guangzhou Medical University, Guangdong 510182, China.
| | - Xuejun Wang
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD 57069, USA.
| |
Collapse
|
15
|
Carbonell T, Gomes AV. Dynamic regulation of the proteasome by systolic overload. J Mol Cell Cardiol 2015. [PMID: 26219953 DOI: 10.1016/j.yjmcc.2015.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Teresa Carbonell
- Department of Physiology and Immunology, University of Barcelona, Barcelona, Spain
| | - Aldrin V Gomes
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA, USA.
| |
Collapse
|
16
|
Shanmugam M, Li D, Gao S, Fefelova N, Shah V, Voit A, Pachon R, Yehia G, Xie LH, Babu GJ. Cardiac specific expression of threonine 5 to alanine mutant sarcolipin results in structural remodeling and diastolic dysfunction. PLoS One 2015; 10:e0115822. [PMID: 25671318 PMCID: PMC4324845 DOI: 10.1371/journal.pone.0115822] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 12/02/2014] [Indexed: 12/23/2022] Open
Abstract
The functional importance of threonine 5 (T5) in modulating the activity of sarcolipin (SLN), a key regulator of sarco/endoplasmic reticulum (SR) Ca2+ ATPase (SERCA) pump was studied using a transgenic mouse model with cardiac specific expression of threonine 5 to alanine mutant SLN (SLNT5A). In these transgenic mice, the SLNT5A protein replaces the endogenous SLN in atria, while maintaining the total SLN content. The cardiac specific expression of SLNT5A results in severe cardiac structural remodeling accompanied by bi-atrial enlargement. Biochemical analyses reveal a selective downregulation of SR Ca2+ handling proteins and a reduced SR Ca2+ uptake both in atria and in the ventricles. Optical mapping analysis shows slower action potential propagation in the transgenic mice atria. Doppler echocardiography and hemodynamic measurements demonstrate a reduced atrial contractility and an impaired diastolic function. Together, these findings suggest that threonine 5 plays an important role in modulating SLN function in the heart. Furthermore, our studies suggest that alteration in SLN function can cause abnormal Ca2+ handling and subsequent cardiac remodeling and dysfunction.
Collapse
Affiliation(s)
- Mayilvahanan Shanmugam
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
| | - Dan Li
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
| | - Shumin Gao
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
| | - Nadezhda Fefelova
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
| | - Vikas Shah
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
| | - Antanina Voit
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
| | - Ronald Pachon
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
| | - Ghassan Yehia
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
| | - Lai-Hua Xie
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
| | - Gopal J. Babu
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
17
|
Activation of the cardiac proteasome promotes angiotension II-induced hypertrophy by down-regulation of ATRAP. J Mol Cell Cardiol 2015; 79:303-14. [DOI: 10.1016/j.yjmcc.2014.12.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 12/08/2014] [Indexed: 01/15/2023]
|
18
|
Schlossarek S, Singh SR, Geertz B, Schulz H, Reischmann S, Hübner N, Carrier L. Proteasome inhibition slightly improves cardiac function in mice with hypertrophic cardiomyopathy. Front Physiol 2014; 5:484. [PMID: 25566086 PMCID: PMC4267180 DOI: 10.3389/fphys.2014.00484] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 11/25/2014] [Indexed: 11/30/2022] Open
Abstract
A growing line of evidence indicates a dysfunctional ubiquitin-proteasome system (UPS) in cardiac diseases. Anti-hypertrophic effects and improved cardiac function have been reported after treatment with proteasome inhibitors in experimental models of cardiac hypertrophy. Here we tested whether proteasome inhibition could also reverse the disease phenotype in a genetically-modified mouse model of hypertrophic cardiomyopathy (HCM), which carries a mutation in Mybpc3, encoding the myofilament protein cardiac myosin-binding protein C. At 7 weeks of age, homozygous mutant mice (KI) have 39% higher left ventricular mass-to-body-weight ratio and 29% lower fractional area shortening (FAS) than wild-type (WT) mice. Both groups were treated with epoxomicin (0.5 mg/kg/day) or vehicle for 1 week via osmotic minipumps. Epoxomicin inhibited the chymotrypsin-like activity by ~50% in both groups. All parameters of cardiac hypertrophy (including the fetal gene program) were not affected by epoxomicin treatment in both groups. In contrast, FAS was 12% and 35% higher in epoxomicin-treated than vehicle-treated WT and KI mice, respectively. To identify which genes or pathways could be involved in this positive effect, we performed a transcriptome analysis in KI and WT neonatal cardiac myocytes, treated or not with the proteasome inhibitor MG132 (1 μM, 24 h). This revealed 103 genes (four-fold difference; 5% FDR) which are commonly regulated in both KI and WT cardiac myocytes. Thus, even in genetically-modified mice with manifest HCM, proteasome inhibition showed beneficial effects, at least with regard to cardiac function. Targeting the UPS in cardiac diseases remains therefore a therapeutic option.
Collapse
Affiliation(s)
- Saskia Schlossarek
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf Hamburg, Germany ; German Centre for Cardiovascular Research (DZHK) Hamburg/Kiel/Lübeck, Germany
| | - Sonia R Singh
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf Hamburg, Germany ; German Centre for Cardiovascular Research (DZHK) Hamburg/Kiel/Lübeck, Germany
| | - Birgit Geertz
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf Hamburg, Germany ; German Centre for Cardiovascular Research (DZHK) Hamburg/Kiel/Lübeck, Germany
| | - Herbert Schulz
- Max-Delbrück-Center for Molecular Medicine (MDC) Berlin, Germany ; German Centre for Cardiovascular Research (DZHK) Berlin, Germany
| | - Silke Reischmann
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf Hamburg, Germany ; German Centre for Cardiovascular Research (DZHK) Hamburg/Kiel/Lübeck, Germany
| | - Norbert Hübner
- Max-Delbrück-Center for Molecular Medicine (MDC) Berlin, Germany ; German Centre for Cardiovascular Research (DZHK) Berlin, Germany
| | - Lucie Carrier
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf Hamburg, Germany ; German Centre for Cardiovascular Research (DZHK) Hamburg/Kiel/Lübeck, Germany
| |
Collapse
|
19
|
Subedi A, Sharma LR, Shah BK. Bortezomib-induced acute congestive heart failure: a case report and review of literature. Ann Hematol 2014; 93:1797-9. [PMID: 24599584 DOI: 10.1007/s00277-014-2026-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 01/31/2014] [Indexed: 01/22/2023]
Affiliation(s)
- Ashish Subedi
- Cancer Center and Blood Institute, St. Joseph Regional Medical Center, 1250 Idaho Street, Lewiston, ID, 83501, USA
| | | | | |
Collapse
|
20
|
Proteomic remodeling of proteasome in right heart failure. J Mol Cell Cardiol 2014; 66:41-52. [DOI: 10.1016/j.yjmcc.2013.10.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 09/13/2013] [Accepted: 10/22/2013] [Indexed: 12/30/2022]
|
21
|
Abstract
The heart has a high rate of ATP production and turnover that is required to maintain its continuous mechanical work. Perturbations in ATP-generating processes may therefore affect contractile function directly. Characterizing cardiac metabolism in heart failure (HF) revealed several metabolic alterations called metabolic remodeling, ranging from changes in substrate use to mitochondrial dysfunction, ultimately resulting in ATP deficiency and impaired contractility. However, ATP depletion is not the only relevant consequence of metabolic remodeling during HF. By providing cellular building blocks and signaling molecules, metabolic pathways control essential processes such as cell growth and regeneration. Thus, alterations in cardiac metabolism may also affect the progression to HF by mechanisms beyond ATP supply. Our aim is therefore to highlight that metabolic remodeling in HF not only results in impaired cardiac energetics but also induces other processes implicated in the development of HF such as structural remodeling and oxidative stress. Accordingly, modulating cardiac metabolism in HF may have significant therapeutic relevance that goes beyond the energetic aspect.
Collapse
Affiliation(s)
- Torsten Doenst
- Department of Cardiothoracic Surgery, Jena University Hospital, Friedrich-Schiller-University Jena, Germany.
| | | | | |
Collapse
|
22
|
Wang J, Xu L, Yun X, Yang K, Liao D, Tian L, Jiang H, Lu W. Proteomic analysis reveals that proteasome subunit beta 6 is involved in hypoxia-induced pulmonary vascular remodeling in rats. PLoS One 2013; 8:e67942. [PMID: 23844134 PMCID: PMC3700908 DOI: 10.1371/journal.pone.0067942] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 05/23/2013] [Indexed: 11/25/2022] Open
Abstract
Background Chronic hypoxia (CH) is known to be one of the major causes of pulmonary hypertension (PH), which is characterized by sustained elevation of pulmonary vascular resistance resulting from vascular remodeling. In this study, we investigated whether the ubiquitin proteasome system (UPS) was involved in the mechanism of hypoxia-induced pulmonary vascular remodeling. We isolated the distal pulmonary artery (PA) from a previously defined chronic hypoxic pulmonary hypertension (CHPH) rat model, performed proteomic analyses in search of differentially expressed proteins belonging to the UPS, and subsequently identified their roles in arterial remodeling. Results Twenty-two proteins were differently expressed between the CH and normoxic group. Among them, the expression of proteasome subunit beta (PSMB) 1 and PSMB6 increased after CH exposure. Given that PSMB1 is a well-known structural subunit and PSMB6 is a functional subunit, we sought to assess whether PSMB6 could be related to the multiple functional changes during the CHPH process. We confirmed the proteomic results by real-time PCR and Western blot. With the increase in quantity of the active subunit, proteasome activity in both cultured pulmonary artery smooth muscle cells (PASMCs) and isolated PA from the hypoxic group increased. An MTT assay revealed that the proteasome inhibitor MG132 was able to attenuate the hypoxia-induced proliferation of PASMC in a dose-dependent manner. Knockdown of PSMB6 using siRNA also prevented hypoxia-induced proliferation. Conclusion The present study revealed the association between increased PSMB6 and CHPH. CH up-regulated proteasome activity and the proliferation of PASMCs, which may have been related to increased PSMB6 expression and the subsequently enhanced functional catalytic sites of the proteasome. These results suggested an essential role of the proteasome during CHPH development, a novel finding requiring further study.
Collapse
Affiliation(s)
- Jian Wang
- Guangzhou Institute of Respiratory Diseases, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
- Division of Pulmonary and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail: (WL); (JW)
| | - Lei Xu
- Guangzhou Institute of Respiratory Diseases, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
- Division of Pulmonary and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Xin Yun
- Guangzhou Institute of Respiratory Diseases, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
- Division of Pulmonary and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Kai Yang
- Guangzhou Institute of Respiratory Diseases, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
- Division of Pulmonary and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Dongjiang Liao
- Guangzhou Institute of Respiratory Diseases, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lichun Tian
- Guangzhou Institute of Respiratory Diseases, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Haiyang Jiang
- Division of Pulmonary and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Wenju Lu
- Guangzhou Institute of Respiratory Diseases, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Laboratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
- * E-mail: (WL); (JW)
| |
Collapse
|
23
|
Rajagopalan V, Zhao M, Reddy S, Fajardo G, Wang X, Dewey S, Gomes AV, Bernstein D. Altered ubiquitin-proteasome signaling in right ventricular hypertrophy and failure. Am J Physiol Heart Circ Physiol 2013; 305:H551-62. [PMID: 23729213 DOI: 10.1152/ajpheart.00771.2012] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Alterations in the ubiquitin-proteasome system (UPS) have been described in left ventricular hypertrophy and failure, although results have been inconsistent. The role of the UPS in right ventricular (RV) hypertrophy (RVH) and RV failure (RVF) is unknown. Given the greater percent increase in RV mass associated with RV afterload stress, as present in many congenital heart lesions, we hypothesized that alterations in the UPS could play an important role in RVH/RVF. UPS expression and activity were measured in the RV from mice with RVH/RVF secondary to pulmonary artery constriction (PAC). Epoxomicin and MG132 were used to inhibit the proteasome, and overexpression of the 11S PA28α subunit was used to activate the proteasome. PAC mice developed RVH (109.3% increase in RV weight to body weight), RV dilation with septal shift, RV dysfunction, and clinical RVF. Proteasomal function (26S β₅ chymotrypsin-like activity) was decreased 26% (P < 0.05). Protein expression of 19S subunit Rpt5 (P < 0.05), UCHL1 deubiquitinase (P < 0.0001), and Smurf1 E3 ubiquitin ligase (P < 0.01) were increased, as were polyubiquitinated proteins (P < 0.05) and free-ubiquitins (P = 0.05). Pro-apoptotic Bax was increased (P < 0.0001), whereas anti-apoptotic Bcl-2 decreased (P < 0.05), resulting in a sixfold increase in the Bax/Bcl-2 ratio. Proteasomal inhibition did not accelerate RVF. However, proteasome enhancement by cardiac-specific proteasome overexpression partially improved survival. Proteasome activity is decreased in RVH/RVF, associated with upregulation of key UPS regulators and pro-apoptotic signaling. Enhancement of proteasome function partially attenuates RVF, suggesting that UPS dysfunction contributes to RVF.
Collapse
Affiliation(s)
- Viswanathan Rajagopalan
- Department of Pediatrics (Cardiology Stanford University School of Medicine, Stanford, California
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Wang X. Repeated intermittent administration of a ubiquitous proteasome inhibitor leads to restrictive cardiomyopathy. Eur J Heart Fail 2013; 15:597-8. [PMID: 23639782 DOI: 10.1093/eurjhf/hft069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
25
|
|
26
|
Warren SA, Briggs LE, Zeng H, Chuang J, Chang EI, Terada R, Li M, Swanson MS, Lecker SH, Willis MS, Spinale FG, Maupin-Furlowe J, McMullen JR, Moss RL, Kasahara H. Myosin light chain phosphorylation is critical for adaptation to cardiac stress. Circulation 2012; 126:2575-88. [PMID: 23095280 DOI: 10.1161/circulationaha.112.116202] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Cardiac hypertrophy is a common response to circulatory or neurohumoral stressors as a mechanism to augment contractility. When the heart is under sustained stress, the hypertrophic response can evolve into decompensated heart failure, although the mechanism(s) underlying this transition remain largely unknown. Because phosphorylation of cardiac myosin light chain 2 (MLC2v), bound to myosin at the head-rod junction, facilitates actin-myosin interactions and enhances contractility, we hypothesized that phosphorylation of MLC2v plays a role in the adaptation of the heart to stress. We previously identified an enzyme that predominantly phosphorylates MLC2v in cardiomyocytes, cardiac myosin light-chain kinase (cMLCK), yet the role(s) played by cMLCK in regulating cardiac function in health and disease remain to be determined. METHODS AND RESULTS We found that pressure overload induced by transaortic constriction in wild-type mice reduced phosphorylated MLC2v levels by ≈40% and cMLCK levels by ≈85%. To examine how a reduction in cMLCK and the corresponding reduction in phosphorylated MLC2v affect function, we generated Mylk3 gene-targeted mice and transgenic mice overexpressing cMLCK specifically in cardiomyocytes. Pressure overload led to severe heart failure in cMLCK knockout mice but not in mice with cMLCK overexpression in which cMLCK protein synthesis exceeded degradation. The reduction in cMLCK protein during pressure overload was attenuated by inhibition of ubiquitin-proteasome protein degradation systems. CONCLUSIONS Our results suggest the novel idea that accelerated cMLCK protein turnover by the ubiquitin-proteasome system underlies the transition from compensated hypertrophy to decompensated heart failure as a result of reduced phosphorylation of MLC2v.
Collapse
Affiliation(s)
- Sonisha A Warren
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610-0274, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ubiquitin receptors and protein quality control. J Mol Cell Cardiol 2012; 55:73-84. [PMID: 23046644 DOI: 10.1016/j.yjmcc.2012.09.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 09/25/2012] [Accepted: 09/28/2012] [Indexed: 12/14/2022]
Abstract
Protein quality control (PQC) is essential to intracellular proteostasis and is carried out by sophisticated collaboration between molecular chaperones and targeted protein degradation. The latter is performed by proteasome-mediated degradation, chaperone-mediated autophagy (CMA), and selective macroautophagy, and collectively serves as the final line of defense of PQC. Ubiquitination and subsequently ubiquitin (Ub) receptor proteins (e.g., p62 and ubiquilins) are important common factors for targeting misfolded proteins to multiple quality control destinies, including the proteasome, lysosomes, and perhaps aggresomes, as well as for triggering mitophagy to remove defective mitochondria. PQC inadequacy, particularly proteasome functional insufficiency, has been shown to participate in cardiac pathogenesis. Tremendous advances have been made in unveiling the changes of PQC in cardiac diseases. However, the investigation into the molecular pathways regulating PQC in cardiac (patho)physiology, including the function of most ubiquitin receptor proteins in the heart, has only recently been initiated. A better understanding of molecular mechanisms governing PQC in cardiac physiology and pathology will undoubtedly provide new insights into cardiac pathogenesis and promote the search for novel therapeutic strategies to more effectively battle heart disease.This article is part of a Special Issue entitled "Focus on Cardiac Metabolism".
Collapse
|
28
|
Diniz GP, Takano APC, Bruneto E, Silva FGD, Nunes MT, Barreto-Chaves MLM. New insight into the mechanisms associated with the rapid effect of T₃ on AT1R expression. J Mol Endocrinol 2012; 49:11-20. [PMID: 22525353 DOI: 10.1530/jme-11-0141] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The angiotensin II type 1 receptor (AT1R) is involved in the development of cardiac hypertrophy promoted by thyroid hormone. Recently, we demonstrated that triiodothyronine (T₃) rapidly increases AT1R mRNA and protein levels in cardiomyocyte cultures. However, the molecular mechanisms responsible for these rapid events are not yet known. In this study, we investigated the T₃ effect on AT1R mRNA polyadenylation in cultured cardiomyocytes as well as on the expression of microRNA-350 (miR-350), which targets AT1R mRNA. The transcriptional and translational actions mediated by T₃ on AT1R levels were also assessed. The total content of ubiquitinated proteins in cardiomyocytes treated with T₃ was investigated. Our data confirmed that T₃ rapidly raised AT1R mRNA and protein levels, as assessed by real-time PCR and western blotting respectively. The use of inhibitors of mRNA and protein synthesis prevented the rapid increase in AT1R protein levels mediated by T₃. In addition, T₃ rapidly increased the poly-A tail length of the AT1R mRNA, as determined by rapid amplification of cDNA ends poly-A test, and decreased the content of ubiquitinated proteins in cardiomyocytes. On the other hand, T₃ treatment increased miR-350 expression. In parallel with its transcriptional and translational effects on the AT1R, T₃ exerted a rapid posttranscriptional action on AT1R mRNA polyadenylation, which might be contributing to increase transcript stability, as well as on translational efficiency, resulting to the rapid increase in AT1R mRNA expression and protein levels. Finally, these results show, for the first time, that T₃ rapidly triggers distinct mechanisms, which might contribute to the regulation of AT1R levels in cardiomyocytes.
Collapse
Affiliation(s)
- Gabriela Placoná Diniz
- Department of Anatomy and Department of Physiology, Institute of Biomedical Sciences, University of São Paulo, Avenida Prof. Lineu Prestes 2415, Cidade Universitária, São Paulo SP 05508-900, Brazil
| | | | | | | | | | | |
Collapse
|
29
|
Distinct cardiac transcriptional profiles defining pregnancy and exercise. PLoS One 2012; 7:e42297. [PMID: 22860109 PMCID: PMC3409173 DOI: 10.1371/journal.pone.0042297] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 07/02/2012] [Indexed: 12/11/2022] Open
Abstract
Background Although the hypertrophic responses of the heart to pregnancy and exercise are both considered to be physiological processes, they occur in quite different hormonal and temporal settings. In this study, we have compared the global transcriptional profiles of left ventricular tissues at various time points during the progression of hypertrophy in exercise and pregnancy. Methodology/Principal Findings The following groups of female mice were analyzed: non-pregnant diestrus cycle sedentary control, mid-pregnant, late-pregnant, and immediate-postpartum, and animals subjected to 7 and 21 days of voluntary wheel running. Hierarchical clustering analysis shows that while mid-pregnancy and both exercise groups share the closest relationship and similar gene ontology categories, late pregnancy and immediate post-partum are quite different with high representation of secreted/extracellular matrix-related genes. Moreover, pathway-oriented ontological analysis shows that metabolism regulated by cytochrome P450 and chemokine pathways are the most significant signaling pathways regulated in late pregnancy and immediate-postpartum, respectively. Finally, increases in expression of components of the proteasome observed in both mid-pregnancy and immediate-postpartum also result in enhanced proteasome activity. Interestingly, the gene expression profiles did not correlate with the degree of cardiac hypertrophy observed in the animal groups, suggesting that distinct pathways are employed to achieve similar amounts of cardiac hypertrophy. Conclusions/Significance Our results demonstrate that cardiac adaptation to the later stages of pregnancy is quite distinct from both mid-pregnancy and exercise. Furthermore, it is very dynamic since, by 12 hours post-partum, the heart has already initiated regression of cardiac growth, and 50 genes have changed expression significantly in the immediate-postpartum compared to late-pregnancy. Thus, pregnancy-induced cardiac hypertrophy is a more complex process than exercise-induced cardiac hypertrophy and our data suggest that the mechanisms underlying the two types of hypertrophy have limited overlap.
Collapse
|
30
|
Ivandic BT, Mastitsky SE, Schönsiegel F, Bekeredjian R, Eils R, Frey N, Katus HA, Brors B. Whole-genome analysis of gene expression associates the ubiquitin-proteasome system with the cardiomyopathy phenotype in disease-sensitized congenic mouse strains. Cardiovasc Res 2012; 94:87-95. [PMID: 22308238 DOI: 10.1093/cvr/cvs080] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS Penetrance and phenotypic expressivity of cardiomyopathies are modulated by modifier genes both in model systems and patients. We aimed to dissect the disease-modifying mechanisms by examining genome-wide gene expression in a new set of mouse (Mus musculus) congenic strains. METHODS AND RESULTS Mutant alleles of the genes calsarcin-1 (Myoz2), sarcoglycan-delta (Sgcd), and muscle LIM protein (Csrp2) were each transferred onto inbred strain backgrounds C57BL/6, C3H/He, 129S1/Sv, and FVB/N, respectively. At 9-10 weeks of age, left ventricular pump function (fractional shortening, FS) was determined by echocardiography in non-sedated congenic animals. Gene expression was then analysed in myocardial tissue using the Affymetrix Mouse 430.2 microarray platform. Variance stabilization, linear mixed-effects modelling, correlations, gene functional classification, and pathway analysis were conducted using the standard software. Strain background FVB/N appeared to protect against the consequences of gene inactivation. Sgcd-deficient congenics showed normal FS, which was consistent with their hypertrophic cardiomyopathy phenotype. Animals with other allele/background combinations developed an impaired ventricular pump function (FS <65%). Gender did not influence FS significantly, yet it determined the sets of genes that were differentially expressed in mice with low FS. In particular, genes encoding the elements of the ubiquitin-proteasome system (UPS) were strongly correlated with the cardiac impairment (absolute Spearman r ≥ 0.7) in both males and females. CONCLUSION Gene expression profiling in a novel set of congenic strains revealed an association between the UPS and myocardial contractile function, indicating that the UPS may be an important modifier of phenotypic variability in cardiomyopathies.
Collapse
Affiliation(s)
- Boris T Ivandic
- Division of Cardiology, Department of Internal Medicine III, University Hospital Heidelberg, Im Neuenheimer Feld 410, Heidelberg 69120, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Das T, Yoo YS, Rhim H, Song EJ. Potential role of Hsp25 in calcium-modulated cardiomyocytes. Proteomics 2012; 12:411-20. [DOI: 10.1002/pmic.201100151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 10/26/2011] [Accepted: 11/14/2011] [Indexed: 11/10/2022]
|
32
|
Powell SR, Herrmann J, Lerman A, Patterson C, Wang X. The ubiquitin-proteasome system and cardiovascular disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 109:295-346. [PMID: 22727426 DOI: 10.1016/b978-0-12-397863-9.00009-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Over the past decade, the role of the ubiquitin-proteasome system (UPS) has been the subject of numerous studies to elucidate its role in cardiovascular physiology and pathophysiology. There have been many advances in this field including the use of proteomics to achieve a better understanding of how the cardiac proteasome is regulated. Moreover, improved methods for the assessment of UPS function and the development of genetic models to study the role of the UPS have led to the realization that often the function of this system deviates from the norm in many cardiovascular pathologies. Hence, dysfunction has been described in atherosclerosis, familial cardiac proteinopathies, idiopathic dilated cardiomyopathies, and myocardial ischemia. This has led to numerous studies of the ubiquitin protein (E3) ligases and their roles in cardiac physiology and pathophysiology. This has also led to the controversial proposition of treating atherosclerosis, cardiac hypertrophy, and myocardial ischemia with proteasome inhibitors. Furthering our knowledge of this system may help in the development of new UPS-based therapeutic modalities for mitigation of cardiovascular disease.
Collapse
Affiliation(s)
- Saul R Powell
- Center for Heart and Lung Research, The Feinstein Institute for Medical Research, Manhasset, New York, USA
| | | | | | | | | |
Collapse
|
33
|
Schlossarek S, Schuermann F, Geertz B, Mearini G, Eschenhagen T, Carrier L. Adrenergic stress reveals septal hypertrophy and proteasome impairment in heterozygous Mybpc3-targeted knock-in mice. J Muscle Res Cell Motil 2011; 33:5-15. [PMID: 22076249 DOI: 10.1007/s10974-011-9273-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 10/30/2011] [Indexed: 11/27/2022]
Abstract
Hypertrophic cardiomyopathy (HCM) is characterized by asymmetric septal hypertrophy and is often caused by mutations in MYBPC3 gene encoding cardiac myosin-binding protein C. In contrast to humans, who are already affected at the heterozygous state, mouse models develop the phenotype mainly at the homozygous state. Evidence from cell culture work suggested that altered proteasome function contributes to the pathogenesis of HCM. Here we tested in two heterozygous Mybpc3-targeted mouse models whether adrenergic stress unmasks a specific cardiac phenotype and proteasome dysfunction. The first model carries a human Mybpc3 mutation (Het-KI), the second is a heterozygous Mybpc3 knock-out (Het-KO). Both models were compared to wild-type (WT) mice. Mice were treated with a combination of isoprenaline and phenylephrine (ISO/PE) or NaCl for 1 week. Whereas ISO/PE induced left ventricular hypertrophy (LVH) with increased posterior wall thickness to a similar extent in all groups, it increased septum thickness only in Het-KI and Het-KO. ISO/PE did not affect the proteasomal chymotrypsin-like activity or β5-subunit protein level in Het-KO or wild-type mice (WT). In contrast, both parameters were markedly lower in Het-KI and negatively correlated with the degree of LVH in Het-KI only. In conclusion, adrenergic stress revealed septal hypertrophy in both heterozygous mouse models of HCM, but proteasome dysfunction only in Het-KI mice, which carry a mutant allele and closely mimic human HCM. This supports the hypothesis that proteasome impairment contributes to the pathophysiology of HCM.
Collapse
Affiliation(s)
- Saskia Schlossarek
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
34
|
Wang X, Li J, Zheng H, Su H, Powell SR. Proteasome functional insufficiency in cardiac pathogenesis. Am J Physiol Heart Circ Physiol 2011; 301:H2207-19. [PMID: 21949118 DOI: 10.1152/ajpheart.00714.2011] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The ubiquitin-proteasome system (UPS) is responsible for the degradation of most cellular proteins. Alterations in cardiac UPS, including changes in the degradation of regulatory proteins and proteasome functional insufficiency, are observed in many forms of heart disease and have been shown to play an important role in cardiac pathogenesis. In the past several years, remarkable progress in understanding the mechanisms that regulate UPS-mediated protein degradation has been achieved. A transgenic mouse model of benign enhancement of cardiac proteasome proteolytic function has been created. This has led to the first demonstration of the necessity of proteasome functional insufficiency in the genesis of important pathological processes. Cardiomyocyte-restricted enhancement of proteasome proteolytic function by overexpression of proteasome activator 28α protects against cardiac proteinopathy and myocardial ischemia-reperfusion injury. Additionally, exciting advances have recently been achieved in the search for a pharmacological agent to activate the proteasome. These breakthroughs are expected to serve as an impetus to further investigation into the involvement of UPS dysfunction in molecular pathogenesis and to the development of new therapeutic strategies for combating heart disease. An interplay between the UPS and macroautophagy is increasingly suggested in noncardiac systems but is not well understood in the cardiac system. Further investigations into the interplay are expected to provide a more comprehensive picture of cardiac protein quality control and degradation.
Collapse
Affiliation(s)
- Xuejun Wang
- Division of Basic Biomedical Sciences, Protein Quality Control and Degradation Research Center, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota 57069, USA.
| | | | | | | | | |
Collapse
|
35
|
Patterson C, Portbury A, Schisler JC, Willis MS. Tear me down: role of calpain in the development of cardiac ventricular hypertrophy. Circ Res 2011; 109:453-62. [PMID: 21817165 PMCID: PMC3151485 DOI: 10.1161/circresaha.110.239749] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Cardiac hypertrophy develops most commonly in response to hypertension and is an independent risk factor for the development of heart failure. The mechanisms by which cardiac hypertrophy may be reversed to reduce this risk have not been fully determined to the point where mechanism-specific therapies have been developed. Recently, proteases in the calpain family have been implicated in the regulation of the development of cardiac hypertrophy in preclinical animal models. In this review, we summarize the molecular mechanisms by which calpain inhibition has been shown to modulate the development of cardiac (specifically ventricular) hypertrophy. The context within which calpain inhibition might be developed for therapeutic intervention of cardiac hypertrophy is then discussed.
Collapse
Affiliation(s)
- Cam Patterson
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
- Departments of Medicine, Pharmacology, Cell and Developmental Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Andrea Portbury
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| | | | - Monte S. Willis
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
36
|
Benter IF, Abul HT, Al-Khaledi G, Renno WM, Canatan H, Akhtar S. Inhibition of Ras-GTPase farnesylation and the ubiquitin-proteasome system or treatment with angiotensin-(1-7) attenuates spinal cord injury-induced cardiac dysfunction. J Neurotrauma 2011; 28:1271-9. [PMID: 21510818 DOI: 10.1089/neu.2010.1682] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Cardiovascular diseases are one of the principal causes of death and disability in people with spinal cord injury (SCI). The present study was designed to investigate if acute treatment with FPTIII (an inhibitor of Ras-GTPase farnesylation) or MG132 (an inhibitor of ubiquitin-proteasome pathway [UPS]) or administration of angiotensin-(1-7), also known as Ang-(1-7), (a known inhibitor of cardiac NF-kB) would be cardioprotective. The weight drop technique produced a consistent contusive injury of the spinal cord at the T13 segment. Hearts were isolated from rats either 6 months (SCI-6) or 12 months (SCI-12) after SCI. Hearts were perfused for 30 min and then subjected to 30 min ischemia followed by 30 min reperfusion (I/R). Recovery of cardiac function after I/R was measured as left ventricular developed pressure (P(max)) and coronary flow (CF). Drugs were given during perfusion before hearts were exposed to ischemia and reperfusion. Percent recovery (%R) in P(max) and CF in hearts from control animals were 48±6 and 50±5, respectively, whereas none of the hearts from animals with SCI recovered after 30 min of ischemia. Treatment with FPTIII, MG 132, or Ang-(1-7) before ischemia for 30 min led to significant recovery of heart function following ischemia in SCI-6 but not in SCI-12 animals. Thus we have shown that acute treatments with FPTIII, MG132, or Ang-(1-7) improve cardiac recovery following ischemic insult in animals with SCI and may represent novel therapeutic agents for preventing ischemia-induced cardiac dysfunction in patients with SCI.
Collapse
Affiliation(s)
- Ibrahim F Benter
- Department of Pharmacology & Toxicology, Kuwait University, Safat, Kuwait.
| | | | | | | | | | | |
Collapse
|
37
|
|
38
|
Current world literature. Curr Opin Cardiol 2011; 26:270-4. [PMID: 21490464 DOI: 10.1097/hco.0b013e328346ccf1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
Abstract
A wide variety of cardiac disease states can induce remodelling and lead to the functional consequence of heart failure. These complex disease states involve a plethora of parallel signal transduction events, which may be associated with tissue injury or tissue repair. Innate immunity is activated in hearts injured in different ways, evident as cytokine release from the heart, activation of toll-like receptors involved in recognizing danger, and activation of the transcription factor nuclear factor kappa B. Nuclear factor kappa B regulates gene programmes involved in inflammation as well as the resolution of inflammation. The impact of this is an enigma; while cytokines, toll-like receptors, and nuclear factor kappa B appear to elicit myocardial protection in studies of preconditioning, the literature strongly indicates a detrimental role for activation of innate immunity in studies of acute ischaemia–reperfusion injury. The impact of activation of cardiac innate immunity on the long-term outcome in in vivo models of hypertrophy and remodelling is less clear, with conflicting results as to whether it is beneficial or detrimental. More research using genetically engineered mice as tools, different models of evoking remodelling, and long-term follow-up is required for us to conclude whether activation of the innate immune system is good, bad, or unimportant in chronic injury models.
Collapse
Affiliation(s)
- Guro Valen
- Department of Physiology, Institute of Basic Medical Sciences, University of Oslo, Postbox 1103 Blindern, 0317, Oslo, Norway.
| |
Collapse
|
40
|
Li YF, Wang X. The role of the proteasome in heart disease. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1809:141-9. [PMID: 20840877 PMCID: PMC3021001 DOI: 10.1016/j.bbagrm.2010.09.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2010] [Revised: 09/01/2010] [Accepted: 09/02/2010] [Indexed: 01/23/2023]
Abstract
Intensive investigations into the pathophysiological significance of the proteasome in the heart did not start until the beginning of the past decade but exciting progress has been made and summarized here as two fronts. First, strong evidence continues to emerge to support a novel hypothesis that proteasome functional insufficiency represents a common pathological phenomenon in a large subset of heart disease, compromises protein quality control in heart muscle cells, and thereby acts as a major pathogenic factor promoting the progression of the subset of heart disease to congestive heart failure. This front is represented by the studies on the ubiquitin-proteasome system (UPS) in cardiac proteinopathy, which have taken advantage of a transgenic mouse model expressing a fluorescence reporter for UPS proteolytic function. Second, pharmacological inhibition of the proteasome has been explored experimentally as a potential therapeutic strategy to intervene on some forms of heart disease, such as pressure-overload cardiac hypertrophy, viral myocarditis, and myocardial ischemic injury. Not only between the two fronts but also within each one, a multitude of inconsistencies and controversies remain to be explained and clarified. At present, the controversy perhaps reflects the sophistication of cardiac proteasomes in terms of the composition, assembly, and regulation, as well as the intricacy and diversity of heart disease in terms of its etiology and pathogenesis. A definitive role of altered proteasome function in the development of various forms of heart disease remains to be established. This article is part of a Special Issue entitled The 26S Proteasome: When degradation is just not enough!
Collapse
Affiliation(s)
- Yi-Fan Li
- Division of Basic, Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD 57069, USA
| | | |
Collapse
|
41
|
Tang M, Li J, Huang W, Su H, Liang Q, Tian Z, Horak KM, Molkentin JD, Wang X. Proteasome functional insufficiency activates the calcineurin-NFAT pathway in cardiomyocytes and promotes maladaptive remodelling of stressed mouse hearts. Cardiovasc Res 2010; 88:424-33. [PMID: 20601385 DOI: 10.1093/cvr/cvq217] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AIMS Proteasome functional insufficiency (PFI) may play an important role in the progression of congestive heart failure but the underlying molecular mechanism is poorly understood. Calcineurin and nuclear factor of activated T-cells (NFAT) are degraded by the proteasome, and the calcineurin-NFAT pathway mediates cardiac remodelling. The present study examined the hypothesis that PFI activates the calcineurin-NFAT pathway and promotes maladaptive remodelling of the heart. METHODS AND RESULTS Using a reporter gene assay, we found that pharmacological inhibition of 20S proteasomes stimulated NFAT transactivation in both mouse hearts and cultured adult mouse cardiomyocytes. Proteasome inhibition stimulated NFAT nuclear translocation in a calcineurin-dependent manner and led to a maladaptive cell shape change in cultured neonatal rat ventricular myocytes. Proteasome inhibition facilitated left ventricular dilatation and functional decompensation and increased fatality in mice with aortic constriction while causing cardiac hypertrophy in the sham surgery group. It was further revealed that both calcineurin protein levels and NFAT transactivation were markedly increased in the mouse hearts with desmin-related cardiomyopathy and severe PFI. Expression of an aggregation-prone mutant desmin also directly increased calcineurin protein levels in cultured cardiomyocytes. CONCLUSIONS The calcineurin-NFAT pathway in the heart can be activated by proteasome inhibition and is activated in the heart of a mouse model of desmin-related cardiomyopathy that is characterized by severe PFI. The interplay between PFI and the calcineurin-NFAT pathway may contribute to the pathological remodelling of cardiomyocytes characteristic of congestive heart failure.
Collapse
Affiliation(s)
- Mingxin Tang
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, 414 East Clark Street, Lee Medical Building, Vermillion, SD 57069, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Li D, Depre C. Ubiquitin, a novel paracrine messenger of cardiac cell survival. Cardiovasc Res 2010; 86:1-3. [PMID: 20100704 DOI: 10.1093/cvr/cvq026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
43
|
Zheng Q, Wang X. Autophagy and the ubiquitin-proteasome system in cardiac dysfunction. Panminerva Med 2010; 52:9-25. [PMID: 20228723 PMCID: PMC2840262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The ubiquitin-proteasome system (UPS) and autophagy are two major intracellular protein degradation pathways. The UPS mediates the removal of soluble abnormal proteins as well as the targeted degradation of most normal proteins that are no longer needed. Autophagy is generally responsible for bulky removal of defective organelles and for sequestering portions of cytoplasm for lysosomal degradation during starvation. Impaired or inadequate protein degradation in the heart is associated with and may be a major pathogenic factor for a wide variety of cardiac dysfunctions, while enhanced protein degradation is also implicated in the development of cardiac pathology. It was generally assumed that the UPS and autophagy serve distinct functions. Therefore, the functional roles of the UPS and autophagy in the hearts have been largely investigated separately. However, recent advances in understanding the shared mechanisms contributing to UPS alteration and the induction of autophagy have helped reveal the link and interplay between the two proteolytic systems in the heart. These links are exemplified by scenarios in which inadequate UPS proteolytic function leads to activation of autophagy, helping alleviate proteotoxic stress. It is becoming increasingly clear that a coordinated and complementary relationship between the two systems is critical to protect cells against stress. Several proteins including p62, NBR1, HDAC6, and co-chaperones appear to play an important role in harmonizing and mobilizing the consortium formed by the UPS and autophagy.
Collapse
Affiliation(s)
- Q Zheng
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, 414 E. Clark Street, Vermillion, SD 57069, USA
| | | |
Collapse
|
44
|
Depre C, Powell SR, Wang X. The role of the ubiquitin-proteasome pathway in cardiovascular disease. Cardiovasc Res 2009; 85:251-2. [DOI: 10.1093/cvr/cvp362] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
45
|
Su H, Wang X. The ubiquitin-proteasome system in cardiac proteinopathy: a quality control perspective. Cardiovasc Res 2009; 85:253-62. [PMID: 19696071 DOI: 10.1093/cvr/cvp287] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Protein quality control (PQC) depends on elegant collaboration between molecular chaperones and targeted proteolysis in the cell. The latter is primarily carried out by the ubiquitin-proteasome system, but recent advances in this area of research suggest a supplementary role for the autophagy-lysosomal pathway in PQC-related proteolysis. The (patho)physiological significance of PQC in the heart is best illustrated in cardiac proteinopathy, which belongs to a family of cardiac diseases caused by expression of aggregation-prone proteins in cardiomyocytes. Cardiac proteasome functional insufficiency (PFI) is best studied in desmin-related cardiomyopathy, a bona fide cardiac proteinopathy. Emerging evidence suggests that many common forms of cardiomyopathy may belong to proteinopathy. This review focuses on examining current evidence, as it relates to the hypothesis that PFI impairs PQC in cardiomyocytes and contributes to the progression of cardiac proteinopathies to heart failure.
Collapse
Affiliation(s)
- Huabo Su
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Lee Medical Building, 414 E Clark Street, Vermillion, SD 57069, USA
| | | |
Collapse
|
46
|
Carrier L, Schlossarek S, Willis MS, Eschenhagen T. The ubiquitin-proteasome system and nonsense-mediated mRNA decay in hypertrophic cardiomyopathy. Cardiovasc Res 2009; 85:330-8. [PMID: 19617224 DOI: 10.1093/cvr/cvp247] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cardiomyopathies represent an important cause of cardiovascular morbidity and mortality due to heart failure, arrhythmias, and sudden death. Most forms of hypertrophic cardiomyopathy (HCM) are familial with an autosomal-dominant mode of inheritance. Over the last 20 years, the genetic basis of the disease has been largely unravelled. HCM is considered as a sarcomeropathy involving mutations in sarcomeric proteins, most often beta-myosin heavy chain and cardiac myosin-binding protein C. 'Missense' mutations, more common in the former, are associated with dysfunctional proteins stably integrated into the sarcomere. 'Nonsense' and frameshift mutations, more common in the latter, are associated with low mRNA and protein levels derived from the diseased allele, leading to haploinsufficiency of the remaining healthy allele. The two quality control systems responsible for the removal of the affected mRNAs and proteins are the nonsense-mediated mRNA decay (NMD) and the ubiquitin-proteasome system (UPS), respectively. This review discusses clinical and genetic aspects of HCM and the role of NMD and UPS in the regulation of mutant proteins, evidence for impairment of UPS as a pathogenic factor, as well as potential therapies for HCM.
Collapse
Affiliation(s)
- Lucie Carrier
- Institute of Experimental and Clinical Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany.
| | | | | | | |
Collapse
|