1
|
Pan QM, Bi FF, Jing ZH, Cao M, Cui C, Liu F, Jin L, Yi-Jie H, Tian H, Yu T, Yun W, Shan HL, Zhou YH. A New target of ischemic ventricular arrhythmias-ITFG2. Eur J Pharmacol 2025; 991:177301. [PMID: 39864577 DOI: 10.1016/j.ejphar.2025.177301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 01/16/2025] [Accepted: 01/22/2025] [Indexed: 01/28/2025]
Abstract
ITFG2 is an intracellular protein known to modulate the immune response of T-cells. Our previous investigation revealed that ITFG2 specifically targets ATP5b to regulate ATP energy metabolism and maintain mitochondrial function, thereby protecting the heart from ischemic injury. However, the role of ITFG2 in ischemic ventricular arrhythmias and its underlying mechanisms have not been previously reported. In this study, we found ITFG2 overexpression, induced by an adeno-associated virus serotype 9 vector, partially reduced the incidence of ischemic ventricular arrhythmias and shortened the duration of ventricular arrhythmias in mice after myocardial infarction. Conversely, shRNA-mediated knockdown of endogenous ITFG2 aggravated ischemic ventricular arrhythmias. ITFG2 overexpression also shortened the prolonged QRS complex and increased the epicardial conduction velocity in MI mice. Additionally, the hearts from ITFG2 overexpression mice exhibited a higher maximal upstroke velocity at phase 0 of transmembrane action potential compared to MI mice. Patch-clamp analyses demonstrated a 50% increase in the peak current of voltage-dependent Na+ channel by ITFG2 overexpression in isolated ventricular cardiomyocytes post MI. In cultured neonatal mouse cardiomyocytes under hypoxic conditions, ITFG2 up-regulated Nav1.5 protein expression by inhibiting its ubiquitination. Co-immunoprecipitation experiments showed that ITFG2 reduces the binding affinity between NEDD4-2 and Nav1.5, thereby inhibiting Nav1.5 ubiquitination. Taken together, our data highlight the critical role of ITFG2 in reducing susceptibility to ischemic ventricular arrhythmias by down-regulating Nav1.5 ubiquitination. These findings suggest that ITFG2 may serve as a novel target for treating ischemic ventricular arrhythmias.
Collapse
Affiliation(s)
- Qing-Ming Pan
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin Medical University, Harbin, Heilongjiang, 150081, PR China; Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China
| | - Fang-Fang Bi
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin Medical University, Harbin, Heilongjiang, 150081, PR China; Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China
| | - Ze-Hong Jing
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin Medical University, Harbin, Heilongjiang, 150081, PR China; Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China
| | - Miao Cao
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin Medical University, Harbin, Heilongjiang, 150081, PR China; Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China
| | - Chen Cui
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin Medical University, Harbin, Heilongjiang, 150081, PR China; Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China
| | - Fu Liu
- Department of Basic Medicine, Institute of Respiratory Diseases Xiamen Medical College, Xiamen Medical College, Xiamen, Fujian, 361023, PR China
| | - Li Jin
- Department of Basic Medicine, Institute of Respiratory Diseases Xiamen Medical College, Xiamen Medical College, Xiamen, Fujian, 361023, PR China; Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150081, PR China
| | - He Yi-Jie
- Department of Basic Medicine, Institute of Respiratory Diseases Xiamen Medical College, Xiamen Medical College, Xiamen, Fujian, 361023, PR China; Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150081, PR China
| | - Hua Tian
- Department of Basic Medicine, Institute of Respiratory Diseases Xiamen Medical College, Xiamen Medical College, Xiamen, Fujian, 361023, PR China
| | - Tong Yu
- Hanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, PR China
| | - Wu Yun
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150081, PR China
| | - Hong-Li Shan
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin Medical University, Harbin, Heilongjiang, 150081, PR China; Hanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, PR China.
| | - Yu-Hong Zhou
- Department of Basic Medicine, Institute of Respiratory Diseases Xiamen Medical College, Xiamen Medical College, Xiamen, Fujian, 361023, PR China; State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin Medical University, Harbin, Heilongjiang, 150081, PR China.
| |
Collapse
|
2
|
Zhu Y, Chen Y, Zu Y. Leveraging a neutrophil-derived PCD signature to predict and stratify patients with acute myocardial infarction: from AI prediction to biological interpretation. J Transl Med 2024; 22:612. [PMID: 38956669 PMCID: PMC11221097 DOI: 10.1186/s12967-024-05415-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/19/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Programmed cell death (PCD) has recently been implicated in modulating the removal of neutrophils recruited in acute myocardial infarction (AMI). Nonetheless, the clinical significance and biological mechanism of neutrophil-related PCD remain unexplored. METHODS We employed an integrative machine learning-based computational framework to generate a predictive neutrophil-derived PCD signature (NPCDS) within five independent microarray cohorts from the peripheral blood of AMI patients. Non-negative matrix factorization was leveraged to develop an NPCDS-based AMI subtype. To elucidate the biological mechanism underlying NPCDS, we implemented single-cell transcriptomics on Cd45+ cells isolated from the murine heart of experimental AMI. We finally conducted a Mendelian randomization (MR) study and molecular docking to investigate the therapeutic value of NPCDS on AMI. RESULTS We reported the robust and superior performance of NPCDS in AMI prediction, which contributed to an optimal combination of random forest and stepwise regression fitted on nine neutrophil-related PCD genes (MDM2, PTK2B, MYH9, IVNS1ABP, MAPK14, GNS, MYD88, TLR2, CFLAR). Two divergent NPCDS-based subtypes of AMI were revealed, in which subtype 1 was characterized as inflammation-activated with more vibrant neutrophil activities, whereas subtype 2 demonstrated the opposite. Mechanically, we unveiled the expression dynamics of NPCDS to regulate neutrophil transformation from a pro-inflammatory phase to an anti-inflammatory phase in AMI. We uncovered a significant causal association between genetic predisposition towards MDM2 expression and the risk of AMI. We also found that lidoflazine, isotetrandrine, and cepharanthine could stably target MDM2. CONCLUSION Altogether, NPCDS offers significant implications for prediction, stratification, and therapeutic management for AMI.
Collapse
Affiliation(s)
- Yihao Zhu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
| | - Yuxi Chen
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
| | - Yao Zu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, People's Republic of China.
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, People's Republic of China.
- Marine Biomedical Science and Technology Innovation Platform of Lin-Gang Special Area, Shanghai, 201306, People's Republic of China.
| |
Collapse
|
3
|
Efentakis P, Andreadou I, Iliodromitis KE, Triposkiadis F, Ferdinandy P, Schulz R, Iliodromitis EK. Myocardial Protection and Current Cancer Therapy: Two Opposite Targets with Inevitable Cost. Int J Mol Sci 2022; 23:14121. [PMID: 36430599 PMCID: PMC9696420 DOI: 10.3390/ijms232214121] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022] Open
Abstract
Myocardial protection against ischemia/reperfusion injury (IRI) is mediated by various ligands, activating different cellular signaling cascades. These include classical cytosolic mediators such as cyclic-GMP (c-GMP), various kinases such as Phosphatydilinositol-3- (PI3K), Protein Kinase B (Akt), Mitogen-Activated-Protein- (MAPK) and AMP-activated (AMPK) kinases, transcription factors such as signal transducer and activator of transcription 3 (STAT3) and bioactive molecules such as vascular endothelial growth factor (VEGF). Most of the aforementioned signaling molecules constitute targets of anticancer therapy; as they are also involved in carcinogenesis, most of the current anti-neoplastic drugs lead to concomitant weakening or even complete abrogation of myocardial cell tolerance to ischemic or oxidative stress. Furthermore, many anti-neoplastic drugs may directly induce cardiotoxicity via their pharmacological effects, or indirectly via their cardiovascular side effects. The combination of direct drug cardiotoxicity, indirect cardiovascular side effects and neutralization of the cardioprotective defense mechanisms of the heart by prolonged cancer treatment may induce long-term ventricular dysfunction, or even clinically manifested heart failure. We present a narrative review of three therapeutic interventions, namely VEGF, proteasome and Immune Checkpoint inhibitors, having opposing effects on the same intracellular signal cascades thereby affecting the heart. Moreover, we herein comment on the current guidelines for managing cardiotoxicity in the clinical setting and on the role of cardiovascular confounders in cardiotoxicity.
Collapse
Affiliation(s)
- Panagiotis Efentakis
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | | | | | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary
- Pharmahungary Group, 6722 Szeged, Hungary
| | - Rainer Schulz
- Institute of Physiology, Justus Liebig University Giessen, 35390 Giessen, Germany
| | | |
Collapse
|
4
|
FAT10 protects against ischemia-induced ventricular arrhythmia by decreasing Nedd4-2/Nav1.5 complex formation. Cell Death Dis 2021; 12:25. [PMID: 33414395 PMCID: PMC7790828 DOI: 10.1038/s41419-020-03290-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 01/29/2023]
Abstract
The human leukocyte antigen F-associated transcript 10 (FAT10) is a member of the small ubiquitin-like protein family that binds to its target proteins and subjects them to degradation by the ubiquitin-proteasome system (UPS). In the heart, FAT10 plays a cardioprotective role and affects predisposition to cardiac arrhythmias after myocardial ischemia (MI). However, whether and how FAT10 influences cardiac arrhythmias is unknown. We investigated the role of FAT10 in regulating the sodium channel Nav1.5, a major regulator of cardiac arrhythmias. Fat10 was conditionally deleted in cardiac myocytes using Myh6-Cre and Fat10F/F mice (cFat10-/-). Compared with their wild-type littermates, cFat10-/- mice showed prolonged RR, PR, and corrected QT (QTc) intervals, were more likely to develop ventricular arrhythmia, and had increased mortality after MI. Patch-clamp studies showed that the peak Na+ current was reduced, and the late Na+ current was significantly augmented, resulting in a decreased action potential amplitude and delayed depolarization. Immunoblot and immunofluorescence analyses showed that the expression of the membrane protein Nav1.5 was decreased. Coimmunoprecipitation experiments demonstrated that FAT10 stabilized Nav1.5 expression by antagonizing Nav1.5 ubiquitination and degradation. Specifically, FAT10 bound to the lysine residues in the C-terminal fragments of Nav1.5 and decreased the binding of Nav1.5 to the Nedd4-2 protein, a ubiquitin E3 ligase, preventing degradation of the Nav1.5 protein. Collectively, our findings showed that deletion of the Fat10 in cardiac myocytes led to increased cardiac arrhythmias and increased mortality after MI. Thus, FAT10 protects against ischemia-induced ventricular arrhythmia by binding to Nav1.5 and preventing its Neddylation and degradation by the UPS after MI.
Collapse
|
5
|
Marin W, Marin D, Ao X, Liu Y. Mitochondria as a therapeutic target for cardiac ischemia‑reperfusion injury (Review). Int J Mol Med 2020; 47:485-499. [PMID: 33416090 PMCID: PMC7797474 DOI: 10.3892/ijmm.2020.4823] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023] Open
Abstract
Acute myocardial infarction is the leading cause of cardiovascular-related mortality and chronic heart failure worldwide. As regards treatment, the reperfusion of ischemic tissue generates irreversible damage to the myocardium, which is termed 'cardiac ischemia-reperfusion (IR) injury'. Due to the large number of mitochondria in cardiomyocytes, an increasing number of studies have focused on the roles of mitochondria in IR injury. The primary causes of IR injury are reduced oxidative phosphorylation during hypoxia and the increased production of reactive oxygen species (ROS), together with the insufficient elimination of these oxidative species following reperfusion. IR injury includes the oxidation of DNA, incorrect modifications of proteins, the disruption of the mitochondrial membrane and respiratory chain, the loss of mitochondrial membrane potential (∆Ψm), Ca2+ over-load, mitochondrial permeability transition pore formation, swelling of the mitochondria, and ultimately, cardiomyocyte necrosis. The present review article discusses the molecular mechanisms of IR injury, and summarizes the metabolic and dynamic changes occurring in the mitochondria in response to IR stress. The mitochondria are strongly recommended as a target for the development of therapeutic agents; however, the appropriate use of agents remains a challenge.
Collapse
Affiliation(s)
- Wenwen Marin
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Dennis Marin
- Qingdao University of Science and Technology, Qingdao, Shandong 266061, P.R. China
| | - Xiang Ao
- School of Basic Medical Sciences, College of Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Ying Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| |
Collapse
|
6
|
Oommen D, Kizhakkedath P, Jawabri AA, Varghese DS, Ali BR. Proteostasis Regulation in the Endoplasmic Reticulum: An Emerging Theme in the Molecular Pathology and Therapeutic Management of Familial Hypercholesterolemia. Front Genet 2020; 11:570355. [PMID: 33173538 PMCID: PMC7538668 DOI: 10.3389/fgene.2020.570355] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 08/31/2020] [Indexed: 02/05/2023] Open
Abstract
Familial hypercholesterolemia (FH) is an autosomal genetic disease characterized by high serum low-density lipoprotein (LDL) content leading to premature coronary artery disease. The main genetic and molecular causes of FH are mutations in low-density lipoprotein receptor gene (LDLR) resulting in the non-clearance of LDL from the blood by hepatocytes and consequently the formation of plaques. LDLR is synthesized and glycosylated in the endoplasmic reticulum (ER) and then transported to the plasma membrane via Golgi. It is estimated that more than 50% of reported FH-causing mutations in LDLR result in misfolded proteins that are transport-defective and hence retained in ER. ER accumulation of misfolded proteins causes ER-stress and activates unfolded protein response (UPR). UPR aids protein folding, blocks further protein synthesis, and eliminates misfolded proteins via ER-associated degradation (ERAD) to alleviate ER stress. Various studies demonstrated that ER-retained LDLR mutants are subjected to ERAD. Interestingly, chemical chaperones and genetic or pharmacological inhibition of ERAD have been reported to rescue the transport defective mutant LDLR alleles from ERAD and restore their ER-Golgi transport resulting in the expression of functional plasma membrane LDLR. This suggests the possibility of pharmacological modulation of proteostasis in the ER as a therapeutic strategy for FH. In this review, we picture a detailed analysis of UPR and the ERAD processes activated by ER-retained LDLR mutants associated with FH. In addition, we discuss and critically evaluate the potential role of chemical chaperones and ERAD modulators in the therapeutic management of FH.
Collapse
Affiliation(s)
- Deepu Oommen
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Praseetha Kizhakkedath
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Aseel A. Jawabri
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Divya Saro Varghese
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Bassam R. Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
- Zayed Center for Health Sciences, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| |
Collapse
|
7
|
Turkieh A, Porouchani S, Beseme O, Chwastyniak M, Amouyel P, Lamblin N, Balligand JL, Bauters C, Pinet F. Increased clusterin levels after myocardial infarction is due to a defect in protein degradation systems activity. Cell Death Dis 2019; 10:608. [PMID: 31406108 PMCID: PMC6691115 DOI: 10.1038/s41419-019-1857-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/22/2019] [Accepted: 07/31/2019] [Indexed: 12/21/2022]
Abstract
Clusterin (CLU) is induced in many organs after tissue injury or remodeling. Recently, we show that CLU levels are increased in plasma and left ventricle (LV) after MI, however, the mechanisms involved are not yet elucidated. On the other hand, it has been shown that the activity of the protein degradation systems (PDS) is affected after MI with a decrease in ubiquitin proteasome system (UPS) and an increase in macroautophagy. The aim of this study was to decipher if the increased CLU levels after MI are in part due to the alteration of PDS activity. Rat neonate cardiomyocytes (NCM) were treated with different modulators of UPS and macroautophagy in order to decipher their role in CLU expression, secretion, and degradation. We observed that inhibition of UPS activity in NCM increased CLU mRNA levels, its intracellular protein levels (p-CLU and m-CLU) and its secreted form (s-CLU). Macroautophagy was also induced after MG132 treatment but is not active. The inhibition of macroautophagy induction in MG132-treated NCM increased CLU mRNA and m-CLU levels, but not s-CLU compared to NCM only treated by MG132. We also demonstrate that CLU can be degraded in NCM through proteasome and lysosome by a macroautophagy independent pathway. In another hand, CLU silencing in NCM has no effect either on macroautophagy or apoptosis induced by MG132. However, the overexpression of CLU secreted isoform in H9c2 cells, but not in NCM decreased apoptosis after MG132 treatment. Finally, we observed that increased CLU levels in hypertrophied NCM and in failing human hearts are associated with proteasome inhibition and macroautophagy alteration. All these data suggest that increased CLU expression and secretion after MI is, in part, due to a defect of UPS and macroautophagy activities in the heart and may have a protective effect by decreasing apoptosis induced by proteasome inhibition.
Collapse
Affiliation(s)
- Annie Turkieh
- Inserm, University of Lille, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, F-59000, Lille, France.,Fédération Hospitalière Universitaire (FHU), REMOD-VHF, Lille, France
| | - Sina Porouchani
- Inserm, University of Lille, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, F-59000, Lille, France.,Fédération Hospitalière Universitaire (FHU), REMOD-VHF, Lille, France
| | - Olivia Beseme
- Inserm, University of Lille, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, F-59000, Lille, France
| | - Maggy Chwastyniak
- Inserm, University of Lille, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, F-59000, Lille, France
| | - Philippe Amouyel
- Inserm, University of Lille, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, F-59000, Lille, France
| | - Nicolas Lamblin
- Inserm, University of Lille, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, F-59000, Lille, France.,Fédération Hospitalière Universitaire (FHU), REMOD-VHF, Lille, France
| | - Jean-Luc Balligand
- Institut de Recherche Experimentale et Clinique, Pole of Pharmacology and Therapeutics and Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Christophe Bauters
- Inserm, University of Lille, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, F-59000, Lille, France.,Fédération Hospitalière Universitaire (FHU), REMOD-VHF, Lille, France
| | - Florence Pinet
- Inserm, University of Lille, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, F-59000, Lille, France. .,Fédération Hospitalière Universitaire (FHU), REMOD-VHF, Lille, France.
| |
Collapse
|
8
|
Hu C, Tian Y, Xu H, Pan B, Terpstra EM, Wu P, Wang H, Li F, Liu J, Wang X. Inadequate ubiquitination-proteasome coupling contributes to myocardial ischemia-reperfusion injury. J Clin Invest 2018; 128:5294-5306. [PMID: 30204128 DOI: 10.1172/jci98287] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 09/04/2018] [Indexed: 12/14/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) degrades a protein molecule via 2 main steps: ubiquitination and proteasomal degradation. Extraproteasomal ubiquitin receptors are thought to couple the 2 steps, but this proposition has not been tested in vivo with vertebrates. More importantly, impaired UPS performance plays a major role in cardiac pathogenesis, including myocardial ischemia-reperfusion injury (IRI), but the molecular basis of UPS impairment remains poorly understood. Ubiquilin1 is a bona fide extraproteasomal ubiquitin receptor. Here, we report that mice with a cardiomyocyte-restricted knockout of Ubiquilin1 (Ubqln1-CKO mice) accumulated a surrogate UPS substrate (GFPdgn) and increased myocardial ubiquitinated proteins without altering proteasome activities, resulting in late-onset cardiomyopathy and a markedly shortened life span. When subject to regional myocardial ischemia-reperfusion, young Ubqln1-CKO mice showed substantially exacerbated cardiac malfunction and enlarged infarct size, and conversely, mice with transgenic Ubqln1 overexpression displayed attenuated IRI. Furthermore, Ubqln1 overexpression facilitated proteasomal degradation of oxidized proteins and the degradation of a UPS surrogate substrate in cultured cardiomyocytes without increasing autophagic flux. These findings demonstrate that Ubiquilin1 is essential to cardiac ubiquitination-proteasome coupling and that an inadequacy in the coupling represents a major pathogenic factor for myocardial IRI; therefore, strategies to strengthen coupling have the potential to reduce IRI.
Collapse
Affiliation(s)
- Chengjun Hu
- Department of Human Anatomy, Wuhan University College of Basic Medical Sciences, Wuhan, Hubei, China.,Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, South Dakota, USA
| | - Yihao Tian
- Department of Human Anatomy, Wuhan University College of Basic Medical Sciences, Wuhan, Hubei, China.,Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, South Dakota, USA
| | - Hongxin Xu
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, South Dakota, USA.,Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Bo Pan
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, South Dakota, USA
| | - Erin M Terpstra
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, South Dakota, USA
| | - Penglong Wu
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, South Dakota, USA.,Protein Modification and Degradation Lab, School of Basic Medical Sciences, Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hongmin Wang
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, South Dakota, USA
| | - Faqian Li
- Department of Pathology and Laboratory Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jinbao Liu
- Protein Modification and Degradation Lab, School of Basic Medical Sciences, Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xuejun Wang
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, South Dakota, USA
| |
Collapse
|
9
|
Glazier AA, Hafeez N, Mellacheruvu D, Basrur V, Nesvizhskii AI, Lee LM, Shao H, Tang V, Yob JM, Gestwicki JE, Helms AS, Day SM. HSC70 is a chaperone for wild-type and mutant cardiac myosin binding protein C. JCI Insight 2018; 3:99319. [PMID: 29875314 PMCID: PMC6124431 DOI: 10.1172/jci.insight.99319] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/01/2018] [Indexed: 11/17/2022] Open
Abstract
Cardiac myosin binding protein C (MYBPC3) is the most commonly mutated gene associated with hypertrophic cardiomyopathy (HCM). Haploinsufficiency of full-length MYBPC3 and disruption of proteostasis have both been proposed as central to HCM disease pathogenesis. Discriminating the relative contributions of these 2 mechanisms requires fundamental knowledge of how turnover of WT and mutant MYBPC3 proteins is regulated. We expressed several disease-causing mutations in MYBPC3 in primary neonatal rat ventricular cardiomyocytes. In contrast to WT MYBPC3, mutant proteins showed reduced expression and failed to localize to the sarcomere. In an unbiased coimmunoprecipitation/mass spectrometry screen, we identified HSP70-family chaperones as interactors of both WT and mutant MYBPC3. Heat shock cognate 70 kDa (HSC70) was the most abundant chaperone interactor. Knockdown of HSC70 significantly slowed degradation of both WT and mutant MYBPC3, while pharmacologic activation of HSC70 and HSP70 accelerated degradation. HSC70 was expressed in discrete striations in the sarcomere. Expression of mutant MYBPC3 did not affect HSC70 localization, nor did it induce a protein folding stress response or ubiquitin proteasome dysfunction. Together these data suggest that WT and mutant MYBPC3 proteins are clients for HSC70, and that the HSC70 chaperone system plays a major role in regulating MYBPC3 protein turnover.
Collapse
Affiliation(s)
| | | | | | | | | | - Lap Man Lee
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Hao Shao
- Institute for Neurodegenerative Diseases, UCSF, San Francisco, California, USA
| | - Vi Tang
- Department of Molecular and Integrative Physiology
| | | | - Jason E. Gestwicki
- Institute for Neurodegenerative Diseases, UCSF, San Francisco, California, USA
| | | | - Sharlene M. Day
- Department of Molecular and Integrative Physiology
- Department of Internal Medicine
| |
Collapse
|
10
|
Propofol Provides Cardiac Protection by Suppressing the Proteasome Degradation of Caveolin-3 in Ischemic/Reperfused Rat Hearts. J Cardiovasc Pharmacol 2017; 69:170-177. [PMID: 28009721 DOI: 10.1097/fjc.0000000000000454] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The mechanisms underlying propofol's cardioprotective role remain elusive. Caveolin-3 (Cav-3) has been shown to mediate both opioids- and volatile anesthetics-induced cardioprotection against ischemia/reperfusion (I/R) injury. We hypothesize that the cardioprotective role of propofol is mediated through Cav-3 and its regulation of PI3K/Akt/GSK3β signal pathway. Rats or H9c2 cardiomyocytes were exposed to propofol before I/R or simulated ischemia/reperfusion (SI/R). Propofol pretreatment significantly decreased left ventricle infarct size in vivo (P < 0.05) and terminal deoxynucleotidyl transferase nick-end labeling-positive cells both in vivo and in vitro (P < 0.05), along with an increased Cav-3 protein expression and binding of Cav-3 to p85-subunit of PI3K. No significant change in Cav-3 mRNA expression in left ventricle tissues was found in either I/R or propofol-treated groups. Methyl-β-cyclodextrin or Cav-3 siRNA was used to knockdown Cav-3 expression in vitro, which virtually abolished propofol-induced cardiac protection and PI3K/Akt/GSK3β pathway activation. In contrast, MG132, a proteasome inhibitor, could significantly restore SI/R-induced Cav-3 decrease. It is concluded that Cav-3 mediates propofol-induced cardioprotection against I/R injury and the relevant PI3K/Akt/GSK3β activation. The downregulation of Cav-3 under SI/R may be caused by proteasome degradation, and this process can be prevented by propofol.
Collapse
|
11
|
Jamieson KL, Samokhvalov V, Akhnokh MK, Lee K, Cho WJ, Takawale A, Wang X, Kassiri Z, Seubert JM. Genetic deletion of soluble epoxide hydrolase provides cardioprotective responses following myocardial infarction in aged mice. Prostaglandins Other Lipid Mediat 2017; 132:47-58. [DOI: 10.1016/j.prostaglandins.2017.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 11/24/2016] [Accepted: 01/03/2017] [Indexed: 01/17/2023]
|
12
|
Liu Y, Baumgardt SL, Fang J, Shi Y, Qiao S, Bosnjak ZJ, Vásquez-Vivar J, Xia Z, Warltier DC, Kersten JR, Ge ZD. Transgenic overexpression of GTP cyclohydrolase 1 in cardiomyocytes ameliorates post-infarction cardiac remodeling. Sci Rep 2017; 7:3093. [PMID: 28596578 PMCID: PMC5465102 DOI: 10.1038/s41598-017-03234-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 04/20/2017] [Indexed: 12/19/2022] Open
Abstract
GTP cyclohydrolase 1 (GCH1) and its product tetrahydrobiopterin play crucial roles in cardiovascular health and disease, yet the exact regulation and role of GCH1 in adverse cardiac remodeling after myocardial infarction are still enigmatic. Here we report that cardiac GCH1 is degraded in remodeled hearts after myocardial infarction, concomitant with increases in the thickness of interventricular septum, interstitial fibrosis, and phosphorylated p38 mitogen-activated protein kinase and decreases in left ventricular anterior wall thickness, cardiac contractility, tetrahydrobiopterin, the dimers of nitric oxide synthase, sarcoplasmic reticulum Ca2+ release, and the expression of sarcoplasmic reticulum Ca2+ handling proteins. Intriguingly, transgenic overexpression of GCH1 in cardiomyocytes reduces the thickness of interventricular septum and interstitial fibrosis and increases anterior wall thickness and cardiac contractility after infarction. Moreover, we show that GCH1 overexpression decreases phosphorylated p38 mitogen-activated protein kinase and elevates tetrahydrobiopterin levels, the dimerization and phosphorylation of neuronal nitric oxide synthase, sarcoplasmic reticulum Ca2+ release, and sarcoplasmic reticulum Ca2+ handling proteins in post-infarction remodeled hearts. Our results indicate that the pivotal role of GCH1 overexpression in post-infarction cardiac remodeling is attributable to preservation of neuronal nitric oxide synthase and sarcoplasmic reticulum Ca2+ handling proteins, and identify a new therapeutic target for cardiac remodeling after infarction.
Collapse
Affiliation(s)
- Yanan Liu
- Departments of Anesthesiology, Medical College of Wisconsin, Milwaukee, 8701 Watertown Plank Road, Milwaukee, Wisconsin, 53226, USA.,Department of Medicine, Columbia University, 630 W. 168th Street, New York, New York, 10032, USA
| | - Shelley L Baumgardt
- Departments of Anesthesiology, Medical College of Wisconsin, Milwaukee, 8701 Watertown Plank Road, Milwaukee, Wisconsin, 53226, USA
| | - Juan Fang
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, 8701 Watertown Plank Road, Milwaukee, Wisconsin, 53226, USA
| | - Yang Shi
- Aurora Research Institute, Aurora Health Care, 750 W. Virginia Street, Milwaukee, Wisconsin, 53234, USA
| | - Shigang Qiao
- Departments of Anesthesiology, Medical College of Wisconsin, Milwaukee, 8701 Watertown Plank Road, Milwaukee, Wisconsin, 53226, USA
| | - Zeljko J Bosnjak
- Departments of Anesthesiology, Medical College of Wisconsin, Milwaukee, 8701 Watertown Plank Road, Milwaukee, Wisconsin, 53226, USA.,Department of Physiology, Medical College of Wiscosin, Milwaukee, 8701 Watertown Plank Road, Milwaukee, Wisconsin, 53226, USA
| | - Jeannette Vásquez-Vivar
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, 8701 Watertown Plank Road, Milwaukee, Wisconsin, 53226, USA
| | - Zhengyuan Xia
- Department of Anesthesiology, University of Hong Kong, Hong Kong, People's Republic of China
| | - David C Warltier
- Departments of Anesthesiology, Medical College of Wisconsin, Milwaukee, 8701 Watertown Plank Road, Milwaukee, Wisconsin, 53226, USA
| | - Judy R Kersten
- Departments of Anesthesiology, Medical College of Wisconsin, Milwaukee, 8701 Watertown Plank Road, Milwaukee, Wisconsin, 53226, USA
| | - Zhi-Dong Ge
- Departments of Anesthesiology, Medical College of Wisconsin, Milwaukee, 8701 Watertown Plank Road, Milwaukee, Wisconsin, 53226, USA.
| |
Collapse
|
13
|
Abstract
Ischemic disorders, such as myocardial infarction, stroke, and peripheral vascular disease, are the most common causes of debilitating disease and death in westernized cultures. The extent of tissue injury relates directly to the extent of blood flow reduction and to the length of the ischemic period, which influence the levels to which cellular ATP and intracellular pH are reduced. By impairing ATPase-dependent ion transport, ischemia causes intracellular and mitochondrial calcium levels to increase (calcium overload). Cell volume regulatory mechanisms are also disrupted by the lack of ATP, which can induce lysis of organelle and plasma membranes. Reperfusion, although required to salvage oxygen-starved tissues, produces paradoxical tissue responses that fuel the production of reactive oxygen species (oxygen paradox), sequestration of proinflammatory immunocytes in ischemic tissues, endoplasmic reticulum stress, and development of postischemic capillary no-reflow, which amplify tissue injury. These pathologic events culminate in opening of mitochondrial permeability transition pores as a common end-effector of ischemia/reperfusion (I/R)-induced cell lysis and death. Emerging concepts include the influence of the intestinal microbiome, fetal programming, epigenetic changes, and microparticles in the pathogenesis of I/R. The overall goal of this review is to describe these and other mechanisms that contribute to I/R injury. Because so many different deleterious events participate in I/R, it is clear that therapeutic approaches will be effective only when multiple pathologic processes are targeted. In addition, the translational significance of I/R research will be enhanced by much wider use of animal models that incorporate the complicating effects of risk factors for cardiovascular disease. © 2017 American Physiological Society. Compr Physiol 7:113-170, 2017.
Collapse
Affiliation(s)
- Theodore Kalogeris
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Christopher P. Baines
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
- Department of Biomedical Sciences, University of Missouri College of Veterinary Medicine, Columbia, Missouri, USA
| | - Maike Krenz
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| | - Ronald J. Korthuis
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
14
|
Sanchez G, Berrios D, Olmedo I, Pezoa J, Riquelme JA, Montecinos L, Pedrozo Z, Donoso P. Activation of Chymotrypsin-Like Activity of the Proteasome during Ischemia Induces Myocardial Dysfunction and Death. PLoS One 2016; 11:e0161068. [PMID: 27529620 PMCID: PMC4986934 DOI: 10.1371/journal.pone.0161068] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 07/29/2016] [Indexed: 01/02/2023] Open
Abstract
Inhibitors of the ubiquitin-proteasome system improve hemodynamic parameters and decrease the infarct size after ischemia reperfusion. The molecular basis of this protection is not fully understood since most available data report inhibition of the 26 proteasome after ischemia reperfusion. The decrease in cellular ATP levels during ischemia leads to the dissociation of the 26S proteasome into the 19S regulatory complex and the 20S catalytic core, which results in protein degradation independently of ubiquitination. There is scarce information on the activity of the 20S proteasome during cardiac ischemia. Accordingly, the aim of this work was to determine the effects of 30 minutes of ischemia, or 30 min of ischemia followed by 60 minutes of reperfusion on the three main peptidase activities of the 20S proteasome in Langendorff perfused rat hearts. We found that 30 min of ischemia produced a significant increase in the chymotrypsin-like activity of the proteasome, without changes in its caspase-like or trypsin-like activities. In contrast, all three activities were decreased upon reperfusion. Ixazomib, perfused before ischemia at a concentration that reduced the chymotrypsin-like activity to 50% of the control values, without affecting the other proteasomal activities, improved the hemodynamic parameters upon reperfusion and decreased the infarct size. Ixazomib also prevented the 50% reduction in RyR2 content observed after ischemia. The protection was lost, however, when simultaneous inhibition of chymotrypsin-like and caspase-like activities of the proteasome was achieved at higher concentration of ixazomib. Our results suggest that selective inhibition of chymotrypsin-like activity of the proteasome during ischemia preserves key proteins for cardiomyocyte function and exerts a positive impact on cardiac performance after reperfusion.
Collapse
Affiliation(s)
- Gina Sanchez
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Centro de Estudios Moleculares de la Célula, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Daniela Berrios
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Ivonne Olmedo
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Javier Pezoa
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Jaime A Riquelme
- Advanced Center for Chronic Diseases, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Luis Montecinos
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Zully Pedrozo
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Paulina Donoso
- Centro de Estudios Moleculares de la Célula, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
15
|
Deshpande M, Mali VR, Pan G, Xu J, Yang XP, Thandavarayan RA, Palaniyandi SS. Increased 4-hydroxy-2-nonenal-induced proteasome dysfunction is correlated with cardiac damage in streptozotocin-injected rats with isoproterenol infusion. Cell Biochem Funct 2016; 34:334-42. [PMID: 27273517 DOI: 10.1002/cbf.3195] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/11/2016] [Accepted: 05/16/2016] [Indexed: 12/21/2022]
Abstract
Increase in 4-hydroxy-2-nonenal (4HNE) due to oxidative stress has been observed in a variety of cardiac diseases such as diabetic cardiomyopathy. 4HNE exerts a damaging effect in the myocardium by interfering with subcellular organelles like mitochondria by forming adducts. Therefore, we hypothesized that increased 4HNE adduct formation in the heart results in proteasome inactivation in isoproterenol (ISO)-infused type 1 diabetes mellitus (DM) rats. Eight-week-old male Sprague Dawley rats were injected with streptozotocin (STZ, 65 mg kg(-1) ). The rats were infused with ISO (5 mg kg(-1) ) for 2 weeks by mini pumps, after 8 weeks of STZ injection. We studied normal control (n = 8) and DM + ISO (n = 10) groups. Cardiac performance was assessed by echocardiography and Millar catheter at the end of the protocol at 20 weeks. Initially, we found an increase in 4HNE adducts in the hearts of the DM + ISO group. There was also a decrease in myocardial proteasomal peptidase (chymotrypsin and trypsin-like) activity. Increases in cardiomyocyte area (446 ± 32·7 vs 221 ± 10·83) (µm(2) ), per cent area of cardiac fibrosis (7·4 ± 0·7 vs 2·7 ± 0·5) and cardiac dysfunction were also found in DM + ISO (P < 0·05) relative to controls. We also found increased 4HNE adduct formation on proteasomal subunits. Furthermore, reduced aldehyde dehydrogenase 2 activity was observed in the myocardium of the DM + ISO group. Treatment with 4HNE (100 μM) for 4 h on cultured H9c2 cardiomyocytes attenuated proteasome activity. Therefore, we conclude that the 4HNE-induced decrease in proteasome activity may be involved in the cardiac pathology in STZ-injected rats infused with ISO. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Mandar Deshpande
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Vishal R Mali
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Guodong Pan
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Jiang Xu
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Xiao-Ping Yang
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Rajarajan A Thandavarayan
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX, USA
| | - Suresh Selvaraj Palaniyandi
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| |
Collapse
|
16
|
Pashevin DO, Nagibin VS, Tumanovska LV, Moibenko AA, Dosenko VE. Proteasome Inhibition Diminishes the Formation of Neutrophil Extracellular Traps and Prevents the Death of Cardiomyocytes in Coculture with Activated Neutrophils during Anoxia-Reoxygenation. Pathobiology 2015; 82:290-8. [PMID: 26558384 DOI: 10.1159/000440982] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 09/08/2015] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Polymorphic mononuclear neutrophils (PMN) are very important cells participating in nonspecific defense of the organism. Among their well-known functions, the formation of neutrophil extracellular traps (NET) is interesting and potentially dangerous for the mechanisms of other cells. Ubiquitin-dependent proteasomal proteolysis is a very important regulator of all cellular activities, but the role of proteasomal proteolysis in NET formation has not been investigated. METHODS We performed experiments with PMN activated to form NET with phorbol 12-myristate 13-acetate (PMA) and the application of a proteasome inhibitor. We also added activated neutrophils to primary culture of isolated rat neonatal cardiomyocytes with or without anoxia-reoxygenation modeling. RESULTS The data obtained show that proteasomes participate in NET formation and proteasome inhibitors facilitate the blocking of the NET program. The percentage of NET after PMA application was 70.8 ± 7.2 and the proteasome inhibitor decreased this amount to 4.7 ± 0.9%. In coculture with cardiomyocytes during anoxia-reoxygenation, this effect prevented cardiac cell death induced by activated PMN. The stimulation of NET formation by PMA in coculture with isolated cardiomyocytes led to an increase in the number of necrotic cardiomyocytes of up to 33.1 ± 12.9% and a corresponding decrease in living cardiomyocytes to 66.9 ± 12.9%. The number of living cardiomyocytes in coculture after incubation with both PMA and proteasome inhibitor was 76.6 ± 13.3% (p < 0.05), and the number of necrotic cardiomyocytes was 23.4 ± 13.3% (p < 0.05). CONCLUSION Proteasome inhibition blocks NET formation and prevents cardiomyocyte necrosis in coculture with activated neutrophils.
Collapse
Affiliation(s)
- Denis O Pashevin
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, National Academy of Science of Ukraine, Kiev, Ukraine
| | | | | | | | | |
Collapse
|
17
|
Adams B, Mapanga RF, Essop MF. Partial inhibition of the ubiquitin-proteasome system ameliorates cardiac dysfunction following ischemia-reperfusion in the presence of high glucose. Cardiovasc Diabetol 2015. [PMID: 26216448 PMCID: PMC4517635 DOI: 10.1186/s12933-015-0258-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background Acute hyperglycemia co-presenting with myocardial infarction (in diabetic and non-diabetic individuals) is often associated with a poor prognosis. Although acute hyperglycemia induces oxidative stress that can lead to dysregulation of the ubiquitin–proteasome system (UPS), it is unclear whether increased/decreased UPS is detrimental with ischemia–reperfusion under such conditions. As our earlier data implicated the UPS in cardiac damage, we hypothesized that its inhibition results in cardioprotection with ischemia–reperfusion performed under conditions that simulate acute hyperglycemia. Methods Ex vivo rat heart perfusions were performed with Krebs–Henseleit buffer containing 33 mM glucose vs. controls (11 mM glucose) for 60 min stabilization, followed by 20 min global ischemia and 60 min reperfusion ± 5 µM lactacystin and 10 µM MG-132, respectively. The UPS inhibitors were added during the first 20 min of the reperfusion phase and various cardiac functional parameters evaluated. In parallel experiments, infarct sizes were assessed following 20 min regional ischemia and 120 min reperfusion ± each of the respective UPS inhibitors (added during reperfusion). Heart tissues were collected and analyzed for markers of oxidative stress, UPS activation, inflammation and autophagy. Results The proteasome inhibitor doses and treatment duration here employed resulted in partial UPS inhibition during the reperfusion phase. Both lactacystin and MG-132 administration resulted in cardioprotection in our experimental system, with MG-132 showing a greater effect. The proteasome inhibitors also enhanced cardiac superoxide dismutase protein levels (SOD1, SOD2), attenuated pro-inflammatory effects and caused an upregulation of autophagic markers. Conclusions This study established that partial proteasome inhibition elicits cardioprotection in hearts exposed to ischemia–reperfusion with acute simulated hyperglycemia. These data reveal that protease inhibition triggered three major protective effects, i.e. (a) enhancing myocardial anti-oxidant defenses, (b) attenuating inflammation, and (c) increasing the autophagic response. Thus the UPS emerges as a unique therapeutic target for the treatment of ischemic heart disease under such conditions.
Collapse
Affiliation(s)
- Buin Adams
- Cardio-Metabolic Research Group (CMRG), Department of Physiological Sciences, Stellenbosch University, Room 2005, Mike De Vries Building, Merriman Avenue, Stellenbosch, 7600, South Africa.
| | - Rudo F Mapanga
- Cardio-Metabolic Research Group (CMRG), Department of Physiological Sciences, Stellenbosch University, Room 2005, Mike De Vries Building, Merriman Avenue, Stellenbosch, 7600, South Africa.
| | - M Faadiel Essop
- Cardio-Metabolic Research Group (CMRG), Department of Physiological Sciences, Stellenbosch University, Room 2005, Mike De Vries Building, Merriman Avenue, Stellenbosch, 7600, South Africa.
| |
Collapse
|
18
|
Saddic LA, Chang TW, Sigurdsson MI, Heydarpour M, Raby BA, Shernan SK, Aranki SF, Body SC, Muehlschlegel JD. Integrated microRNA and mRNA responses to acute human left ventricular ischemia. Physiol Genomics 2015; 47:455-62. [PMID: 26175501 DOI: 10.1152/physiolgenomics.00049.2015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 07/08/2015] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs (miRNAs) play a significant role in ischemic heart disease. Animal models of left ventricular (LV) ischemia demonstrate a unique miRNA profile; however, these models have limitations in describing human disease. In this study, we performed next-generation miRNA and mRNA sequencing on LV tissue from nine patients undergoing cardiac surgery with cardiopulmonary bypass and cardioplegic arrest. Samples were obtained immediately after aortic cross clamping (baseline) and before aortic cross clamp removal (postischemic). Of 1,237 identified miRNAs, 21 were differentially expressed between baseline and postischemic LV samples including the upregulated miRNAs miR-339-5p and miR-483-3p and the downregulated miRNA miR-139-5p. Target prediction analysis of these miRNAs was integrated with mRNA expression from the same LV samples to identify anticorrelated miRNA-mRNA pairs. Gene enrichment studies of candidate mRNA targets demonstrated an association with cardiovascular disease, cell death, and metabolism. Therapeutics that intervene on these miRNAs and their downstream targets may lead to novel mechanisms of mitigating the damage caused by ischemic insults on the human heart.
Collapse
Affiliation(s)
- Louis A Saddic
- Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Tzuu-Wang Chang
- Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Martin I Sigurdsson
- Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mahyar Heydarpour
- Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Benjamin A Raby
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Stanton K Shernan
- Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sary F Aranki
- Division of Cardiac Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Simon C Body
- Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jochen D Muehlschlegel
- Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts;
| |
Collapse
|
19
|
Shanmugam M, Li D, Gao S, Fefelova N, Shah V, Voit A, Pachon R, Yehia G, Xie LH, Babu GJ. Cardiac specific expression of threonine 5 to alanine mutant sarcolipin results in structural remodeling and diastolic dysfunction. PLoS One 2015; 10:e0115822. [PMID: 25671318 PMCID: PMC4324845 DOI: 10.1371/journal.pone.0115822] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 12/02/2014] [Indexed: 12/23/2022] Open
Abstract
The functional importance of threonine 5 (T5) in modulating the activity of sarcolipin (SLN), a key regulator of sarco/endoplasmic reticulum (SR) Ca2+ ATPase (SERCA) pump was studied using a transgenic mouse model with cardiac specific expression of threonine 5 to alanine mutant SLN (SLNT5A). In these transgenic mice, the SLNT5A protein replaces the endogenous SLN in atria, while maintaining the total SLN content. The cardiac specific expression of SLNT5A results in severe cardiac structural remodeling accompanied by bi-atrial enlargement. Biochemical analyses reveal a selective downregulation of SR Ca2+ handling proteins and a reduced SR Ca2+ uptake both in atria and in the ventricles. Optical mapping analysis shows slower action potential propagation in the transgenic mice atria. Doppler echocardiography and hemodynamic measurements demonstrate a reduced atrial contractility and an impaired diastolic function. Together, these findings suggest that threonine 5 plays an important role in modulating SLN function in the heart. Furthermore, our studies suggest that alteration in SLN function can cause abnormal Ca2+ handling and subsequent cardiac remodeling and dysfunction.
Collapse
Affiliation(s)
- Mayilvahanan Shanmugam
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
| | - Dan Li
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
| | - Shumin Gao
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
| | - Nadezhda Fefelova
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
| | - Vikas Shah
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
| | - Antanina Voit
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
| | - Ronald Pachon
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
| | - Ghassan Yehia
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
| | - Lai-Hua Xie
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
| | - Gopal J. Babu
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
20
|
Protection from endotoxic uveitis by intravitreal Resolvin D1: involvement of lymphocytes, miRNAs, ubiquitin-proteasome, and M1/M2 macrophages. Mediators Inflamm 2015; 2015:149381. [PMID: 25684860 PMCID: PMC4312647 DOI: 10.1155/2015/149381] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 11/13/2014] [Accepted: 12/08/2014] [Indexed: 12/03/2022] Open
Abstract
This study investigated the protective effects of intravitreal Resolvin D1 (RvD1) against LPS-induced rat endotoxic uveitis (EIU). RvD1 was administered into the right eye at a single injection of 5 μL volume containing 10–100–1000 ng/kg RvD1 1 h post-LPS injection (200 μg, Salmonella minnesota) into thefootpad of Sprague-Dawley rats. 24 h later, the eye was enucleated and examined for clinical, biochemical, and immunohistochemical evaluations. RvD1 significantly and dose-dependently decreased the clinical score attributed to EIU, starting from the dose of 10 ng/kg and further decreased by 100 and 1000 ng/kg. These effects were accompanied by changes in four important determinants of the immune-inflammatory response within the eye: (i) the B and T lymphocytes, (ii) the miRNAs pattern, (iii) the ubiquitin-proteasome system (UPS), and (iv) the M1/M2 macrophage phenotype. LPS+RvD1 treated rats showed reduced presence of B and T lymphocytes and upregulation of miR-200c-3p, miR 203a-3p, miR 29b-3p, and miR 21-5p into the eye compared to the LPS alone. This was paralleled by decreases of the ubiquitin, 20S and 26S proteasome subunits, reduced presence of macrophage M1, and increased presence of macrophage M2 in the ocular tissues. Accordingly, the levels of the cytokine TNF-α, the chemokines MIP1-α and NF-κB were reduced.
Collapse
|
21
|
Drews O, Taegtmeyer H. Targeting the ubiquitin-proteasome system in heart disease: the basis for new therapeutic strategies. Antioxid Redox Signal 2014; 21:2322-43. [PMID: 25133688 PMCID: PMC4241867 DOI: 10.1089/ars.2013.5823] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
SIGNIFICANCE Novel therapeutic strategies to treat heart failure are greatly needed. The ubiquitin-proteasome system (UPS) affects the structure and function of cardiac cells through targeted degradation of signaling and structural proteins. This review discusses both beneficial and detrimental consequences of modulating the UPS in the heart. RECENT ADVANCES Proteasome inhibitors were first used to test the role of the UPS in cardiac disease phenotypes, indicating therapeutic potential. In early cardiac remodeling and pathological hypertrophy with increased proteasome activities, proteasome inhibition prevented or restricted disease progression and contractile dysfunction. Conversely, enhancing proteasome activities by genetic manipulation, pharmacological intervention, or ischemic preconditioning also improved the outcome of cardiomyopathies and infarcted hearts with impaired cardiac and UPS function, which is, at least in part, caused by oxidative damage. CRITICAL ISSUES An understanding of the UPS status and the underlying mechanisms for its potential deregulation in cardiac disease is critical for targeted interventions. Several studies indicate that type and stage of cardiac disease influence the dynamics of UPS regulation in a nonlinear and multifactorial manner. Proteasome inhibitors targeting all proteasome complexes are associated with cardiotoxicity in humans. Furthermore, the type and dosage of proteasome inhibitor impact the pathogenesis in nonuniform ways. FUTURE DIRECTIONS Systematic analysis and targeting of individual UPS components with established and innovative tools will unravel and discriminate regulatory mechanisms that contribute to and protect against the progression of cardiac disease. Integrating this knowledge in drug design may reduce adverse effects on the heart as observed in patients treated with proteasome inhibitors against noncardiac diseases, especially cancer.
Collapse
Affiliation(s)
- Oliver Drews
- 1 Division of Cardiovascular Physiology, Institute of Physiology and Pathophysiology , Heidelberg University, Heidelberg, Germany
| | | |
Collapse
|
22
|
Gao L, Zheng YJ, Gu SS, Tan JL, Paul C, Wang YG, Yang HT. Degradation of cardiac myosin light chain kinase by matrix metalloproteinase-2 contributes to myocardial contractile dysfunction during ischemia/reperfusion. J Mol Cell Cardiol 2014; 77:102-12. [PMID: 25451385 DOI: 10.1016/j.yjmcc.2014.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 10/07/2014] [Accepted: 10/08/2014] [Indexed: 11/25/2022]
Abstract
Although ischemia/reperfusion (I/R)-induced myocardial contractile dysfunction is associated with a prominent decrease in myofilament Ca(2+) sensitivity, the underlying mechanisms have not yet been fully clarified. Phosphorylation of ventricular myosin light chain 2 (MLC-2v) facilitates actin-myosin interactions and enhances contractility, however, its level and regulation by cardiac MLC kinase (cMLCK) and cMLC phosphatase (cMLCP) in I/R hearts are debatable. In this study, the levels and/or effects of MLC-2v phosphorylation, cMLCK, cMLCP, and proteases during I/R were determined. Global myocardial I/R-suppressed cardiac performance in isolated rat hearts was concomitant with decreases of MLC-2v phosphorylation, myofibrillar Ca(2+)-stimulated ATPase activity, and cMLCK content, but not cMLCP proteins. Consistently, simulated I/R in isolated cardiomyocytes inhibited cell shortening, Ca(2+) transients, MLC-2v phosphorylation, and myofilament sensitivity to Ca(2+). These observations were reversed by cMLCK overexpression, while the specific cMLCK knockdown by short hairpin RNA (shRNA) had the opposite effect. Moreover, the inhibition of matrix metalloproteinase-2 (MMP-2, a zinc-dependent endopeptidase) reversed IR-decreased cMLCK, MLC-2v phosphorylation, myofibrillar Ca(2+)-stimulated ATPase activity, myocardial contractile function, and myofilament sensitivity to Ca(2+), while the inhibition or knockdown of cMLCK by ML-9 or specific shRNA abolished MMP-2 inhibition-induced cardioprotection. Finally, the co-localization in cardiomyocytes and interaction in vivo of MMP-2 and cMLCK were observed. Purified recombinant rat cMLCK was concentration- and time-dependently degraded by rat MMP-2 in vitro, and this was prevented by the inhibition of MMP-2. These findings reveal that the I/R-activated MMP-2 leads to the degradation of cMLCK, resulting in a reduction of MLC-2v phosphorylation, and myofibrillar Ca(2+)-stimulated ATPase activity, which subsequently suppresses myocardial contractile function through a decrease of myofilament Ca(2+) sensitivity.
Collapse
Affiliation(s)
- Ling Gao
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) and Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Yan-Jun Zheng
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) and Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Shan-Shan Gu
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) and Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Ji-Liang Tan
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) and Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Christian Paul
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Yi-Gang Wang
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Huang-Tian Yang
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) and Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China.
| |
Collapse
|
23
|
Yan H, Ma YL, Gui YZ, Wang SM, Wang XB, Gao F, Wang YP. MG132, a proteasome inhibitor, enhances LDL uptake in HepG2 cells in vitro by regulating LDLR and PCSK9 expression. Acta Pharmacol Sin 2014; 35:994-1004. [PMID: 25042549 DOI: 10.1038/aps.2014.52] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 05/16/2014] [Indexed: 12/11/2022]
Abstract
AIM Expression of liver low-density lipoprotein receptor (LDLR), a determinant regulator in cholesterol homeostasis, is tightly controlled at multiple levels. The aim of this study was to examine whether proteasome inhibition could affect LDLR expression and LDL uptake in liver cells in vitro. METHODS HepG2 cells were examined. Real-time PCR and Western blot analysis were used to determine the mRNA and protein levels, respectively. DiI-LDL uptake assay was used to quantify the LDLR function. Luciferase assay system was used to detect the activity of proprotein convertase subtilisin/kexin type 9 (PCSK9, a major protein mediating LDLR degradation) promoter. Specific siRNAs were used to verify the involvement of PCSK9. RESULTS Treatment of HepG2 cells with the specific proteasome inhibitor MG132 (0.03-3 μmol/L) dose-dependently increased LDLR mRNA and protein levels, as well as LDL uptake. Short-term treatment with MG132 (0.3 μmol/L, up to 8 h) significantly increased both LDLR mRNA and protein levels in HepG2 cells, which was blocked by the specific PKC inhibitors GF 109203X, Gö 6983 or staurosporine. In contrast, a longer treatment with MG132 (0.3 μmol/L, 24 h) did not change LDLR mRNA, but markedly increased LDLR protein by reducing PCSK9-mediated lysosome LDLR degradation. Furthermore, MG132 time-dependently suppressed PCSK9 expression in the HepG2 cells through a SREBP-1c related pathway. Combined treatment with MG132 (0.3 μmol/L) and pravastatin (5 μmol/L) strongly promoted LDLR expression and LDL uptake in HepG2 cells, and blocked the upregulation of PCSK9 caused by pravastatin alone. CONCLUSION Inhibition of proteasome by MG132 in HepG2 cells plays dual roles in LDLR and PCSK9 expression, and exerts a beneficial effect on cholesterol homeostasis.
Collapse
|
24
|
Gerö D, Szoleczky P, Chatzianastasiou A, Papapetropoulos A, Szabo C. Modulation of poly(ADP-ribose) polymerase-1 (PARP-1)-mediated oxidative cell injury by ring finger protein 146 (RNF146) in cardiac myocytes. Mol Med 2014; 20:313-28. [PMID: 24842055 DOI: 10.2119/molmed.2014.00102] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 05/13/2014] [Indexed: 01/05/2023] Open
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1) activation is a hallmark of oxidative stress-induced cellular injury that can lead to energetic failure and necrotic cell death via depleting the cellular nicotinamide adenine dinucleotide (NAD(+)) and ATP pools. Pharmacological PARP-1 inhibition or genetic PARP-1 deficiency exert protective effects in multiple models of cardiomyocyte injury. However, the connection between nuclear PARP-1 activation and depletion of the cytoplasmic and mitochondrial energy pools is poorly understood. By using cultured rat cardiomyocytes, here we report that ring finger protein 146 (RNF146), a cytoplasmic E3-ubiquitin ligase, acts as a direct interactor of PARP-1. Overexpression of RNF146 exerts protection against oxidant-induced cell death, whereas PARP-1-mediated cellular injury is augmented after RNF146 silencing. RNF146 translocates to the nucleus upon PARP-1 activation, triggering the exit of PARP-1 from the nucleus, followed by rapid degradation of both proteins. PARP-1 and RNF146 degradation occurs in the early phase of myocardial ischemia-reperfusion injury; it precedes the induction of heat shock protein expression. Taken together, PARP-1 release from the nucleus and its rapid degradation represent newly identified steps of the necrotic cell death program induced by oxidative stress. These steps are controlled by the ubiquitin-proteasome pathway protein RNF146. The current results shed new light on the mechanism of necrotic cell death. RNF146 may represent a distinct target for experimental therapeutic intervention of oxidant-mediated cardiac injury.
Collapse
Affiliation(s)
- Domokos Gerö
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Petra Szoleczky
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | | | | | - Csaba Szabo
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
25
|
Di Filippo C, Rossi C, Ferraro B, Maisto R, De Angelis A, Ferraraccio F, Rotondo A, D'Amico M. Involvement of proteasome and macrophages M2 in the protection afforded by telmisartan against the acute myocardial infarction in Zucker diabetic fatty rats with metabolic syndrome. Mediators Inflamm 2014; 2014:972761. [PMID: 25110402 PMCID: PMC4119687 DOI: 10.1155/2014/972761] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 06/18/2014] [Accepted: 06/19/2014] [Indexed: 01/15/2023] Open
Abstract
This study investigated the involvement of proteasome and macrophages M2 in the protection afforded by telmisartan against the acute myocardial infarction in Zucker diabetic fatty (ZDF) rats with metabolic syndrome. ZDF rats were treated for three weeks with telmisartan at doses of 7 and 12 mg/kg/day. After treatment, rats were subjected to a 25 min occlusion of the left descending coronary artery followed by 2 h reperfusion (I/R). At the end of the I/R period, biochemical, immunohistochemical, and echocardiographic evaluations were done. Telmisartan treatment (7 mg/kg and 12 mg/kg) reduced the myocardial infarct size, the expression of proteasome subunits 20S and 26S, and the protein ubiquitin within the heart. The compound has led to an increased M2 macrophage phenotype within the cardiac specimens and a modification of the cardiac cytokine and chemokine profile. This was functionally translated in improved cardiac performance as evidenced by echography after 2 h reperfusion. 7 mg/kg/day telmisartan was sufficient to improve the left ventricular ejection fraction LVEF of the rat heart recorded after I/R (e.g., vehicle 38 ± 2.2%; telmisartan 54 ± 2.7%) and was sufficient to improve the diastolic function and the myocardial performance index up to values of 0.6 ± 0.01 measured after I/R.
Collapse
Affiliation(s)
- C. Di Filippo
- Department of Experimental Medicine, Section of Pharmacology “L. Donatelli”, Second University of Naples, 80138 Naples, Italy
| | - C. Rossi
- Radiology, Radiotherapy and Nuclear Medicine Unit, Second University of Naples, 80138 Naples, Italy
| | - B. Ferraro
- Department of Experimental Medicine, Section of Pharmacology “L. Donatelli”, Second University of Naples, 80138 Naples, Italy
| | - R. Maisto
- Department of Experimental Medicine, Section of Pharmacology “L. Donatelli”, Second University of Naples, 80138 Naples, Italy
| | - A. De Angelis
- Department of Experimental Medicine, Section of Pharmacology “L. Donatelli”, Second University of Naples, 80138 Naples, Italy
| | - F. Ferraraccio
- Department of Clinical, Public and Preventive Medicine, Second University of Naples, 80138 Naples, Italy
| | - A. Rotondo
- Radiology, Radiotherapy and Nuclear Medicine Unit, Second University of Naples, 80138 Naples, Italy
| | - M. D'Amico
- Department of Experimental Medicine, Section of Pharmacology “L. Donatelli”, Second University of Naples, 80138 Naples, Italy
| |
Collapse
|
26
|
Ferreira LRP, Frade AF, Santos RHB, Teixeira PC, Baron MA, Navarro IC, Benvenuti LA, Fiorelli AI, Bocchi EA, Stolf NA, Chevillard C, Kalil J, Cunha-Neto E. MicroRNAs miR-1, miR-133a, miR-133b, miR-208a and miR-208b are dysregulated in Chronic Chagas disease Cardiomyopathy. Int J Cardiol 2014; 175:409-17. [PMID: 24910366 DOI: 10.1016/j.ijcard.2014.05.019] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Revised: 04/25/2014] [Accepted: 05/11/2014] [Indexed: 12/25/2022]
Abstract
BACKGROUND/METHODS Chagas disease is caused by an intracellular parasite, Trypanosoma cruzi, and it is a leading cause of heart failure in Latin America. The main clinical consequence of the infection is the development of a Chronic Chagas disease Cardiomyopathy (CCC), which is characterized by myocarditis, hypertrophy and fibrosis and affects about 30% of infected patients. CCC has a worse prognosis than other cardiomyopathies, like idiopathic dilated cardiomyopathy (DCM). It is well established that myocardial gene expression patterns are altered in CCC, but the molecular mechanisms underlying these differences are not clear. MicroRNAs are recently discovered regulators of gene expression, and are recognized as important factors in heart development and cardiovascular disorders (CD). We analyzed the expression of nine different miRNAs in myocardial tissue samples of CCC patients in comparison to DCM patients and samples from heart transplant donors. Using the results of a cDNA microarray database on CCC and DCM myocardium, signaling networks were built and nodal molecules were identified. RESULTS We observed that five miRNAs were significantly altered in CCC and three in DCM; importantly, three miRNAs were significantly reduced in CCC as compared to DCM. We observed that multiple gene targets of the differentially expressed miRNAs showed a concordant inverse expression in CCC. Significantly, most gene targets and involved networks belong to crucial disease-related signaling pathways. CONCLUSION These results suggest that miRNAs may play a major role in the regulation of gene expression in CCC pathogenesis, with potential implication as diagnostic and prognostic tools.
Collapse
Affiliation(s)
- Ludmila Rodrigues Pinto Ferreira
- Laboratory of Immunology, Heart Institute (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil; Division of Clinical Immunology and Allergy, University of São Paulo, School of Medicine, São Paulo, Brazil; Institute for Investigation in Immunology (iii), INCT, 05403-001, São Paulo, Brazil
| | - Amanda Farage Frade
- Laboratory of Immunology, Heart Institute (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil; Division of Clinical Immunology and Allergy, University of São Paulo, School of Medicine, São Paulo, Brazil; Institute for Investigation in Immunology (iii), INCT, 05403-001, São Paulo, Brazil
| | | | - Priscila Camillo Teixeira
- Laboratory of Immunology, Heart Institute (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil; Division of Clinical Immunology and Allergy, University of São Paulo, School of Medicine, São Paulo, Brazil; Institute for Investigation in Immunology (iii), INCT, 05403-001, São Paulo, Brazil
| | - Monique Andrade Baron
- Laboratory of Immunology, Heart Institute (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil; Division of Clinical Immunology and Allergy, University of São Paulo, School of Medicine, São Paulo, Brazil; Institute for Investigation in Immunology (iii), INCT, 05403-001, São Paulo, Brazil
| | - Isabela Cunha Navarro
- Laboratory of Immunology, Heart Institute (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil; Division of Clinical Immunology and Allergy, University of São Paulo, School of Medicine, São Paulo, Brazil; Institute for Investigation in Immunology (iii), INCT, 05403-001, São Paulo, Brazil
| | - Luiz Alberto Benvenuti
- Division of Pathology, Heart Institute (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
| | - Alfredo Inácio Fiorelli
- Division of Surgery, Heart Institute (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
| | - Edimar Alcides Bocchi
- Division of Surgery, Heart Institute (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
| | - Noedir Antonio Stolf
- Division of Surgery, Heart Institute (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
| | | | - Jorge Kalil
- Division of Clinical Immunology and Allergy, University of São Paulo, School of Medicine, São Paulo, Brazil; Institute for Investigation in Immunology (iii), INCT, 05403-001, São Paulo, Brazil
| | - Edecio Cunha-Neto
- Laboratory of Immunology, Heart Institute (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil; Division of Clinical Immunology and Allergy, University of São Paulo, School of Medicine, São Paulo, Brazil; Institute for Investigation in Immunology (iii), INCT, 05403-001, São Paulo, Brazil..
| |
Collapse
|
27
|
Diggin' on u(biquitin): a novel method for the identification of physiological E3 ubiquitin ligase substrates. Cell Biochem Biophys 2014; 67:127-38. [PMID: 23695782 DOI: 10.1007/s12013-013-9624-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The ubiquitin-proteasome system (UPS) plays a central role in maintaining protein homeostasis, emphasized by a myriad of diseases that are associated with altered UPS function such as cancer, muscle-wasting, and neurodegeneration. Protein ubiquitination plays a central role in both the promotion of proteasomal degradation as well as cellular signaling through regulation of the stability of transcription factors and other signaling molecules. Substrate-specificity is a critical regulatory step of ubiquitination and is mediated by ubiquitin ligases. Recent studies implicate ubiquitin ligases in multiple models of cardiac diseases such as cardiac hypertrophy, atrophy, and ischemia/reperfusion injury, both in a cardioprotective and maladaptive role. Therefore, identifying physiological substrates of cardiac ubiquitin ligases provides both mechanistic insights into heart disease as well as possible therapeutic targets. Current methods identifying substrates for ubiquitin ligases rely heavily upon non-physiologic in vitro methods, impeding the unbiased discovery of physiological substrates in relevant model systems. Here we describe a novel method for identifying ubiquitin ligase substrates utilizing tandem ubiquitin binding entities technology, two-dimensional differential in gel electrophoresis, and mass spectrometry, validated by the identification of both known and novel physiological substrates of the ubiquitin ligase MuRF1 in primary cardiomyocytes. This method can be applied to any ubiquitin ligase, both in normal and disease model systems, in order to identify relevant physiological substrates under various biological conditions, opening the door to a clearer mechanistic understanding of ubiquitin ligase function and broadening their potential as therapeutic targets.
Collapse
|
28
|
Metcalf R, Scott LM, Daniel KG, Dou QP. Proteasome inhibitor patents (2010 - present). Expert Opin Ther Pat 2014; 24:369-82. [PMID: 24450483 DOI: 10.1517/13543776.2014.877444] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Over the past 3 years, numerous patents and patent applications have been submitted and published involving compounds designed to inhibit the proteasome. Proteasome inhibition has been of great interest in cancer research since disruption of proteolysis leads to a significant buildup of cytotoxic proteins and activation of apoptotic pathways, particularly in rapidly proliferating cells. The current standards in proteasome inhibition are the only FDA-approved inhibitors, bortezomib and carfilzomib. Although these drugs are quite effective in treating multiple myeloma and other blood tumors, there are shortcomings, including toxicities and resistance. Most of the current patents attempt to improve on existing compounds, by increasing bioavailability and selectivity, while attempting to reduce toxicity. A general categorization of similar compounds was employed to evaluate and compare drug design strategies. AREAS COVERED This review focuses on novel compounds and subsequent analogs developed for proteasome inhibition, used in preventing and treating human cancers. A comprehensive description and categorization of patents related to each type of compound and its derivatives, as well as their uses and efficacies as anticancer agents is included. A review of combination therapy patents has also been included. EXPERT OPINION Although there are many diverse chemical scaffolds being published, there are few patented proteasome inhibitors whose method of inhibition is genuinely novel. Most patents utilize a destructive chemical warhead to attack the catalytic threonine residue of the proteasome active sites. Few patents try to depart from this, emphasizing the need for developing new mechanisms of action and specific targeting.
Collapse
Affiliation(s)
- Rainer Metcalf
- Moffitt Cancer Center, Chemical Biology Core , 12902 Magnolia Dr SRB3, Tampa, FL 33612 , USA
| | | | | | | |
Collapse
|
29
|
Burnatowska-Hledin MA, Barney CC. New insights into the mechanism for VACM-1/cul5 expression in vascular tissue in vivo. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 313:79-101. [PMID: 25376490 DOI: 10.1016/b978-0-12-800177-6.00003-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Vasopressin-activated calcium-mobilizing (VACM-1)/cul5 is the least conserved member of a cullin protein family involved in the formation of E3-specific ligase complexes that are responsible for delivering the ubiquitin protein to their target substrate proteins selected for ubiquitin-dependent degradation. This chapter summarizes work to date that has focused on VACM-1/cul5's tissue-specific expression in vivo and on its potential role in the control of specific cellular signaling pathways in those structures. As mammalian cells may contain hundreds of E3 ligases, identification VACM-1/cul5 as a specific subunit of the system that is expressed in the endothelium and in collecting tubules, structures known for their control of cellular permeability, may have significant implications when designing studies to elucidate the mechanism of water conservation. For example, VACM-1/cul5 expression is affected by water deprivation in some tissues and there is a potential relationship between neddylated VACM-1/cul5 and aquaporins.
Collapse
Affiliation(s)
- Maria A Burnatowska-Hledin
- Department of Biology, Hope College, Holland, MI, USA; Department of Chemistry, Hope College, Holland, MI, USA
| | | |
Collapse
|
30
|
Proteomic remodeling of proteasome in right heart failure. J Mol Cell Cardiol 2014; 66:41-52. [DOI: 10.1016/j.yjmcc.2013.10.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 09/13/2013] [Accepted: 10/22/2013] [Indexed: 12/30/2022]
|
31
|
Kandilis AN, Karidis NP, Kouraklis G, Patsouris E, Vasileiou I, Theocharis S. Proteasome inhibitors: possible novel therapeutic strategy for ischemia-reperfusion injury? Expert Opin Investig Drugs 2014; 23:67-80. [PMID: 24125540 DOI: 10.1517/13543784.2013.840287] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION The ubiquitin-proteasome system (UPS) is responsible for the degradation of misfolded or damaged proteins, regulating inflammatory processes and cell cycle progression. The aim of this article is to summarize the currently available data regarding the possible utility of proteasome inhibitors (PIs) in the treatment of ischemia-reperfusion injury (IRI). AREAS COVERED Data were reviewed from the published literature using the Medline database. The effect of PIs on IRI is dependent on the dosage, time of administration (prior to or post IRI induction), the affected organ, and the experimental model used. Undoubtedly, in most cases PIs' application resulted in attenuated IRI, although it was uniformly shown that inhibition of the UPS prior to ischemic preconditioning (IPC) abolished the protective effect of IPC in IRI. Mechanism of action involves several pathways, including nuclear factor kappa-B (NF-κB) inactivation, antineutrophil action, decreased intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) expression, and the cytoprotective proteins eNOS, heme oxigenase 1 and hsp70 up-regulation. EXPERT OPINION Current data are limited, but appear promising with regard to PI consideration as an effective future therapeutic strategy for IRI. Nevertheless, further investigation is required in terms of safety and validation of the appropriate for each agent dosage, in order to establish their possible contribution in human IRI.
Collapse
Affiliation(s)
- Apostolos N Kandilis
- National and Kapodistrian University of Athens, Laikon General Hospital, Medical School, Second Department of Propedeutic Surgery , Athens , Greece
| | | | | | | | | | | |
Collapse
|
32
|
Majetschak M. Regulation of the proteasome by ATP: implications for ischemic myocardial injury and donor heart preservation. Am J Physiol Heart Circ Physiol 2013; 305:H267-78. [PMID: 23709597 DOI: 10.1152/ajpheart.00206.2012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Several lines of evidence suggest that proteasomes are involved in multiple aspects of myocardial physiology and pathology, including myocardial ischemia-reperfusion injury. It is well established that the 26S proteasome is an ATP-dependent enzyme and that ischemic heart disease is associated with changes in the ATP content of the cardiomyocyte. A functional link between the 26S proteasome, myocardial ATP concentrations, and ischemic cardiac injury, however, has been suggested only recently. This review discusses the currently available data on the pathophysiological role of the cardiac proteasome during ischemia and reperfusion in the context of the cellular ATP content. Depletion of the myocardial ATP content during ischemia appears to activate the 26S proteasome via direct regulatory effects of ATP on 26S proteasome stability and activity. This implies pathological degradation of target proteins by the proteasome and could provide a pathophysiological basis for beneficial effects of proteasome inhibitors in various models of myocardial ischemia. In contrast to that in the ischemic heart, reduced and impaired proteasome activity is detectable in the postischemic heart. The paradoxical findings that proteasome inhibitors showed beneficial effects when administered during reperfusion in some studies could be explained by their anti-inflammatory and immune suppressive actions, leading to reduction of leukocyte-mediated myocardial reperfusion injury. The direct regulatory effects of ATP on the 26S proteasome have implications for the understanding of the contribution of the 26S proteasome to the pathophysiology of the ischemic heart and its possible role as a therapeutic target.
Collapse
Affiliation(s)
- Matthias Majetschak
- Departments of Surgery and Molecular Pharmacology and Therapeutics, Loyola University Chicago, Maywood, IL 60153, USA.
| |
Collapse
|
33
|
Chen FT, Yang CM, Yang CH. The protective effects of the proteasome inhibitor bortezomib (velcade) on ischemia-reperfusion injury in the rat retina. PLoS One 2013; 8:e64262. [PMID: 23691186 PMCID: PMC3653862 DOI: 10.1371/journal.pone.0064262] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 04/11/2013] [Indexed: 11/19/2022] Open
Abstract
Purpose To evaluate the protective effects of bortezomib (Velcade) on ischemia-reperfusion (IR) injury in the rat retina. Methods The rats were randomized to receive treatment with saline, low-dose bortezomib (0.05 mg/kg), or high-dose bortezomib (0.2 mg/kg) before the induction of IR injury. Electroretinography (ERG) was used to assess functional changes in the retina. The expression of inflammatory mediators (iNOS, ICAM-1, MCP-1, TNF-α), anti-oxidant proteins (heme oxygenase, thioredoxin, peroxiredoxin), and pro-apoptotic proteins (p53, bax) were quantified by PCR and western blot analysis. An immunofluorescence study was performed to detect the expression of iNOS, oxidative markers (nitrotyrosine, 8-OHdG, acrolein), NF-κB p65, and CD 68. Apoptosis of retinal cells was labeled with in situ TUNEL staining. Neu-N staining was performed in the flat-mounted retina to evaluate the density of retinal ganglion cells. Results ERG showed a decreased b-wave after IR injury, and pretreatment with bortezomib, especially the high dosage, reduced the functional impairment. Bortezomib successfully reduced the elevation of inflammatory mediators, anti-oxidant proteins, pro-apoptotic proteins and oxidative markers after IR insult in a dose-dependent manner. In a similar fashion, NF-κB p65- and CD 68-positive cells were decreased by bortezomib treatment. Retinal cell apoptosis in each layer was attenuated by bortezomib. The retinal ganglion cell density was markedly decreased in the saline and low-dose bortezomib groups but was not significantly changed in the high-dose bortezomib group. Conclusions Bortezomib had a neuro-protective effect in retinal IR injury, possibly by inhibiting the activation of NF-κB related to IR insult and reducing the inflammatory signals and oxidative stress in the retina.
Collapse
Affiliation(s)
- Fang-Ting Chen
- Department of Ophthalmology, Far Eastern Memorial Hospital, Ban-Chiao, Taipei, Taiwan
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Ophthalmology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chung-May Yang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Ophthalmology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chang-Hao Yang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Ophthalmology, National Taiwan University College of Medicine, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
34
|
Wang X. Repeated intermittent administration of a ubiquitous proteasome inhibitor leads to restrictive cardiomyopathy. Eur J Heart Fail 2013; 15:597-8. [PMID: 23639782 DOI: 10.1093/eurjhf/hft069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
35
|
Abstract
It is believed that cardiac remodeling due to geometric and structural changes is a major mechanism for the progression of heart failure in different pathologies including hypertension, hypertrophic cardiomyopathy, dilated cardiomyopathy, diabetic cardiomyopathy, and myocardial infarction. Increases in the activities of proteolytic enzymes such as matrix metalloproteinases, calpains, cathepsins, and caspases contribute to the process of cardiac remodeling. In addition to modifying the extracellular matrix, both matrix metalloproteinases and cathepsins have been shown to affect the activities of subcellular organelles in cardiomyocytes. The activation of calpains and caspases has been identified to induce subcellular remodeling in failing hearts. Proteolytic activities associated with different proteins including caspases, calpain, and the ubiquitin-proteasome system have been shown to be involved in cardiomyocyte apoptosis, which is an integral part of cardiac remodeling. This article discusses and compares how the activities of various proteases are involved in different cardiac abnormalities with respect to alterations in apoptotic pathways, cardiac remodeling, and cardiac dysfunction. An imbalance appears to occur between the activities of some proteases and their endogenous inhibitors in various types of hypertrophied and failing hearts, and this is likely to further accentuate subcellular remodeling and cardiac dysfunction. The importance of inhibiting the activities of both extracellular and intracellular proteases specific to distinct etiologies, in attenuating cardiac remodeling and apoptosis as well as biochemical changes of subcellular organelles, in heart failure has been emphasized. It is suggested that combination therapy to inhibit different proteases may prove useful for the treatment of heart failure.
Collapse
Affiliation(s)
- Alison L Müller
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, Winnipeg, MB, Canada
| | | |
Collapse
|
36
|
Pevzner Y, Metcalf R, Kantor M, Sagaro D, Daniel K. Recent advances in proteasome inhibitor discovery. Expert Opin Drug Discov 2013; 8:537-68. [DOI: 10.1517/17460441.2013.780020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
37
|
Zaouali MA, Bardag-Gorce F, Carbonell T, Oliva J, Pantazi E, Bejaoui M, Ben Abdennebi H, Rimola A, Roselló-Catafau J. Proteasome inhibitors protect the steatotic and non-steatotic liver graft against cold ischemia reperfusion injury. Exp Mol Pathol 2013; 94:352-359. [PMID: 23305864 DOI: 10.1016/j.yexmp.2012.12.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 12/20/2012] [Accepted: 12/28/2012] [Indexed: 12/15/2022]
Abstract
BACKGROUND The dramatic shortage of organs leads to consider the steatotic livers for transplantation although their poor tolerance against ischemia reperfusion injury (IRI). Ubiquitin proteasome system (UPS) inhibition during hypothermia prolongs myocardial graft preservation. The role of UPS in the liver IRI is not fully understood. Bortezomib (BRZ) treatment at non-toxic doses of rats fed alcohol chronically has shown protective effects by increasing liver antioxidant enzymes. We evaluated and compared both proteasome inhibitors BRZ and MG132 in addition to University of Wisconsin preservation solution (UW) at low and non-toxic dose for fatty liver graft protection against cold IRI. EXPERIMENTAL Steatotic and non-steatotic livers have been stored in UW enriched with BRZ (100 nM) or MG132 (25 μM), for 24h at 4°C and then subjected to 2-h normothermic reperfusion (37 °C). Liver injury (AST/ALT), hepatic function (bile output; vascular resistance), mitochondrial damage (GLDH), oxidative stress (MDA), nitric oxide (NO) (e-NOS activity; nitrates/nitrites), proteasome chymotrypsin-like activity (ChT), and UPS (19S and 20S5 beta) protein levels have been measured. RESULTS ChT was inhibited when BRZ and MG132 were added to UW. Both inhibitors prevented liver injury (AST/ALT), when compared to UW alone. BRZ increased bile production more efficiently than MG132. Only BRZ decreased vascular resistance in fatty livers, which correlated with an increase in NO generation (through e-NOS activation) and AMPK phosphorylation. GLDH and MDA were also prevented by BRZ. In addition, BRZ inhibited adiponectin, IL-1, and TNF alpha, only in steatotic livers. CONCLUSION MG132 and BRZ, administrated at low and non toxic doses, are very efficient to protect fatty liver grafts against cold IRI. The benefits of BRZ are more effective than those of MG132. This evidenced for the first time the potential use of UPS inhibitors for the preservation of marginal liver grafts and for future applications in the prevention of IRI.
Collapse
Affiliation(s)
- Mohamed Amine Zaouali
- Experimental Hepatic Ischemia-Reperfusion Unit, Institut d´Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones Científicas, Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Maintenance of protein quality control is a critical function of the ubiquitin proteasome system (UPS). Evidence is rapidly mounting to link proteasome dysfunction with a multitude of cardiac diseases, including ischemia, reperfusion, atherosclerosis, hypertrophy, heart failure, and cardiomyopathies. Recent studies have demonstrated a remarkable level of complexity in the regulation of the UPS in the heart and suggest that our understanding of how UPS dysfunction might contribute to the pathophysiology of such a wide range of cardiac afflictions is still very limited. Whereas experimental systems, including animal models, are invaluable for exploring mechanisms and establishing pathogenicity of UPS dysfunction in cardiac disease, studies using human heart tissue provide a vital adjunct for establishing clinical relevance of experimental findings and promoting new hypotheses. Accordingly, this review will focus on UPS dysfunction in human dilated and hypertrophic cardiomyopathies and highlight areas rich for further study in this expanding field.
Collapse
Affiliation(s)
- Sharlene M Day
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA.
| |
Collapse
|
39
|
Voigt A, Rahnefeld A, Kloetzel PM, Krüger E. Cytokine-induced oxidative stress in cardiac inflammation and heart failure-how the ubiquitin proteasome system targets this vicious cycle. Front Physiol 2013; 4:42. [PMID: 23508734 PMCID: PMC3589765 DOI: 10.3389/fphys.2013.00042] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 02/18/2013] [Indexed: 11/13/2022] Open
Abstract
The ubiquitin proteasome system (UPS) is critical for the regulation of many intracellular processes necessary for cell function and survival. The absolute requirement of the UPS for the maintenance of protein homeostasis and thereby for the regulation of protein quality control is reflected by the fact that deviation of proteasome function from the norm was reported in cardiovascular pathologies. Inflammation is a major factor contributing to cardiac pathology. Herein, cytokines induce protein translation and the production of free radicals, thereby challenging the cellular protein equilibrium. Here, we discuss current knowledge on the mechanisms of UPS-functional adaptation in response to oxidative stress in cardiac inflammation. The increasing pool of oxidant-damaged degradation-prone proteins in cardiac pathology accounts for the need for enhanced protein turnover by the UPS. This process is accomplished by an up-regulation of the ubiquitylation machinery and the induction of immunoproteasomes. Thereby, the inflamed heart muscle is cleared from accumulating misfolded proteins. Current advances on immunoproteasome-specific inhibitors in this field question the impact of the proteasome as a therapeutic target in heart failure.
Collapse
Affiliation(s)
- Antje Voigt
- Institut für Biochemie, Charité-Universitätsmedizin Berlin Berlin, Germany ; DZHK (German Centre for Cardiovascular Research), Partner Side Berlin Berlin, Germany
| | | | | | | |
Collapse
|
40
|
Wang Y, Sun W, Du B, Miao X, Bai Y, Xin Y, Tan Y, Cui W, Liu B, Cui T, Epstein PN, Fu Y, Cai L. Therapeutic effect of MG-132 on diabetic cardiomyopathy is associated with its suppression of proteasomal activities: roles of Nrf2 and NF-κB. Am J Physiol Heart Circ Physiol 2013; 304:H567-H578. [PMID: 23220333 DOI: 10.1152/ajpheart.00650.2012] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
MG-132, a proteasome inhibitor, can upregulate nuclear factor (NF) erythroid 2-related factor 2 (Nrf2)-mediated antioxidative function and downregulate NF-κB-mediated inflammation. The present study investigated whether through the above two mechanisms MG-132 could provide a therapeutic effect on diabetic cardiomyopathy in the OVE26 type 1 diabetic mouse model. OVE26 mice develop hyperglycemia at 2-3 wk after birth and exhibit albuminuria and cardiac dysfunction at 3 mo of age. Therefore, 3-mo-old OVE26 diabetic and age-matched control mice were intraperitoneally treated with MG-132 at 10 μg/kg daily for 3 mo. Before and after MG-132 treatment, cardiac function was measured by echocardiography, and cardiac tissues were then subjected to pathological and biochemical examination. Diabetic mice showed significant cardiac dysfunction, including increased left ventricular systolic diameter and wall thickness and decreased left ventricular ejection fraction with an increase of the heart weight-to-tibia length ratio. Diabetic hearts exhibited structural derangement and remodeling (fibrosis and hypertrophy). In diabetic mice, there was also increased systemic and cardiac oxidative damage and inflammation. All of these pathogenic changes were reversed by MG-132 treatment. MG-132 treatment significantly increased the cardiac expression of Nrf2 and its downstream antioxidant genes with a significant increase of total antioxidant capacity and also significantly decreased the expression of IκB and the nuclear accumulation and DNA-binding activity of NF-κB in the heart. These results suggest that MG-132 has a therapeutic effect on diabetic cardiomyopathy in OVE26 diabetic mice, possibly through the upregulation of Nrf2-dependent antioxidative function and downregulation of NF-κB-mediated inflammation.
Collapse
Affiliation(s)
- Yuehui Wang
- The Second Hospital, Jilin University, Jilin, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Jahania SM, Sengstock D, Vaitkevicius P, Andres A, Ito BR, Gottlieb RA, Mentzer RM. Activation of the homeostatic intracellular repair response during cardiac surgery. J Am Coll Surg 2013; 216:719-26; discussion 726-9. [PMID: 23415552 DOI: 10.1016/j.jamcollsurg.2012.12.034] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 12/11/2012] [Indexed: 01/24/2023]
Abstract
BACKGROUND The homeostatic intracellular repair response (HIR2) is an endogenous beneficial pathway that eliminates damaged mitochondria and dysfunctional proteins in response to stress. The underlying mechanism is adaptive autophagy. The purpose of this study was to determine whether the HIR2 response is activated in the heart in patients undergoing cardiac surgery and to assess whether it is associated with the duration of ischemic arrest and predicted surgical outcomes. STUDY DESIGN Autophagy was assessed in 19 patients undergoing coronary artery bypass or valve surgery requiring cardiopulmonary bypass. Biopsies of the right atrial appendage obtained before initiation of cardiopulmonary bypass and after weaning from cardiopulmonary bypass were analyzed for autophagy by immunoblotting for LC3, Beclin-1, autophagy 5-12, and p62. Changes in p62, a marker of autophagic flux, were correlated with duration of ischemia and with the mortality/morbidity risk scores obtained from the Society of Thoracic Surgeons Adult Cardiac Surgery Database (version 2.73). RESULTS Heart surgery was associated with a robust increase in autophagic flux indicated by depletion of LC3-I, LC3-II, Beclin-1, and autophagy 5-12; the magnitude of change for each of these factors correlated significantly with changes in the flux marker p62. In addition, changes in p62 correlated directly with cross-clamp time and inversely with the mortality and morbidity risk scores. CONCLUSIONS These findings are consistent with preclinical studies indicating that HIR2 is cardioprotective and reveal that it is activated in patients in response to myocardial ischemic stress. Strategies designed to amplify HIR2 during conditions of cardiac stress might have a therapeutic use and represent an entirely new approach to myocardial protection in patients undergoing heart surgery.
Collapse
Affiliation(s)
- Salik M Jahania
- Department of Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Mapanga RF, Rajamani U, Dlamini N, Zungu-Edmondson M, Kelly-Laubscher R, Shafiullah M, Wahab A, Hasan MY, Fahim MA, Rondeau P, Bourdon E, Essop MF. Oleanolic acid: a novel cardioprotective agent that blunts hyperglycemia-induced contractile dysfunction. PLoS One 2012; 7:e47322. [PMID: 23091615 PMCID: PMC3473042 DOI: 10.1371/journal.pone.0047322] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 09/14/2012] [Indexed: 01/08/2023] Open
Abstract
Diabetes constitutes a major health challenge. Since cardiovascular complications are common in diabetic patients this will further increase the overall burden of disease. Furthermore, stress-induced hyperglycemia in non-diabetic patients with acute myocardial infarction is associated with higher in-hospital mortality. Previous studies implicate oxidative stress, excessive flux through the hexosamine biosynthetic pathway (HBP) and a dysfunctional ubiquitin-proteasome system (UPS) as potential mediators of this process. Since oleanolic acid (OA; a clove extract) possesses antioxidant properties, we hypothesized that it attenuates acute and chronic hyperglycemia-mediated pathophysiologic molecular events (oxidative stress, apoptosis, HBP, UPS) and thereby improves contractile function in response to ischemia-reperfusion. We employed several experimental systems: 1) H9c2 cardiac myoblasts were exposed to 33 mM glucose for 48 hr vs. controls (5 mM glucose); and subsequently treated with two OA doses (20 and 50 µM) for 6 and 24 hr, respectively; 2) Isolated rat hearts were perfused ex vivo with Krebs-Henseleit buffer containing 33 mM glucose vs. controls (11 mM glucose) for 60 min, followed by 20 min global ischemia and 60 min reperfusion ± OA treatment; 3) In vivo coronary ligations were performed on streptozotocin treated rats ± OA administration during reperfusion; and 4) Effects of long-term OA treatment (2 weeks) on heart function was assessed in streptozotocin-treated rats. Our data demonstrate that OA treatment blunted high glucose-induced oxidative stress and apoptosis in heart cells. OA therapy also resulted in cardioprotection, i.e. for ex vivo and in vivo rat hearts exposed to ischemia-reperfusion under hyperglycemic conditions. In parallel, we found decreased oxidative stress, apoptosis, HBP flux and proteasomal activity following ischemia-reperfusion. Long-term OA treatment also improved heart function in streptozotocin-diabetic rats. These findings are promising since it may eventually result in novel therapeutic interventions to treat acute hyperglycemia (in non-diabetic patients) and diabetic patients with associated cardiovascular complications.
Collapse
Affiliation(s)
- Rudo F. Mapanga
- Cardio-Metabolic Research Group (CMRG), Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Uthra Rajamani
- Cardio-Metabolic Research Group (CMRG), Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Nonkululeko Dlamini
- Discipline of Physiology, School of Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | | | - Roisin Kelly-Laubscher
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa
| | - Mohammed Shafiullah
- Faculty of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Athiq Wahab
- Faculty of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Mohamed Y. Hasan
- Faculty of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Mohamed A. Fahim
- Faculty of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Philippe Rondeau
- Groupe d’Etude sur l’Inflammation Chronique et l’Obésité (GEICO), Université de La Réunion, Saint Denis de La Réunion, France
| | - Emmanuel Bourdon
- Groupe d’Etude sur l’Inflammation Chronique et l’Obésité (GEICO), Université de La Réunion, Saint Denis de La Réunion, France
| | - M. Faadiel Essop
- Cardio-Metabolic Research Group (CMRG), Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
43
|
The proteasomal de-ubiquitinating enzyme POH1 promotes the double-strand DNA break response. EMBO J 2012; 31:3918-34. [PMID: 22909820 DOI: 10.1038/emboj.2012.232] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 07/26/2012] [Indexed: 02/06/2023] Open
Abstract
The regulation of Ubiquitin (Ub) conjugates generated by the complex network of proteins that promote the mammalian DNA double-strand break (DSB) response is not fully understood. We show here that the Ub protease POH1/rpn11/PSMD14 resident in the 19S proteasome regulatory particle is required for processing poly-Ub formed in the DSB response. Proteasome activity is required to restrict tudor domain-dependent 53BP1 accumulation at sites of DNA damage. This occurs both through antagonism of RNF8/RNF168-mediated lysine 63-linked poly-Ub and through the promotion of JMJD2A retention on chromatin. Consistent with this role POH1 acts in opposition to RNF8/RNF168 to modulate end-joining DNA repair. Additionally, POH1 acts independently of 53BP1 in homologous recombination repair to promote RAD51 loading. Accordingly, POH1-deficient cells are sensitive to DNA damaging agents. These data demonstrate that proteasomal POH1 is a key de-ubiquitinating enzyme that regulates ubiquitin conjugates generated in response to damage and that several aspects of the DSB response are regulated by the proteasome.
Collapse
|
44
|
Müller AL, Hryshko LV, Dhalla NS. Extracellular and intracellular proteases in cardiac dysfunction due to ischemia-reperfusion injury. Int J Cardiol 2012; 164:39-47. [PMID: 22357424 DOI: 10.1016/j.ijcard.2012.01.103] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 10/19/2011] [Accepted: 01/28/2012] [Indexed: 12/20/2022]
Abstract
Various procedures such as angioplasty, thrombolytic therapy, coronary bypass surgery, and cardiac transplantation are invariably associated with ischemia-reperfusion (I/R) injury. Impaired recovery of cardiac function due to I/R injury is considered to be a consequence of the occurrence of both oxidative stress and intracellular Ca(2+)-overload in the myocardium. These changes in the ischemic myocardium appear to activate both extracellular and intracellular proteases which are responsible for the cleavage of extracellular matrix and subcellular structures involved in the maintenance of cardiac function. It is thus intended to discuss the actions of I/R injury on several proteases, with a focus on calpain, matrix metalloproteinases, and cathepsins as well as their role in inducing alterations both inside and outside the cardiomyocytes. In addition, modifications of subcellular organelles such as myofibrils, sarcoplasmic reticulum and sarcolemma as well as extracellular matrix, and the potential regulatory effects of endogenous inhibitors on protease activities are identified. Both extracellular and intracellular proteolytic activities appear to be imperative in determining the true extent of I/R injury and their inhibition seems to be of critical importance for improving the recovery of cardiac function. Thus, both extracellular and intracellular proteases may serve as potential targets for the development of cardioprotective interventions for reducing damage to the heart and retarding the development of contractile dysfunction caused by I/R injury.
Collapse
Affiliation(s)
- Alison L Müller
- Institute of Cardiovascular Sciences, St Boniface Hospital Research Centre, and Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | |
Collapse
|
45
|
Kalogeris T, Baines CP, Krenz M, Korthuis RJ. Cell biology of ischemia/reperfusion injury. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 298:229-317. [PMID: 22878108 PMCID: PMC3904795 DOI: 10.1016/b978-0-12-394309-5.00006-7] [Citation(s) in RCA: 1493] [Impact Index Per Article: 114.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Disorders characterized by ischemia/reperfusion (I/R), such as myocardial infarction, stroke, and peripheral vascular disease, continue to be among the most frequent causes of debilitating disease and death. Tissue injury and/or death occur as a result of the initial ischemic insult, which is determined primarily by the magnitude and duration of the interruption in the blood supply, and then subsequent damage induced by reperfusion. During prolonged ischemia, ATP levels and intracellular pH decrease as a result of anaerobic metabolism and lactate accumulation. As a consequence, ATPase-dependent ion transport mechanisms become dysfunctional, contributing to increased intracellular and mitochondrial calcium levels (calcium overload), cell swelling and rupture, and cell death by necrotic, necroptotic, apoptotic, and autophagic mechanisms. Although oxygen levels are restored upon reperfusion, a surge in the generation of reactive oxygen species occurs and proinflammatory neutrophils infiltrate ischemic tissues to exacerbate ischemic injury. The pathologic events induced by I/R orchestrate the opening of the mitochondrial permeability transition pore, which appears to represent a common end-effector of the pathologic events initiated by I/R. The aim of this treatise is to provide a comprehensive review of the mechanisms underlying the development of I/R injury, from which it should be apparent that a combination of molecular and cellular approaches targeting multiple pathologic processes to limit the extent of I/R injury must be adopted to enhance resistance to cell death and increase regenerative capacity in order to effect long-lasting repair of ischemic tissues.
Collapse
Affiliation(s)
- Theodore Kalogeris
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, USA
| | | | | | | |
Collapse
|
46
|
Powell SR, Herrmann J, Lerman A, Patterson C, Wang X. The ubiquitin-proteasome system and cardiovascular disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 109:295-346. [PMID: 22727426 DOI: 10.1016/b978-0-12-397863-9.00009-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Over the past decade, the role of the ubiquitin-proteasome system (UPS) has been the subject of numerous studies to elucidate its role in cardiovascular physiology and pathophysiology. There have been many advances in this field including the use of proteomics to achieve a better understanding of how the cardiac proteasome is regulated. Moreover, improved methods for the assessment of UPS function and the development of genetic models to study the role of the UPS have led to the realization that often the function of this system deviates from the norm in many cardiovascular pathologies. Hence, dysfunction has been described in atherosclerosis, familial cardiac proteinopathies, idiopathic dilated cardiomyopathies, and myocardial ischemia. This has led to numerous studies of the ubiquitin protein (E3) ligases and their roles in cardiac physiology and pathophysiology. This has also led to the controversial proposition of treating atherosclerosis, cardiac hypertrophy, and myocardial ischemia with proteasome inhibitors. Furthering our knowledge of this system may help in the development of new UPS-based therapeutic modalities for mitigation of cardiovascular disease.
Collapse
Affiliation(s)
- Saul R Powell
- Center for Heart and Lung Research, The Feinstein Institute for Medical Research, Manhasset, New York, USA
| | | | | | | | | |
Collapse
|
47
|
Haasbach E, Pauli EK, Spranger R, Mitzner D, Schubert U, Kircheis R, Planz O. Antiviral activity of the proteasome inhibitor VL-01 against influenza A viruses. Antiviral Res 2011; 91:304-13. [PMID: 21777621 DOI: 10.1016/j.antiviral.2011.07.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 06/29/2011] [Accepted: 07/05/2011] [Indexed: 01/04/2023]
Abstract
The appearance of highly pathogenic avian influenza A viruses of the H5N1 subtype being able to infect humans and the 2009 H1N1 pandemic reveals the urgent need for new and efficient countermeasures against these viruses. The long-term efficacy of current antivirals is often limited, because of the emergence of drug-resistant virus mutants. A growing understanding of the virus-host interaction raises the possibility to explore alternative targets involved in the viral replication. In the present study we show that the proteasome inhibitor VL-01 leads to reduction of influenza virus replication in human lung adenocarcinoma epithelial cells (A549) as demonstrated with three different influenza virus strains, A/Puerto Rico/8/34 (H1N1) (EC50 value of 1.7 μM), A/Regensburg/D6/09 (H1N1v) (EC50 value of 2.4 μM) and A/Mallard/Bavaria/1/2006 (H5N1) (EC50 value of 0.8 μM). In in vivo experiments we could demonstrate that VL-01-aerosol-treatment of BALB/c mice with 14.1 mg/kg results in no toxic side effects, reduced progeny virus titers in the lung (1.1 ± 0.3 log10 pfu) and enhanced survival of mice after infection with a 5-fold MLD50 of the human influenza A virus strain A/Puerto Rico/8/34 (H1N1) up to 50%. Furthermore, treatment of mice with VL-01 reduced the cytokine release of IL-α/β, IL-6, MIP-1β, RANTES and TNF-α induced by LPS or highly pathogen avian H5N1 influenza A virus. The present data demonstrates an antiviral effect of VL-01 in vitro and in vivo and the ability to reduce influenza virus induced cytokines and chemokines.
Collapse
Affiliation(s)
- Emanuel Haasbach
- Friedrich-Loeffler-Institut, Institute of Immunology, Paul-Ehrlich Str. 28, 72076 Tuebingen, Germany
| | | | | | | | | | | | | |
Collapse
|
48
|
Benter IF, Abul HT, Al-Khaledi G, Renno WM, Canatan H, Akhtar S. Inhibition of Ras-GTPase farnesylation and the ubiquitin-proteasome system or treatment with angiotensin-(1-7) attenuates spinal cord injury-induced cardiac dysfunction. J Neurotrauma 2011; 28:1271-9. [PMID: 21510818 DOI: 10.1089/neu.2010.1682] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Cardiovascular diseases are one of the principal causes of death and disability in people with spinal cord injury (SCI). The present study was designed to investigate if acute treatment with FPTIII (an inhibitor of Ras-GTPase farnesylation) or MG132 (an inhibitor of ubiquitin-proteasome pathway [UPS]) or administration of angiotensin-(1-7), also known as Ang-(1-7), (a known inhibitor of cardiac NF-kB) would be cardioprotective. The weight drop technique produced a consistent contusive injury of the spinal cord at the T13 segment. Hearts were isolated from rats either 6 months (SCI-6) or 12 months (SCI-12) after SCI. Hearts were perfused for 30 min and then subjected to 30 min ischemia followed by 30 min reperfusion (I/R). Recovery of cardiac function after I/R was measured as left ventricular developed pressure (P(max)) and coronary flow (CF). Drugs were given during perfusion before hearts were exposed to ischemia and reperfusion. Percent recovery (%R) in P(max) and CF in hearts from control animals were 48±6 and 50±5, respectively, whereas none of the hearts from animals with SCI recovered after 30 min of ischemia. Treatment with FPTIII, MG 132, or Ang-(1-7) before ischemia for 30 min led to significant recovery of heart function following ischemia in SCI-6 but not in SCI-12 animals. Thus we have shown that acute treatments with FPTIII, MG132, or Ang-(1-7) improve cardiac recovery following ischemic insult in animals with SCI and may represent novel therapeutic agents for preventing ischemia-induced cardiac dysfunction in patients with SCI.
Collapse
Affiliation(s)
- Ibrahim F Benter
- Department of Pharmacology & Toxicology, Kuwait University, Safat, Kuwait.
| | | | | | | | | | | |
Collapse
|
49
|
Li YF, Wang X. The role of the proteasome in heart disease. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1809:141-9. [PMID: 20840877 PMCID: PMC3021001 DOI: 10.1016/j.bbagrm.2010.09.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2010] [Revised: 09/01/2010] [Accepted: 09/02/2010] [Indexed: 01/23/2023]
Abstract
Intensive investigations into the pathophysiological significance of the proteasome in the heart did not start until the beginning of the past decade but exciting progress has been made and summarized here as two fronts. First, strong evidence continues to emerge to support a novel hypothesis that proteasome functional insufficiency represents a common pathological phenomenon in a large subset of heart disease, compromises protein quality control in heart muscle cells, and thereby acts as a major pathogenic factor promoting the progression of the subset of heart disease to congestive heart failure. This front is represented by the studies on the ubiquitin-proteasome system (UPS) in cardiac proteinopathy, which have taken advantage of a transgenic mouse model expressing a fluorescence reporter for UPS proteolytic function. Second, pharmacological inhibition of the proteasome has been explored experimentally as a potential therapeutic strategy to intervene on some forms of heart disease, such as pressure-overload cardiac hypertrophy, viral myocarditis, and myocardial ischemic injury. Not only between the two fronts but also within each one, a multitude of inconsistencies and controversies remain to be explained and clarified. At present, the controversy perhaps reflects the sophistication of cardiac proteasomes in terms of the composition, assembly, and regulation, as well as the intricacy and diversity of heart disease in terms of its etiology and pathogenesis. A definitive role of altered proteasome function in the development of various forms of heart disease remains to be established. This article is part of a Special Issue entitled The 26S Proteasome: When degradation is just not enough!
Collapse
Affiliation(s)
- Yi-Fan Li
- Division of Basic, Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD 57069, USA
| | | |
Collapse
|
50
|
Bedford L, Lowe J, Dick LR, Mayer RJ, Brownell JE. Ubiquitin-like protein conjugation and the ubiquitin-proteasome system as drug targets. Nat Rev Drug Discov 2010; 10:29-46. [PMID: 21151032 PMCID: PMC7097807 DOI: 10.1038/nrd3321] [Citation(s) in RCA: 445] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ubiquitin is a highly conserved 76 amino-acid protein that covalently attaches to protein substrates targeted for degradation by the 26S proteasome. The coordinated effort of a series of enzymes, including an activating enzyme (E1), a conjugating enzyme (E2) and a ligase (E3), uses ATP to ultimately form an isopeptide bond between ubiquitin and a substrate. Another class of enzymes called deubiquitylating enzymes (DUBs) deconstruct these linkages and also have an essential role in ubiquitin function. In addition, ubiquitin-like proteins (UBLs), including NEDD8, SUMO and ISG15, share a characteristic three-dimensional fold with ubiquitin but have their own dedicated enzyme cascades and distinct (although sometimes overlapping) biological functions. The ubiquitin–proteasome system (UPS) and UBL conjugation pathways have important roles in various human diseases, including numerous types of cancer, cardiovascular disease, viral diseases and neurodegenerative disorders. The proteasome inhibitor bortezomib (Velcade; Millennium Pharmaceuticals) is the first clinically validated drug to target the UPS and is approved for the treatment of multiple myeloma. This suggests that other diseases may conceivably be targeted by modulating components of the UPS and UBL conjugation pathways using small-molecule inhibitors. A significant hurdle to identifying drug-like inhibitors of enzyme targets within the UPS and UBL conjugation pathways is the limited understanding of the molecular mechanisms and biological consequences of UBL conjugation. Here, we provide an overview of the enzyme classes in the UPS and UBL pathways that are potential therapeutic targets, and highlight considerations that are important for drug discovery. We also discuss the progress in the development of small-molecule inhibitors, and review developments in understanding of the role of the components of the UPS and the UBL pathways in disease and their potential for therapeutic intervention.
The ubiquitin–proteasome system (UPS) and ubiquitin-like protein (UBL) conjugation pathways are integral to cellular protein homeostasis, and their functional importance in various diseases, including cancer, cardiovascular disease and neurodegenerative disorders, is now beginning to emerge. Brownell and colleagues review developments in understanding of the role of the components of the UPS and the UBL pathways in disease and their potential for therapeutic intervention. The ubiquitin–proteasome system (UPS) and ubiquitin-like protein (UBL) conjugation pathways are integral to cellular protein homeostasis. The growing recognition of the fundamental importance of these pathways to normal cell function and in disease has prompted an in-depth search for small-molecule inhibitors that selectively block the function of these pathways. However, our limited understanding of the molecular mechanisms and biological consequences of UBL conjugation is a significant hurdle to identifying drug-like inhibitors of enzyme targets within these pathways. Here, we highlight recent advances in understanding the role of some of these enzymes and how these new insights may be the key to developing novel therapeutics for diseases including immuno-inflammatory disorders, cancer, infectious diseases, cardiovascular disease and neurodegenerative disorders.
Collapse
Affiliation(s)
- Lynn Bedford
- School of Biomedical Sciences, University of Nottingham, Nottingham, UK.
| | | | | | | | | |
Collapse
|