1
|
Liu Y, Shi S, Cheng T, Wang H, Wang H, Hu Y. The key role of miR‑378 in kidney diseases (Review). Mol Med Rep 2025; 31:101. [PMID: 39981929 PMCID: PMC11868772 DOI: 10.3892/mmr.2025.13466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 01/27/2025] [Indexed: 02/22/2025] Open
Abstract
MicroRNAs (miRNAs/miRs) are endogenous, small non‑coding RNAs conserved across species that post‑transcriptionally regulate gene expression by both suppressing translation and inducing mRNA degradation. miRNAs are found in various tissues, exhibit variable expression and their dysregulation is implicated in numerous disease processes. Furthermore, miRNA expression levels have a key role in the normal development of kidney tissue and are key regulators of kidney function, modulating diverse biological processes across renal cell lineages. miR‑378 participates in pathological processes associated with kidney diseases, including kidney cancer, kidney transplantation and diabetic nephropathy. Despite its considerable effects on these conditions, a comprehensive summary of the roles of miR‑378 is unavailable. In the present review, the existing literature on miR‑378 in kidney diseases is consolidated, and its validated gene targets and biological effects in both malignant and non‑malignant conditions are highlighted, thereby providing a foundation for future research.
Collapse
Affiliation(s)
- Yangyang Liu
- Department of Cardiovascular Diseases, Sanming Integrated Medicine Hospital, Sanming, Fujian 365000, P.R. China
| | - Shuqing Shi
- Department of Cardiovascular Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P.R. China
| | - Tao Cheng
- Department of Cardiovascular Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P.R. China
| | - Haoshuo Wang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P.R. China
| | - Huan Wang
- Department of Cardiovascular Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P.R. China
| | - Yuanhui Hu
- Department of Cardiovascular Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P.R. China
| |
Collapse
|
2
|
Bai S, Zhang G, Chen S, Wu X, Li J, Wang J, Chen D, Liu X, Wang J, Li Y, Tang Y, Tang Z. MicroRNA-451 Regulates Angiogenesis in Intracerebral Hemorrhage by Targeting Macrophage Migration Inhibitory Factor. Mol Neurobiol 2024; 61:10481-10499. [PMID: 38743209 PMCID: PMC11584486 DOI: 10.1007/s12035-024-04207-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 04/22/2024] [Indexed: 05/16/2024]
Abstract
Intracerebral hemorrhage (ICH) is a subtype of stroke with the highest fatality and disability rate. Up to now, commonly used first-line therapies have limited value in improving prognosis. Angiogenesis is essential to neurological recovery after ICH. Recent studies have shown that microRNA-451(miR-451) plays an important role in angiogenesis by regulating the function of vascular endothelial cells. We found miR-451 was significantly decreased in the peripheral blood of ICH patients in the acute stage. Based on the clinical findings, we conducted this study to investigate the potential regulatory effect of miR-451 on angiogenesis after ICH. The expression of miR-451 in ICH mouse model and in a hemin toxicity model of human brain microvascular endothelial cells (hBMECs) was decreased the same as in ICH patients. MiR-451 negatively regulated the proliferation, migration, and tube formation of hBMECs in vitro. MiR-451 negatively regulated the microvessel density in the perihematoma tissue and affected neural functional recovery of ICH mouse model. Knockdown of miR-451 could recovered tight junction and protect the integrity of blood-brain barrier after ICH. Based on bioinformatic programs, macrophage migration inhibitory factor (MIF) was predicted to be the target gene and identified to be regulated by miR-451 inhibiting the protein translation. And p-AKT and p-ERK were verified to be downstream of MIF in angiogenesis. These results all suggest that miR-451 will be a potential target for regulating angiogenesis in ICH.
Collapse
Affiliation(s)
- Shuang Bai
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ge Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiling Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuan Wu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiarui Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingxuan Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Danyang Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xia Liu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahui Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanwei Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingxin Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
3
|
Chiarelli N, Cinquina V, Zoppi N, Bertini V, Maddaluno M, De Leonibus C, Settembre C, Venturini M, Colombi M, Ritelli M. Integrative Multi-Omics Approach in Vascular Ehlers-Danlos Syndrome: Further Insights into the Disease Mechanisms by Proteomic Analysis of Patient Dermal Fibroblasts. Biomedicines 2024; 12:2749. [PMID: 39767655 PMCID: PMC11727028 DOI: 10.3390/biomedicines12122749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/22/2024] [Accepted: 11/28/2024] [Indexed: 01/16/2025] Open
Abstract
Background: Dominant mutations in COL3A1 are known to cause vascular Ehlers-Danlos syndrome (vEDS) by impairing extracellular matrix (ECM) homeostasis. This disruption leads to the fragility of soft connective tissues and a significantly increased risk of life-threatening arterial and organ ruptures. Currently, treatments for vEDS are primarily symptomatic, largely due to a limited understanding of its underlying pathobiology and molecular mechanisms. Methods: In this study, we conducted a comprehensive analysis of the intracellular proteome of vEDS fibroblasts, integrating these findings with our previous transcriptome results to identify key molecular pathways that drive the disease. Additionally, we explored the therapeutic potential of inhibiting miR-29b-3p as a proof of concept. Results: Our integrative multi-omics analysis revealed complex pathological networks, emphasizing the critical role of miRNAs, particularly miR-29b-3p, in impairing ECM organization, autophagy, and cellular stress responses, all of which contribute to the pathogenesis of vEDS. Notably, the inhibition of miR-29b-3p in vEDS fibroblasts resulted in the upregulation of several differentially expressed target genes involved in these critical processes, as well as increased protein expression of essential ECM components, such as collagen types V and I. These changes suggest potential therapeutic benefits aimed at improving ECM integrity and restoring intracellular homeostasis. Conclusions: Overall, our findings advance our understanding of the complex biological mechanisms driving vEDS and lay a solid foundation for future research focused on developing targeted and effective treatment strategies for this life-threatening disorder.
Collapse
Affiliation(s)
- Nicola Chiarelli
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (V.C.); (N.Z.); (V.B.); (M.C.)
| | - Valeria Cinquina
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (V.C.); (N.Z.); (V.B.); (M.C.)
| | - Nicoletta Zoppi
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (V.C.); (N.Z.); (V.B.); (M.C.)
| | - Valeria Bertini
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (V.C.); (N.Z.); (V.B.); (M.C.)
| | - Marianna Maddaluno
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy; (M.M.); (C.D.L.); (C.S.)
- Department of Clinical Medicine and Surgery, Federico II University, 80138 Naples, Italy
| | - Chiara De Leonibus
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy; (M.M.); (C.D.L.); (C.S.)
- Department of Clinical Medicine and Surgery, Federico II University, 80138 Naples, Italy
| | - Carmine Settembre
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy; (M.M.); (C.D.L.); (C.S.)
- Department of Clinical Medicine and Surgery, Federico II University, 80138 Naples, Italy
| | - Marina Venturini
- Division of Dermatology, Department of Clinical and Experimental Sciences, ASST Spedali Civili and University of Brescia, 25123 Brescia, Italy;
| | - Marina Colombi
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (V.C.); (N.Z.); (V.B.); (M.C.)
| | - Marco Ritelli
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (V.C.); (N.Z.); (V.B.); (M.C.)
| |
Collapse
|
4
|
Woudenberg T, van der Bent ML, Kremer V, Waas ISE, Daemen MJAP, Boon RA, Quax PHA, Nossent AY. Site-specific m6A-miR-494-3p, not unmethylated miR-494-3p, compromises blood brain barrier by targeting tight junction protein 1 in intracranial atherosclerosis. Br J Pharmacol 2024. [PMID: 39419283 DOI: 10.1111/bph.17374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND AND PURPOSE Intracranial atherosclerosis is one of the most common causes of ischaemic stroke. However, there is a substantial knowledge gap on the development of intracranial atherosclerosis. Intracranial arteries are characterized by an upregulation of tight junctions between endothelial cells, which control endothelial permeability. We investigated the role of N6-methyladenosine (m6A), a common RNA modification, on endothelial integrity, focusing on the pro-atherogenic microRNA miR-494-3p and tight junction proteins TJP1 and PECAM1. EXPERIMENTAL APPROACH We assessed the m6A landscape, along with the expression of miR-494-3p, TJP1 and PECAM1 in postmortem human vertebral arteries (VA), internal carotid arteries (ICA), and middle cerebral arteries (MCA) with various stages of intimal thickening and plaque formation. The interactions between m6A-modified miR-494-3p mimics, TJP1 and PECAM1, were investigated in vitro using primary human (brain) endothelial cells. KEY RESULTS Increased m6A expression was observed in the luminal lining of atherosclerosis-affected VAs, accompanied by reduced TJP1 and PECAM1, but not VE-cadherin, expression. Colocalization of m6A and miR-494-3p in the luminal lining of VA plaques was confirmed, indicating m6A methylation of miR-494-3p in intracranial atherosclerosis. Moreover, site-specific m6A-modification of miR-494-3p led to repression specifically of TJP1 protein expression at cell-cell junctions of brain microvascular endothelial cells, while unmodified miR-494-3p showed no effect. CONCLUSIONS AND IMPLICATIONS This study highlights increasing m6A levels during intracranial atherogenesis. Increases in m6A-miR-494-3p contribute to the observed decreased TJP1 expression in endothelial cell-cell junctions. This is likely to have a negative effect on endothelial integrity and may thus accelerate intracranial atherosclerosis progression.
Collapse
Affiliation(s)
- Tamar Woudenberg
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - M Leontien van der Bent
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Veerle Kremer
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC Location VUMc, Vrije Universiteit, Amsterdam, The Netherlands
| | - Ingeborg S E Waas
- Department of Pathology, Amsterdam UMC, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Mat J A P Daemen
- Department of Pathology, Amsterdam UMC, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Reinier A Boon
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC Location VUMc, Vrije Universiteit, Amsterdam, The Netherlands
- Institute for Cardiovascular Regeneration, Centre for Molecular Medicine Goethe University, Frankfurt am Main, Germany
- German Center for Cardiovascular Research (DZHK), Frankfurt am Main, Germany
| | - Paul H A Quax
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - A Yaël Nossent
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Sulastomo H, Dinarti LK, Hariawan H, Haryana SM. MicroRNA expression alteration in chronic thromboembolic pulmonary hypertension: A systematic review. Pulm Circ 2024; 14:e12443. [PMID: 39308943 PMCID: PMC11413763 DOI: 10.1002/pul2.12443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/29/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024] Open
Abstract
Chronic thromboembolic pulmonary hypertension (CTEPH) is marked by persistent blood clots in pulmonary arteries, leading to significant morbidity and mortality. Emerging evidence highlights the role of microRNAs (miRNAs) in pulmonary hypertension, though findings on miRNA expression in CTEPH remain limited and inconsistent. This systematic review evaluates miRNA expression changes in CTEPH and their direction. Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, we registered our protocol in International Prospective Register of Systematic Reviews (CRD42024524469). We included studies on miRNA expression in CTEPH with comparative or analytical designs, excluding nonhuman studies, interventions, non-English texts, conference abstracts, and editorials. Databases searched included PubMed, EMBASE, Scopus, CENTRAL, and ProQuest. The Quality Assessment of Diagnostic Accuracy Studies-2 tool assessed bias risk, and results were synthesized narratively. Of 313 unique studies, 39 full texts were reviewed, and 9 met inclusion criteria, totaling 235 participants. Blood samples were analysed using quantitative real time polymerase chain reaction. Seven miRNAs (miR-665, miR-3202, miR-382, miR-127, miR-664, miR-376c, miR-30) were uniformly upregulated, while nine (miR-20a-5p13, miR-17-5p, miR-93-5p, miR-22, let-7b, miR-106b-5p, miR-3148, miR-320-a, miR-320b) were downregulated in CTEPH patients. Two upregulated miRNAs (miR-127 and miR-30a) were consistently associated with previous evidence in the mechanism inducing the development of CTEPH, and five downregulated miRNAs (miR-20-a, miR-17-5p, miR-93-5p, let-7b, miR-106b-5p) were associated with a protective effect against CTEPH. We also identified gaps in the literature where the evidence for five upregulated miRNAs (miR-665, miR-3202, miR-382, miR-664 and miR-376c) and four downregulated miRNAs (miR-22, miR-3148, miR-320-a, and miR-320b) in CTEPH is conflicting. Our findings offer insights into the role of miRNAs in CTEPH and underscore the need for further research to validate these miRNAs as biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Heru Sulastomo
- Department of Cardiology and Vascular Medicine, Faculty of MedicineUniversitas Sebelas MaretSurakartaIndonesia
| | - Lucia Kris Dinarti
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Public Health and NursingUniversitas Gadjah MadaYogyakartaIndonesia
| | - Hariadi Hariawan
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Public Health and NursingUniversitas Gadjah MadaYogyakartaIndonesia
| | - Sofia Mubarika Haryana
- Department of Histology and Cell Biology, Faculty of Medicine, Public Health and NursingUniversitas Gadjah MadaYogyakartaIndonesia
| |
Collapse
|
6
|
Kondracki B, Kłoda M, Jusiak-Kłoda A, Kondracka A, Waciński J, Waciński P. MicroRNA Expression in Patients with Coronary Artery Disease and Hypertension-A Systematic Review. Int J Mol Sci 2024; 25:6430. [PMID: 38928136 PMCID: PMC11204345 DOI: 10.3390/ijms25126430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/27/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Coronary artery disease (CAD) and hypertension significantly contribute to cardiovascular morbidity and mortality. MicroRNAs (miRNAs) have recently emerged as promising biomarkers and therapeutic targets for these conditions. This systematic review conducts a thorough analysis of the literature, with a specific focus on investigating miRNA expression patterns in patients with CAD and hypertension. This review encompasses an unspecified number of eligible studies that employed a variety of patient demographics and research methodologies, resulting in diverse miRNA expression profiles. This review highlights the complex involvement of miRNAs in CAD and hypertension and the potential for advances in diagnostic and therapeutic strategies. Future research endeavors are imperative to validate these findings and elucidate the precise roles of miRNAs in disease progression, offering promising avenues for innovative diagnostic tools and targeted interventions.
Collapse
Affiliation(s)
- Bartosz Kondracki
- Department of Cardiology, Medical University of Lublin, 20-059 Lublin, Poland; (B.K.); (M.K.); (A.J.-K.); (P.W.)
| | - Mateusz Kłoda
- Department of Cardiology, Medical University of Lublin, 20-059 Lublin, Poland; (B.K.); (M.K.); (A.J.-K.); (P.W.)
| | - Anna Jusiak-Kłoda
- Department of Cardiology, Medical University of Lublin, 20-059 Lublin, Poland; (B.K.); (M.K.); (A.J.-K.); (P.W.)
| | - Adrianna Kondracka
- Department of Obstetrics and Pathology of Pregnancy, Medical University of Lublin, 20-059 Lublin, Poland
| | - Jakub Waciński
- Department of Clinical Genetics, Medical University of Lublin, 20-059 Lublin, Poland;
| | - Piotr Waciński
- Department of Cardiology, Medical University of Lublin, 20-059 Lublin, Poland; (B.K.); (M.K.); (A.J.-K.); (P.W.)
| |
Collapse
|
7
|
Quax PHA, Deindl E. The Intriguing World of Vascular Remodeling, Angiogenesis, and Arteriogenesis. Int J Mol Sci 2024; 25:6376. [PMID: 38928082 PMCID: PMC11204171 DOI: 10.3390/ijms25126376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Vascular remodeling is a very general feature related to angiogenesis and arteriogenesis, which are involved in neovascularization processes [...].
Collapse
Affiliation(s)
- Paul H. A. Quax
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Elisabeth Deindl
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität, 81377 Munich, Germany
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152 Munich, Germany
| |
Collapse
|
8
|
Xiong Z, Hu Y, Jiang M, Liu B, Jin W, Chen H, Yang L, Han X. Hypoxic bone marrow mesenchymal stem cell exosomes promote angiogenesis and enhance endometrial injury repair through the miR-424-5p-mediated DLL4/Notch signaling pathway. PeerJ 2024; 12:e16953. [PMID: 38406291 PMCID: PMC10894593 DOI: 10.7717/peerj.16953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/25/2024] [Indexed: 02/27/2024] Open
Abstract
Background Currently, bone marrow mesenchymal stem cells (BMSCs) have been reported to promote endometrial regeneration in rat models of mechanically injury-induced uterine adhesions (IUAs), but the therapeutic effects and mechanisms of hypoxic BMSC-derived exosomes on IUAs have not been elucidated. Objective To investigate the potential mechanism by which the BMSCS-derived exosomal miR-424-5p regulates IUA angiogenesis through the DLL4/Notch signaling pathway under hypoxic conditions and promotes endometrial injury repair. Methods The morphology of the exosomes was observed via transmission electron microscopy, and the expression of exosome markers (CD9, CD63, CD81, and HSP70) was detected via flow cytometry and Western blotting. The expression of angiogenesis-related genes (Ang1, Flk1, Vash1, and TSP1) was detected via RT‒qPCR, and the expression of DLL4/Notch signaling pathway-related proteins (DLL4, Notch1, and Notch2) was detected via Western blotting. Cell proliferation was detected by a CCK-8 assay, and angiogenesis was assessed via an angiogenesis assay. The expression of CD3 was detected by immunofluorescence. The endometrial lesions of IUA rats were observed via HE staining, and the expression of CD3 and VEGFA was detected via immunohistochemistry. Results Compared with those in exosomes from normoxic conditions, miR-424-5p was more highly expressed in the exosomes from hypoxic BMSCs. Compared with those in normoxic BMSC-derived exosomes, the proliferation and angiogenesis of HUVECs were significantly enhanced after treatment with hypoxic BMSC-derived exosomes, and these effects were weakened after inhibition of miR-424-5p. miR-424-5p can target and negatively regulate the expression of DLL4, promote the expression of the proangiogenic genes Ang1 and Flk1, and inhibit the expression of the antiangiogenic genes Vash1 and TSP1. The effect of miR-424-5p can be reversed by overexpression of DLL4. In IUA rats, treatment with hypoxic BMSC exosomes and the miR-424-5p mimic promoted angiogenesis and improved endometrial damage. Conclusion The hypoxic BMSC-derived exosomal miR-424-5p promoted angiogenesis and improved endometrial injury repair by regulating the DLL4/Notch signaling pathway, which provides a new idea for the treatment of IUAs.
Collapse
Affiliation(s)
- Zhenghua Xiong
- Department of Gynecology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Department of Gynecology, Yan’an Hospital Affiliated to Kunming Medical University/Yan’an Hospital of Kunming City, Kunming, Yunnan, China
| | - Yong Hu
- Department of Gynecology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Min Jiang
- Department of Gynecology, Women and Children’s Hospital Affiliated to Qingdao University, Qingdao, Shandong, China
| | - Beibei Liu
- Department of Gynecology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Wenjiao Jin
- Department of Gynecology, Yan’an Hospital Affiliated to Kunming Medical University/Yan’an Hospital of Kunming City, Kunming, Yunnan, China
| | - Huiqin Chen
- Department of Gynecology, Chuxiong Hospital of Traditional Chinese Medicine, Chuxiong, Yunnan, China
| | - Linjuan Yang
- Department of Gynecology and Obstetrics, Baoshan Hospital of Traditional Chinese Medicine, Baoshan, Yunnan, China
| | - Xuesong Han
- Department of Gynecology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Department of Gynecology, Yan’an Hospital Affiliated to Kunming Medical University/Yan’an Hospital of Kunming City, Kunming, Yunnan, China
| |
Collapse
|
9
|
Terriaca S, Monastero R, Orlandi A, Balistreri CR. The key role of miRNA in syndromic and sporadic forms of ascending aortic aneurysms as biomarkers and targets of novel therapeutic strategies. Front Genet 2024; 15:1365711. [PMID: 38450200 PMCID: PMC10915088 DOI: 10.3389/fgene.2024.1365711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 01/30/2024] [Indexed: 03/08/2024] Open
Abstract
Increasing evidence shows that epigenetics also plays a key role in regulating the pathogenetic mechanism of all types of aortic aneurysms. It is well-known that epigenetic factors modulate gene expression. This mechanism appears to be of interest especially knowing the relevance of genetic susceptibility and genetic factors in the complex pathophysiology of aortic aneurysms, and of sporadic forms; in fact, the latter are the result of a close interaction between genetic and modifiable lifestyle factors (i.e., nutrition, smoking, infections, use of drugs, alcohol, sedentary lifestyle, etc.). Epigenetic factors include DNA methylation, post-translational histone modifications, and non-coding RNA. Here, our attention is focused on the role of miRNA in syndromic and sporadic forms of thoracic aortic aneurysms. They could be both biomarkers and targets of novel therapeutic strategies.
Collapse
Affiliation(s)
- Sonia Terriaca
- Pathological Anatomy, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Roberto Monastero
- Section of Neurology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Augusto Orlandi
- Pathological Anatomy, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Carmela Rita Balistreri
- Cellular, Molecular, and Clinical Pathological Laboratory, Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi N D), University of Palermo, Palermo, Italy
| |
Collapse
|
10
|
Gareev I, Beylerli O, Zhao B. MiRNAs as potential therapeutic targets and biomarkers for non-traumatic intracerebral hemorrhage. Biomark Res 2024; 12:17. [PMID: 38308370 PMCID: PMC10835919 DOI: 10.1186/s40364-024-00568-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/20/2024] [Indexed: 02/04/2024] Open
Abstract
Non-traumatic intracerebral hemorrhage (ICH) is the most common type of hemorrhagic stroke, most often occurring between the ages of 45 and 60. Hypertension is most often the cause of ICH. Less often, atherosclerosis, blood diseases, inflammatory changes in cerebral vessels, intoxication, vitamin deficiencies, and other reasons cause hemorrhages. Cerebral hemorrhage can occur by diapedesis or as a result of a ruptured vessel. This very dangerous disease is difficult to treat, requires surgery and can lead to disability or death. MicroRNAs (miRNAs) are a class of non-coding RNAs (about 18-22 nucleotides) that are involved in a variety of biological processes including cell differentiation, proliferation, apoptosis, etc., through gene repression. A growing number of studies have demonstrated miRNAs deregulation in various cardiovascular diseases, including ICH. In addition, given that computed tomography (CT) and/or magnetic resonance imaging (MRI) are either not available or do not show clear signs of possible vessel rupture, accurate and reliable analysis of circulating miRNAs in biological fluids can help in early diagnosis for prevention of ICH and prognosis patient outcome after hemorrhage. In this review, we highlight the up-to-date findings on the deregulated miRNAs in ICH, and the potential use of miRNAs in clinical settings, such as therapeutic targets and non-invasive diagnostic/prognostic biomarker tools.
Collapse
Affiliation(s)
- Ilgiz Gareev
- Bashkir State Medical University, Ufa, 450008, Russia
| | - Ozal Beylerli
- Bashkir State Medical University, Ufa, 450008, Russia
| | - Boxian Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001, China.
- Harbin Medical University No, 157, Baojian Road, Nangang District, Harbin, 150001, China.
| |
Collapse
|
11
|
de Lima Sanches B, Souza-Neto F, de Alcântara-Leonídeo TC, Silva MM, Guatimosim S, Vieira MAR, Santos RAS, da Silva RF. Alamandine attenuates oxidative stress in the right carotid following transverse aortic constriction in mice. Peptides 2024; 171:171094. [PMID: 37696437 DOI: 10.1016/j.peptides.2023.171094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/13/2023]
Abstract
OBJECTIVE Pressure overload can result in significant changes to the structure of blood vessels, a process known as vascular remodeling. High levels of tension can cause vascular inflammation, fibrosis, and structural alterations to the vascular wall. Prior research from our team has demonstrated that the oral administration of alamandine can promote vasculoprotective effects in mice aorta that have undergone transverse aortic constriction (TAC). Furthermore, changes in local hemodynamics can affect the right and left carotid arteries differently after TAC. Thus, in this study, we aimed to assess the effects of alamandine treatment on right carotid remodeling and the expression of oxidative stress-related substances induced by TAC. METHODS AND RESULTS Male C57BL/6 mice were categorized into three groups: Sham, TAC, and TAC treated with alamandine (TAC+ALA). Alamandine treatment was administered orally by gavage (30 µg/kg/day), starting three days before the surgery, and continuing for a period of fourteen days. Morphometric analysis of hematoxylin and eosin-stained sections revealed that TAC induced hypertrophic and positive remodeling in the right carotid artery. Picrosirius Red staining also demonstrated an increase in total collagen deposition in the right carotid artery due to TAC-induced vascular changes. Alamandine treatment effectively prevented the increase in reactive oxygen species production and depletion of nitric oxide levels, which were induced by TAC. Finally, alamandine treatment was also shown to prevent the increased expression of nuclear factor erythroid 2-related factor 2 and 3-nitrotyrosine that were induced by TAC. CONCLUSION Our results suggest that alamandine can effectively attenuate pathophysiological stress in the right carotid artery of animals subjected to TAC.
Collapse
Affiliation(s)
- Bruno de Lima Sanches
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Belo Horizonte, Minas Gerais, Brazil
| | - Fernando Souza-Neto
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Cancer & Cardiovascular Research Building, University of Minnesota, Minneapolis, MN, USA
| | | | - Mário Morais Silva
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Belo Horizonte, Minas Gerais, Brazil
| | - Silvia Guatimosim
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Belo Horizonte, Minas Gerais, Brazil
| | | | - Robson Augusto Souza Santos
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Belo Horizonte, Minas Gerais, Brazil.
| | - Rafaela Fernandes da Silva
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| |
Collapse
|
12
|
Sun X, Wang G, Luo W, Gu H, Ma W, Wei X, Liu D, Jia S, Cao S, Wang Y, Yuan Z. Small but strong: the emerging role of small nucleolar RNA in cardiovascular diseases. Front Cell Dev Biol 2023; 11:1292925. [PMID: 38033868 PMCID: PMC10682241 DOI: 10.3389/fcell.2023.1292925] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of mortality and disability worldwide. Numerous studies have demonstrated that non-coding RNAs (ncRNAs) play a primary role in CVD development. Therefore, studies on the mechanisms of ncRNAs are essential for further efforts to prevent and treat CVDs. Small nucleolar RNAs (snoRNAs) are a novel species of non-conventional ncRNAs that guide post-transcriptional modifications and the subsequent maturation of small nuclear RNA and ribosomal RNA. Evidently, snoRNAs are extensively expressed in human tissues and may regulate different illnesses. Particularly, as the next-generation sequencing techniques have progressed, snoRNAs have been shown to be differentially expressed in CVDs, suggesting that they may play a role in the occurrence and progression of cardiac illnesses. However, the molecular processes and signaling pathways underlying the function of snoRNAs remain unidentified. Therefore, it is of great value to comprehensively investigate the association between snoRNAs and CVDs. The aim of this review was to collate existing literature on the biogenesis, characteristics, and potential regulatory mechanisms of snoRNAs. In particular, we present a scientific update on these snoRNAs and their relevance to CVDs in an effort to cast new light on the functions of snoRNAs in the clinical diagnosis of CVDs.
Collapse
Affiliation(s)
- Xue Sun
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Gebang Wang
- Department of Thoracic Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of Dalian University of Technology, Shenyang, Liaoning, China
| | - Wenting Luo
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Hui Gu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Wei Ma
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiaowei Wei
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Dan Liu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shanshan Jia
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Songying Cao
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yu Wang
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhengwei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
13
|
Catanzaro G, Conte F, Trocchianesi S, Splendiani E, Bimonte VM, Mocini E, Filardi T, Po A, Besharat ZM, Gentile MC, Paci P, Morano S, Migliaccio S, Ferretti E. Network analysis identifies circulating miR-155 as predictive biomarker of type 2 diabetes mellitus development in obese patients: a pilot study. Sci Rep 2023; 13:19496. [PMID: 37945677 PMCID: PMC10636008 DOI: 10.1038/s41598-023-46516-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023] Open
Abstract
Obesity is the main risk factor for many non-communicable diseases. In clinical practice, unspecific markers are used for the determination of metabolic alterations and inflammation, without allowing the characterization of subjects at higher risk of complications. Circulating microRNAs represent an attractive approach for early screening to identify subjects affected by obesity more at risk of developing connected pathologies. The aim of this study was the identification of circulating free and extracellular vesicles (EVs)-embedded microRNAs able to identify obese patients at higher risk of type 2 diabetes (DM2). The expression data of circulating microRNAs derived from obese patients (OB), with DM2 (OBDM) and healthy donors were combined with clinical data, through network-based methodology implemented by weighted gene co-expression network analysis. The six circulating microRNAs overexpressed in OBDM patients were evaluated in a second group of patients, confirming the overexpression of miR-155-5p in OBDM patients. Interestingly, the combination of miR-155-5p with serum levels of IL-8, Leptin and RAGE was useful to identify OB patients most at risk of developing DM2. These results suggest that miR-155-5p is a potential circulating biomarker for DM2 and that the combination of this microRNA with other inflammatory markers in OB patients can predict the risk of developing DM2.
Collapse
Affiliation(s)
- Giuseppina Catanzaro
- Department of Experimental Medicine, Sapienza University of Rome, Policlinico Umberto I, Viale Regina Elena 324, 00161, Rome, Italy
| | - Federica Conte
- Institute for Systems Analysis and Computer Science "A. Ruberti" (IASI), National Research Council (CNR), 00185, Rome, Italy
| | - Sofia Trocchianesi
- Department of Experimental Medicine, Sapienza University of Rome, Policlinico Umberto I, Viale Regina Elena 324, 00161, Rome, Italy
| | - Elena Splendiani
- Department of Experimental Medicine, Sapienza University of Rome, Policlinico Umberto I, Viale Regina Elena 324, 00161, Rome, Italy
| | - Viviana Maria Bimonte
- Department of Movement, Human and Health Sciences, University of Foro Italico, 00135, Rome, Italy
| | - Edoardo Mocini
- Department of Experimental Medicine, Sapienza University of Rome, Policlinico Umberto I, Viale Regina Elena 324, 00161, Rome, Italy
| | - Tiziana Filardi
- Department of Experimental Medicine, Sapienza University of Rome, Policlinico Umberto I, Viale Regina Elena 324, 00161, Rome, Italy
| | - Agnese Po
- Department of Molecular Medicine, Sapienza University, 00161, Rome, Italy
| | - Zein Mersini Besharat
- Department of Experimental Medicine, Sapienza University of Rome, Policlinico Umberto I, Viale Regina Elena 324, 00161, Rome, Italy
| | - Maria Cristina Gentile
- Department of Experimental Medicine, Sapienza University of Rome, Policlinico Umberto I, Viale Regina Elena 324, 00161, Rome, Italy
| | - Paola Paci
- Department of Computer, Control and Management Engineering, Sapienza University, 00161, Rome, Italy
| | - Susanna Morano
- Department of Experimental Medicine, Sapienza University of Rome, Policlinico Umberto I, Viale Regina Elena 324, 00161, Rome, Italy
| | - Silvia Migliaccio
- Department of Movement, Human and Health Sciences, University of Foro Italico, 00135, Rome, Italy.
| | - Elisabetta Ferretti
- Department of Experimental Medicine, Sapienza University of Rome, Policlinico Umberto I, Viale Regina Elena 324, 00161, Rome, Italy.
| |
Collapse
|
14
|
Madè A, Bibi A, Garcia-Manteiga JM, Tascini AS, Piella SN, Tikhomirov R, Voellenkle C, Gaetano C, Leszek P, Castelvecchio S, Menicanti L, Martelli F, Greco S. circRNA-miRNA-mRNA Deregulated Network in Ischemic Heart Failure Patients. Cells 2023; 12:2578. [PMID: 37947656 PMCID: PMC10648415 DOI: 10.3390/cells12212578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/23/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
Noncoding RNAs (ncRNAs), which include circular RNAs (circRNAs) and microRNAs (miRNAs), regulate the development of cardiovascular diseases (CVD). Notably, circRNAs can interact with miRNAs, influencing their specific mRNA targets' levels and shaping a competing endogenous RNAs (ceRNA) network. However, these interactions and their respective functions remain largely unexplored in ischemic heart failure (IHF). This study is aimed at identifying circRNA-centered ceRNA networks in non-end-stage IHF. Approximately 662 circRNA-miRNA-mRNA interactions were identified in the heart by combining state-of-the-art bioinformatics tools with experimental data. Importantly, KEGG terms of the enriched mRNA indicated CVD-related signaling pathways. A specific network centered on circBPTF was validated experimentally. The levels of let-7a-5p, miR-18a-3p, miR-146b-5p, and miR-196b-5p were enriched in circBPTF pull-down experiments, and circBPTF silencing inhibited the expression of HDAC9 and LRRC17, which are targets of miR-196b-5p. Furthermore, as suggested by the enriched pathway terms of the circBPTF ceRNA network, circBPTF inhibition elicited endothelial cell cycle arrest. circBPTF expression increased in endothelial cells exposed to hypoxia, and its upregulation was confirmed in cardiac samples of 36 end-stage IHF patients compared to healthy controls. In conclusion, circRNAs act as miRNA sponges, regulating the functions of multiple mRNA targets, thus providing a novel vision of HF pathogenesis and laying the theoretical foundation for further experimental studies.
Collapse
Affiliation(s)
- Alisia Madè
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy; (A.M.); (A.B.); (S.N.P.); (R.T.); (C.V.); (S.G.)
| | - Alessia Bibi
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy; (A.M.); (A.B.); (S.N.P.); (R.T.); (C.V.); (S.G.)
- Department of Biosciences, University of Milan, 20122 Milan, Italy
| | - Jose Manuel Garcia-Manteiga
- Center for Omics Sciences COSR, BioInformatics Laboratory, San Raffaele Scientific Institute, 20132 Milan, Italy; (J.M.G.-M.); (A.S.T.)
| | - Anna Sofia Tascini
- Center for Omics Sciences COSR, BioInformatics Laboratory, San Raffaele Scientific Institute, 20132 Milan, Italy; (J.M.G.-M.); (A.S.T.)
- Università Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Santiago Nicolas Piella
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy; (A.M.); (A.B.); (S.N.P.); (R.T.); (C.V.); (S.G.)
| | - Roman Tikhomirov
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy; (A.M.); (A.B.); (S.N.P.); (R.T.); (C.V.); (S.G.)
| | - Christine Voellenkle
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy; (A.M.); (A.B.); (S.N.P.); (R.T.); (C.V.); (S.G.)
| | - Carlo Gaetano
- Laboratory of Epigenetics, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy;
| | - Przemyslaw Leszek
- Department of Heart Failure and Transplantology, National Institute of Cardiology, 04-628 Warsaw, Poland;
| | - Serenella Castelvecchio
- Department of Adult Cardiac Surgery, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy; (S.C.); (L.M.)
| | - Lorenzo Menicanti
- Department of Adult Cardiac Surgery, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy; (S.C.); (L.M.)
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy; (A.M.); (A.B.); (S.N.P.); (R.T.); (C.V.); (S.G.)
| | - Simona Greco
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy; (A.M.); (A.B.); (S.N.P.); (R.T.); (C.V.); (S.G.)
| |
Collapse
|
15
|
Terriaca S, Scioli MG, Pisano C, Ruvolo G, Ferlosio A, Orlandi A. miR-632 Induces DNAJB6 Inhibition Stimulating Endothelial-to-Mesenchymal Transition and Fibrosis in Marfan Syndrome Aortopathy. Int J Mol Sci 2023; 24:15133. [PMID: 37894814 PMCID: PMC10607153 DOI: 10.3390/ijms242015133] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/19/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Marfan syndrome (MFS) is a connective tissue disorder caused by FBN1 gene mutations leading to TGF-β signaling hyperactivation, vascular wall weakness, and thoracic aortic aneurysms (TAAs). The pathogenetic mechanisms are not completely understood and patients undergo early vascular surgery to prevent TAA ruptures. We previously reported miR-632 upregulation in MFS TAA tissues compared with non-genetic TAA tissues. DNAJB6 is a gene target of miR-632 in cancer and plays a critical role in blocking epithelial-to-mesenchymal transition by inhibiting the Wnt/β catenin pathway. TGF-β signaling also activates Wnt/β catenin signaling and induces endothelial-to-mesenchymal transition (End-Mt) and fibrosis. We documented that miR-632 upregulation correlated with DNAJB6 expression in both the endothelium and the tunica media of MFS TAA (p < 0.01). Wnt/β catenin signaling, End-Mt, and fibrosis markers were also upregulated in MFS TAA tissues (p < 0.05, p < 0.01 and p < 0.001). Moreover, miR-632 overexpression inhibited DNAJB6, inducing Wnt/β catenin signaling, as well as End-Mt and fibrosis exacerbation (p < 0.05 and p < 0.01). TGF-β1 treatment also determined miR-632 upregulation (p < 0.01 and p < 0.001), with the consequent activation of the aforementioned processes. Our study provides new insights about the pathogenetic mechanisms in MFS aortopathy. Moreover, the high disease specificity of miR-632 and DNAJB6 suggests new potential prognostic factors and/or therapeutic targets in the progression of MFS aortopathy.
Collapse
Affiliation(s)
- Sonia Terriaca
- Anatomic Pathology, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy; (S.T.); (A.F.); (A.O.)
| | - Maria Giovanna Scioli
- Anatomic Pathology, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy; (S.T.); (A.F.); (A.O.)
| | - Calogera Pisano
- Cardiac Surgery, Department of Surgical Sciences, Tor Vergata University, 00133 Rome, Italy; (C.P.); (G.R.)
| | - Giovanni Ruvolo
- Cardiac Surgery, Department of Surgical Sciences, Tor Vergata University, 00133 Rome, Italy; (C.P.); (G.R.)
| | - Amedeo Ferlosio
- Anatomic Pathology, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy; (S.T.); (A.F.); (A.O.)
| | - Augusto Orlandi
- Anatomic Pathology, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy; (S.T.); (A.F.); (A.O.)
| |
Collapse
|
16
|
Wang H, Shi J, Wang J, Hu Y. MicroRNA‑378: An important player in cardiovascular diseases (Review). Mol Med Rep 2023; 28:172. [PMID: 37503766 PMCID: PMC10436248 DOI: 10.3892/mmr.2023.13059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/31/2023] [Indexed: 07/29/2023] Open
Abstract
Cardiovascular disease (CVD) is a common chronic clinical condition and is the main cause of death in humans worldwide. Understanding the genetic and molecular mechanisms involved in the development of CVD is essential to develop effective prevention strategies and therapeutic measures. An increasing number of CVD‑related genetic studies have been conducted, including those on the potential roles of microRNAs (miRs). These studies have demonstrated that miR‑378 is involved in the pathological processes of CVD, including those of myocardial infarction, heart failure and coronary heart disease. Despite the potential importance of miR‑378 CVD, a comprehensive summary of the related literature is lacking. Thus, the present review aimed to summarize the findings of previous studies on the roles and mechanisms of miR‑378 in a variety of CVDs and provide an up‑to date basis for further r research targeting the prevention and treatment of CVDs.
Collapse
Affiliation(s)
- Huan Wang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P.R. China
| | - Jingjing Shi
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P.R. China
| | - Jiuchong Wang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P.R. China
| | - Yuanhui Hu
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P.R. China
| |
Collapse
|
17
|
Nossent AY, Binder CJ. Noncoding RNAs in atherosclerosis. Atherosclerosis 2023; 374:21-23. [PMID: 37169701 DOI: 10.1016/j.atherosclerosis.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Affiliation(s)
- Anne Yaël Nossent
- Department of Surgery and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands.
| | - Christoph J Binder
- Department for Laboratory Medicine, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
18
|
Rossi GP, Barton M, Dhaun N, Rizzoni D, Seccia TM. Challenges in the evaluation of endothelial cell dysfunction: a statement from the European Society of Hypertension Working Group on Endothelin and Endothelial Factors. J Hypertens 2023; 41:369-379. [PMID: 36728915 DOI: 10.1097/hjh.0000000000003314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Endothelial cell function is mediated by different mechanisms in different vascular beds. Moreover, in humans, endothelial cell dysfunction triggers and accelerates the progression of cardiovascular and chronic kidney diseases. Progression of such diseases can be in part mitigated by the control of cardiovascular risk factors and drugs targeting different systems, including endothelin receptor antagonists (ERAs), renin-angiotensin aldosterone antagonists and agents affecting glucose metabolism, all of which were shown to improve endothelial cell function. In recent years, the microRNAs, which are endogenous regulators of gene expression, have been identified as transmitters of information from endothelial cells to vascular smooth muscle cells, suggesting that they can entail tools to assess the endothelial cell dysfunction in arterial hypertension and target for pharmacologic intervention. This article critically reviews current challenges and limitations of available techniques for the invasive and noninvasive assessment of endothelial cell function, and also discusses therapeutic aspects as well as directions for future research in the areas of endothelial cell biology and pathophysiology in humans.
Collapse
Affiliation(s)
- Gian Paolo Rossi
- Emergency Medicine Unit and European Society of Hypertension Specialized Center of Excellence for Hypertension, Department of Medicine-DIMED, University of Padua, Padova, Italy
| | - Matthias Barton
- Molecular Internal Medicine, University of Zürich, and Andreas Grüntzig Foundation, Zürich, Switzerland
| | - Neeraj Dhaun
- University/British Heart Foundation Centre of Research Excellence, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Damiano Rizzoni
- Department of Clinical and Experimental Sciences, University of Brescia and Division of Medicine, Istituto Clinico Città di Brescia, Brescia, Italy
| | - Teresa M Seccia
- Emergency Medicine Unit and European Society of Hypertension Specialized Center of Excellence for Hypertension, Department of Medicine-DIMED, University of Padua, Padova, Italy
| |
Collapse
|
19
|
Nopp S, van der Bent ML, Kraemmer D, Königsbrügge O, Wojta J, Pabinger I, Ay C, Nossent AY. Circulatory miR-411-5p as a Novel Prognostic Biomarker for Major Adverse Cardiovascular Events in Patients with Atrial Fibrillation. Int J Mol Sci 2023; 24:3861. [PMID: 36835272 PMCID: PMC9964230 DOI: 10.3390/ijms24043861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
The risk stratification of patients with atrial fibrillation (AF) for subsequent cardiovascular events could help in guiding prevention strategies. In this study, we aimed at investigating circulating microRNAs as prognostic biomarkers for major adverse cardiovascular events (MACE) in AF patients. We conducted a three-stage nested case-control study within the framework of a prospective registry, including 347 AF patients. First, total small RNA-sequencing was performed in 26 patients (13 cases with MACE) and the differential expression of microRNAs was analyzed. Seven candidate microRNAs with promising results in a subgroup analysis on cardiovascular death were selected and measured via using RT-qPCR in 97 patients (42 cases with cardiovascular death). To further validate our findings and investigate broader clinical applicability, we analyzed the same microRNAs in a subsequent nested case-control study of 102 patients (37 cases with early MACE) by using Cox regression. In the microRNA discovery cohort (n = 26), we detected 184 well-expressed microRNAs in circulation without overt differential expression between the cases and controls. A subgroup analysis on cardiovascular death revealed 26 microRNAs that were differentially expressed at a significance level < 0.05 (three of which with an FDR-adjusted p-value <0.05). We, therefore, proceeded with a nested case-control approach (n = 97) focusing on patients with cardiovascular death and selected, in total, seven microRNAs for further RT-qPCR analysis. One microRNA, miR-411-5p, was significantly associated with cardiovascular death (adjusted HR (95% CI): 1.95 (1.04-3.67)). Further validation (n = 102) in patients who developed early MACE showed similar results (adjusted HR (95% CI) 2.35 (1.17-4.73)). In conclusion, circulating miR-411-5p could be a valuable prognostic biomarker for MACE in AF patients.
Collapse
Affiliation(s)
- Stephan Nopp
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria
| | - M. Leontien van der Bent
- Department of Surgery and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 Leiden, The Netherlands
| | - Daniel Kraemmer
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria
| | - Oliver Königsbrügge
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria
| | - Johann Wojta
- Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, 1090 Vienna, Austria
| | - Ingrid Pabinger
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria
| | - Cihan Ay
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria
| | - Anne Yaël Nossent
- Department of Surgery and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 Leiden, The Netherlands
- Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
20
|
Suljič A, Hočevar A, Jurčić V, Bolha L. Evaluation of Arterial Histopathology and microRNA Expression That Underlie Ultrasonography Findings in Temporal Arteries of Patients with Giant Cell Arteritis. Int J Mol Sci 2023; 24:ijms24021572. [PMID: 36675088 PMCID: PMC9866408 DOI: 10.3390/ijms24021572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/23/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
The aim of this study was to assess the interrelation between vascular ultrasonography (US) findings, histopathological data, and the expression of selected dysregulated microRNAs (miRNAs) in giant cell arteritis (GCA). The study included data on the clinical parameters, US measurements, and temporal artery biopsies (TABs) of 46 treatment-naïve patients diagnosed with GCA and 22 age-matched non-GCA patient controls. We performed a comprehensive comparative and correlation analysis along with generation of receiver operating characteristic (ROC) curves to ascertain the diagnostic performance of US examination parameters and selected miRNAs for GCA diagnosis. We showed significant differences in the US-measured intima-media thickness of the temporal arteries, the presence of a halo sign, and the presence of luminal stenosis between GCA-positive/TAB-positive, GCA-positive/TAB-negative, and non-GCA patients. Correlation analysis revealed significant associations between several histopathological parameters, US-measured intima-media thickness, and the halo sign. We found that the significant overexpression of miR-146b-5p, miR-155-5p, miR-511-5p, and miR-21-5p, and the under-expression of the miR-143/145 cluster, miR-30a-5p, and miR-125a-5p, coincides and is associated with the presence of a halo sign in patients with GCA. Notably, we determined a high diagnostic performance of miR-146b-5p, miR-21-3p, and miR-21-5p expression profiles in discriminating GCA patients from non-GCA controls, suggesting their potential utilization as putative biomarkers of GCA. Taken together, our study provides an insight into the US-based diagnostic evaluation of GCA by revealing the complex interrelation of clearly defined image findings with underlying vascular immunopathology and altered arterial tissue-specific miRNA profiles.
Collapse
Affiliation(s)
- Alen Suljič
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Alojzija Hočevar
- Department of Rheumatology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Vesna Jurčić
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Luka Bolha
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Correspondence:
| |
Collapse
|
21
|
Theofilis P, Oikonomou E, Vogiatzi G, Sagris M, Antonopoulos AS, Siasos G, Iliopoulos DC, Perrea D, Vavouranakis M, Tsioufis K, Tousoulis D. The Role of MicroRNA-126 in Atherosclerotic Cardiovascular Diseases. Curr Med Chem 2023; 30:1902-1921. [PMID: 36043750 DOI: 10.2174/0929867329666220830100530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/02/2022] [Accepted: 05/31/2022] [Indexed: 11/22/2022]
Abstract
Atherosclerotic cardiovascular diseases remain the leading cause of morbidity and mortality worldwide despite all efforts made towards their management. Other than targeting the traditional risk factors for their development, scientific interest has been shifted towards epigenetic regulation, with microRNAs (miRs) being at the forefront. MiR-126, in particular, has been extensively studied in the context of cardiovascular diseases. Downregulated expression of this miR has been associated with highly prevalent cardiovascular risk factors such as arterial hypertension and diabetes mellitus. At the same time, its diagnostic and prognostic capability concerning coronary artery disease is still under investigation, with up-to-date data pointing towards a dysregulated expression in a stable disease state and acute myocardial infarction. Moreover, a lower expression of miR-126 may indicate a higher disease complexity, as well as an increased risk for future major adverse cardiac and cerebrovascular events. Ultimately, overexpression of miR-126 may emerge as a novel therapeutic target in atherosclerotic cardiovascular diseases due to its potential in promoting therapeutic angiogenesis and anti-inflammatory effects. However, the existing challenges in miR therapeutics need to be resolved before translation to clinical practice.
Collapse
Affiliation(s)
- Panagiotis Theofilis
- 1st Cardiology Department, "Hippokration" General Hospital, University of Athens Medical School, Athens, Greece
| | - Evangelos Oikonomou
- 1st Cardiology Department, "Hippokration" General Hospital, University of Athens Medical School, Athens, Greece
- 3rd Cardiology Department, "Sotiria" Chest Diseases Hospital, University of Athens Medical School, Athens, Greece
| | - Georgia Vogiatzi
- 1st Cardiology Department, "Hippokration" General Hospital, University of Athens Medical School, Athens, Greece
- 3rd Cardiology Department, "Sotiria" Chest Diseases Hospital, University of Athens Medical School, Athens, Greece
| | - Marios Sagris
- 1st Cardiology Department, "Hippokration" General Hospital, University of Athens Medical School, Athens, Greece
| | - Alexios S Antonopoulos
- 1st Cardiology Department, "Hippokration" General Hospital, University of Athens Medical School, Athens, Greece
| | - Gerasimos Siasos
- 1st Cardiology Department, "Hippokration" General Hospital, University of Athens Medical School, Athens, Greece
- 3rd Cardiology Department, "Sotiria" Chest Diseases Hospital, University of Athens Medical School, Athens, Greece
| | - Dimitrios C Iliopoulos
- Laboratory of Experimental Surgery and Surgical Research "N.S. Christeas", University of Athens Medical School, Athens, Greece
| | - Despoina Perrea
- Laboratory of Experimental Surgery and Surgical Research "N.S. Christeas", University of Athens Medical School, Athens, Greece
| | - Manolis Vavouranakis
- 1st Cardiology Department, "Hippokration" General Hospital, University of Athens Medical School, Athens, Greece
- 3rd Cardiology Department, "Sotiria" Chest Diseases Hospital, University of Athens Medical School, Athens, Greece
| | - Konstantinos Tsioufis
- 1st Cardiology Department, "Hippokration" General Hospital, University of Athens Medical School, Athens, Greece
| | - Dimitris Tousoulis
- 1st Cardiology Department, "Hippokration" General Hospital, University of Athens Medical School, Athens, Greece
| |
Collapse
|
22
|
Nossent AY. The epitranscriptome: RNA modifications in vascular remodelling. Atherosclerosis 2022:S0021-9150(22)01500-3. [DOI: 10.1016/j.atherosclerosis.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/13/2022] [Accepted: 11/03/2022] [Indexed: 11/10/2022]
|
23
|
Elbaz M, Faccini J, Laperche C, Grazide MH, Ruidavets JB, Vindis C. MiR-223 and MiR-186 Are Associated with Long-Term Mortality after Myocardial Infarction. Biomolecules 2022; 12:biom12091243. [PMID: 36139082 PMCID: PMC9496068 DOI: 10.3390/biom12091243] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/28/2022] Open
Abstract
Background—The identification and stratification of patients at risk of fatal outcomes after myocardial infarction (MI) is of considerable interest to guide secondary prevention therapies. Currently, no accurate biomarkers are available to identify subjects who are at risk of suffering acute manifestations of coronary heart disease as well as to predict adverse events after MI. Non-coding circulating microRNAs (miRNAs) have been proposed as novel diagnostic and prognostic biomarkers in cardiovascular diseases. The aims of the study were to investigate the clinical value of a panel of circulating miRNAs as accurate biomarkers associated with MI and mortality risk prediction in patients with documented MI. Methods and Results—seven circulating plasma miRNAs were analyzed in 67 MI patients and 80 control subjects at a high cardiovascular risk but without known coronary diseases. Multivariate logistic regression analyses demonstrated that six miRNAs were independently associated with MI occurrence. Among them, miR-223 and miR-186 reliably predicted long-term mortality in MI patients, in particular miR-223 (HR 1.57 per one-unit increase, p = 0.02), after left ventricular ejection fraction (LVEF) adjustment. Kaplan–Meier survival analyses provided a predictive threshold value of miR-223 expression (p = 0.028) for long-term mortality. Conclusions—Circulating miR-223 and miR-186 are promising predictive biomarkers for long-term mortality after MI.
Collapse
Affiliation(s)
- Meyer Elbaz
- Department of Cardiology, Rangueil University Hospital, 31400 Toulouse, France
- Center for Clinical Investigation (CIC1436)/CARDIOMET, Rangueil University Hospital, 31400 Toulouse, France
- INSERM UMR 1048, 31400 Toulouse, France
| | | | - Clémence Laperche
- Department of Cardiology, Rangueil University Hospital, 31400 Toulouse, France
- INSERM UMR 1048, 31400 Toulouse, France
| | - Marie-Hélène Grazide
- Center for Clinical Investigation (CIC1436)/CARDIOMET, Rangueil University Hospital, 31400 Toulouse, France
- INSERM UMR 1048, 31400 Toulouse, France
| | | | - Cécile Vindis
- Center for Clinical Investigation (CIC1436)/CARDIOMET, Rangueil University Hospital, 31400 Toulouse, France
- INSERM UMR 1048, 31400 Toulouse, France
- Correspondence:
| |
Collapse
|
24
|
Desita SR, Hariftyani AS, Jannah AR, Setyobudi AK, Oktaviono YH. PCSK9 and LRP6: potential combination targets to prevent and reduce atherosclerosis. J Basic Clin Physiol Pharmacol 2022; 33:529-534. [PMID: 35429418 DOI: 10.1515/jbcpp-2021-0291] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Coronary artery disease (CAD) is a disease characterized by atherosclerosis formation which causes sudden cardiac death. The prevalence of CAD is expected to increase by 2030. Atherosclerosis started from accumulation of LDL in the blood vessels, followed by endothelial cell activation and dysfunction. PCSK9 is a gene that plays an important role in the creation of atherosclerotic plaque through induced degradation of LDLRs. Inhibition of PCSK9 gene resulted in a decrease of LDLRs degradation and reduction in LDL-C levels. LRP6, as well as its mutation, is a coreceptor that contributes to atherosclerosis through the canonical Wnt/β-catenin pathway. By employing EMPs mediated miRNA-126, third-generation antisense against miR-494-3p (3 GA-494), and recombinant Wnt mouse Wnt3a (rmWnt3a), the inhibition of LRP6 could reduce VSMCs proliferation, enhancing anti-inflammatory macrophages, and diminished bioactive lipids component, respectively. Those mechanisms lead to the stabilization and reduction of atherosclerosis plaques.
Collapse
Affiliation(s)
- Saskia R Desita
- Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | | | - Ayik R Jannah
- Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | | | - Yudi H Oktaviono
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Hospital, Surabaya, Indonesia
| |
Collapse
|
25
|
Makowska M, Smolarz B, Romanowicz H. microRNAs in Subarachnoid Hemorrhage (Review of Literature). J Clin Med 2022; 11:jcm11154630. [PMID: 35956244 PMCID: PMC9369929 DOI: 10.3390/jcm11154630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/25/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Recently, many studies have shown that microRNAs (miRNAs) in extracellular bioliquids are strongly associated with subarachnoid hemorrhage (SAH) and its complications. The article presents issues related to the occurrence of subarachnoid hemorrhage (epidemiology, symptoms, differential diagnosis, examination, and treatment of the patient) and a review of current research on the correlation between miRNAs and the complications of SAH. The potential use of miRNAs as biomarkers in the treatment of SAH is presented.
Collapse
Affiliation(s)
- Marianna Makowska
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Anesthesiology and Intensive Care Medicine, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Beata Smolarz
- Laboratory of Cancer Genetics, Department of Pathology, Polish Mother’s Memorial Hospital Research Institute, Rzgowska 281/289, 93-338 Lodz, Poland
- Correspondence: ; Tel.: +48-42-271-12-90
| | - Hanna Romanowicz
- Laboratory of Cancer Genetics, Department of Pathology, Polish Mother’s Memorial Hospital Research Institute, Rzgowska 281/289, 93-338 Lodz, Poland
| |
Collapse
|
26
|
Chen HM, Li H, Lin MX, Fan WJ, Zhang Y, Lin YT, Wu SX. Research Progress for RNA Modifications in Physiological and Pathological Angiogenesis. Front Genet 2022; 13:952667. [PMID: 35937999 PMCID: PMC9354963 DOI: 10.3389/fgene.2022.952667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/20/2022] [Indexed: 12/04/2022] Open
Abstract
As a critical layer of epigenetics, RNA modifications demonstrate various molecular functions and participate in numerous biological processes. RNA modifications have been shown to be essential for embryogenesis and stem cell fate. As high-throughput sequencing and antibody technologies advanced by leaps and bounds, the association of RNA modifications with multiple human diseases sparked research enthusiasm; in addition, aberrant RNA modification leads to tumor angiogenesis by regulating angiogenesis-related factors. This review collected recent cutting-edge studies focused on RNA modifications (N6-methyladenosine (m6A), N5-methylcytosine (m5C), N7-methylguanosine (m7G), N1-methyladenosine (m1A), and pseudopuridine (Ψ)), and their related regulators in tumor angiogenesis to emphasize the role and impact of RNA modifications.
Collapse
Affiliation(s)
- Hui-Ming Chen
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Hang Li
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Meng-Xian Lin
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Wei-Jie Fan
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yi Zhang
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yan-Ting Lin
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
- *Correspondence: Shu-Xiang Wu, ; Yan-Ting Lin,
| | - Shu-Xiang Wu
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
- *Correspondence: Shu-Xiang Wu, ; Yan-Ting Lin,
| |
Collapse
|
27
|
Transcriptional and Epigenetic Factors Associated with Early Thrombosis of Femoral Artery Involved in Arteriovenous Fistula. Proteomes 2022; 10:proteomes10020014. [PMID: 35645372 PMCID: PMC9149803 DOI: 10.3390/proteomes10020014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Arteriovenous fistulas (AVFs), created for hemodialysis in end-stage renal disease patients, mature through the outward remodeling of the outflow vein. However, early thrombosis and chronic inflammation are detrimental to the process of AVF maturation and precipitate AVF maturation failure. For the successful remodeling of the outflow vein, blood flow through the fistula is essential, but early arterial thrombosis attenuates this blood flow, and the vessels become thrombosed and stenosed, leading to AVF failure. The altered expression of various proteins involved in maintaining vessel patency or thrombosis is regulated by genes of which the expression is regulated by transcription factors and microRNAs. In this study, using thrombosed and stenosed arteries following AVF creation, we delineated transcription factors and microRNAs associated with differentially expressed genes in bulk RNA sequencing data using upstream and causal network analysis. We observed changes in many transcription factors and microRNAs that are involved in angiogenesis; vascular smooth muscle cell proliferation, migration, and phenotypic changes; endothelial cell function; hypoxia; oxidative stress; vessel remodeling; immune responses; and inflammation. These factors and microRNAs play a critical role in the underlying molecular mechanisms in AVF maturation. We also observed epigenetic factors involved in gene regulation associated with these molecular mechanisms. The results of this study indicate the importance of investigating the transcriptional and epigenetic regulation of AVF maturation and maturation failure and targeting factors precipitating early thrombosis and stenosis.
Collapse
|
28
|
van Ingen E, van den Homberg DAL, van der Bent ML, Mei H, Papac-Milicevic N, Kremer V, Boon RA, Quax PHA, Wojta J, Nossent AY. C/D box snoRNA SNORD113-6/AF357425 plays a dual role in integrin signalling and arterial fibroblast function via pre-mRNA processing and 2'O-ribose methylation. Hum Mol Genet 2022; 31:1051-1066. [PMID: 34673944 PMCID: PMC8976432 DOI: 10.1093/hmg/ddab304] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/03/2021] [Accepted: 10/13/2021] [Indexed: 11/28/2022] Open
Abstract
We have previously shown that C/D box small nucleolar RNAs (snoRNAs) transcribed from the DLK1-DIO3 locus on human chromosome 14 (14q32) are associated with cardiovascular disease. DLK1-DIO3 snoRNAs are 'orphan snoRNAs' that have no known targets. We aimed to identify RNA targets and elucidate the mechanism-of-action of human SNORD113-6 (AF357425 in mice). As AF357425-knockout cells were non-viable, we induced overexpression or inhibition of AF357425 in primary murine fibroblasts and performed RNA-Seq. We identified several pre-mRNAs with conserved AF357425/SNORD113-6 D'-seed binding sites in the last exon/3' untranslated region (3'UTR), which directed pre-mRNA processing and splice-variant-specific protein expression. We also pulled down the snoRNA-associated methyltransferase fibrillarin from AF357425-High versus AF357425-Low fibroblast lysates, followed by RNA isolation, ribosomal RNA depletion and RNA-Seq. Identifying mostly mRNAs, we subjected these to PANTHER pathway analysis and observed enrichment for genes in the integrin pathway. We confirmed 2'O-ribose methylation in six integrin pathway mRNAs (MAP2K1, ITGB3, ITGA7, PARVB, NTN4 and FLNB). Methylation and mRNA expressions were decreased while mRNA degradation was increased under AF357425/SNORD113-6 inhibition in both murine and human primary fibroblasts, but effects on protein expression were more ambiguous. Integrin signalling is crucial for cell-cell and cell-matrix interactions, and correspondingly, we observed altered human primary arterial fibroblast function upon SNORD113-6 inhibition.
Collapse
Affiliation(s)
- Eva van Ingen
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Daphne A L van den Homberg
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - M Leontien van der Bent
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Hailiang Mei
- Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Veerle Kremer
- Department of Physiology, Amsterdam Cardiovascular Sciences, Vrije Universiteit, Amsterdam UMC location VUMC, Amsterdam, The Netherlands
| | - Reinier A Boon
- Department of Physiology, Amsterdam Cardiovascular Sciences, Vrije Universiteit, Amsterdam UMC location VUMC, Amsterdam, The Netherlands
- Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
- German Center for Cardiovascular Research (DZHK), Frankfurt am Main, Germany
| | - Paul H A Quax
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Johann Wojta
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
| | - A Yaël Nossent
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
29
|
van den Homberg DAL, van der Kwast RVCT, Quax PHA, Nossent AY. N-6-Methyladenosine in Vasoactive microRNAs during Hypoxia; A Novel Role for METTL4. Int J Mol Sci 2022; 23:1057. [PMID: 35162982 PMCID: PMC8835077 DOI: 10.3390/ijms23031057] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 12/13/2022] Open
Abstract
N-6-methyladenosine (m6A) is the most prevalent post-transcriptional RNA modification in eukaryotic cells. The modification is reversible and can be dynamically regulated by writer and eraser enzymes. Alteration in the levels of these enzymes can lead to changes in mRNA stability, alternative splicing or microRNA processing, depending on the m6A-binding proteins. Dynamic regulation of mRNA m6A methylation after ischemia and hypoxia influences mRNA stability, alternative splicing and translation, contributing to heart failure. In this study, we studied vasoactive microRNA m6A methylation in fibroblasts and examined the effect of hypoxia on microRNAs methylation using m6A immunoprecipitation. Of the 19 microRNAs investigated, at least 16 contained m6A in both primary human fibroblasts and a human fibroblast cell line, suggesting vasoactive microRNAs are commonly m6A methylated in fibroblasts. More importantly, we found that mature microRNA m6A levels increased upon subjecting cells to hypoxia. By silencing different m6A writer and eraser enzymes followed by m6A immunoprecipitation, we identified METTL4, an snRNA m6A methyltransferase, to be predominantly responsible for the increase in m6A modification. Moreover, by using m6A-methylated microRNA mimics, we found that microRNA m6A directly affects downstream target mRNA repression efficacy. Our findings highlight the regulatory potential of the emerging field of microRNA modifications.
Collapse
Affiliation(s)
- Daphne A. L. van den Homberg
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (D.A.L.v.d.H.); (R.V.C.T.v.d.K.); (P.H.A.Q.)
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Reginald V. C. T. van der Kwast
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (D.A.L.v.d.H.); (R.V.C.T.v.d.K.); (P.H.A.Q.)
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Paul H. A. Quax
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (D.A.L.v.d.H.); (R.V.C.T.v.d.K.); (P.H.A.Q.)
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - A. Yaël Nossent
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (D.A.L.v.d.H.); (R.V.C.T.v.d.K.); (P.H.A.Q.)
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
- Department for Laboratory Medicine, Medical University of Vienna, AT-1090 Vienna, Austria
- Department of Internal Medicine II, Medical University of Vienna, AT-1090 Vienna, Austria
| |
Collapse
|
30
|
van Ingen E, Foks AC, Woudenberg T, van der Bent ML, de Jong A, Hohensinner PJ, Wojta J, Bot I, Quax PHA, Nossent AY. Inhibition of microRNA-494-3p activates Wnt signaling and reduces proinflammatory macrophage polarization in atherosclerosis. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:1228-1239. [PMID: 34853722 PMCID: PMC8607137 DOI: 10.1016/j.omtn.2021.10.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/24/2021] [Accepted: 10/28/2021] [Indexed: 12/31/2022]
Abstract
We have previously shown that treatment with third-generation antisense oligonucleotides against miR-494-3p (3GA-494) reduces atherosclerotic plaque progression and stabilizes lesions, both in early and established plaques, with reduced macrophage content in established plaques. Within the plaque, different subtypes of macrophages are present. Here, we aimed to investigate whether miR-494-3p directly influences macrophage polarization and activation. Human macrophages were polarized into either proinflammatory M1 or anti-inflammatory M2 macrophages and simultaneously treated with 3GA-494 or a control antisense (3GA-ctrl). We show that 3GA-494 treatment inhibited miR-494-3p in M1 macrophages and dampened M1 polarization, while in M2 macrophages miR-494-3p expression was induced and M2 polarization enhanced. The proinflammatory marker CCR2 was reduced in 3GA-494-treated atherosclerosis-prone mice. Pathway enrichment analysis predicted an overlap between miR-494-3p target genes in macrophage polarization and Wnt signaling. We demonstrate that miR-494-3p regulates expression levels of multiple Wnt signaling components, such as LRP6 and TBL1X. Wnt signaling appears activated upon treatment with 3GA-494, both in cultured M1 macrophages and in plaques of hypercholesterolemic mice. Taken together, 3GA-494 treatment dampened M1 polarization, at least in part via activated Wnt signaling, while M2 polarization was enhanced, which is both favorable in reducing atherosclerotic plaque formation and increasing plaque stability.
Collapse
Affiliation(s)
- Eva van Ingen
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, the Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2300 RC Leiden, the Netherlands.,Division of BioTherapeutics, LACDR, Leiden University, 2333 CC Leiden, The Netherlands
| | - Amanda C Foks
- Division of BioTherapeutics, LACDR, Leiden University, 2333 CC Leiden, The Netherlands
| | - Tamar Woudenberg
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, the Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - M Leontien van der Bent
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, the Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Alwin de Jong
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, the Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Philipp J Hohensinner
- Department of Internal Medicine II, Medical, University of Vienna, 1090 Vienna, Austria
| | - Johann Wojta
- Department of Internal Medicine II, Medical, University of Vienna, 1090 Vienna, Austria.,Ludwig Boltzmann Institute for Cardiovascular Research, 1090 Vienna, Austria
| | - Ilze Bot
- Division of BioTherapeutics, LACDR, Leiden University, 2333 CC Leiden, The Netherlands
| | - Paul H A Quax
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, the Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Anne Yaël Nossent
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, the Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2300 RC Leiden, the Netherlands.,Department of Internal Medicine II, Medical, University of Vienna, 1090 Vienna, Austria.,Department of Laboratory Medicine, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
31
|
Kozakai M, Narita Y, Yamawaki-Ogata A, Fujimoto KL, Mutsuga M, Tokuda Y, Usui A. Alternative therapeutic strategy for existing aortic aneurysms using mesenchymal stem cell-derived exosomes. Expert Opin Biol Ther 2021; 22:95-104. [PMID: 34823415 DOI: 10.1080/14712598.2022.2005575] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Several studies demonstrated the therapeutic potential of mesenchymal stem cell-derived exosomes (MSC-exs) based on their anti-inflammatory properties. The objective was to determine the therapeutic effects of MSC-exs on aortic aneurysms (AAs) caused by atherosclerosis. RESEARCH DESIGN AND METHODS Apolipoprotein E knockout mice with AAs induced by angiotensin II were injected with MSC-exs or saline as a control. The change in the diameter of the aorta was measured. The expression of AA-related proteins and the histology of the aortic wall were investigated at 1 week after treatment. MicroRNA and protein profiles of MSC-exs were examined. RESULTS MSC-exs significantly attenuated AA progression (2.04 ± 0.20 mm in the saline group and 1.34 ± 0.13 mm in the MSC-ex group, P = 0.004). In the MSC-ex group, the expression of IL-1β, TNF-α and MCP-1 decreased, and expression of IGF-1 and TIMP-2 increased. MSC-ex induced the M2 phenotype in macrophages and suppressed the destruction of the elastic lamellae in the aortic wall. MSC-exs contained high levels of 10 microRNAs that inhibit AA formation and 13 proteins that inhibit inflammation and promote extracellular matrix synthesis. CONCLUSIONS MSC-ex might be a novel alternative therapeutic tool for treatment of existing AAs.
Collapse
Affiliation(s)
- Motoshi Kozakai
- Department of Cardiac Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuji Narita
- Department of Cardiac Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Aika Yamawaki-Ogata
- Department of Cardiac Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuro L Fujimoto
- Department of Cardiac Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masato Mutsuga
- Department of Cardiac Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshiyuki Tokuda
- Department of Cardiac Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akihiko Usui
- Department of Cardiac Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
32
|
Cold-Inducible RNA-Binding Protein but Not Its Antisense lncRNA Is a Direct Negative Regulator of Angiogenesis In Vitro and In Vivo via Regulation of the 14q32 angiomiRs-microRNA-329-3p and microRNA-495-3p. Int J Mol Sci 2021; 22:ijms222312678. [PMID: 34884485 PMCID: PMC8657689 DOI: 10.3390/ijms222312678] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/04/2021] [Accepted: 11/20/2021] [Indexed: 12/14/2022] Open
Abstract
Inhibition of the 14q32 microRNAs, miR-329-3p and miR-495-3p, improves post-ischemic neovascularization. Cold-inducible RNA-binding protein (CIRBP) facilitates maturation of these microRNAs. We hypothesized that CIRBP deficiency improves post-ischemic angiogenesis via downregulation of 14q32 microRNA expression. We investigated these regulatory mechanisms both in vitro and in vivo. We induced hindlimb ischemia in Cirp−/− and C57Bl/6-J mice, monitored blood flow recovery with laser Doppler perfusion imaging, and assessed neovascularization via immunohistochemistry. Post-ischemic angiogenesis was enhanced in Cirp−/− mice by 34.3% with no effects on arteriogenesis. In vivo at day 7, miR-329-3p and miR-495-3p expression were downregulated in Cirp−/− mice by 40.6% and 36.2%. In HUVECs, CIRBP expression was upregulated under hypothermia, while miR-329-3p and miR-495-3p expression remained unaffected. siRNA-mediated CIRBP knockdown led to the downregulation of CIRBP-splice-variant-1 (CIRBP-SV1), CIRBP antisense long noncoding RNA (lncRNA-CIRBP-AS1), and miR-495-3p with no effects on the expression of CIRBP-SV2-4 or miR-329-3p. siRNA-mediated CIRBP knockdown improved HUVEC migration and tube formation. SiRNA-mediated lncRNA-CIRBP-AS1 knockdown had similar long-term effects. After short incubation times, however, only CIRBP knockdown affected angiogenesis, indicating that the effects of lncRNA-CIRBP-AS1 knockdown were secondary to CIRBP-SV1 downregulation. CIRBP is a negative regulator of angiogenesis in vitro and in vivo and acts, at least in part, through the regulation of miR-329-3p and miR-495-3p.
Collapse
|
33
|
Witvrouwen I, Gevaert AB, Possemiers N, Ectors B, Stoop T, Goovaerts I, Boeren E, Hens W, Beckers PJ, Vorlat A, Heidbuchel H, Van Craenenbroeck AH, Van Craenenbroeck EM. Plasma-Derived microRNAs Are Influenced by Acute and Chronic Exercise in Patients With Heart Failure With Reduced Ejection Fraction. Front Physiol 2021; 12:736494. [PMID: 34646160 PMCID: PMC8502864 DOI: 10.3389/fphys.2021.736494] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/02/2021] [Indexed: 01/01/2023] Open
Abstract
Background: Exercise training improves VO2peak in heart failure with reduced ejection fraction (HFrEF), but the effect is highly variable as it is dependent on peripheral adaptations. We evaluated changes in plasma-derived miRNAs by acute and chronic exercise to investigate whether these can mechanistically be involved in the variability of exercise-induced adaptations. Methods: Twenty-five male HFrEF patients (left ventricular ejection fraction < 40%, New York Heart Association class ≥ II) participated in a 15-week combined strength and aerobic training program. The effect of training on plasma miRNA levels was compared to 21 male age-matched sedentary HFrEF controls. Additionally, the effect of a single acute exercise bout on plasma miRNA levels was assessed. Levels of 5 miRNAs involved in pathways relevant for exercise adaptation (miR-23a, miR-140, miR-146a, miR-191, and miR-210) were quantified using RT-qPCR and correlated with cardiopulmonary exercise test (CPET), echocardiographic, vascular function, and muscle strength variables. Results: Expression levels of miR-146a decreased with training compared to controls. Acute exercise resulted in a decrease in miR-191 before, but not after training. Baseline miR-23a predicted change in VO2peak independent of age and left ventricular ejection fraction (LVEF). Baseline miR-140 was independently correlated with change in load at the respiratory compensation point and change in body mass index, and baseline miR-146a with change in left ventricular mass index. Conclusion: Plasma-derived miRNAs may reflect the underlying mechanisms of exercise-induced adaptation. In HFrEF patients, baseline miR-23a predicted VO2peak response to training. Several miRNAs were influenced by acute or repeated exercise. These findings warrant exploration in larger patient populations and further mechanistic in vitro studies on their molecular involvement.
Collapse
Affiliation(s)
- Isabel Witvrouwen
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, Antwerp University Hospital, Edegem, Belgium
| | - Andreas B. Gevaert
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, Antwerp University Hospital, Edegem, Belgium
| | - Nadine Possemiers
- Department of Cardiology, Antwerp University Hospital, Edegem, Belgium
- Cardiac Rehabilitation Centre, Antwerp University Hospital, Edegem, Belgium
| | - Bert Ectors
- Department of Cardiology, Antwerp University Hospital, Edegem, Belgium
| | - Tibor Stoop
- Department of Cardiology, Antwerp University Hospital, Edegem, Belgium
| | - Inge Goovaerts
- Department of Cardiology, Antwerp University Hospital, Edegem, Belgium
| | - Evi Boeren
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp, Belgium
| | - Wendy Hens
- Department of Cardiology, Antwerp University Hospital, Edegem, Belgium
- Cardiac Rehabilitation Centre, Antwerp University Hospital, Edegem, Belgium
| | - Paul J. Beckers
- Department of Cardiology, Antwerp University Hospital, Edegem, Belgium
- Cardiac Rehabilitation Centre, Antwerp University Hospital, Edegem, Belgium
| | - Anne Vorlat
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, Antwerp University Hospital, Edegem, Belgium
- Cardiac Rehabilitation Centre, Antwerp University Hospital, Edegem, Belgium
| | - Hein Heidbuchel
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, Antwerp University Hospital, Edegem, Belgium
- Cardiac Rehabilitation Centre, Antwerp University Hospital, Edegem, Belgium
| | - Amaryllis H. Van Craenenbroeck
- Laboratory of Experimental Medicine and Paediatrics, University of Antwerp, Antwerp, Belgium
- Department of Nephrology, University Hospitals Leuven, Leuven, Belgium
| | - Emeline M. Van Craenenbroeck
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, Antwerp University Hospital, Edegem, Belgium
- Cardiac Rehabilitation Centre, Antwerp University Hospital, Edegem, Belgium
| |
Collapse
|
34
|
Bassand K, Metzinger L, Naïm M, Mouhoubi N, Haddad O, Assoun V, Zaïdi N, Sainte‐Catherine O, Butt A, Guyot E, Oudar O, Laguillier‐Morizot C, Sutton A, Charnaux N, Metzinger‐Le Meuth V, Hlawaty H. miR-126-3p is essential for CXCL12-induced angiogenesis. J Cell Mol Med 2021; 25:6032-6045. [PMID: 34117709 PMCID: PMC8256342 DOI: 10.1111/jcmm.16460] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 02/22/2021] [Accepted: 02/27/2021] [Indexed: 12/22/2022] Open
Abstract
Atherosclerosis, in the ultimate stage of cardiovascular diseases, causes an obstruction of vessels leading to ischemia and finally to necrosis. To restore vascularization and tissue regeneration, stimulation of angiogenesis is necessary. Chemokines and microRNAs (miR) were studied as pro-angiogenic agents. We analysed the miR-126/CXCL12 axis and compared impacts of both miR-126-3p and miR-126-5p strands effects in CXCL12-induced angiogenesis. Indeed, the two strands of miR-126 were previously shown to be active but were never compared together in the same experimental conditions regarding their differential functions in angiogenesis. In this study, we analysed the 2D-angiogenesis and the migration assays in HUVEC in vitro and in rat's aortic rings ex vivo, both transfected with premiR-126-3p/-5p or antimiR-126-3p/-5p strands and stimulated with CXCL12. First, we showed that CXCL12 had pro-angiogenic effects in vitro and ex vivo associated with overexpression of miR-126-3p in HUVEC and rat's aortas. Second, we showed that 2D-angiogenesis and migration induced by CXCL12 was abolished in vitro and ex vivo after miR-126-3p inhibition. Finally, we observed that SPRED-1 (one of miR-126-3p targets) was inhibited after CXCL12 treatment in HUVEC leading to improvement of CXCL12 pro-angiogenic potential in vitro. Our results proved for the first time: 1-the role of CXCL12 in modulation of miR-126 expression; 2-the involvement of miR-126 in CXCL12 pro-angiogenic effects; 3-the involvement of SPRED-1 in angiogenesis induced by miR-126/CXCL12 axis.
Collapse
Affiliation(s)
- Kévin Bassand
- INSERM U1148, Laboratory for Vascular Translational Sciences (LVTS), UFR SMBH Université Sorbonne Paris NordBobignyFrance
| | - Laurent Metzinger
- HEMATIM UR 4666, Centre Universitaire de Recherche en Santé (CURS), Université de Picardie Jules Verne, CHU‐Amiens‐PicardieAmiensFrance
| | - Meriem Naïm
- INSERM U1148, Laboratory for Vascular Translational Sciences (LVTS), UFR SMBH Université Sorbonne Paris NordBobignyFrance
| | - Nesrine Mouhoubi
- INSERM U1148, Laboratory for Vascular Translational Sciences (LVTS), UFR SMBH Université Sorbonne Paris NordBobignyFrance
| | - Oualid Haddad
- INSERM U1148, Laboratory for Vascular Translational Sciences (LVTS), UFR SMBH Université Sorbonne Paris NordBobignyFrance
| | - Vincent Assoun
- INSERM U1148, Laboratory for Vascular Translational Sciences (LVTS), UFR SMBH Université Sorbonne Paris NordBobignyFrance
| | - Naïma Zaïdi
- INSERM U1148, Laboratory for Vascular Translational Sciences (LVTS), UFR SMBH Université Sorbonne Paris NordBobignyFrance
| | - Odile Sainte‐Catherine
- INSERM U1148, Laboratory for Vascular Translational Sciences (LVTS), UFR SMBH Université Sorbonne Paris NordBobignyFrance
| | - Amena Butt
- INSERM U1148, Laboratory for Vascular Translational Sciences (LVTS), UFR SMBH Université Sorbonne Paris NordBobignyFrance
| | - Erwan Guyot
- INSERM U1148, Laboratory for Vascular Translational Sciences (LVTS), UFR SMBH Université Sorbonne Paris NordBobignyFrance
- Laboratoire de BiochimieHôpital AvicenneAssistance Publique‐Hôpitaux de ParisBobignyFrance
| | - Olivier Oudar
- INSERM U1148, Laboratory for Vascular Translational Sciences (LVTS), UFR SMBH Université Sorbonne Paris NordBobignyFrance
| | - Christelle Laguillier‐Morizot
- INSERM U1148, Laboratory for Vascular Translational Sciences (LVTS), UFR SMBH Université Sorbonne Paris NordBobignyFrance
- Laboratoire de BiochimieHôpital AvicenneAssistance Publique‐Hôpitaux de ParisBobignyFrance
| | - Angela Sutton
- INSERM U1148, Laboratory for Vascular Translational Sciences (LVTS), UFR SMBH Université Sorbonne Paris NordBobignyFrance
- Laboratoire de BiochimieHôpital AvicenneAssistance Publique‐Hôpitaux de ParisBobignyFrance
| | - Nathalie Charnaux
- INSERM U1148, Laboratory for Vascular Translational Sciences (LVTS), UFR SMBH Université Sorbonne Paris NordBobignyFrance
- Laboratoire de BiochimieHôpital AvicenneAssistance Publique‐Hôpitaux de ParisBobignyFrance
| | - Valérie Metzinger‐Le Meuth
- INSERM U1148, Laboratory for Vascular Translational Sciences (LVTS), UFR SMBH Université Sorbonne Paris NordBobignyFrance
| | - Hanna Hlawaty
- INSERM U1148, Laboratory for Vascular Translational Sciences (LVTS), UFR SMBH Université Sorbonne Paris NordBobignyFrance
| |
Collapse
|
35
|
Dlouha D, Ivak P, Netuka I, Novakova S, Konarik M, Tucanova Z, Lanska V, Hlavacek D, Wohlfahrt P, Hubacek JA, Pitha J. The effect of long-term left ventricular assist device support on flow-sensitive plasma microRNA levels. Int J Cardiol 2021; 339:138-143. [PMID: 34197842 DOI: 10.1016/j.ijcard.2021.06.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/21/2021] [Accepted: 06/25/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND Implantation of current generation left ventricular assist devices (LVADs) in the treatment of end-stage heart failure (HF), not only improves HF symptoms and end-organ perfusion, but also leads to cellular and molecular responses, presumably in response to the continuous flow generated by these devices. MicroRNAs (miRNAs) are important post-transcriptional regulators of gene expression in multiple biological processes, including the pathogenesis of HF. In our study, we examined the influence of long-term LVAD support on changes in flow-sensitive miRNAs in plasma. MATERIALS AND METHODS Blood samples from patients with end-stage heart failure (N = 33; age = 55.7 ± 11.6 years) were collected before LVAD implantation and 3, 6, 9, and 12 months after implantation. Plasma levels of the flow-sensitive miRNAs; miR-10a, miR-10b, miR-146a, miR-146b, miR-663a, miR-663b, miR-21, miR-155, and miR-126 were measured using quantitative PCR. RESULTS Increasing quantities of miR-126 (P < 0.03) and miR-146a (P < 0.02) was observed at each follow-up visit after LVAD implantation. A positive association between miR-155 and Belcaro score (P < 0.04) and an inverse correlation between miR-126 and endothelial function, measured as the reactive hyperemia index (P < 0.05), was observed. CONCLUSIONS Our observations suggest that after LVAD implantation, low pulsatile flow up-regulates plasma levels of circulating flow-sensitive miRNAs, contributing to endothelial dysfunction and vascular remodeling.
Collapse
Affiliation(s)
- Dana Dlouha
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Peter Ivak
- Department of Cardiovascular Surgery, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.; Department of Physiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic; Second Department of Surgery, Department of Cardiovascular Surgery, First Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - Ivan Netuka
- Department of Cardiovascular Surgery, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.; Second Department of Surgery, Department of Cardiovascular Surgery, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Sarka Novakova
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Miroslav Konarik
- Department of Cardiovascular Surgery, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Zuzana Tucanova
- Department of Cardiovascular Surgery, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Vera Lanska
- Statistical Unit, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Daniel Hlavacek
- Department of Cardiovascular Surgery, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.; Department of Physiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Peter Wohlfahrt
- 3rd Department of Internal Medicine, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jaroslav A Hubacek
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.; 3rd Department of Internal Medicine, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jan Pitha
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| |
Collapse
|
36
|
Zhang YQ, Hong L, Jiang YF, Hu SD, Zhang NN, Xu LB, Li HX, Xu GD, Zhou YF, Sun KY. hAECs and their exosomes improve cardiac function after acute myocardial infarction in rats. Aging (Albany NY) 2021; 13:15032-15043. [PMID: 34031267 PMCID: PMC8221312 DOI: 10.18632/aging.203066] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 02/08/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND Human amniotic epithelial cells (hAECs) are seed cells used to treat acute myocardial infarction (AMI), but their mechanism remains unclear. METHODS We cultured hAECs and extracted exosomes from culture supernatants. Next, we established a stable AMI model in rats and treated them with hAECs, exosomes, or PBS. We assess cardiac function after treatment by echocardiography. Additionally, heart tissues were collected and analyzed by Masson's trichrome staining. We conducted the tube formation and apoptosis assays to explore the potential mechanisms. RESULTS Cardiac function was improved, and tissue fibrosis was decreased following implantation of hAECs and their exosomes. Echocardiography showed that the EF and FS were lower in the control group than in the hAEC and exosome groups, and that the LVEDD and LVESD were higher in the control group (P<0.05). Masson's trichrome staining showed that the fibrotic area was larger in the control group. Tube formation was more efficient in the hAEC and exosome groups (P<0.0001). Additionally, the apoptosis rates of myocardial cells in the hAEC and exosome groups were significantly decreased (P<0.0001). CONCLUSIONS hAECs and their exosomes improved the cardiac function of rats after AMI by promoting angiogenesis and reducing the apoptosis of cardiac myocytes.
Collapse
Affiliation(s)
- Yi-Qing Zhang
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu Province, P.R. China
| | - Lu Hong
- Department of Cardiology, DuShu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu Province, P.R. China
| | - Yu-Feng Jiang
- Department of Cardiology, DuShu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu Province, P.R. China
| | - Sheng-Da Hu
- Department of Cardiology, DuShu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu Province, P.R. China
| | - Nan-Nan Zhang
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu Province, P.R. China
| | - Lang-Biao Xu
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu Province, P.R. China
| | - Hong-Xia Li
- Department of Cardiology, DuShu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu Province, P.R. China
| | - Gui-Dong Xu
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu Province, P.R. China
| | - Ya-Feng Zhou
- Department of Cardiology, DuShu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu Province, P.R. China
| | - Kang-Yun Sun
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu Province, P.R. China
| |
Collapse
|
37
|
miR155 Deficiency Reduces Myofibroblast Density but Fails to Improve Cardiac Function after Myocardial Infarction in Dyslipidemic Mouse Model. Int J Mol Sci 2021; 22:ijms22115480. [PMID: 34067440 PMCID: PMC8197013 DOI: 10.3390/ijms22115480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/15/2021] [Accepted: 05/20/2021] [Indexed: 12/20/2022] Open
Abstract
Myocardial infarction remains the most common cause of heart failure with adverse remodeling. MicroRNA (miR)155 is upregulated following myocardial infarction and represents a relevant regulatory factor for cardiac remodeling by engagement in cardiac inflammation, fibrosis and cardiomyocyte hypertrophy. Here, we investigated the role of miR155 in cardiac remodeling and dysfunction following myocardial infarction in a dyslipidemic mouse model. Myocardial infarction was induced in dyslipidemic apolipoprotein E-deficient (ApoE−/−) mice with and without additional miR155 knockout by ligation of the LAD. Four weeks later, echocardiography was performed to assess left ventricular (LV) dimensions and function, and mice were subsequently sacrificed for histological analysis. Echocardiography revealed no difference in LV ejection fractions, LV mass and LV volumes between ApoE−/− and ApoE−/−/miR155−/− mice. Histology confirmed comparable infarction size and unaltered neoangiogenesis in the myocardial scar. Notably, myofibroblast density was significantly decreased in ApoE−/−/miR155−/− mice compared to the control, but no difference was observed for total collagen deposition. Our findings reveal that genetic depletion of miR155 in a dyslipidemic mouse model of myocardial infarction does not reduce infarction size and consecutive heart failure but does decrease myofibroblast density in the post-ischemic scar.
Collapse
|
38
|
Extracellular vesicle-enriched miRNA profiles across pregnancy in the MADRES cohort. PLoS One 2021; 16:e0251259. [PMID: 33979365 PMCID: PMC8115775 DOI: 10.1371/journal.pone.0251259] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/22/2021] [Indexed: 12/31/2022] Open
Abstract
MicroRNA (miRNA) circulating in plasma have been proposed as biomarkers for a variety of conditions and diseases, including complications during pregnancy. During pregnancy, about 15-25% of maternal plasma exosomes, a small size-class of EVs, are hypothesized to originate in the placenta, and may play a role in communication between the fetus and mother. However, few studies have addressed changes in miRNA over the course of pregnancy with repeated measures, nor focused on diverse populations. We describe changes in miRNA in early and late pregnancy from the MADRES cohort of primarily low-income Hispanic women based in Los Angeles, CA. miRNA derived from extracellular-vesicles (EVs) were isolated from maternal blood plasma samples collected in early and late pregnancy. In this study, we identified 64 of 130 detectable miRNA which significantly increased with gestational age at the time of collection (GA), and 26 which decreased with GA. Possible fetal sex-specific associations were observed for 30 of these 90 significant miRNA. Predicted gene targets for miRNA significantly associated with GA were identified using MirDIP and were found to be enriched for Gene Ontology categories that included energetic and metabolic processes but were underrepresented in immune-related categories. Circulating EV-associated miRNA during pregnancy are likely important for maternal-fetal communication, and may play roles in supporting and maintaining a healthy pregnancy, given the changing needs of the fetus.
Collapse
|
39
|
Shao C, Huang Y, Fu B, Pan S, Zhao X, Zhang N, Wang W, Zhang Z, Qiu Y, Wang R, Jin M, Kong D. Targeting c-Jun in A549 Cancer Cells Exhibits Antiangiogenic Activity In Vitro and In Vivo Through Exosome/miRNA-494-3p/PTEN Signal Pathway. Front Oncol 2021; 11:663183. [PMID: 33898323 PMCID: PMC8062808 DOI: 10.3389/fonc.2021.663183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/18/2021] [Indexed: 01/08/2023] Open
Abstract
The oncogene c-Jun is activated by Jun N-terminal kinase (JNK). Exosomes are nanometer-sized membrane vesicles released from a variety of cell types, and are essential for cell-to-cell communication. By using specific JNK inhibitor SP600125 or CRISPR/Cas9 to delete c-Jun, we found that exosomes from SP600125-treated A549 cancer cells (Exo-SP) or from c-Jun-KO-A549 cells (Exo-c-Jun-KO) dramatically inhibited tube formation of HUVECs. And the miR-494 levels in SP600125 treated or c-Jun-KO A549 cells, Exo-SP or Exo-c-Jun-KO, and HUVECs treated with Exo-SP or Exo-c-Jun-KO were significantly decreased. Meanwhile, Exo-SP and Exo-c-Jun-KO enhanced expression of phosphatase and tensin homolog deleted on chromosome ten (PTEN). Addition of miR-494 agomir in Exo-c-Jun-KO treated HUVECs inhibited PTEN expression and promoted tube formation, suggesting the target of miR-494 might be PTEN in HUVECs. Moreover, A549 tumor xenograft model and Matrigel plug assay demonstrated that Exo-c-Jun-KO attenuated tumor growth and angiogenesis through reducing miR-494. Taken together, inhibition of c-Jun in A549 cancer cells exhibited antiangiogenic activity in vitro and in vivo through exosome/miRNA-494-3p/PTEN signal pathway.
Collapse
Affiliation(s)
- Chen Shao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Yingying Huang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Bingjie Fu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Shunli Pan
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Xiaoxia Zhao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Ning Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Wei Wang
- Department of Otorhinolaryngology Head and Neck, Institute of Otorhinolaryngology, Tianjin First Central Hospital, Tianjin, China
| | - Zhe Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Yuling Qiu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Ran Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Meihua Jin
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Dexin Kong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China.,School of Medicine, Tianjin Tianshi College, Tianyuan University, Tianjin, China
| |
Collapse
|
40
|
Lee Y, Im E. Regulation of miRNAs by Natural Antioxidants in Cardiovascular Diseases: Focus on SIRT1 and eNOS. Antioxidants (Basel) 2021; 10:antiox10030377. [PMID: 33802566 PMCID: PMC8000568 DOI: 10.3390/antiox10030377] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/22/2021] [Accepted: 02/26/2021] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the most common cause of morbidity and mortality worldwide. The potential benefits of natural antioxidants derived from supplemental nutrients against CVDs are well known. Remarkably, natural antioxidants exert cardioprotective effects by reducing oxidative stress, increasing vasodilation, and normalizing endothelial dysfunction. Recently, considerable evidence has highlighted an important role played by the synergistic interaction between endothelial nitric oxide synthase (eNOS) and sirtuin 1 (SIRT1) in the maintenance of endothelial function. To provide a new perspective on the role of natural antioxidants against CVDs, we focused on microRNAs (miRNAs), which are important posttranscriptional modulators in human diseases. Several miRNAs are regulated via the consumption of natural antioxidants and are related to the regulation of oxidative stress by targeting eNOS and/or SIRT1. In this review, we have discussed the specific molecular regulation of eNOS/SIRT1-related endothelial dysfunction and its contribution to CVD pathologies; furthermore, we selected nine different miRNAs that target the expression of eNOS and SIRT1 in CVDs. Additionally, we have summarized the alteration of miRNA expression and regulation of activities of miRNA through natural antioxidant consumption.
Collapse
Affiliation(s)
| | - Eunok Im
- Correspondence: ; Tel.: +82-51-510-2812; Fax: +82-51-513-6754
| |
Collapse
|
41
|
Manipulating Pericyte Function with MicroRNAs. Methods Mol Biol 2021. [PMID: 33576975 DOI: 10.1007/978-1-0716-1056-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
MicroRNAs (miRNAs) are expressed in all cell types, including pericytes, and play essential roles in vascular development, homeostasis, and disease. Manipulation of pericytes with miRNA mimics and inhibitors represents an essential tool to study the role of pericytes in vascular development and regeneration and to better understand the therapeutic potential of miRNA manipulation in pericytes. Here we describe methods for manipulating pericyte function by using miRNA mimics and inhibitors. We also describe methods to assess pericyte function (proliferation and migration) after manipulation with miRNAs and explain how miRNA gene targets can be identified and validated in pericytes after manipulation with miRNA.
Collapse
|
42
|
Bolha L, Pižem J, Frank-Bertoncelj M, Hočevar A, Tomšič M, Jurčić V. Identification of microRNAs and their target gene networks implicated in arterial wall remodelling in giant cell arteritis. Rheumatology (Oxford) 2021; 59:3540-3552. [PMID: 32594153 DOI: 10.1093/rheumatology/keaa204] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/31/2020] [Indexed: 01/24/2023] Open
Abstract
OBJECTIVES To identify dysregulated microRNAs (miRNAs) and their gene targets in temporal arteries from GCA patients, and determine their association with GCA pathogenesis and related arterial wall remodelling. METHODS We included 93 formalin-fixed, paraffin-embedded temporal artery biopsies (TABs) from treatment-naïve patients: 54 positive and 17 negative TABs from clinically proven GCA patients, and 22 negative TABs from non-GCA patients. miRNA expression analysis was performed with miRCURY LNA miRNome Human PCR Panels and quantitative real-time PCR. miRNA target gene prediction and pathway enrichment analysis was performed using the miRDB and Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) databases, respectively. RESULTS Dysregulation of 356 miRNAs was determined in TAB-positive GCA arteries, among which 78 were significantly under-expressed and 22 significantly overexpressed above 2-fold, when compared with non-GCA controls. Specifically, TAB-positive GCA arteries were characterized by a significant overexpression of 'pro-synthetic' (miR-21-3p/-21-5p/-146a-5p/-146b-5p/-424-5p) and under-expression of 'pro-contractile' (miR-23b-3p/-125a-5p/-143-3p/-143-5p/-145-3p/-145-5p/-195-5p/-365a-3p) vascular smooth muscle cell phenotype-associated regulatory miRNAs. These miRNAs targeted gene pathways involved in the arterial remodelling and regulation of the immune system, and their expression correlated with the extent of intimal hyperplasia in TABs from GCA patients. Notably, the expression of miR-21-3p/-21-5p/-146a-5p/-146b-5p/-365a-3p differentiated between TAB-negative GCA arteries and non-GCA temporal arteries, revealing these miRNAs as potential biomarkers of GCA. CONCLUSION Identification of dysregulated miRNAs involved in the regulation of the vascular smooth muscle cell phenotype and intimal hyperplasia in GCA arterial lesions, and detection of their expression profiles, enables a novel insight into the complexity of GCA pathogenesis and implies their potential utilization as diagnostic and prognostic biomarkers of GCA.
Collapse
Affiliation(s)
- Luka Bolha
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Jože Pižem
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mojca Frank-Bertoncelj
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, Schlieren, Switzerland
| | - Alojzija Hočevar
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana.,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Matija Tomšič
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana.,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Vesna Jurčić
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
43
|
Diagnostic utility of circulating plasma microRNA-101a in severity of coronary heart disease. Ir J Med Sci 2021; 190:1391-1396. [PMID: 33474702 DOI: 10.1007/s11845-021-02512-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/10/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND For evaluating the severity of coronary heart disease (CHD), coronary arteriography may not be available everywhere due to technical limitations. MicroRNA-101a (miR-101a) associated with inflammation and cholesterol homeostasis. However, whether it related to presence and stratification of CHD is still unknown. AIM We aim to evaluate the value of miR-101a in stratifying CHD patients. METHODS We enrolled 200 CHD patients and 100 controls, and 200 CHD patients were divided into two groups of low and high SYNTAX score (SYNTAX score ≤ 22 versus SYNTAX score ≥ 33). Intergroup comparisons of miR-101a level were compared among the controls and two groups of low and high SYNTAX score. Correlation between miR-101a and blood lipid profiles was analyzed. The logistic regression analysis were conducted to evaluate the risk factors of CHD. RESULTS Relative level of miR-101a in the controls, SYNTAX score ≤ 22 and SYNTAX score ≥ 33 group were 4.61 (1.24-8.91), 3.28 (0.58-6.75) and 2.29 (1.04-3.62), respectively (p < 0.001). All lipid profiles significantly associated with miR-101a expression (all p < 0.001). The odds ratio (OR) of miR-101a in univariate analysis was 0.41 (95% CI, 0.33-0.52). After adjusting for the traditional risk factors, such as blood profiles and history of smoking, the odds ratio of miR-101a was 0.63 (95% CI, 0.47-0.43), which closely associated with CHD (p = 0.002). CONCLUSIONS Circulating miR-101a may be considered as a novel biomarker for evaluating the presence and severity of CHD.
Collapse
|
44
|
Pan S, Zhao X, Shao C, Fu B, Huang Y, Zhang N, Dou X, Zhang Z, Qiu Y, Wang R, Jin M, Kong D. STIM1 promotes angiogenesis by reducing exosomal miR-145 in breast cancer MDA-MB-231 cells. Cell Death Dis 2021; 12:38. [PMID: 33414420 PMCID: PMC7791041 DOI: 10.1038/s41419-020-03304-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 12/16/2022]
Abstract
Cancer cells secrete abundant exosomes, and the secretion can be promoted by an increase of intracellular Ca2+. Stromal interaction molecule 1 (STIM1) plays a key role in shaping Ca2+ signals. MicroRNAs (miRNAs) have been reported to be potential therapeutic targets for many diseases, including breast cancer. Recently, we investigated the effect of exosomes from STIM1-knockout breast cancer MDA-MB-231 cells (Exo-STIM1-KO), and from SKF96365-treated MDA-MB-231 cells (Exo-SKF) on angiogenesis in human umbilical vein endothelial cells (HUVECs) and nude mice. The exosomes Exo-STIM1-KO and Exo-SKF inhibited tube formation by HUVECs remarkably. The miR-145 was increased in SKF96365 treated or STIM1-knockout MDA-MB-231 cells, Exo-SKF and Exo-STIM1-KO, and HUVECs treated with Exo-SKF or Exo-STIM1-KO. Moreover, the expressions of insulin receptor substrate 1 (IRS1), which is the target of miR-145, and the downstream proteins such as Akt/mammalian target of rapamycin (mTOR), Raf/extracellular signal regulated-protein kinase (ERK), and p38 were markedly inhibited in HUVECs treated with Exo-SKF or Exo-STIM1-KO. Matrigel plug assay in vivo showed that tumor angiogenesis was suppressed in Exo-STIM1-KO, but promoted when miR-145 antagomir was added. Taken together, our findings suggest that STIM1 promotes angiogenesis by reducing exosomal miR-145 in breast cancer MDA-MB-231 cells.
Collapse
Affiliation(s)
- Shunli Pan
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, 300070, Tianjin, China
| | - Xiaoxia Zhao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, 300070, Tianjin, China
| | - Chen Shao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, 300070, Tianjin, China
| | - Bingjie Fu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, 300070, Tianjin, China
| | - Yingying Huang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, 300070, Tianjin, China
| | - Ning Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, 300070, Tianjin, China
| | - Xiaojing Dou
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, 300070, Tianjin, China
| | - Zhe Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, 300070, Tianjin, China
| | - Yuling Qiu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, 300070, Tianjin, China
| | - Ran Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, 300070, Tianjin, China
| | - Meihua Jin
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, 300070, Tianjin, China.
| | - Dexin Kong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, 300070, Tianjin, China.
- School of Medicine, Tianjin Tianshi College, Tianyuan University, 301700, Tianjin, China.
| |
Collapse
|
45
|
Frati G, Forte M, di Nonno F, Bordin A, Chimenti I, Picchio V, Cavarretta E, Stanzione R, Bianchi F, Carnevale R, Nocella C, Schiavon S, Vecchio D, Marchitti S, De Falco E, Rubattu S, Paneni F, Biondi‐Zoccai G, Versaci F, Volpe M, Pagano F, Sciarretta S. Inhibition of miR-155 Attenuates Detrimental Vascular Effects of Tobacco Cigarette Smoking. J Am Heart Assoc 2020; 9:e017000. [PMID: 33317369 PMCID: PMC7955400 DOI: 10.1161/jaha.120.017000] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/27/2020] [Indexed: 02/05/2023]
Abstract
Background The role of microRNAs dysregulation in tobacco cigarette smoking-induced vascular damage still needs to be clarified. We assessed the acute effects of tobacco cigarette smoking on endothelial cell-related circulating microRNAs in healthy subjects. In addition, we investigated the potential role of microRNAs in smoking-dependent endothelial cell damage. Methods and Results A panel of endothelial-related microRNAs was quantified in healthy subjects before and after smoking 1 tobacco cigarette. Serum levels of miR-155 were found to be significantly increased shortly after smoking. We also observed a progressive and significant miR-155 accumulation in culture media of human endothelial cells after 30 minutes and up to 4 hours of cigarette smoke condensate treatment in vitro without evidence of cell death, indicating that miR-155 can be released by endothelial cells in response to smoking stress. Cigarette smoke condensate appeared to enhance oxidative stress and impair cell survival, angiogenesis, and NO metabolism in human endothelial cells. Notably, these effects were abrogated by miR-155 inhibition. We also observed that miR-155 inhibition rescued the deleterious effects of cigarette smoke condensate on endothelial-mediated vascular relaxation and oxidative stress in isolated mouse mesenteric arteries. Finally, we found that exogenous miR-155 overexpression mimics the effects of smoking stress by inducing the upregulation of inflammatory markers, impairing angiogenesis and reducing cell survival. These deleterious effects were associated with downregulation of vascular endothelial growth factor and endothelial NO synthetase. Conclusions Our results suggest that miR-155 dysregulation may contribute to the deleterious vascular effects of tobacco smoking.
Collapse
Affiliation(s)
- Giacomo Frati
- Department of Medical‐Surgical Sciences and BiotechnologiesSapienza University of RomeLatinaItaly
- IRCCS NeuromedPozzilliItaly
| | | | | | - Antonella Bordin
- Department of Medical‐Surgical Sciences and BiotechnologiesSapienza University of RomeLatinaItaly
| | - Isotta Chimenti
- Department of Medical‐Surgical Sciences and BiotechnologiesSapienza University of RomeLatinaItaly
- Mediterranea Cardiocentro‐NapoliNapoliItaly
| | - Vittorio Picchio
- Department of Medical‐Surgical Sciences and BiotechnologiesSapienza University of RomeLatinaItaly
| | - Elena Cavarretta
- Department of Medical‐Surgical Sciences and BiotechnologiesSapienza University of RomeLatinaItaly
| | | | | | - Roberto Carnevale
- Department of Medical‐Surgical Sciences and BiotechnologiesSapienza University of RomeLatinaItaly
- Mediterranea Cardiocentro‐NapoliNapoliItaly
| | - Cristina Nocella
- Department of Internal Medicine and Medical SpecialtiesSapienza University of RomeItaly
| | - Sonia Schiavon
- Department of Medical‐Surgical Sciences and BiotechnologiesSapienza University of RomeLatinaItaly
| | - Daniele Vecchio
- Department of Medical‐Surgical Sciences and BiotechnologiesSapienza University of RomeLatinaItaly
| | | | - Elena De Falco
- Department of Medical‐Surgical Sciences and BiotechnologiesSapienza University of RomeLatinaItaly
- Mediterranea Cardiocentro‐NapoliNapoliItaly
| | - Speranza Rubattu
- IRCCS NeuromedPozzilliItaly
- Department of Clinical and Molecular MedicineSchool of Medicine and PsychologySapienza University of RomeOspedale S. AndreaRomeItaly
| | - Francesco Paneni
- Center for Molecular CardiologyUniversity of ZürichSwitzerland
- CardiologyUniversity Heart CenterUniversity Hospital ZurichZurichSwitzerland
| | - Giuseppe Biondi‐Zoccai
- Department of Medical‐Surgical Sciences and BiotechnologiesSapienza University of RomeLatinaItaly
- Mediterranea Cardiocentro‐NapoliNapoliItaly
| | | | - Massimo Volpe
- IRCCS NeuromedPozzilliItaly
- Department of Clinical and Molecular MedicineSchool of Medicine and PsychologySapienza University of RomeOspedale S. AndreaRomeItaly
| | - Francesca Pagano
- Department of Medical‐Surgical Sciences and BiotechnologiesSapienza University of RomeLatinaItaly
| | - Sebastiano Sciarretta
- Department of Medical‐Surgical Sciences and BiotechnologiesSapienza University of RomeLatinaItaly
- IRCCS NeuromedPozzilliItaly
| |
Collapse
|
46
|
Florio MC, Magenta A, Beji S, Lakatta EG, Capogrossi MC. Aging, MicroRNAs, and Heart Failure. Curr Probl Cardiol 2020; 45:100406. [PMID: 30704792 PMCID: PMC10544917 DOI: 10.1016/j.cpcardiol.2018.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 12/23/2018] [Indexed: 12/12/2022]
Abstract
Aging is a major risk factor for heart failure, one of the leading causes of death in Western society. The mechanisms that underlie the different forms of heart failure have been elucidated only in part and the role of noncoding RNAs is still poorly characterized. Specifically, microRNAs (miRNAs), a class of small noncoding RNAs that can modulate gene expression at the posttranscriptional level in all cells, including myocardial and vascular cells, have been shown to play a role in heart failure with reduced ejection fraction. In contrast, miRNAs role in heart failure with preserved ejection fraction, the predominant form of heart failure in the elderly, is still unknown. In this review, we will focus on age-dependent miRNAs in heart failure and on some other conditions that are prevalent in the elderly and are frequently associated with heart failure with preserved ejection fraction.
Collapse
|
47
|
Gareev I, Beylerli O, Yang G, Izmailov A, Shi H, Sun J, Zhao B, Liu B, Zhao S. Diagnostic and prognostic potential of circulating miRNAs for intracranial aneurysms. Neurosurg Rev 2020; 44:2025-2039. [PMID: 33094424 DOI: 10.1007/s10143-020-01427-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/23/2020] [Accepted: 10/20/2020] [Indexed: 12/15/2022]
Abstract
Intracranial aneurysm (IA) is an abnormal focal dilation of an artery in the brain that results from a weakening of the inner muscular layer of a blood vessel wall. IAs represent the most common etiology of nontraumatic subarachnoid hemorrhage (SAH). Despite technological advances in the treatment and use of new diagnostic methods for IAs, they continue to pose a significant risk of mortality and disability. Thus, early recognition of IA with a high risk of rupture is crucial for the stratification of patients with such a formidable disease. MicroRNAs (miRNA) are endogenous noncoding RNAs of 18-22 nucleotides that regulate gene expression at the post-transcriptional level through interaction with 3'-untranslated regions (3'UTRs) of the target mRNAs. MiRNAs are involved in the pathogenesis of IAs, including in the mechanisms of formation, growth, and rupture. It is known that in many biological fluids of the human body, such as blood or cerebrospinal fluid (CSF), numerous miRNAs, called circulating miRNAs, have been detected. The expression profile of circulating miRNAs represents a certain part of the cells in which they are modified and secreted in accordance with the physiological or pathological conditions of these cells. Circulating miRNAs can be secreted from cells into human biological fluids in extracellular vesicles or can be bound to Ago2 protein, which makes them resistant to the effects of RNAse. Therefore, circulating miRNAs are considered as new potential biomarkers of interest in many diseases, including IA.
Collapse
Affiliation(s)
| | | | - Guang Yang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Youzheng Street 23, Nangang District, Harbin, Heilongjiang Province, China.
- Institute of Brain Science, Harbin Medical University, Harbin, China.
| | - Adel Izmailov
- Republican Clinical Oncological Dispensary, Ufa, Republic of Bashkortostan, Russia
| | - Huaizhang Shi
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Youzheng Street 23, Nangang District, Harbin, Heilongjiang Province, China
- Institute of Brain Science, Harbin Medical University, Harbin, China
| | - Jinxian Sun
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Youzheng Street 23, Nangang District, Harbin, Heilongjiang Province, China
- Institute of Brain Science, Harbin Medical University, Harbin, China
| | - Boxian Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Youzheng Street 23, Nangang District, Harbin, Heilongjiang Province, China
- Institute of Brain Science, Harbin Medical University, Harbin, China
| | - Binbing Liu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Youzheng Street 23, Nangang District, Harbin, Heilongjiang Province, China
- Institute of Brain Science, Harbin Medical University, Harbin, China
| | - Shiguang Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Youzheng Street 23, Nangang District, Harbin, Heilongjiang Province, China.
- Institute of Brain Science, Harbin Medical University, Harbin, China.
| |
Collapse
|
48
|
Specific miRNA and Gene Deregulation Characterize the Increased Angiogenic Remodeling of Thoracic Aneurysmatic Aortopathy in Marfan Syndrome. Int J Mol Sci 2020; 21:ijms21186886. [PMID: 32961817 PMCID: PMC7555983 DOI: 10.3390/ijms21186886] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/17/2020] [Accepted: 09/19/2020] [Indexed: 12/11/2022] Open
Abstract
Marfan syndrome (MFS) is a connective tissue disease caused by mutations in the FBN1 gene, leading to alterations in the extracellular matrix microfibril assembly and the early formation of thoracic aorta aneurysms (TAAs). Non-genetic TAAs share many clinico-pathological aspects with MFS and deregulation of some microRNAs (miRNAs) has been demonstrated to be involved in the progression of TAA. In this study, 40 patients undergoing elective ascending aorta surgery were enrolled to compare TAA histomorphological features, miRNA profile and related target genes in order to find specific alterations that may explain the earlier and more severe clinical outcomes in MFS patients. Histomorphological, ultrastructural and in vitro studies were performed in order to compare aortic wall features of MFS and non-MFS TAA. MFS displayed greater glycosaminoglycan accumulation and loss/fragmentation of elastic fibers compared to non-MFS TAA. Immunohistochemistry revealed increased CD133+ angiogenic remodeling, greater MMP-2 expression, inflammation and smooth muscle cell (SMC) turnover in MFS TAA. Cultured SMCs from MFS confirmed higher turnover and α-smooth muscle actin expression compared with non-MFS TAA. Moreover, twenty-five miRNAs, including miR-26a, miR-29, miR-143 and miR-145, were found to be downregulated and only miR-632 was upregulated in MFS TAA in vivo. Bioinformatics analysis revealed that some deregulated miRNAs in MFS TAA are implicated in cell proliferation, extracellular matrix structure/function and TGFβ signaling. Finally, gene analysis showed 28 upregulated and seven downregulated genes in MFS TAA, some of them belonging to the CDH1/APC and CCNA2/TP53 signaling pathways. Specific miRNA and gene deregulation characterized the aortopathy of MFS and this was associated with increased angiogenic remodeling, likely favoring the early and more severe clinical outcomes, compared to non-MFS TAA. Our findings provide new insights concerning the pathogenetic mechanisms of MFS TAA; further investigation is needed to confirm if these newly identified specific deregulated miRNAs may represent potential therapeutic targets to counteract the rapid progression of MFS aortopathy.
Collapse
|
49
|
Smit-McBride Z, Nguyen AT, Yu AK, Modjtahedi SP, Hunter AA, Rashid S, Moisseiev E, Morse LS. Unique molecular signatures of microRNAs in ocular fluids and plasma in diabetic retinopathy. PLoS One 2020; 15:e0235541. [PMID: 32692745 PMCID: PMC7373301 DOI: 10.1371/journal.pone.0235541] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022] Open
Abstract
The main objective of this pilot study was to identify circulatory microRNAs in aqueous or plasma that were reflecting changes in vitreous of diabetic retinopathy patients. Aqueous, vitreous and plasma samples were collected from a total of 27 patients undergoing vitreoretinal surgery: 11 controls (macular pucker or macular hole patients) and 16 with diabetes mellitus(DM): DM-Type I with proliferative diabetic retinopathy(PDR) (DMI-PDR), DM Type II with PDR(DMII-PDR) and DM Type II with nonproliferative DR(DMII-NPDR). MicroRNAs were isolated using Qiagen microRNeasy kit, quantified on BioAnalyzer, and profiled on Affymetrix GeneChip miRNA 3.0 microarrays. Data were analyzed using Expression Console, Transcriptome Analysis Console, and Ingenuity Pathway Analysis. The comparison analysis of circulatory microRNAs showed that out of a total of 847 human microRNA probes on the microarrays, common microRNAs present both in aqueous and vitreous were identified, and a large number of unique microRNA, dependent on the DM type and severity of retinopathy. Most of the dysregulated microRNAs in aqueous and vitreous of DM patients were upregulated, while in plasma, they were downregulated. Dysregulation of miRNAs in aqueous did not appear to be a good representative of the miRNA abundance in vitreous, or plasma, although a few potential candidates for common biomarkers stood out: let-7b, miR-320b, miR-762 and miR-4488. Additionally, each of the DR subtypes showed miRNAs that were uniquely dysregulated in each fluid (i.e. aqueous: for DMII-NPDR was miR-455-3p; for DMII-PDR was miR-296, and for DMI-PDR it was miR-3202). Pathway analysis identified TGF-beta and VEGF pathways affected. The comparative profiling of circulatory miRNAs showed that a small number of them displayed differential presence in diabetic retinopathy vs. controls. A pattern is emerging of unique molecular microRNA signatures in bodily fluids of DR subtypes, offering promise for the use of ocular fluids and plasma for diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Zeljka Smit-McBride
- Department of Ophthalmology & Vision Science, Vitreoretinal Research Laboratory, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Anthony T. Nguyen
- Department of Ophthalmology & Vision Science, Vitreoretinal Research Laboratory, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Alfred K. Yu
- Department of Ophthalmology & Vision Science, Vitreoretinal Research Laboratory, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Sara P. Modjtahedi
- Department of Ophthalmology & Vision Science, Vitreoretinal Research Laboratory, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Allan A. Hunter
- Department of Ophthalmology & Vision Science, Vitreoretinal Research Laboratory, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Saadia Rashid
- Department of Ophthalmology & Vision Science, Vitreoretinal Research Laboratory, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Elad Moisseiev
- Department of Ophthalmology & Vision Science, Vitreoretinal Research Laboratory, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Lawrence S. Morse
- Department of Ophthalmology & Vision Science, Vitreoretinal Research Laboratory, School of Medicine, University of California Davis, Davis, California, United States of America
| |
Collapse
|
50
|
van der Kwast RVCT, Parma L, van der Bent ML, van Ingen E, Baganha F, Peters HAB, Goossens EAC, Simons KH, Palmen M, de Vries MR, Quax PHA, Nossent AY. Adenosine-to-Inosine Editing of Vasoactive MicroRNAs Alters Their Targetome and Function in Ischemia. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 21:932-953. [PMID: 32814251 PMCID: PMC7452086 DOI: 10.1016/j.omtn.2020.07.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/30/2020] [Accepted: 07/14/2020] [Indexed: 12/17/2022]
Abstract
Adenosine-to-inosine (A-to-I) editing in the seed sequence of microRNAs can shift the microRNAs’ targetomes and thus their function. Using public RNA-sequencing data, we identified 35 vasoactive microRNAs that are A-to-I edited. We quantified A-to-I editing of the primary (pri-)microRNAs in vascular fibroblasts and endothelial cells. Nine pri-microRNAs were indeed edited, and editing consistently increased under ischemia. We determined mature microRNA editing for the highest expressed microRNAs, i.e., miR-376a-3p, miR-376c-3p, miR-381-3p, and miR-411-5p. All four mature microRNAs were edited in their seed sequence. We show that both ADAR1 and ADAR2 (adenosine deaminase acting on RNA 1 and RNA 2) can edit pri-microRNAs in a microRNA-specific manner. MicroRNA editing also increased under ischemia in vivo in a murine hindlimb ischemia model and ex vivo in human veins. For each edited microRNA, we confirmed a shift in targetome. Expression of the edited microRNA targetomes, not the wild-type targetomes, was downregulated under ischemia in vivo. Furthermore, microRNA editing enhanced angiogenesis in vitro and ex vivo. In conclusion, we show that microRNA A-to-I editing is a widespread phenomenon, induced by ischemia. Each editing event results in a novel microRNA with a unique targetome, leading to increased angiogenesis.
Collapse
Affiliation(s)
- Reginald V C T van der Kwast
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Laura Parma
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - M Leontien van der Bent
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Eva van Ingen
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Fabiana Baganha
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Hendrika A B Peters
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Eveline A C Goossens
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Karin H Simons
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Meindert Palmen
- Department of Cardiothoracic Surgery, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Margreet R de Vries
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Paul H A Quax
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - A Yaël Nossent
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria; Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|