1
|
Kobzeva K, Ivenkov M, Gromov R, Bushueva O. HSP90 Family Members, Their Regulators and Ischemic Stroke Risk: A Comprehensive Molecular-Genetics and Bioinformatics Analysis. Front Biosci (Schol Ed) 2024; 16:19. [PMID: 39736019 DOI: 10.31083/j.fbs1604019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/15/2024] [Accepted: 11/21/2024] [Indexed: 12/31/2024]
Abstract
BACKGROUND Disruptions in proteostasis are recognized as key drivers in cerebro- and cardiovascular disease progression. Heat shock proteins (HSPs), essential for maintaining protein stability and cellular homeostasis, are pivotal in neuroperotection. Consequently, deepening the understanding the role of HSPs in ischemic stroke (IS) risk is crucial for identifying novel therapeutic targets and advancing neuroprotective strategies. AIM Our objective was to examine the potential correlation between single nucleotide polymorphisms (SNPs) in genes that encode members of the Heat shock protein 90 (HSP90), small heat shock proteins (HSPB), and heat shock factors (HSF) families, and the risk and clinical characteristics of IS. METHODS 953 IS patients and 1265 controls from Central Russia were genotyped for nine SNPs in genes encoding HSP90AA1, HSFs, and HSPBs using the MassArray-4 system and probe-based polymerase chain reaction (PCR). RESULTS In smokers, SNP rs1133026 HSPB8 increased the risk of IS (risk allele A, odds ratio (OR) = 1.43, 95% Confidence Interval (CI) 1.02-2.02, p = 0.035), and rs556439 HSF2 increased the brain infarct size (risk allele A, p = 0.02). In non-smokers, SNPs rs4279640 HSF1 (protective allele T, OR = 0.58, 95% CI 0.37-0.92, p = 0.02) and rs4264324 HSP90AA1 (protective allele C, OR = 0.11, 95% CI 0.01-0.78, p = 0.001) lowered the risk of recurrent stroke; SNP rs7303637 HSPB8 increased the age of onset of IS (protective allele T, p = 0.04). In patients with body mass index (BMI) ≥25, SNPs rs556439 HSF2 (risk allele A, OR = 1.33, 95% CI 1.04-1.69, p = 0.02) and rs549302 HSF2 (risk allele G, OR = 1.34, 95% CI 1.02-1.75, p = 0.03) were linked to a higher risk of IS. CONCLUSIONS The primary molecular mechanisms through which the studied SNPs contribute to IS pathogenesis were found to be the regulation of cell death, inflammatory and oxidative stress responses.
Collapse
Affiliation(s)
- Ksenia Kobzeva
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia
| | - Maxim Ivenkov
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia
| | - Rostislav Gromov
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia
| | - Olga Bushueva
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 305041 Kursk, Russia
| |
Collapse
|
2
|
Soldatov V, Venediktov A, Belykh A, Piavchenko G, Naimzada MD, Ogneva N, Kartashkina N, Bushueva O. Chaperones vs. oxidative stress in the pathobiology of ischemic stroke. Front Mol Neurosci 2024; 17:1513084. [PMID: 39723236 PMCID: PMC11668803 DOI: 10.3389/fnmol.2024.1513084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024] Open
Abstract
As many proteins prioritize functionality over constancy of structure, a proteome is the shortest stave in the Liebig's barrel of cell sustainability. In this regard, both prokaryotes and eukaryotes possess abundant machinery supporting the quality of the proteome in healthy and stressful conditions. This machinery, namely chaperones, assists in folding, refolding, and the utilization of client proteins. The functions of chaperones are especially important for brain cells, which are highly sophisticated in terms of structural and functional organization. Molecular chaperones are known to exert beneficial effects in many brain diseases including one of the most threatening and widespread brain pathologies, ischemic stroke. However, whether and how they exert the antioxidant defense in stroke remains unclear. Herein, we discuss the chaperones shown to fight oxidative stress and the mechanisms of their antioxidant action. In ischemic stroke, during intense production of free radicals, molecular chaperones preserve the proteome by interacting with oxidized proteins, regulating imbalanced mitochondrial function, and directly fighting oxidative stress. For instance, cells recruit Hsp60 and Hsp70 to provide proper folding of newly synthesized proteins-these factors are required for early ischemic response and to refold damaged polypeptides. Additionally, Hsp70 upregulates some dedicated antioxidant pathways such as FOXO3 signaling. Small HSPs decrease oxidative stress via attenuation of mitochondrial function through their involvement in the regulation of Nrf- (Hsp22), Akt and Hippo (Hsp27) signaling pathways as well as mitophagy (Hsp27, Hsp22). A similar function has also been proposed for the Sigma-1 receptor, contributing to the regulation of mitochondrial function. Some chaperones can prevent excessive formation of reactive oxygen species whereas Hsp90 is suggested to be responsible for pro-oxidant effects in ischemic stroke. Finally, heat-resistant obscure proteins (Hero) are able to shield client proteins, thus preventing their possible over oxidation.
Collapse
Affiliation(s)
- Vladislav Soldatov
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, Belgorod, Russia
| | - Artem Venediktov
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Andrei Belykh
- Pathophysiology Department, Kursk State Medical University, Kursk, Russia
- Research Institute of General Pathology, Kursk State Medical University, Kursk, Russia
| | - Gennadii Piavchenko
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Mukhammad David Naimzada
- Research Institute of Experimental Medicine, Kursk State Medical University, Kursk, Russia
- Laboratory of Public Health Indicators Analysis and Health Digitalization, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Nastasya Ogneva
- Scientific Center of Biomedical Technologies, Federal Medical and Biological Agency of Russia, Moscow, Russia
| | - Natalia Kartashkina
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Olga Bushueva
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, Russia
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, Kursk, Russia
| |
Collapse
|
3
|
Kobzeva KA, Gurtovoy DE, Polonikov AV, Pokrovsky VM, Patrakhanov EA, Bushueva OY. Polymorphism in Genes Encoding HSP40 Family Proteins is Associated with Ischemic Stroke Risk and Brain Infarct Size: A Pilot Study. J Integr Neurosci 2024; 23:211. [PMID: 39735968 DOI: 10.31083/j.jin2312211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/17/2024] [Accepted: 09/26/2024] [Indexed: 12/31/2024] Open
Abstract
BACKGROUND Heat shock proteins (HSPs) play a critical role in the molecular mechanisms of ischemic stroke (IS). A possible role for HSP40 family proteins in atherosclerosis progression has already been revealed; however, to date, molecular genetic studies on the involvement of genes encoding proteins of the HSP40 family in IS have not yet been carried out. AIM We sought to determine whether nine single nucleotide polymorphisms (SNPs) in genes encoding HSP40 family proteins (DNAJB1, DNAJB2, DNAJA1, DNAJA2, DNAJA3 and DNAJC7) are associated with the risk and clinical features of IS. METHODS Using TaqMan-based polymerase chain reaction (PCR) and the MassArray-4 system, DNA samples of 2551 Russians - 1306 IS patients and 1245 healthy individuals - were genotyped. RESULTS SNP rs2034598 DNAJA2 decreased the risk of IS exclusively in male patients (odds ratio = 0.81, 95% confidence interval 0.78-0.98, p = 0.028); rs7189628 DNAJA2 increased the brain infarct size (p = 0.04); and rs6500605 DNAJA3 lowered the age of onset of IS (p = 0.03). SNPs rs10448231 DNAJA1, rs7189628 DNAJA2, rs4926222 DNAJB1 and rs2034598 DNAJA2 were involved in the strongest epistatic interactions linked to IS; SNP rs10448231 DNAJA1 is characterised by the most essential mono-effect (2.96% of IS entropy); all of the top SNP-SNP interaction models included the pairwise combination rs7189628 DNAJA2×rs4926222 DNAJB1, which was found to be a key factor determining susceptibility to IS. In interactions with the studied SNPs, smoking was found to have multidirectional effects (synergism, antagonism or additive effect) and the strongest mono-effect (3.47% of IS entropy), exceeding the mono-effects of rs6500605 DNAJA3, rs10448231 DNAJA1, rs2034598 DNAJA2, rs7189628 DNAJA2 and rs4926222 DNAJB1, involved in the best G×E models and determining 0.03%-0.73% of IS entropy. CONCLUSIONS We are the first to discover polymorphisms in genes encoding HSP40 family proteins as a major risk factor for IS and its clinical manifestations. The comprehensive bioinformatics analysis revealed molecular mechanisms, underscoring their significance in the pathogenesis of IS, primarily reflecting the regulation of heat stress, proteostasis and cellular signalling.
Collapse
Affiliation(s)
- Ksenia A Kobzeva
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia
| | - Denis E Gurtovoy
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia
| | - Alexey V Polonikov
- Laboratory of Statistical Genetics and Bioinformatics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 305041 Kursk, Russia
| | - Vladimir M Pokrovsky
- Laboratory of Genetic Technologies and Gene Editing for Biomedicine and Veterinary Medicine, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Evgeny A Patrakhanov
- Laboratory of Genetic Technologies and Gene Editing for Biomedicine and Veterinary Medicine, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Olga Y Bushueva
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 305041 Kursk, Russia
| |
Collapse
|
4
|
Chiang CC, Liu CH, Rethi L, Nguyen HT, Chuang AEY. Phototactic/Photosynthetic/Magnetic-Powered Chlamydomonas Reinhardtii-Metal-Organic Frameworks Micro/Nanomotors for Intelligent Thrombolytic Management and Ischemia Alleviation. Adv Healthc Mater 2024:e2401383. [PMID: 39155411 DOI: 10.1002/adhm.202401383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/31/2024] [Indexed: 08/20/2024]
Abstract
Thrombosis presents a critical health threat globally, with high mortality and incidence rates. Clinical treatment faces challenges such as low thrombolytic agent bioavailability, thrombosis recurrence, ischemic hypoxia damage, and neural degeneration. This study developed biocompatible Chlamydomonas Reinhardtii micromotors (CHL) with photo/magnetic capabilities to address these needs. These CHL micromotors, equipped with phototaxis and photosynthesis abilities, offer promising solutions. A core aspect of this innovation involves incorporating polysaccharides (glycol chitosan (GCS) and fucoidan (F)) into ferric Metal-organic frameworks (MOFs), loaded with urokinase (UK), and subsequently self-assembled onto the multimodal CHL, forming a core-shell microstructure (CHL@GCS/F-UK-MOF). Under light-navigation, CHL@GCS/F-UK-MOF is shown to penetrate thrombi, enhancing thrombolytic biodistribution. Combining CHL@GCS/F-UK-MOF with the magnetic hyperthermia technique achieves stimuli-responsive multiple-release, accelerating thrombolysis and rapidly restoring blocked blood vessels. Moreover, this approach attenuates thrombi-induced ischemic hypoxia disorder and tissue damage. The photosynthetic and magnetotherapeutic properties of CHL@GCS/F-UK-MOF, along with their protective effects, including reduced apoptosis, enhanced behavioral function, induced Heat Shock Protein (HSP), polarized M2 macrophages, and mitigated hypoxia, are confirmed through biochemical, microscopic, and behavioral assessments. This multifunctional biomimetic platform, integrating photo-magnetic techniques, offers a comprehensive approach to cardiovascular management, advancing related technologies.
Collapse
Affiliation(s)
- Chia-Che Chiang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, 235603, Taiwan
| | - Chia-Hung Liu
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
- Taipei Medical University Research Center of Urology and Kidney, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
- Department of Urology, Shuang Ho Hospital, Taipei Medical University, 291 Zhongzheng Road, Zhonghe District, New Taipei City, 23561, Taiwan
| | - Lekshmi Rethi
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, 235603, Taiwan
| | - Hieu Trung Nguyen
- Department of Orthopedics and Trauma, Faculty of Medicine, University of Medicine and Pharmacy, Ho Chi Minh City, 700000, Vietnam
| | - Andrew E-Y Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, 235603, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, 235603, Taiwan
- Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, Taipei, 11696, Taiwan
- Precision Medicine and Translational Cancer Research Center, Taipei Medical University Hospital, Taipei, 11031, Taiwan
| |
Collapse
|
5
|
Hu Y, Li X, Hou K, Zhang S, Zhong S, Ding Q, Xi W, Wang Z, Xing J, Bai F, Xu Q. FCER1G as a novel immune-associated blood biomarker in cardiogenic stroke. Heliyon 2024; 10:e33846. [PMID: 39071704 PMCID: PMC11283116 DOI: 10.1016/j.heliyon.2024.e33846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024] Open
Abstract
Background Cardioembolic stroke (CE) exhibits the highest recurrence rate and mortality rate among all subtypes of cerebral ischemic stroke (CIS), yet its pathogenesis remains uncertain. The immune system plays a pivotal role in the progression of CE. Growing evidence indicates that several immune-associated blood biomarkers may inform the causes of stroke. The study aimed to identify new immune-associated blood biomarkers in patients with CE and create an online predictive tool in distinguishing CE from noncardioembolic stroke (non-CE) in CIS. Methods Gene expression profiles that were publicly available were obtained from the Gene Expression Omnibus (GEO). The identification of differentially expressed genes (DEGs) was conducted using the Limma package. The hub module and hub genes were identified through the application of weighted gene coexpression network analysis (WGCNA). In order to identify potential diagnostic biomarkers for CE, both the random forest (RF) model and least absolute shrinkage and selection operator (LASSO) regression analysis were employed. Concurrently, the CIBERSORT algorithm was employed to evaluate the infiltration of immune cells in CE samples and examine the correlation between the biomarkers and the infiltrating immune cells. The diagnostic gene expression in blood samples was confirmed using qRT-PCR in a self-constructed dataset. Univariate and multiple logistic regression analyses were used to identify the risk factors for CE. Subsequently, the mathematical model of the nomogram was employed via Java's "Spring Boot" framework to develop the corresponding online tool, which was then deployed on a cloud server utilizing "nginx". Results Eleven differentially expressed genes (DEGs) that were upregulated and seven DEGs that were downregulated were identified. Through bioinformatics analysis and clinical sample verification, it was discovered that Fc Fragment of IgE Receptor Ig (FCER1G) could serve as a novel potential blood biomarker for CE. FCER1G, along with other risk factors associated with CE, were utilized to develop a nomogram. The training and validation sets, which consisted of 65 CIS patients, yielded areas under the curve (AUCs) of 0.9722 and 0.9689, respectively. These results indicate a high level of precision in risk delineation by the nomogram. Furthermore, the associated online predictive platform has the potential to serve as a more efficacious and appropriate predictive instrument (https://www.origingenetic.com/CardiogenicStroke-FCER1G) for distinguishing between CE and non-CE. Conclusion Blood biomarker FCER1G has the potential to identify patients who are at a higher risk of cardioembolism and direct the search for occult AF.The utilization of this online tool is anticipated to yield significant implications in terms of distinguishing between CE and non-CE, as well as enhancing the optimization of treatment decision support.
Collapse
Affiliation(s)
- Yuanzheng Hu
- Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Nanyang Normal University, Nanyang, 473061, China
| | - Xiangxin Li
- Henan Provincial Key Laboratory of Stroke Prevention and Treatment, Nanyang Central Hospital, Nanyang, 473000, China
| | - Kaiqi Hou
- School of Computer Science and Technology, Nanyang Normal University, Nanyang, 473061, China
| | - Shoudu Zhang
- Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Nanyang Normal University, Nanyang, 473061, China
| | - Siyi Zhong
- Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Nanyang Normal University, Nanyang, 473061, China
| | - Qian Ding
- Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Nanyang Normal University, Nanyang, 473061, China
| | - Wuyang Xi
- Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Nanyang Normal University, Nanyang, 473061, China
| | - Zongqing Wang
- Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Nanyang Normal University, Nanyang, 473061, China
| | - Juan Xing
- Henan Provincial Key Laboratory of Stroke Prevention and Treatment, Nanyang Central Hospital, Nanyang, 473000, China
| | - Fanghui Bai
- Henan Provincial Key Laboratory of Stroke Prevention and Treatment, Nanyang Central Hospital, Nanyang, 473000, China
| | - Qian Xu
- Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Nanyang Normal University, Nanyang, 473061, China
| |
Collapse
|
6
|
Lin M, Hu L, Shen S, Liu J, Liu Y, Xu Y, Chen H, Sugimoto K, Li J, Kamitsukasa I, Hiwasa T, Wang H, Xu A. Atherosclerosis-related biomarker PABPC1 predicts pan-cancer events. Stroke Vasc Neurol 2024; 9:108-125. [PMID: 37311641 PMCID: PMC11103157 DOI: 10.1136/svn-2022-002246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 05/25/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND Atherosclerosis (AS) and tumours are the leading causes of death worldwide and share common risk factors, detection methods and molecular markers. Therefore, searching for serum markers shared by AS and tumours is beneficial to the early diagnosis of patients. METHODS The sera of 23 patients with AS-related transient ischaemic attack were screened by serological identification of antigens through recombinant cDNA expression cloning (SEREX), and cDNA clones were identified. Pathway function enrichment analysis was performed on cDNA clones to identify their biological pathways and determine whether they were related to AS or tumours. Subsequently, gene-gene and protein-protein interactions were performed and AS-associated markers would be discovered. The expression of AS biomarkers in human normal organs and pan-cancer tumour tissues were explored. Then, immune infiltration level and tumour mutation burden of various immune cells were evaluated. Survival curves analysis could show the expression of AS markers in pan-cancer. RESULTS AS-related sera were screened by SEREX, and 83 cDNA clones with high homology were obtained. Through functional enrichment analysis, it was found that their functions were closely related to AS and tumour functions. After multiple biological information interaction screening and the external cohort validating, poly(A) binding protein cytoplasmic 1 (PABPC1) was found to be a potential AS biomarker. To assess whether PABPC1 was related to pan-cancer, its expression in different tumour pathological stages and ages was screened. Since AS-associated proteins were closely related to cancer immune infiltration, we investigated and found that PABPC1 had the same role in pan-cancer. Finally, analysis of Kaplan-Meier survival curves revealed that high PABPC1 expression in pan-cancer was associated with high risk of death. CONCLUSIONS Through the findings of SEREX and bioinformatics pan-cancer analysis, we concluded that PABPC1 might serve as a potential biomarker for the prediction and diagnosis of AS and pan-cancer.
Collapse
Affiliation(s)
- Miao Lin
- Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
- Department of Anesthesiology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Liubing Hu
- Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
- Department of Anesthesiology, The First Affiliated Hospital, Jinan University, Guangzhou, China
- The Biomedical Translational Research Institute,Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Si Shen
- Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
- Department of Radiology, Medical Imaging Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jiyue Liu
- Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
- Department of Anesthesiology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yanyan Liu
- The Biomedical Translational Research Institute,Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Yixian Xu
- Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
- Department of Anesthesiology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Honglin Chen
- Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
- Department of Radiology, Medical Imaging Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Kazuo Sugimoto
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jianshuang Li
- The Biomedical Translational Research Institute,Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Ikuo Kamitsukasa
- Department of Neurology, Chiba Rosai Hospital, Chiba, Japan
- Department of Neurology, Chibaken Saiseikai Narashino Hospital, Chiba, Japan
| | - Takaki Hiwasa
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hao Wang
- Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
- Department of Anesthesiology, The First Affiliated Hospital, Jinan University, Guangzhou, China
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Anding Xu
- Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
7
|
Lopez-Pedrera C, Oteros R, Ibáñez-Costa A, Luque-Tévar M, Muñoz-Barrera L, Barbarroja N, Chicano-Gálvez E, Marta-Enguita J, Orbe J, Velasco F, Perez-Sanchez C. The thrombus proteome in stroke reveals a key role of the innate immune system and new insights associated with its etiology, severity, and prognosis. J Thromb Haemost 2023; 21:2894-2907. [PMID: 37100394 DOI: 10.1016/j.jtha.2023.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/30/2023] [Accepted: 04/13/2023] [Indexed: 04/28/2023]
Abstract
BACKGROUND Nowadays little is known about the molecular profile of the occluding thrombus of patients with ischemic stroke. OBJECTIVES To analyze the proteomic profile of thrombi in patients who experienced an ischemic stroke in order to gain insights into disease pathogenesis. METHODS Thrombi from an exploratory cohort of patients who experienced a stroke were obtained by thrombectomy and analyzed by sequential window acquisition of all theoretical spectra-mass spectrometry. Unsupervised k-means clustering analysis was performed to stratify patients who experienced a stroke. The proteomic profile was associated with both the neurological function (National Institute of Health Stroke Scale [NIHSS]) and the cerebral involvement (Alberta Stroke Program Early CT Score [ASPECTS]) prior to thrombectomy and the clinical status of patients at 3 months using the modified Rankin Scale. In an independent cohort of 210 patients who experienced a stroke, the potential role of neutrophils in stroke severity was interrogated. RESULTS Proteomic analysis identified 580 proteins in thrombi, which were stratified into 4 groups: hemostasis, proteasome and neurological diseases, structural proteins, and innate immune system and neutrophils. The thrombus proteome identified 3 clusters of patients with distinctive severity, prognosis, and etiology of the stroke. A protein signature clearly distinguished atherothrombotic and cardioembolic strokes. Several proteins were significantly correlated with the severity of the stroke (NIHSS and ASPECTS). Functional proteomic analysis highlighted the prominent role of neutrophils in stroke severity. This was in line with the association of neutrophil activation markers and count with NIHSS, ASPECTS, and the modified Rankin Scale score 90 days after the event. CONCLUSION The use of sequential window acquisition of all theoretical spectra-mass spectrometry in thrombi from patients who experienced an ischemic stroke has provided new insights into pathways and players involved in its etiology, severity, and prognosis. The prominent role of the innate immune system identified might pave the way for the development of new biomarkers and therapeutic approaches in this disease.
Collapse
Affiliation(s)
- Chary Lopez-Pedrera
- Rheumatology Service, Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, Córdoba, Spain.
| | - Rafael Oteros
- Diagnostic and Therapeutic Neuroradiology Unit, Reina Sofia Hospital, Córdoba, Spain
| | - Alejandro Ibáñez-Costa
- Rheumatology Service, Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, Córdoba, Spain; Department of Cell Biology, Immunology and Physiology, Agrifood Campus of International Excellence, University of Córdoba, ceiA3, Córdoba, Spain
| | - María Luque-Tévar
- Rheumatology Service, Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, Córdoba, Spain
| | - Laura Muñoz-Barrera
- Rheumatology Service, Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, Córdoba, Spain
| | - Nuria Barbarroja
- Rheumatology Service, Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, Córdoba, Spain; Cobiomic Bioscience SL, EBT University of Córdoba/IMIBIC, Córdoba, Spain
| | - Eduardo Chicano-Gálvez
- IMIBIC Mass Spectrometry and Molecular Imaging Unit, Maimonides Biomedical Research Institute of Córdoba, Reina Sofia University Hospital, University of Córdoba, Córdoba, Spain
| | - Juan Marta-Enguita
- Atherothrombosis-Laboratory, Cardiovascular Diseases Program, CIMA-Universidad Navarra, IdiSNA, Pamplona, Spain; Neurology Department, Hospital Universitario Navarra, Pamplona, Spain; RICORS-ICTUS, Instituto Salud Carlos III, Madrid, Spain
| | - Josune Orbe
- Atherothrombosis-Laboratory, Cardiovascular Diseases Program, CIMA-Universidad Navarra, IdiSNA, Pamplona, Spain; RICORS-ICTUS, Instituto Salud Carlos III, Madrid, Spain
| | - Francisco Velasco
- Department of Medicine, University of Córdoba, Maimonides Biomedical Research Institute of Córdoba, Córdoba, Spain
| | - Carlos Perez-Sanchez
- Rheumatology Service, Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, Córdoba, Spain; Department of Cell Biology, Immunology and Physiology, Agrifood Campus of International Excellence, University of Córdoba, ceiA3, Córdoba, Spain; Cobiomic Bioscience SL, EBT University of Córdoba/IMIBIC, Córdoba, Spain. https://twitter.com/carlosps85
| |
Collapse
|
8
|
Wu CK, Teng S, Bai F, Liao XB, Zhou XM, Liu QM, Xiao YC, Zhou SH. Changes of ubiquitylated proteins in atrial fibrillation associated with heart valve disease: proteomics in human left atrial appendage tissue. Front Cardiovasc Med 2023; 10:1198486. [PMID: 37701139 PMCID: PMC10493305 DOI: 10.3389/fcvm.2023.1198486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/27/2023] [Indexed: 09/14/2023] Open
Abstract
Background Correlations between posttranslational modifications and atrial fibrillation (AF) have been demonstrated in recent studies. However, it is still unclear whether and how ubiquitylated proteins relate to AF in the left atrial appendage of patients with AF and valvular heart disease. Methods Through LC-MS/MS analyses, we performed a study on tissues from eighteen subjects (9 with sinus rhythm and 9 with AF) who underwent cardiac valvular surgery. Specifically, we explored the ubiquitination profiles of left atrial appendage samples. Results In summary, after the quantification ratios for the upregulated and downregulated ubiquitination cutoff values were set at >1.5 and <1:1.5, respectively, a total of 271 sites in 162 proteins exhibiting upregulated ubiquitination and 467 sites in 156 proteins exhibiting downregulated ubiquitination were identified. The ubiquitylated proteins in the AF samples were enriched in proteins associated with ribosomes, hypertrophic cardiomyopathy (HCM), glycolysis, and endocytosis. Conclusions Our findings can be used to clarify differences in the ubiquitination levels of ribosome-related and HCM-related proteins, especially titin (TTN) and myosin heavy chain 6 (MYH6), in patients with AF, and therefore, regulating ubiquitination may be a feasible strategy for AF.
Collapse
Affiliation(s)
- Chen-Kai Wu
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Shuai Teng
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Fan Bai
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiao-Bo Liao
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xin-Min Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qi-Ming Liu
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi-Chao Xiao
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Sheng-Hua Zhou
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
9
|
Kobzeva KA, Soldatova MO, Stetskaya TA, Soldatov VO, Deykin AV, Freidin MB, Bykanova MA, Churnosov MI, Polonikov AV, Bushueva OY. Association between HSPA8 Gene Variants and Ischemic Stroke: A Pilot Study Providing Additional Evidence for the Role of Heat Shock Proteins in Disease Pathogenesis. Genes (Basel) 2023; 14:1171. [PMID: 37372351 PMCID: PMC10298525 DOI: 10.3390/genes14061171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
HSPA8 is involved in many stroke-associated cellular processes, playing a pivotal role in the protein quality control system. Here we report the results of the pilot study aimed at determining whether HSPA8 SNPs are linked to the risk of ischemic stroke (IS). DNA samples from 2139 Russians (888 IS patients and 1251 healthy controls) were genotyped for tagSNPs (rs1461496, rs10892958, and rs1136141) in the HSPA8 gene using probe-based PCR. SNP rs10892958 of HSPA8 was associated with an increased risk (risk allele G) of IS in smokers (OR = 1.37; 95% CI = 1.07-1.77; p = 0.01) and patients with low fruit and vegetable consumption (OR = 1.36; 95% CI = 1.14-1.63; p = 0.002). SNP rs1136141 of HSPA8 was also associated with an increased risk of IS (risk allele A) exclusively in smokers (OR = 1.68; 95% CI = 1.23-2.28; p = 0.0007) and in patients with a low fruit and vegetable intake (OR = 1.29; 95% CI = 1.05-1.60; p = 0.04). Sex-stratified analysis revealed an association of rs10892958 HSPA8 with an increased risk of IS in males (risk allele G; OR = 1.30; 95% CI = 1.05-1.61; p = 0.01). Thus, SNPs rs10892958 and rs1136141 in the HSPA8 gene represent novel genetic markers of IS.
Collapse
Affiliation(s)
- Ksenia A. Kobzeva
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia
| | - Maria O. Soldatova
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia
| | - Tatiana A. Stetskaya
- Laboratory of Statistical Genetics and Bioinformatics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia
| | - Vladislav O. Soldatov
- Laboratory of Genome Editing for Biomedicine and Animal Health, Belgorod State National Research University, 308015 Belgorod, Russia
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Alexey V. Deykin
- Laboratory of Genome Editing for Biomedicine and Animal Health, Belgorod State National Research University, 308015 Belgorod, Russia
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Maxim B. Freidin
- Department of Biology, School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK
- Laboratory of Population Genetics, Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Science, 634050 Tomsk, Russia
| | - Marina A. Bykanova
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia
| | - Mikhail I. Churnosov
- Department of Medical Biological Disciplines, Belgorod State University, 308015 Belgorod, Russia
| | - Alexey V. Polonikov
- Laboratory of Statistical Genetics and Bioinformatics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 305041 Kursk, Russia
| | - Olga Y. Bushueva
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 305041 Kursk, Russia
| |
Collapse
|
10
|
Yang Y, Zhang M, Li Z, He S, Ren X, Wang L, Wang Z, Shu S. Identification and cross-validation of autophagy-related genes in cardioembolic stroke. Front Neurol 2023; 14:1097623. [PMID: 37305740 PMCID: PMC10248509 DOI: 10.3389/fneur.2023.1097623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
Objective Cardioembolic stroke (CE stroke, also known as cardiogenic cerebral embolism, CCE) has the highest recurrence rate and fatality rate among all subtypes of ischemic stroke, the pathogenesis of which was unclear. Autophagy plays an essential role in the development of CE stroke. We aim to identify the potential autophagy-related molecular markers of CE stroke and uncover the potential therapeutic targets through bioinformatics analysis. Methods The mRNA expression profile dataset GSE58294 was obtained from the GEO database. The potential autophagy-related differentially expressed (DE) genes of CE stroke were screened by R software. Protein-protein interactions (PPIs), correlation analysis, and gene ontology (GO) enrichment analysis were applied to the autophagy-related DE genes. GSE66724, GSE41177, and GSE22255 were introduced for the verification of the autophagy-related DE genes in CE stroke, and the differences in values were re-calculated by Student's t-test. Results A total of 41 autophagy-related DE genes (37 upregulated genes and four downregulated genes) were identified between 23 cardioembolic stroke patients (≤3 h, prior to treatment) and 23 healthy controls. The KEGG and GO enrichment analysis of autophagy-related DE genes indicated several enriched terms related to autophagy, apoptosis, and ER stress. The PPI results demonstrated the interactions between these autophagy-related genes. Moreover, several hub genes, especially for CE stroke, were identified and re-calculated by Student's t-test. Conclusion We identified 41 potential autophagy-related genes associated with CE stroke through bioinformatics analysis. SERPINA1, WDFY3, ERN1, RHEB, and BCL2L1 were identified as the most significant DE genes that may affect the development of CE stroke by regulating autophagy. CXCR4 was identified as a hub gene of all types of strokes. ARNT, MAPK1, ATG12, ATG16L2, ATG2B, and BECN1 were identified as particular hub genes for CE stroke. These results may provide insight into the role of autophagy in CE stroke and contribute to the discovery of potential therapeutic targets for CE stroke treatment.
Collapse
Affiliation(s)
- Yufang Yang
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Min Zhang
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziqing Li
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shen He
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xueqi Ren
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Linmei Wang
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhifei Wang
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shi Shu
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
11
|
Li RB, Yang XH, Zhang JD, Cui W. GAS6-AS1, a long noncoding RNA, functions as a key candidate gene in atrial fibrillation related stroke determined by ceRNA network analysis and WGCNA. BMC Med Genomics 2023; 16:51. [PMID: 36894947 PMCID: PMC9996875 DOI: 10.1186/s12920-023-01478-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Stroke attributable to atrial fibrillation (AF related stroke, AFST) accounts for 13 ~ 26% of ischemic stroke. It has been found that AFST patients have a higher risk of disability and mortality than those without AF. Additionally, it's still a great challenge to treat AFST patients because its exact mechanism at the molecular level remains unclear. Thus, it's vital to investigate the mechanism of AFST and search for molecular targets of treatment. Long non-coding RNAs (lncRNAs) are related to the pathogenesis of various diseases. However, the role of lncRNAs in AFST remains unclear. In this study, AFST-related lncRNAs are explored using competing endogenous RNA (ceRNA) network analysis and weighted gene co-expression network analysis (WGCNA). METHODS GSE66724 and GSE58294 datasets were downloaded from GEO database. After data preprocessing and probe reannotation, differentially expressed lncRNAs (DELs) and differentially expressed mRNAs (DEMs) between AFST and AF samples were explored. Then, functional enrichment analysis and protein-protein interaction (PPI) network analysis of the DEMs were performed. At the meantime, ceRNA network analysis and WGCNA were performed to identify hub lncRNAs. The hub lncRNAs identified both by ceRNA network analysis and WGCNA were further validated by Comparative Toxicogenomics Database (CTD). RESULTS In all, 19 DELs and 317 DEMs were identified between the AFST and AF samples. Functional enrichment analysis suggested that the DEMs associated with AFST were mainly enriched in the activation of the immune response. Two lncRNAs which overlapped between the three lncRNAs identified by the ceRNA network analysis and the 28 lncRNAs identified by the WGCNA were screened as hub lncRNAs for further validation. Finally, lncRNA GAS6-AS1 turned out to be associated with AFST by CTD validation. CONCLUSION These findings suggested that low expression of GAS6-AS1 might exert an essential role in AFST through downregulating its downstream target mRNAs GOLGA8A and BACH2, and GAS6-AS1 might be a potential target for AFST therapy.
Collapse
Affiliation(s)
- Rui-Bin Li
- Department of Cardiology, The Second Hospital of Hebei Medical University, No. 215 West Heping Road, Shijiazhuang, 050000, Hebei, China
| | - Xiao-Hong Yang
- Department of Cardiology, The Second Hospital of Hebei Medical University, No. 215 West Heping Road, Shijiazhuang, 050000, Hebei, China
| | - Ji-Dong Zhang
- Department of Cardiology, The Second Hospital of Hebei Medical University, No. 215 West Heping Road, Shijiazhuang, 050000, Hebei, China
| | - Wei Cui
- Department of Cardiology, The Second Hospital of Hebei Medical University, No. 215 West Heping Road, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
12
|
Imbalzano E, Murdaca G, Orlando L, Gigliotti-De Fazio M, Terranova D, Tonacci A, Gangemi S. Alarmins as a Possible Target of Future Therapies for Atrial Fibrillation. Int J Mol Sci 2022; 23:15946. [PMID: 36555588 PMCID: PMC9780784 DOI: 10.3390/ijms232415946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/23/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
To date, worldwide, atrial fibrillation is the most common cardiovascular disease in adults, with a prevalence of 2% to 4%. The trigger of the pathophysiological mechanism of arrhythmia includes several factors that sustain and exacerbate the disease. Ectopic electrical conductivity, associated with the resulting atrial mechanical dysfunction, atrial remodeling, and fibrosis, promotes hypo-contractility and blood stasis, involving micro endothelial damage. This causes a significant local inflammatory reaction that feeds and sustains the arrhythmia. In our literature review, we evaluate the role of HMGB1 proteins, heat shock proteins, and S100 in the pathophysiology of atrial fibrillation, offering suggestions for possible new therapeutic strategies. We selected scientific publications on the specific topics "alarmins" and "atrial fibrillation" from PubMed. The nonsystematic review confirms the pivotal role of molecules such as S100 proteins, high-mobility group box-1, and heat shock proteins in the molecular pattern of atrial fibrillation. These results could be considered for new therapeutic opportunities, including inhibition of oxidative stress, evaluation of new anticoagulant drugs with novel therapeutic targets, molecular and genetic studies, and consideration of these alarmins as predictive or prognostic biomarkers of disease onset and severity.
Collapse
Affiliation(s)
- Egidio Imbalzano
- Department of Clinical and Experimental Medicine, University of Messina, n. Viale Benedetto XV, n. 6, 98125 Messina, Italy
| | - Giuseppe Murdaca
- Department of Internal Medicine, Ospedale Policlinico San Martino, University of Genova, 16132 Genova, Italy
| | - Luana Orlando
- Department of Clinical and Experimental Medicine, University of Messina, n. Viale Benedetto XV, n. 6, 98125 Messina, Italy
| | - Marianna Gigliotti-De Fazio
- Department of Clinical and Experimental Medicine, University of Messina, n. Viale Benedetto XV, n. 6, 98125 Messina, Italy
| | - Dario Terranova
- Department of Clinical and Experimental Medicine, University of Messina, n. Viale Benedetto XV, n. 6, 98125 Messina, Italy
| | - Alessandro Tonacci
- Clinical Physiology Institute, National Research Council of Italy (IFC-CNR), 56124 Pisa, Italy
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| |
Collapse
|
13
|
Liu YK, Liu GH, Liu L, Wang AB, Cheng TY, Duan DY. Comparative analysis of the anticoagulant activities and immunogenicity of HSC70 and HSC70 TKD of Haemaphysalis flava. Parasit Vectors 2022; 15:411. [PMID: 36335395 PMCID: PMC9636643 DOI: 10.1186/s13071-022-05521-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/02/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Haemaphysalis flava is a hematophagous ectoparasite that acquires the nutrition needed for development and reproduction by sucking blood and digesting the blood meal. During blood-sucking and blood-meal digestion, the prevention of blood coagulation is important for this tick. Previous studies have shown that heat shock cognate 70 (HSC70) protein has certain anticoagulant activities, but its immunogenicity remains unclear. Also, whether the mutation of individual bases of the TKD-like peptide of HSC70 through the overlap extension method can change its anticoagulant activities and immunogenicity remains to be investigated. METHODS The gene encoding the HSC70 protein was cloned from a complementary DNA library synthesized from H. flava. The coding gene of the TKD-like peptide of HSC70 was mutated into a TKD peptide coding gene (HSC70TKD) using the overlap extension method. Escherichia coli prokaryotic expression plasmids were constructed to obtain the recombinant proteins of HSC70 (rHSC70) and HSC70TKD (rHSC70TKD). The purified rHSC70 and rHSC70TKD were evaluated at different concentrations for anticoagulant activities using four in vitro clotting assays. Emulsifying recombinant proteins with complete and incomplete Freund's adjuvants were subcutaneously immunized in Sprague Dawley rats. The serum antibody titers and serum concentrations of interferon-gamma (IFN-γ) and interleukin-4 (IL-4) were detected using an indirect enzyme-linked immunosorbent assay to assess the immunogenicity of rHSC70 and rHSC70TKD. RESULTS The open reading frame of HSC70 was successfully amplified and found to have a length of 1958 bp. The gene encoding the TKD-like peptide of HSC70 was artificially mutated, with the 1373-position adenine (A) of the original sequence mutated into guanine (G), the 1385-position cytosine (C) mutated into G and the 1386-position G mutated into C. rHSC70 and rHSC70TKD that fused with His-tag were obtained using the expression plasmids pET-28a-HSC70 and pET-28a-HSC70TKD, respectively. rHSC70 and rHSC70TKD prolonged the thrombin time (TT) and reduced the fibrinogen (FIB) content in the plasma, but did not affect the prothrombin time (PT) or activated partial thromboplastin time (APTT) when compared to the negative control. Interestingly, the ability of rHSC70TKD to prolong the TT and reduce the FIB content in the plasma was better than that of rHSC70. The specific antibody titers of both rHSC70 and rHSC70TKD in rat serum reached 1:124,000 14 days after the third immunization. The serum concentration of IFN-γ in the rHSC70TKD group was higher than that in the rHSC70 group. The rHSC70 group has the highest serum concentration of IL-4, and the serum concentration of IL-4 in the rHSC70TKD group was higher than that in the negative group. CONCLUSIONS rHSC70 and rHSC70TKD exhibited anticoagulant activities by prolonging the TT and reducing the FIB content in vitro. rHSC70TKD had better anticoagulant activities than rHSC70. Both rHSC70 and rHSC70TKD had good immunogenicity and induced humoral and cellular immunity.
Collapse
Affiliation(s)
- Yu-Ke Liu
- grid.257160.70000 0004 1761 0331Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128 Hunan Province China
| | - Guo-Hua Liu
- grid.257160.70000 0004 1761 0331Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128 Hunan Province China
| | - Lei Liu
- grid.257160.70000 0004 1761 0331Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128 Hunan Province China
| | - Ai-Bing Wang
- grid.257160.70000 0004 1761 0331Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128 Hunan Province China
| | - Tian-Yin Cheng
- grid.257160.70000 0004 1761 0331Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128 Hunan Province China
| | - De-Yong Duan
- grid.257160.70000 0004 1761 0331Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128 Hunan Province China
| |
Collapse
|
14
|
Zhao P, Zou J, Zhou F, Zhu Y, Song Q, Yu D, Li X. Immune features of COVID-19 convalescent individuals revealed by a single-cell RNA sequencing. Int Immunopharmacol 2022; 108:767. [PMID: 35453072 PMCID: PMC9013654 DOI: 10.1016/j.intimp.2022.108767] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/22/2022] [Accepted: 04/05/2022] [Indexed: 02/05/2023]
Abstract
It remains unclear whether immune responses following natural infection can be sustained or potentially prove critical for long-term immune protection against SARS-CoV-2 reinfection. Here, we systematically mapped the phenotypic landscape of SARS-CoV-2-specific immune responses in peripheral blood samples of convalescent patients with COVID-19 by single-cell RNA sequencing. The relative percentage of the CD8 + effector memory subset was increased in both convalescent moderate and severe cases, but NKT-CD160 and marginal zone B clusters were decreased. Innate immune responses were attenuated reflected by decreased expression of genes involved in interferon-gamma, leukocyte migration and neutrophil mediated immune response in convalescent COVID-19 patients. Functions of T cell were strengthened in convalescent COVID-19 patients by clear endorsement of increased expression of genes involved in biological processes of regulation of T cell activation, differentiation and cell-cell adhesion. In addition, T cell mediated immune responses were enhanced with remarkable clonal expansions of TCR and increased transition of CD4 + effector memory and CD8 + effector-GNLY in severe subjects. B cell immune responses displayed complicated and dualfunctions during convalescence of COVID-19, providing a novel mechanism that B cell activation was observed especially in moderate while humoral immune response was weakened. Interestingly, HLA class I genes displayed downregulation while HLA class II genes upregulation in both T and B cell subsets in convalescent individuals. Our results showed that innate immunity was declined but SARS-CoV-2-specific T cell responses were retained even strengthened whereas complicated and dualfunctions of B cells, including declined humoral immunity were presented at several months following infections.
Collapse
Affiliation(s)
- Pingsen Zhao
- Department of Laboratory Medicine, Yuebei People's Hospital, Shantou University Medical College, Shaoguan 512025, China
- Laboratory for Diagnosis of Clinical Microbiology and Infection, Yuebei People's Hospital, Shantou University Medical College, Shaoguan 512025, China
- Shaoguan Municipal Quality Control Center for Laboratory Medicine, Yuebei People's Hospital, Shantou University Medical College, Shaoguan 512025 China
| | - Jiahua Zou
- Cancer Center, Huanggang Hospital of Traditional Chinese Medicine, Huanggang 438000, China
| | - Fan Zhou
- Department of Laboratory Medicine, Yuebei People's Hospital, Shantou University Medical College, Shaoguan 512025, China; Laboratory for Diagnosis of Clinical Microbiology and Infection, Yuebei People's Hospital, Shantou University Medical College, Shaoguan 512025, China; Shaoguan Municipal Quality Control Center for Laboratory Medicine, Yuebei People's Hospital, Shantou University Medical College, Shaoguan 512025 China
| | - Yanyan Zhu
- Department of Laboratory Medicine, Yuebei People's Hospital, Shantou University Medical College, Shaoguan 512025, China; Laboratory for Diagnosis of Clinical Microbiology and Infection, Yuebei People's Hospital, Shantou University Medical College, Shaoguan 512025, China; Shaoguan Municipal Quality Control Center for Laboratory Medicine, Yuebei People's Hospital, Shantou University Medical College, Shaoguan 512025 China
| | - Qibin Song
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Dongdong Yu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiangpan Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
15
|
Kitchen LC, Berman M, Halper J, Chazot P. Rationale for 1068 nm Photobiomodulation Therapy (PBMT) as a Novel, Non-Invasive Treatment for COVID-19 and Other Coronaviruses: Roles of NO and Hsp70. Int J Mol Sci 2022; 23:ijms23095221. [PMID: 35563611 PMCID: PMC9105035 DOI: 10.3390/ijms23095221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 04/27/2022] [Accepted: 05/04/2022] [Indexed: 01/08/2023] Open
Abstract
Researchers from across the world are seeking to develop effective treatments for the ongoing coronavirus disease 2019 (COVID-19) outbreak, which arose as a major public health issue in 2019, and was declared a pandemic in early 2020. The pro-inflammatory cytokine storm, acute respiratory distress syndrome (ARDS), multiple-organ failure, neurological problems, and thrombosis have all been linked to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) fatalities. The purpose of this review is to explore the rationale for using photobiomodulation therapy (PBMT) of the particular wavelength 1068 nm as a therapy for COVID-19, investigating the cellular and molecular mechanisms involved. Our findings illustrate the efficacy of PBMT 1068 nm for cytoprotection, nitric oxide (NO) release, inflammation changes, improved blood flow, and the regulation of heat shock proteins (Hsp70). We propose, therefore, that PBMT 1068 is a potentially effective and innovative approach for avoiding severe and critical illness in COVID-19 patients, although further clinical evidence is required.
Collapse
Affiliation(s)
- Lydia C. Kitchen
- Department of Biosciences, Durham University, Durham DH1 3LE, UK;
| | - Marvin Berman
- Quietmind Foundation, Philadelphia, PA 19147, USA; (M.B.); (J.H.)
| | - James Halper
- Quietmind Foundation, Philadelphia, PA 19147, USA; (M.B.); (J.H.)
| | - Paul Chazot
- Department of Biosciences, Durham University, Durham DH1 3LE, UK;
- Correspondence:
| |
Collapse
|
16
|
de Oliveira AA, Mendoza VO, Rastogi S, Nunes KP. New insights into the role and therapeutic potential of HSP70 in diabetes. Pharmacol Res 2022; 178:106173. [PMID: 35278625 DOI: 10.1016/j.phrs.2022.106173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 10/18/2022]
Abstract
Emerging evidence indicates that HSP70 represents a key mechanism in the pathophysiology of β-cell dysfunction, insulin resistance, and various diabetic complications, including micro- and macro-vascular alterations, as well as impaired hemostasis. Hyperglycemia, a hallmark of both types of diabetes, increases the circulating levels of HSP70 (eHSP70), but there is still divergence about whether diabetes up- or down-regulates the intracellular fraction of this protein (iHSP70). Here, we consider that iHSP70 levels reduce in diabetic arterial structures and that the vascular system is in direct contact with all other systems in the body suggesting that a systemic response might also be happening for iHSP70, which is characterized by decreased levels of HSP70 in the vasculature. Furthermore, although many pathways have been proposed to explain HSP70's functions in diabetes, and organs/tissues/cells-specific variations occur, the membrane-bound receptor of the innate immune system, Toll-like receptor 4, and its downstream signal transduction pathways appear to be a constant, not only when we explore the actions of eHSP70, but also when we assess the contributions of iHSP70. In this review, we focus on discussing the multiple roles of HSP70 across organs/tissues/cells affected by hyperglycemia to further explore the possibility of targeting this protein with pharmacological and non-pharmacological approaches in the context of diabetes.
Collapse
Affiliation(s)
- Amanda Almeida de Oliveira
- Laboratory of Vascular Biology, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, United States
| | - Valentina Ochoa Mendoza
- Laboratory of Vascular Biology, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, United States
| | - Swasti Rastogi
- Laboratory of Vascular Biology, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, United States
| | - Kenia Pedrosa Nunes
- Laboratory of Vascular Biology, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, United States.
| |
Collapse
|
17
|
Hu B, Wang P, Zhang S, Liu W, Lv X, Shi D, Zhao L, Liu H, Wang B, Chen S, Shao Z. HSP70 attenuates compression-induced apoptosis of nucleus pulposus cells by suppressing mitochondrial fission via upregulating the expression of SIRT3. Exp Mol Med 2022; 54:309-323. [PMID: 35338257 PMCID: PMC8980024 DOI: 10.1038/s12276-022-00745-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/29/2021] [Accepted: 12/21/2021] [Indexed: 11/21/2022] Open
Abstract
Compression-induced apoptosis of nucleus pulposus (NP) cells plays a pivotal role in the pathogenesis of intervertebral disc degeneration (IVDD). Recent studies have shown that the dysregulation of mitochondrial fission and fusion is implicated in the pathogenesis of a variety of diseases. However, its role in and regulatory effects on compression-induced apoptosis of NP cells have not yet been fully elucidated. Heat shock protein 70 (HSP70) is a major cytoprotective heat shock protein, but its physiological role in IVDD, especially its effect on mitochondrial fission and fusion, is still unknown. Herein, we found that compression could induce mitochondrial fission, which ultimately trigger apoptosis of NP cells via the mitochondrial apoptotic pathway. In addition, we identified the cytoprotective effects of HSP70 on NP cells, and we found that promoting the expression of HSP70 could protect NP cells from abnormal mechanical loading in vitro and in vivo. Finally, we showed that HSP70 inhibited compression-induced mitochondrial fission by promoting SIRT3 expression, thereby attenuating mitochondrial dysfunction and the production of reactive oxygen species and ultimately inhibiting the mitochondrial apoptotic pathway in NP cells. In conclusion, our results demonstrated that HSP70 could attenuate compression-induced apoptosis of NP cells by suppressing mitochondrial fission via upregulating SIRT3 expression. Promoting the expression of HSP70 might be a novel strategy for the treatment of IVDD. A so-called chaperone protein that assists other proteins in correctly folding helps to prevent compression-induced cell death in the intervertebral discs responsible for cushioning the spine. Binwu Hu from Huazhong University of Science and Technology, Wuhan, China, and coworkers showed that mitochondria in the cells from the jelly-like substance found in vertebral discs in the spine tended to divide when exposed to abnormal mechanical loading. This fission resulted in cell death. In cell culture experiments and in mice, the researchers found that boosting levels of the molecular chaperone HSP70 (heat shock protein 70) prevented this mitochondrial dysfunction, in part by activating another stress-response protein called SIRT3. The findings point to HSP70 as a promising drug target for addressing intervertebral disc degeneration, a common cause of chronic back pain.
Collapse
Affiliation(s)
- Binwu Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Peng Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shuo Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Weijian Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiao Lv
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Deyao Shi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lei Zhao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hongjian Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Baichuan Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Songfeng Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
18
|
Yao X, Yang W, Ren Z, Zhang H, Shi D, Li Y, Yu Z, Guo Q, Yang G, Gu Y, Zhao H, Ren K. Neuroprotective and Angiogenesis Effects of Levetiracetam Following Ischemic Stroke in Rats. Front Pharmacol 2021; 12:638209. [PMID: 34054520 PMCID: PMC8161206 DOI: 10.3389/fphar.2021.638209] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 04/27/2021] [Indexed: 01/02/2023] Open
Abstract
Objective: The present study explored whether levetiracetam (LEV) could protect against experimental brain ischemia and enhance angiogenesis in rats, and investigated the potential mechanisms in vivo and in vitro. Methods: The middle cerebral artery was occluded for 60 min to induce middle cerebral artery occlusion (MCAO). The Morris water maze was used to measure cognitive ability. The rotation test was used to assess locomotor function. T2-weighted MRI was used to assess infarct volume. The neuronal cells in the cortex area were stained with cresyl purple. The anti-inflammatory effects of LEV on microglia were observed by immunohistochemistry. Enzyme-linked immunosorbent assays (ELISA) were used to measure the production of pro-inflammatory cytokines. Western blotting was used to detect the levels of heat shock protein 70 (HSP70), vascular endothelial growth factor (VEGF), and hypoxia-inducible factor-1α (HIF-1α) in extracts from the ischemic cortex. Flow cytometry was used to observe the effect of LEV on neuronal cell apoptosis. Results: LEV treatment significantly increased the density of the surviving neurons in the cerebral cortex and reduced the infarct size (17.8 ± 3.3% vs. 12.9 ± 1.4%, p < 0.01) after MCAO. Concurrently, the time required to reach the platform for LEV-treated rats was shorter than that in the saline group on day 11 after MCAO (p < 0.01). LEV treatment prolonged the rotarod retention time on day 14 after MCAO (84.5 ± 6.7 s vs. 59.1 ± 6.2 s on day 14 compared with the saline-treated groups, p < 0.01). It also suppressed the activation of microglia and inhibited TNF-α and Il-1β in the ischemic brain (135.6 ± 5.2 pg/ml vs. 255.3 ± 12.5 pg/ml, 18.5 ± 1.3 pg/ml vs. 38.9 ± 2.3 pg/ml on day 14 compared with the saline-treated groups, p < 0.01). LEV treatment resulted in a significant increase in HIF-1α, VEGF, and HSP70 levels in extracts from the ischemic cerebral cortex. At the same time, LEV reduced neuronal cell cytotoxicity and apoptosis induced by an ischemic stroke (p < 0.01). Conclusion: LEV treatment promoted angiogenesis and functional recovery after cerebral ischemia in rats. These effects seem to be mediated through anti-inflammatory and antiapoptotic activities, as well as inducing the expression of HSP70, VEGF, and HIF-1α.
Collapse
Affiliation(s)
- Xiang Yao
- Department of Radiology, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Wenping Yang
- Division of Neurology, Department of Geriatrics, Jiangsu Province Hospital, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhendong Ren
- Department of Radiology, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Haoran Zhang
- Department of Radiology, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Dafa Shi
- Department of Radiology, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Yanfei Li
- Department of Radiology, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Ziyang Yu
- Department of Radiology, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Qiu Guo
- Department of Radiology, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Guangwei Yang
- Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, China
| | - Yingjiang Gu
- Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, China
| | - Hairong Zhao
- School of Medicine, Xiamen University, Xiamen, China
| | - Ke Ren
- Department of Radiology, Xiang'an Hospital of Xiamen University, Xiamen, China
| |
Collapse
|
19
|
Li Y, Tan W, Ye F, Wen S, Hu R, Cai X, Wang K, Wang Z. Inflammation as a risk factor for stroke in atrial fibrillation: data from a microarray data analysis. J Int Med Res 2021; 48:300060520921671. [PMID: 32367757 PMCID: PMC7222654 DOI: 10.1177/0300060520921671] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Objective Stroke is a severe complication of atrial fibrillation (AF). We aimed to
discover key genes and microRNAs related to stroke risk in patients with AF
using bioinformatics analysis. Methods GSE66724 microarray data, including peripheral blood samples from eight
patients with AF and stroke and eight patients with AF without stroke, were
downloaded from the Gene Expression Omnibus (GEO) database. Differentially
expressed genes (DEGs) between AF patients with and without stroke were
identified using the GEO2R online tool. Functional enrichment analysis was
performed using the DAVID database. A protein–protein interaction (PPI)
network was obtained using the STRING database. MicroRNAs (miRs) targeting
these DEGs were obtained from the miRNet database. A miR–DEG network was
constructed using Cytoscape software. Results We identified 165 DEGs (141 upregulated and 24 downregulated). Enrichment
analysis showed enrichment of certain inflammatory processes. The miR–DEG
network revealed key genes, including MEF2A,
CAND1, PELI1, and
PDCD4, and microRNAs, including miR-1, miR-1-3p,
miR-21, miR-21-5p, miR-192, miR-192-5p, miR-155, and miR-155-5p. Conclusion Dysregulation of certain genes and microRNAs involved in inflammation may be
associated with a higher risk of stroke in patients with AF. Evaluating
these biomarkers could improve prediction, prevention, and treatment of
stroke in patients with AF.
Collapse
Affiliation(s)
- Yingyuan Li
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wulin Tan
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Fang Ye
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shihong Wen
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Rong Hu
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoying Cai
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Kebing Wang
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhongxing Wang
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
20
|
van Wijk SW, Ramos KS, Brundel BJJM. Cardioprotective Role of Heat Shock Proteins in Atrial Fibrillation: From Mechanism of Action to Therapeutic and Diagnostic Target. Int J Mol Sci 2021; 22:ijms22010442. [PMID: 33466228 PMCID: PMC7795054 DOI: 10.3390/ijms22010442] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 02/07/2023] Open
Abstract
Atrial fibrillation (AF) is the most common age-related cardiac arrhythmia worldwide and is associated with ischemic stroke, heart failure, and substantial morbidity and mortality. Unfortunately, current AF therapy is only moderately effective and does not prevent AF progression from recurrent intermittent episodes (paroxysmal) to persistent and finally permanent AF. It has been recognized that AF persistence is related to the presence of electropathology. Electropathology is defined as structural damage, including degradation of sarcomere structures, in the atrial tissue which, in turn, impairs electrical conduction and subsequently the contractile function of atrial cardiomyocytes. Recent research findings indicate that derailed proteostasis underlies structural damage and, consequently, electrical conduction impairment. A healthy proteostasis is of vital importance for proper function of cells, including cardiomyocytes. Cells respond to a loss of proteostatic control by inducing a heat shock response (HSR), which results in heat shock protein (HSP) expression. Emerging clinical evidence indicates that AF-induced proteostasis derailment is rooted in exhaustion of HSPs. Cardiomyocytes lose defense against structural damage-inducing pathways, which drives progression of AF and induction of HSP expression. In particular, small HSPB1 conserves sarcomere structures by preventing their degradation by proteases, and overexpression of HSPB1 accelerates recovery from structural damage in experimental AF model systems. In this review, we provide an overview of the mechanisms of action of HSPs in preventing AF and discuss the therapeutic potential of HSP-inducing compounds in clinical AF, as well as the potential of HSPs as biomarkers to discriminate between the various stages of AF and recurrence of AF after treatment.
Collapse
Affiliation(s)
- Stan W. van Wijk
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands; (K.S.R.); (B.J.J.M.B.)
- Correspondence:
| | - Kennedy S. Ramos
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands; (K.S.R.); (B.J.J.M.B.)
- Erasmus Medical Center, Department of Cardiology, 3015 GD Rotterdam, The Netherlands
| | - Bianca J. J. M. Brundel
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands; (K.S.R.); (B.J.J.M.B.)
| |
Collapse
|
21
|
Liu L, He XM, Feng LL, Duan DY, Zhan Y, Cheng TY. Cloning of four HSPA multigene family members in Haemaphysalis flava ticks. MEDICAL AND VETERINARY ENTOMOLOGY 2020; 34:192-200. [PMID: 31802518 DOI: 10.1111/mve.12423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/29/2019] [Accepted: 11/17/2019] [Indexed: 06/10/2023]
Abstract
The heat shock protein 70 (HSPA) family and their genes have been studied in ticks and are considered as possible antigen candidates for the development of anti-tick vaccines. However, knowledge about their members, structure and function in ticks is incomplete. Based on our transcriptomic data, the full length of four HSPA genes in Haemaphysalis flava (Acari: Ixodidae) was cloned via rapid amplification of cDNA ends. The open reading frame of HSPA2A, HSPA2B, HSPA5 and HSPA9 was 1920, 1911, 1983 and 2088 bp in length, respectively. Three family signatures and one localization motif were in the encoding proteins. HSPA2A and HSPA2B were predicted to be located at cytoplasm/nucleus, whereas HSPA5 and HSPA9 were at endoplasmic reticulum and mitochondria, respectively. In silico simulation demonstrated that those proteins had distinct numbers of α-helixes, extended strands and coils, and different antigenic epitopes. Expression of HSPA5 and HSPA9 in the salivary gland was significantly higher in partially-engorged female adult ticks than the fully-engorged (P < 0.01) as shown by a quantitative polymerase chain reaction. Our data indicated that H. flava ticks had at least four HSPA genes encoding proteins with different cellular locations, structures and expression profiles, suggesting their diverse roles in tick biology.
Collapse
Affiliation(s)
- L Liu
- College of Veterinary Medicine, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Hunan Collaborative Innovation Center for Safety Production of Livestock and Poultry, Hunan Agricultural University, Changsha, Hunan, China
| | - X-M He
- College of Veterinary Medicine, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Hunan Collaborative Innovation Center for Safety Production of Livestock and Poultry, Hunan Agricultural University, Changsha, Hunan, China
| | - L-L Feng
- College of Veterinary Medicine, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Hunan Collaborative Innovation Center for Safety Production of Livestock and Poultry, Hunan Agricultural University, Changsha, Hunan, China
| | - D-Y Duan
- College of Veterinary Medicine, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Hunan Collaborative Innovation Center for Safety Production of Livestock and Poultry, Hunan Agricultural University, Changsha, Hunan, China
| | - Y Zhan
- College of Veterinary Medicine, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Hunan Collaborative Innovation Center for Safety Production of Livestock and Poultry, Hunan Agricultural University, Changsha, Hunan, China
| | - T-Y Cheng
- College of Veterinary Medicine, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Hunan Collaborative Innovation Center for Safety Production of Livestock and Poultry, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
22
|
Zhang YF, Meng LB, Hao ML, Yang JF, Zou T. Identification of Co-expressed Genes Between Atrial Fibrillation and Stroke. Front Neurol 2020; 11:184. [PMID: 32265825 PMCID: PMC7105800 DOI: 10.3389/fneur.2020.00184] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/25/2020] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF) increases the risk of ischemic stroke and systemic arterial embolism. However, the risk factors or predictors of stroke in AF patients have not been clarified. Therefore, it is necessary to find effective diagnostic and therapeutic targets. Two datasets were downloaded from the Gene Expression Omnibus (GEO) database. Differently expressed genes (DEGs) were identified between samples of atrial fibrillation without stroke and atrial fibrillation with stroke. Enrichment analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) by Gene Set Enrichment Analysis (GSEA), construction and analysis of protein-protein interaction (PPI) network and significant module, and the receiver operator characteristic (ROC) curve analysis were performed. A total of 524 DEGs were common to both datasets. Analysis of KEGG pathways indicated that the top canonical pathways associated with DEGs were ubiquitin-mediated proteolysis, endocytosis, spliceosome, and so on. Ten hub genes (SMURF2, CDC42, UBE3A, RBBP6, CDC5L, NEDD4L, UBE2D2, UBE2B, UBE2I, and MAPK1) were identified from the PPI network and were significantly associated with a diagnosis of atrial fibrillation and stroke (AFST). In summary, a total of 524 DEGs and 10 hub genes were identified between samples of atrial fibrillation without stroke and atrial fibrillation with stroke. These genes may serve as the target of early diagnosis or treatment of AF complicated by stroke.
Collapse
Affiliation(s)
- Yan-Fei Zhang
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Ling-Bing Meng
- Neurology Department, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Meng-Lei Hao
- Department of Geriatric Medicine, Affiliated Hospital of Qinghai University, Xining, China
| | - Jie-Fu Yang
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Tong Zou
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Beijing, China
| |
Collapse
|
23
|
Feng LL, Cheng TY. A survey of proteins in midgut contents of the tick, Haemaphysalis flava, by proteome and transcriptome analysis. EXPERIMENTAL & APPLIED ACAROLOGY 2020; 80:269-287. [PMID: 31898761 DOI: 10.1007/s10493-019-00457-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 12/24/2019] [Indexed: 06/10/2023]
Abstract
Tick blood meals are stored and digested in their midguts. Blood digestion is complex, and many proteins are involved. Study of the tick-derived proteins in the midgut content may aid in the discovery of active molecules that would be useful for anti-tick vaccines. We analyzed the midgut content proteomes of partially engorged female Haemaphysalis flava, fully engorged female H. flava, and hedgehog serum using liquid chromatography tandem-mass spectrometry and label-free quantitation. In this study, high-confidence protein profiling of tick midgut content was determined. Based on the search against our in-house transcriptome database, the 28 high-confidence proteins were identified. Of these, 17 were identified as tick-derived, and the rest were of unspecified origin (proteins that could not be differentiated as host-derived or tick-derived proteins). The function of these midgut content proteins identified here may involve nutrient transportation, anti-coagulation, erythrocyte lysis, detoxification, lipid metabolism, and immunization. The presence of hemoglobin suggested that the red blood cells were lysed in the gut lumen. The midgut contents contain a large amount of fibrinogen and it has the ability to clot immediately. The midgut contained mostly host-derived proteins, and these host proteins provide rich nutrients for tick development and reproduction. However, some intracellular proteins were also identified, suggesting the possibility of shedding of the midgut epithelium and ingestion of saliva during feeding. This finding advances our understanding of the digestive mechanism and will be useful in the screening of vaccine antigens.
Collapse
Affiliation(s)
- Li-Li Feng
- College of Veterinary Medicine, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Hunan Agricultural University, Changsha, 410128, Hunan Province, People's Republic of China
| | - Tian-Yin Cheng
- College of Veterinary Medicine, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Hunan Agricultural University, Changsha, 410128, Hunan Province, People's Republic of China.
| |
Collapse
|
24
|
Decouture B, Leuci A, Dizier B, Belleville-Rolland T, Mansour A, Martin F, Pidard D, Gaussem P, Bachelot-Loza C. Evaluation of commonly used tests to measure the effect of single-dose aspirin on mouse hemostasis. Prostaglandins Leukot Essent Fatty Acids 2019; 149:46-51. [PMID: 31442897 DOI: 10.1016/j.plefa.2019.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/26/2019] [Accepted: 08/07/2019] [Indexed: 11/27/2022]
Abstract
Discrepancies in preclinical studies of aspirin (ASA) antiplatelet activity in mouse models of bleeding and arterial thrombosis led us to evaluate commonly reported methods in order to propose a procedure for reliably measuring the effects of single dose ASA on mouse hemostasis. FVB and C57Bl6 mice received 100 mg/kg of ASA or vehicle orally 30 min or 3 h prior to investigate either hemostasis using the tail bleeding assay or carotid thrombosis induced by FeCl3, or to blood sampling for isolated platelet aggregation and TXB2 generation. Expected inhibition of COX1 by ASA was ascertained by a strong decrease in TXB2 production, and its effect on platelet function and hemostasis, by decreased collagen-induced aggregation and increased bleeding time, respectively. Strikingly, we determined that anti-hemostatic effects of ASA were more predictable 30 min after administration than 3 h later. Conversely, ASA did not alter time to arterial occlusion of the carotid upon FeCl3-induced thrombosis, suggesting ASA not to be used as reference inhibitor drug in this model of arterial thrombosis.
Collapse
Affiliation(s)
- Benoit Decouture
- Université de Paris, Innovative Therapies in Haemostasis, INSERM, F-75006 Paris, France
| | - Alexandre Leuci
- Université de Paris, Innovative Therapies in Haemostasis, INSERM, F-75006 Paris, France
| | - Blandine Dizier
- Université de Paris, Innovative Therapies in Haemostasis, INSERM, F-75006 Paris, France
| | - Tiphaine Belleville-Rolland
- Université de Paris, Innovative Therapies in Haemostasis, INSERM, F-75006 Paris, France; Service d'Hématologie Biologique, AH-HP, Georges Pompidou European Hospital, F-75015 Paris, France
| | - Alexandre Mansour
- Université de Paris, Innovative Therapies in Haemostasis, INSERM, F-75006 Paris, France
| | - Fanny Martin
- Université de Paris, Innovative Therapies in Haemostasis, INSERM, F-75006 Paris, France
| | - Dominique Pidard
- Université de Paris, Innovative Therapies in Haemostasis, INSERM, F-75006 Paris, France
| | - Pascale Gaussem
- Université de Paris, Innovative Therapies in Haemostasis, INSERM, F-75006 Paris, France; Service d'Hématologie Biologique, AH-HP, Georges Pompidou European Hospital, F-75015 Paris, France.
| | | |
Collapse
|
25
|
Araujo TLS, Venturini G, Moretti AIS, Tanaka LY, Pereira AC, Laurindo FRM. Cell-surface HSP70 associates with thrombomodulin in endothelial cells. Cell Stress Chaperones 2019; 24:273-282. [PMID: 30645756 PMCID: PMC6363626 DOI: 10.1007/s12192-018-00964-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 04/26/2018] [Accepted: 12/14/2018] [Indexed: 10/27/2022] Open
Abstract
Heat shock protein-70 (HSP70) is crucial for proteostasis and displays cell-protective effects. Meanwhile, enhanced levels of cell-surface (cs) and secreted HSP70 paradoxically associate with pathologic cardiovascular conditions. However, mechanisms regulating csHSP70 pool are unknown. We hypothesized that total and csHSP70 expressions are modulated by hemodynamic forces, major contributors to endothelial pathophysiology. We also investigated whether thrombomodulin, a crucial thromboresistance cell-surface protein, is a csHSP70 target. We used proteomic/western analysis, confocal microscopy, and cs-biotinylation to analyze the pattern and specific characteristics of intracellular and csHSP70. HSP70 interaction with thrombomodulin was investigated by confocal colocalization, en face immunofluorescence, proximity assay, and immunoprecipitation. Thrombomodulin activity was assessed by measured protein C activation two-step assay. Our results show that csHSP70 pool in endothelial cells (EC) exhibits a peculiar cluster-like pattern and undergoes enhanced expression by physiological arterial-level laminar shear stress. Conversely, total and csHSP70 expressions were diminished under low shear stress, a known proatherogenic hemodynamic pattern. Furthermore, total HSP70 levels were decreased in aortic arch (associated with proatherogenic turbulent flow) compared with thoracic aorta (associated with atheroprotective laminar flow). Importantly, csHSP70 co-localized with thrombomodulin in cultured EC and aorta endothelium; proximity ligation assays and immunoprecipitation confirmed their physical interaction in EC. Remarkably, immunoneutralization of csHSP70 enhanced thrombomodulin activity in EC and aorta ex vivo. Overall, proatherogenic hemodynamic forces promote reduced total HSP70 expression, which might implicate in disturbed proteostasis; meanwhile, the associated decrease in cs-HSP70 pool associates with thromboresistance signaling. Cell-surface HSP70 (csHSP70) expression regulation and csHSP70 targets in vascular cells are unknown. We showed that HSP70 levels are shear stress-modulated and decreased under proatherogenic conditions. Remarkably, csHSP70 binds thrombomodulin and inhibits its activity in endothelial cells. This mechanism can potentially explain some deleterious effects previously associated with high extracellular HSP70 levels, as csHSP70 potentially could restrict thromboresistance and support thrombosis/inflammation in stress situations.
Collapse
Affiliation(s)
- Thaís L S Araujo
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo School of Medicine, Av. Enéas Carvalho Aguiar, 44, Annex II, 9th Floor, São Paulo, Brazil.
| | - Gabriela Venturini
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo, Brazil
| | - Ana I S Moretti
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo School of Medicine, Av. Enéas Carvalho Aguiar, 44, Annex II, 9th Floor, São Paulo, Brazil
| | - Leonardo Y Tanaka
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo School of Medicine, Av. Enéas Carvalho Aguiar, 44, Annex II, 9th Floor, São Paulo, Brazil
| | - Alexandre Costa Pereira
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo, Brazil
| | - Francisco R M Laurindo
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo School of Medicine, Av. Enéas Carvalho Aguiar, 44, Annex II, 9th Floor, São Paulo, Brazil
| |
Collapse
|
26
|
Han M, Zhao M, Cheng C, Huang Y, Han S, Li W, Tu X, Luo X, Yu X, Liu Y, Chen Q, Ren X, Wang QK, Ke T. Lamin A mutation impairs interaction with nucleoporin NUP155 and disrupts nucleocytoplasmic transport in atrial fibrillation. Hum Mutat 2018; 40:310-325. [PMID: 30488537 DOI: 10.1002/humu.23691] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/19/2018] [Accepted: 11/26/2018] [Indexed: 12/19/2022]
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia. Here, we show the identification and functional characterization of one AF-associated mutation p.Arg399Cys in lamin A/C. Co-immunoprecipitation and GST pull-down assays demonstrate that lamin A/C interacts with NUP155, which is a nucleoporin and causes AF when mutated. Lamin A/C mutation p.Arg399Cys impairs the interaction between lamin A/C and NUP155, and increases extractability of NUP155 from the nuclear envelope (NE). Mutation p.Arg399Cys leads to aggregation of lamin A/C in the nucleus, although it does not impair the integrity of NE upon cellular stress. Mutation p.Arg399Cys inhibits the export of HSP70 mRNA and the nuclear import of HSP70 protein. Electrophysiological studies show that mutation p.Arg399Cys decreases the peak cardiac sodium current by decreasing the cell surface expression level of cardiac sodium channel Nav 1.5, but does not affect IKr potassium current. In conclusion, our results indicate that lamin A/C mutation p.Arg399Cys weakens the interaction between nuclear lamina (lamin A/C) and the nuclear pore complex (NUP155), leading to the development of AF. The findings provide a novel molecular mechanism for the pathogenesis of AF.
Collapse
Affiliation(s)
- Meng Han
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Miao Zhao
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Chen Cheng
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Yuan Huang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, P. R. China
| | - Shengna Han
- Department of Pharmacology, Basic Medical College, Zhengzhou University, Zhengzhou, P. R. China
| | - Wenjuan Li
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Xin Tu
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Xuan Luo
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Xiaoling Yu
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Yinan Liu
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Qiuyun Chen
- Center for Cardiovascular Genetics, Department of Molecular Cardiology, Lerner Research Institute, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio
- Department of Molecular Medicine, Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Xiang Ren
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Qing Kenneth Wang
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
- Center for Cardiovascular Genetics, Department of Molecular Cardiology, Lerner Research Institute, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio
- Department of Molecular Medicine, Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Tie Ke
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| |
Collapse
|
27
|
He XM, Liu L, Cheng TY. HSC70 from Haemaphysalis flava (Acari: Ixodidae) exerts anticoagulation activity in vitro. Ticks Tick Borne Dis 2018; 10:170-175. [PMID: 30366643 DOI: 10.1016/j.ttbdis.2018.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/20/2018] [Accepted: 10/15/2018] [Indexed: 01/30/2023]
Abstract
Ticks and tick-borne diseases are major global health threats. During blood feeding, ticks insert their hypostomes into hosts and inject an array of anticoagulant molecules to maintain fluidity of the blood-meal. These anticoagulant molecules may provide insights into understanding the feeding biology of ticks and to develop vaccines against infestations. In Haemaphysalis flava, the heat shock cognate 70 (HSC70), a member of the heat shock protein (HSP) family, is differentially expressed in salivary glands at different levels of engorgement during blood feeding. However, its function in ticks is largely not known. The present study was designed to explore the possible effects of HSC70 on the plasma. The open reading frame (ORF) of HSC70 was expressed in a prokaryotic system, and recombinant HSC70 (rHSC70) was purified and characterized. The anticoagulation activity of rHSC70 was estimated by measuring prothrombin time (PT), activated partial thromboplastin time (APTT), thrombin time (TT) and fibrinogen (FIB) with/without its inhibitor, VER155008. The results demonstrated that rHSC70 from H. flava extended TT (P < 0.001) and FIB clotting times (>300 s), but showed little effect on PT and APTT. Adding an inhibitor reversed anticlotting effects of rHSC70 on TT and FIB. These data indicate that rHSC70 is an anticoagulant agent, and the anticlotting activity likely attributes to the inhibition of thrombin and the transformation of fibrinogen into fibrin.
Collapse
Affiliation(s)
- Xiao-Ming He
- College of Veterinary Medicine, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Hunan Collaborative Innovation Center for Safety Production of Livestock and Poultry, Hunan Agricultural University, Changsha, 410128, China
| | - Lei Liu
- College of Veterinary Medicine, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Hunan Collaborative Innovation Center for Safety Production of Livestock and Poultry, Hunan Agricultural University, Changsha, 410128, China.
| | - Tian-Yin Cheng
- College of Veterinary Medicine, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Hunan Collaborative Innovation Center for Safety Production of Livestock and Poultry, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
28
|
Sipido KR, Vandevelde W. A virtual issue for the CBCS Summer School 2017: focus on hot topics. Cardiovasc Res 2018; 113:708-710. [PMID: 28525919 DOI: 10.1093/cvr/cvx083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Karin R Sipido
- Department of Cardiovascular Sciences, Experimental Cardiology, KU Leuven, University of Leuven, Campus Gasthuisberg O/N1?704, Herestraat 49, B-3000 Leuven, Belgium
| | - Wouter Vandevelde
- Department of Cardiovascular Sciences, Experimental Cardiology, KU Leuven, University of Leuven, Campus Gasthuisberg O/N1?704, Herestraat 49, B-3000 Leuven, Belgium
| |
Collapse
|
29
|
Liu L, Cheng TY, He XM. Proteomic profiling of the midgut contents of Haemaphysalis flava. Ticks Tick Borne Dis 2018; 9:490-495. [PMID: 29371124 DOI: 10.1016/j.ttbdis.2018.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 01/06/2018] [Accepted: 01/13/2018] [Indexed: 12/12/2022]
Abstract
Scant information is available regarding the proteins involved in blood meal processing in ticks. Here, we aimed to highlight the midgut proteins involved in preventing blood meal coagulation, and in facilitating intracellular digestion in the tick Haemaphysalis flava. Proteins were extracted from the midgut contents of fully engorged and partially engorged ticks. We used liquid chromatography tandem-mass spectrometry (LC-MS/MS) analysis to identify 131 unique peptides, and 102 proteins. Of these, 15 proteins, each with at least two unique peptides, were recognized with high confidence. We also retrieved 18 unigenes from our previous published transcriptomic libraries of the midguts and salivary glands of H. flava, and inferred the primary structures of nine proteins and fragments of five proteins. There were 23 and 21 unique proteins in the midgut contents of fully engorged and partially engorged ticks, respectively. We detected 58 shared proteins in the midgut contents of both fully engorged and partially engorged ticks. Of these, seven were significantly differentially expressed between fully engorged and partially engorged ticks: actin, calmodulin, elongation factor-1α, hsp90, multifunctional chaperone, tubulin α, and tubulin β. Our results demonstrated that the proteome of the midgut contents, combined with the transcriptome of the midgut, was a viable method for the reinforcement of protein identification. This method will facilitate further study of blood meal processing by ticks, as well as the identification of clues for tick infestation control. The existence of numerous proteins detected in the midgut contents also highlight the complexity of blood digestion in ticks; this area is in need of further investigation.
Collapse
Affiliation(s)
- Lei Liu
- College of Veterinary Medicine, Hunan Collaborative Innovation Center of Safety Production of Livestock and Poultry, Hunan Agricultural University, Changsha, China
| | - Tian-Yin Cheng
- College of Veterinary Medicine, Hunan Collaborative Innovation Center of Safety Production of Livestock and Poultry, Hunan Agricultural University, Changsha, China.
| | - Xiao-Ming He
- College of Veterinary Medicine, Hunan Collaborative Innovation Center of Safety Production of Livestock and Poultry, Hunan Agricultural University, Changsha, China
| |
Collapse
|
30
|
Rigg RA, McCarty OJT, Aslan JE. Heat Shock Protein 70 (Hsp70) in the Regulation of Platelet Function. REGULATION OF HEAT SHOCK PROTEIN RESPONSES 2018. [DOI: 10.1007/978-3-319-74715-6_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
Allende M, Molina E, Lecumberri R, Sanchez-Arias JA, Ugarte A, Guruceaga E, Oyarzabal J, Hermida J. Inducing heat shock protein 70 expression provides a robust antithrombotic effect with minimal bleeding risk. Thromb Haemost 2017; 117:1722-1729. [PMID: 28837204 DOI: 10.1160/th17-02-0108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 06/11/2017] [Indexed: 01/03/2023]
Abstract
Antithrombotic medications target coagulation factors. Their use is associated with an increased bleeding risk. Safer drugs are needed. The heat shock protein 70 (Hsp70) exhibits antithrombotic properties that do not influence bleeding. By using murine models, we aimed to test the hypothesis that overexpressing Hsp70 with CM-695, a first in class dual inhibitor of HDAC6 and phosphodiesterase 9, protects against thrombosis while leaves bleeding tendency unaltered. CM-695 was used to induce Hsp70 overexpression. Hsp70 overexpressing mice were submitted to three thrombosis-triggering procedures. The ferric chloride carotid artery model was used to compare the antithrombotic role of CM-695 and rivaroxaban, a direct oral anticoagulant. The mouse tail transection model was used to compare the bleeding tendency upon CM-695 or rivaroxaban administration. Intraperitoneal (i. p.) 20 mg/kg CM-695 increased Hsp70 expression markedly in the murine aortic tissue. This treatment delayed thrombosis in the collagen/epinephrine [p=0.04 (Log-Rank test), n=10], Rose Bengal/laser [median vessel occlusion time (OT): 58.6 vs 39.0 minutes (min) in the control group (CG), p=0.008, n≥10] and ferric chloride (OT: 14.7 vs 9.2 min in the CG, p=0.032, n≥10) models. I.p. 80 mg/kg CM-695 (n≥9) and intravenous 3 mg/kg rivaroxaban (n≥8) significantly delayed thrombosis. CM-695 did not induce bleeding [median bleeding time (BT): 8.5 vs 7.5 min in the CG, n≥10]. However, BT was dramatically increased by rivaroxaban (30.0 vs 13.7 min in the CG, p=0.001, n=10). In conclusion, CM-695 is a new antithrombotic small molecule devoid of bleeding risk that may be envisioned as a useful clinical tool.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - José Hermida
- José Hermida, MD,PhD, University of Navarra, Center for Applied Medical Research (CIMA), Laboratory of Thrombosis and Haemostasis, Pío XII 55, Pamplona 31008, Spain, Tel.: +34948194700×3027, Fax: +34948194716, E-mail:
| |
Collapse
|
32
|
|