1
|
D'Italia G, Schroen B, Cosemans JM. Commonalities of platelet dysfunction in heart failure with preserved ejection fraction and underlying comorbidities. ESC Heart Fail 2025; 12:1013-1028. [PMID: 39375979 PMCID: PMC11911585 DOI: 10.1002/ehf2.15090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/06/2024] [Accepted: 09/06/2024] [Indexed: 10/09/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is characterized by a lack of a specific targeted treatment and a complex, partially unexplored pathophysiology. Common comorbidities associated with HFpEF are hypertension, atrial fibrillation, obesity and diabetes. These comorbidities, combined with advanced age, play a crucial role in the initiation and development of the disease through the promotion of systemic inflammation and consequent changes in cardiac phenotype. In this context, we suggest platelets as important players due to their emerging role in vascular inflammation. This review provides an overview of the role of platelets in HFpEF and its associated comorbidities, including hypertension, atrial fibrillation, obesity and diabetes mellitus, as well as the impact of age and sex on platelet function. These major HFpEF-associated comorbidities present alterations in platelet behaviour and in features linked to platelet size, content and reactivity. The resulting dysfunctional platelets can contribute to further increase inflammation, oxidative stress and endothelial dysfunction, suggesting an active role of these cells in the initiation and progression of HFpEF. Recent evidence shows that reduced platelet count and elevated mean platelet volume are associated with worsening heart failure in HFpEF patients. However, the specific mechanisms by which platelets contribute to HFpEF development and progression are still largely unexplored, with only a few studies investigating platelet function in HFpEF. We discuss the limited yet significant body of research investigating platelet function in HFpEF, emphasizing the need for more comprehensive studies. Additionally, we explore the potential mechanisms through which platelets may influence HFpEF, such as their interactions with the vascular endothelium and the secretion of bioactive molecules like cytokines, chemokines and RNA molecules. These interactions and secretions may play a role in modulating vascular inflammation and contributing to the pathophysiological landscape of HFpEF. The review underscores the necessity for future research to elucidate the precise contributions of platelets to HFpEF, aiming to potentially identify novel therapeutic targets and improve patient outcomes. The evidence presented herein supports the hypothesis that platelets are not merely passive bystanders but active participants in the pathophysiology of HFpEF and its comorbidities.
Collapse
Affiliation(s)
- Giorgia D'Italia
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtThe Netherlands
| | - Blanche Schroen
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtThe Netherlands
| | - Judith M.E.M. Cosemans
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtThe Netherlands
| |
Collapse
|
2
|
Griffiths K, Grand RJ, Horan I, Certo M, Keeler RC, Mauro C, Tseng CC, Greig I, Morrell NW, Zanda M, Frenneaux MP, Madhani M. Fluorinated perhexiline derivative attenuates vascular proliferation in pulmonary arterial hypertension smooth muscle cells. Vascul Pharmacol 2024; 156:107399. [PMID: 38901807 DOI: 10.1016/j.vph.2024.107399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 04/30/2024] [Accepted: 05/26/2024] [Indexed: 06/22/2024]
Abstract
Increased proliferation and reduced apoptosis of pulmonary artery smooth muscle cells (PASMCs) is recognised as a universal hallmark of pulmonary arterial hypertension (PAH), in part related to the association with reduced pyruvate dehydrogenase (PDH) activity, resulting in decreased oxidative phosphorylation of glucose and increased aerobic glycolysis (Warburg effect). Perhexiline is a well-recognised carnitine palmitoyltransferase-1 (CPT1) inhibitor used in cardiac diseases, which reciprocally increases PDH activity, but is associated with variable pharmacokinetics related to polymorphic variation of the cytochrome P450-2D6 (CYP2D6) enzyme, resulting in the risk of neuro and hepatotoxicity in 'slow metabolisers' unless blood levels are monitored and dose adjusted. We have previously reported that a novel perhexiline fluorinated derivative (FPER-1) has the same therapeutic profile as perhexiline but is not metabolised by CYP2D6, resulting in more predictable pharmacokinetics than the parent drug. We sought to investigate the effects of perhexiline and FPER-1 on PDH flux in PASMCs from patients with PAH. We first confirmed that PAH PASMCs exhibited increased cell proliferation, enhanced phosphorylation of AKTSer473, ERK 1/2Thr202/Tyr204 and PDH-E1αSer293, indicating a Warburg effect when compared to healthy PASMCs. Pre-treatment with perhexiline or FPER-1 significantly attenuated PAH PASMC proliferation in a concentration-dependent manner and suppressed the activation of the AKTSer473 but had no effect on the ERK pathway. Perhexiline and FPER-1 markedly activated PDH (seen as dephosphorylation of PDH-E1αSer293), reduced glycolysis, and upregulated mitochondrial respiration in these PAH PASMCs as detected by Seahorse analysis. However, both perhexiline and FPER-1 did not induce apoptosis as measured by caspase 3/7 activity. We show for the first time that both perhexiline and FPER-1 may represent therapeutic agents for reducing cell proliferation in human PAH PASMCs, by reversing Warburg physiology.
Collapse
MESH Headings
- Cell Proliferation/drug effects
- Humans
- Pulmonary Artery/drug effects
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Perhexiline/pharmacology
- Perhexiline/analogs & derivatives
- Cells, Cultured
- Male
- Phosphorylation
- Female
- Pulmonary Arterial Hypertension/drug therapy
- Pulmonary Arterial Hypertension/metabolism
- Pulmonary Arterial Hypertension/physiopathology
- Pulmonary Arterial Hypertension/pathology
- Middle Aged
- Signal Transduction/drug effects
- Antihypertensive Agents/pharmacology
- Adult
- Apoptosis/drug effects
- Case-Control Studies
Collapse
Affiliation(s)
- Kayleigh Griffiths
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Roger J Grand
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Ian Horan
- Department for Medicine, University of Cambridge, Cambridge, UK
| | - Michelangelo Certo
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Ross C Keeler
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Claudio Mauro
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Chih-Chung Tseng
- Kosterlitz Centre for Therapeutics, University of Aberdeen, Aberdeen, UK
| | - Iain Greig
- Kosterlitz Centre for Therapeutics, University of Aberdeen, Aberdeen, UK
| | | | - Matteo Zanda
- The Institute of Chemical Sciences and Technologies, Milan, Italy
| | | | - Melanie Madhani
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
3
|
Ribeiro DRP, Schmidt MM, Leguisamo N, Cambruzzi E, De Luca G, de Quadros AS. Immunohistochemical characteristics of coronary thrombi in ST-elevation myocardial infarction. AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2022; 18:100175. [PMID: 38559422 PMCID: PMC10978369 DOI: 10.1016/j.ahjo.2022.100175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/13/2022] [Accepted: 07/07/2022] [Indexed: 04/04/2024]
Abstract
Background and aims The dynamics and implications of intracoronary thrombus constituency in patients with ST-segment elevation myocardial infarction (STEMI) are not fully understood. We evaluated the expression of CD34, CD61and factor VIII surface markers in thrombi of patients with STEMI and its association with clinical and angiographic characteristics and major adverse cardiovascular events (MACE). Methods Patients presenting with STEMI undergoing aspiration thrombectomy during primary percutaneous coronary intervention (pPCI) were included. Morphological, histopathological and immunohistochemical aspects of thrombi were assessed by two pathologists blinded to clinical variables and outcomes. Results The mean age of the 245 patients included was 58 ± 12 years old, and 70 % were men. Regarding the thrombi microscopic patterns, 61 % were classified as recent, 20 % as lytic and 19 % as organized. There were higher levels of the CD61 index in patients with a history of heart failure. Smokers presented lower CD61 positive cells and CD61 index, but this association did not remain significant after multivariable analysis. There was an inverse correlation between CD61 positive cells and CD61 index with the time from onset of pain to the first medical contact, but no other significant association amongst clinical characteristics and antigenic expression. There was higher expression of the CD61 antigen in patients with in-hospital MACE, but statistical significance was borderline (p = 0.06). Conclusions In this cohort of patients with STEMI, immunohistochemistry of coronary thrombus showed a significantly higher platelet content in patients with previous heart failure and a trend in those with in-hospital MACE. Thrombus' platelet content was inversely related to ischemic time.
Collapse
Affiliation(s)
- Daniel Rios Pinto Ribeiro
- Instituto de Cardiologia do RS/Fundação Universitária de Cardiologia do Rio Grande do Sul – IC/FUC, Brazil
| | - Marcia Moura Schmidt
- Instituto de Cardiologia do RS/Fundação Universitária de Cardiologia do Rio Grande do Sul – IC/FUC, Brazil
| | - Natalia Leguisamo
- Instituto de Cardiologia do RS/Fundação Universitária de Cardiologia do Rio Grande do Sul – IC/FUC, Brazil
| | - Eduardo Cambruzzi
- Instituto de Cardiologia do RS/Fundação Universitária de Cardiologia do Rio Grande do Sul – IC/FUC, Brazil
| | - Giuseppe De Luca
- Division of Clinical and Experimental Cardiology AOU Sassari, University of Sassari, Italy
| | | |
Collapse
|
4
|
Chirkov YY, Nguyen TH, Horowitz JD. Impairment of Anti-Aggregatory Responses to Nitric Oxide and Prostacyclin: Mechanisms and Clinical Implications in Cardiovascular Disease. Int J Mol Sci 2022; 23:1042. [PMID: 35162966 PMCID: PMC8835624 DOI: 10.3390/ijms23031042] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/10/2022] [Accepted: 01/15/2022] [Indexed: 01/27/2023] Open
Abstract
The propensity towards platelet-rich thrombus formation increases substantially during normal ageing, and this trend is mediated by decreases in platelet responsiveness to the anti-aggregatory nitric oxide (NO) and prostacyclin (PGI2) pathways. The impairment of soluble guanylate cyclase and adenylate cyclase-based signalling that is associated with oxidative stress represents the major mechanism of this loss of anti-aggregatory reactivity. Platelet desensitization to these autacoids represents an adverse prognostic marker in patients with ischemic heart disease and may contribute to increased thrombo-embolic risk in patients with heart failure. Patients with platelet resistance to PGI2 also are unresponsive to ADP receptor antagonist therapy. Apart from ischemia, diabetes and aortic valve disease are also associated with impaired anti-aggregatory homeostasis. This review examines the association of impaired platelet cyclic nucleotide (i.e., cGMP and cAMP) signalling with the emerging evidence of thromboembolic risk in cardiovascular diseases, and discusses the potential therapeutic strategies targeting this abnormality.
Collapse
Affiliation(s)
| | | | - John D. Horowitz
- Cardiology Laboratory, Basil Hetzel Institute, The Queen Elizabeth Hospital, The University of Adelaide, Adelaide 5011, Australia; (Y.Y.C.); (T.H.N.)
| |
Collapse
|
5
|
Huang Y, Zhang K, Liu M, Su J, Qin X, Wang X, Zhang J, Li S, Fan G. An herbal preparation ameliorates heart failure with preserved ejection fraction by alleviating microvascular endothelial inflammation and activating NO-cGMP-PKG pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 91:153633. [PMID: 34320423 DOI: 10.1016/j.phymed.2021.153633] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Heart failure with preserved ejection fraction (HFpEF) is a heterogeneous disease presenting a substantial challenge to clinicians. Currently, there is no safe and efficacious HFpEF treatment. In this study, we reported a standardized herbal medicinal product, QiShenYiQi (QSYQ), that can be used in the treatment of HFpEF. METHODS HFpEF mice were established by infusing a combination of Nω-nitro-L-arginine methyl ester (L-NAME) and feeding them a high-fat diet for 14 weeks. In the 10th week, the HFpEF mice were given dapagliflozin or QSYQ via oral gavage for four weeks. The blood pressure, echocardiography, hemodynamics, leukocyte infiltration, and oxidative stress in HFpEF mice were evaluated. Besides, inflammatory factors, endothelial adhesion factors, and endothelial-mesenchymal transformation (EndMT) markers were investigated. RESULTS QSYQ significantly attenuated concentric cardiac remodeling while improving diastolic function and left ventricular compliance in HFpEF mice. QSYQ also inhibited inflammation and immunocyte recruitment during HFpEF. The infiltration of CD8+, CD4+ T cells, and CD11b/c+ monocytes was substantially mitigated in the myocardium of QSYQ-treated mice. TNF-α, MCP-1, NF-κB, and NLRP3 levels also reduced after QSYQ treatment. Furthermore, QSYQ significantly reversed the elevated expression of endothelial adhesion factors and EndMT occurrence. These effects of QSYQ were demonstrated by the activation of NO-cGMP-PKG pathway and reduction of eNOS uncoupling in the HFpEF heart. CONCLUSION These results provide novel evidence that QSYQ treatment improves HFpEF by inhibiting microvascular endothelial inflammation and activating NO-cGMP-PKG pathway.
Collapse
Affiliation(s)
- Yuting Huang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China
| | - Kai Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China
| | - Miao Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China
| | - Jing Su
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China
| | - Xiaoyan Qin
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China
| | - Xiao Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China
| | - Jing Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China
| | - Sheng Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China
| | - Guanwei Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China.; Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang Normal University, Huanggang 438000, China..
| |
Collapse
|
6
|
Abalenikhina YV, Kosmachevskaya OV, Topunov AF. Peroxynitrite: Toxic Agent and Signaling Molecule (Review). APPL BIOCHEM MICRO+ 2020. [DOI: 10.1134/s0003683820060022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
7
|
Amdahl MB, DeMartino AW, Gladwin MT. Inorganic nitrite bioactivation and role in physiological signaling and therapeutics. Biol Chem 2020; 401:201-211. [PMID: 31747370 DOI: 10.1515/hsz-2019-0349] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/02/2019] [Indexed: 01/23/2023]
Abstract
The bioactivation of inorganic nitrite refers to the conversion of otherwise 'inert' nitrite to the diatomic signaling molecule nitric oxide (NO), which plays important roles in human physiology and disease, notably in the regulation of vascular tone and blood flow. While the most well-known sources of NO are the nitric oxide synthase (NOS) enzymes, another source of NO is the nitrate-nitrite-NO pathway, whereby nitrite (obtained from reduction of dietary nitrate) is further reduced to form NO. The past few decades have seen extensive study of the mechanisms of NO generation through nitrate and nitrite bioactivation, as well as growing appreciation of the contribution of this pathway to NO signaling in vivo. This review, prepared for the volume 400 celebration issue of Biological Chemistry, summarizes some of the key reactions of the nitrate-nitrite-NO pathway such as reduction, disproportionation, dehydration, and oxidative denitrosylation, as well as current evidence for the contribution of the pathway to human cardiovascular physiology. Finally, ongoing efforts to develop novel medical therapies for multifarious conditions, especially those related to pathologic vasoconstriction and ischemia/reperfusion injury, are also explored.
Collapse
Affiliation(s)
- Matthew B Amdahl
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Anthony W DeMartino
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Mark T Gladwin
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
8
|
Glikson M, Wolff R, Hindricks G, Mandrola J, Camm AJ, Lip GYH, Fauchier L, Betts TR, Lewalter T, Saw J, Tzikas A, Sternik L, Nietlispach F, Berti S, Sievert H, Bertog S, Meier B. EHRA/EAPCI expert consensus statement on catheter-based left atrial appendage occlusion - an update. EUROINTERVENTION 2020; 15:1133-1180. [PMID: 31474583 DOI: 10.4244/eijy19m08_01] [Citation(s) in RCA: 206] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Michael Glikson
- Integrated Heart Center, Shaare Zedek Medical Center, Jerusalem, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Velagic A, Qin C, Woodman OL, Horowitz JD, Ritchie RH, Kemp-Harper BK. Nitroxyl: A Novel Strategy to Circumvent Diabetes Associated Impairments in Nitric Oxide Signaling. Front Pharmacol 2020; 11:727. [PMID: 32508651 PMCID: PMC7248192 DOI: 10.3389/fphar.2020.00727] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 05/01/2020] [Indexed: 12/19/2022] Open
Abstract
Diabetes is associated with an increased mortality risk due to cardiovascular complications. Hyperglycemia-induced oxidative stress underlies these complications, leading to an impairment in endogenous nitric oxide (NO•) generation, together with reductions in NO• bioavailability and NO• responsiveness in the vasculature, platelets and myocardium. The latter impairment of responsiveness to NO•, termed NO• resistance, compromises the ability of traditional NO•-based therapeutics to improve hemodynamic status during diabetes-associated cardiovascular emergencies, such as acute myocardial infarction. Whilst a number of agents can ameliorate (e.g. angiotensin converting enzyme [ACE] inhibitors, perhexiline, statins and insulin) or circumvent (e.g. nitrite and sGC activators) NO• resistance, nitroxyl (HNO) donors offer a novel opportunity to circumvent NO• resistance in diabetes. With a suite of vasoprotective properties and an ability to enhance cardiac inotropic and lusitropic responses, coupled with preserved efficacy in the setting of oxidative stress, HNO donors have intact therapeutic potential in the face of diminished NO• signaling. This review explores the major mechanisms by which hyperglycemia-induced oxidative stress drives NO• resistance, and the therapeutic potential of HNO donors to circumvent this to treat cardiovascular complications in type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Anida Velagic
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Central Clinical School, Monash University, Melbourne, VIC, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Chengxue Qin
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Central Clinical School, Monash University, Melbourne, VIC, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Owen L. Woodman
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - John D. Horowitz
- Basil Hetzel Institute, Queen Elizabeth Hospital, University of Adelaide, Adelaide, SA, Australia
| | - Rebecca H. Ritchie
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Central Clinical School, Monash University, Melbourne, VIC, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Barbara K. Kemp-Harper
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
10
|
Ntessalen M, Procter NEK, Schwarz K, Loudon BL, Minnion M, Fernandez BO, Vassiliou VS, Vauzour D, Madhani M, Constantin‐Teodosiu D, Horowitz JD, Feelisch M, Dawson D, Crichton PG, Frenneaux MP. Inorganic nitrate and nitrite supplementation fails to improve skeletal muscle mitochondrial efficiency in mice and humans. Am J Clin Nutr 2020; 111:79-89. [PMID: 31599928 PMCID: PMC6944528 DOI: 10.1093/ajcn/nqz245] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 09/03/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Inorganic nitrate, abundant in leafy green vegetables and beetroot, is thought to have protective health benefits. Adherence to a Mediterranean diet reduces the incidence and severity of coronary artery disease, whereas supplementation with nitrate can improve submaximal exercise performance. Once ingested, oral commensal bacteria may reduce nitrate to nitrite, which may subsequently be reduced to nitric oxide during conditions of hypoxia and in the presence of "nitrite reductases" such as heme- and molybdenum-containing enzymes. OBJECTIVE We aimed to explore the putative effects of inorganic nitrate and nitrite on mitochondrial function in skeletal muscle. METHODS Mice were subjected to a nitrate/nitrite-depleted diet for 2 wk, then supplemented with sodium nitrate, sodium nitrite, or sodium chloride (1 g/L) in drinking water ad libitum for 7 d before killing. Skeletal muscle mitochondrial function and expression of uncoupling protein (UCP) 3, ADP/ATP carrier protein (AAC) 1 and AAC2, and pyruvate dehydrogenase (PDH) were assessed by respirometry and Western blotting. Studies were also undertaken in human skeletal muscle biopsies from a cohort of coronary artery bypass graft patients treated with either sodium nitrite (30-min infusion of 10 μmol/min) or vehicle [0.9% (wt:vol) saline] 24 h before surgery. RESULTS Neither sodium nitrate nor sodium nitrite supplementation altered mitochondrial coupling efficiency in murine skeletal muscle, and expression of UCP3, AAC1, or AAC2, and PDH phosphorylation status did not differ between the nitrite and saline groups. Similar results were observed in human samples. CONCLUSIONS Sodium nitrite failed to improve mitochondrial metabolic efficiency, rendering this mechanism implausible for the purported exercise benefits of dietary nitrate supplementation. This trial was registered at clinicaltrials.gov as NCT04001283.
Collapse
Affiliation(s)
- Maria Ntessalen
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Nathan E K Procter
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Konstantin Schwarz
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Brodie L Loudon
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Magdalena Minnion
- Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Bernadette O Fernandez
- Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | | | - David Vauzour
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Melanie Madhani
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Dumitru Constantin‐Teodosiu
- Medical Research Council/Arthritis Research UK Centre for Musculoskeletal Ageing Research, National Institute for Health Research Nottingham Biomedical Research Centre, School of Life Sciences, Nottingham University Medical School, Nottingham, United Kingdom
| | - John D Horowitz
- Department of Cardiology, The Queen Elizabeth Hospital, University of Adelaide, Adelaide, South Australia, Australia
| | - Martin Feelisch
- Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Dana Dawson
- Department of Cardiology, School of Medicine & Dentistry, University of Aberdeen, Aberdeen, United Kingdom
| | - Paul G Crichton
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Michael P Frenneaux
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom,Norwich Medical School, University of East Anglia, Norwich, United Kingdom,Address correspondence to MPF (E-mail: )
| |
Collapse
|
11
|
Filippatos G, Farmakis D. A look back: the quest for thrombosis in heart failure continues after COMMANDER HF. Cardiovasc Res 2019; 115:e140-e142. [DOI: 10.1093/cvr/cvz241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Gerasimos Filippatos
- University of Cyprus Medical School, Shakolas Educational Center for Clinical Medicine, Palaios dromos Lefkosias Lemesou No.215/6, Aglantzia, Nicosia, Cyprus
- Heart Failure Unit, Department of Cardiology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Farmakis
- University of Cyprus Medical School, Shakolas Educational Center for Clinical Medicine, Palaios dromos Lefkosias Lemesou No.215/6, Aglantzia, Nicosia, Cyprus
- Heart Failure Unit, Department of Cardiology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
12
|
Glikson M, Wolff R, Hindricks G, Mandrola J, Camm AJ, Lip GYH, Fauchier L, Betts TR, Lewalter T, Saw J, Tzikas A, Sternik L, Nietlispach F, Berti S, Sievert H, Bertog S, Meier B, Lenarczyk R, Nielsen-Kudsk JE, Tilz R, Kalarus Z, Boveda S, Deneke T, Heinzel FR, Landmesser U, Hildick-Smith D. EHRA/EAPCI expert consensus statement on catheter-based left atrial appendage occlusion – an update. Europace 2019; 22:184. [DOI: 10.1093/europace/euz258] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Michael Glikson
- Integrated Heart Center, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Rafael Wolff
- Integrated Heart Center, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Gerhard Hindricks
- Heartcenter Leipzig at Leipzig University and Leipzig Heart Institute, Department of Electrophysiology, Leipzig, Germany
| | | | - A John Camm
- Cardiology Clinical Academic Group Molecular & Clinical Sciences Research Institute, St. George’s University of London, London, United Kingdom
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, United Kingdom
- Aalborg Thrombosis Research Unit, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Laurent Fauchier
- Centre Hospitalier Universitaire Trousseau et Université François Rabelais, Tours, France
| | - Tim R Betts
- Oxford University Hospitals NHS Foundation Trust, Oxford Biomedical Research Centre, Department of Cardiology, Oxford, United Kingdom
| | - Thorsten Lewalter
- Dept. of Cardiology and Intensive Care, Hospital for Internal Medicine Munich South, Munich, Germany
- Dept. of Cardiology, University of Bonn, Bonn, Germany
| | - Jacqueline Saw
- Vancouver General Hospital, University of British Columbia, Vancouver, Canada
| | - Apostolos Tzikas
- Structural & Congenital Heart Disease, AHEPA University Hospital & Interbalkan European Medical Center, Thessaloniki, Greece
| | - Leonid Sternik
- Cardiac Surgery, Sheba Medical Center, Tel-Hashomer, Israel
| | - Fabian Nietlispach
- Cardiovascular Center Zurich, Hirslanden Klinik im Park, Zurich, Switzerland
| | - Sergio Berti
- Heart Hospital-Fondazione C.N.R. Reg. Toscana G. Monasterio, Cardiology Department, Massa, Italy
| | - Horst Sievert
- CardioVascular Center CVC, Cardiology and Angiology, Frankfurt, Germany
- Anglia Ruskin University, Chelmsford, United Kingdom
- University of California San Francisco, San Francisco, CA, USA
- Yunnan Hospital Fuwai, Kunming, China
| | - Stefan Bertog
- CardioVascular Center CVC, Cardiology and Angiology, Frankfurt, Germany
| | - Bernhard Meier
- Cardiology, Cardiovascular Department, University Hospital Bern, Bern, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|