1
|
Yao Q, Hu X, Bian T, Zhang Q, Xue Z, Lv Y, Ren S, Chen Y, Zhang D, Chen L. Role of KLF4 and SIAT7A interaction accelerates myocardial hypertrophy induced by Ang II. J Cell Mol Med 2024; 28:e70144. [PMID: 39431583 PMCID: PMC11492152 DOI: 10.1111/jcmm.70144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 09/05/2024] [Accepted: 10/03/2024] [Indexed: 10/22/2024] Open
Abstract
Sialylation catalysed by sialyltransferase 7A (SIAT7A) plays a role in the development of cardiac hypertrophy. However, the regulatory mechanisms upstream of SIAT7A in this context remain poorly elucidated. Previous study demonstrated that KLF4 activates the SIAT7A gene in ischemic myocardium by binding to its promoter region. Nevertheless, the potential involvement of KLF4 in regulating SIAT7A expression in Ang II-induced hypertrophic cardiomyocytes remains uncertain. This study seeks to deepen the underlying mechanisms of the KLF4 and SIAT7A interaction in the progression of Ang II-induced cardiac hypertrophy. The results showed a concurrent increase in SIAT7A and KLF4 levels in hypertrophic myocardium of essential hypertension patients and in hypertrophic cardiomyocytes stimulated by Ang II. In vitro experiments revealed that reducing KLF4 levels led to a decrease in both SIAT7A synthesis and Sialyl-Tn antigen expression, consequently inhibiting Ang II-induced cardiomyocyte hypertrophy. Intriguingly, reducing SIAT7A levels also resulted in decreased KLF4 expression and suppression cardiomyocyte hypertrophy. Consistent with this, elevating SIAT7A levels increased KLF4 expression and exacerbated cardiomyocyte hypertrophy in both in vivo and in vitro experiments. Additionally, a time-course analysis indicated that KLF4 expression preceded that of SIAT7A. Luciferase reporter assays further confirmed that modulating SIAT7A levels directly influenced the transcriptional activity of KLF4 in cardiomyocytes. In summary, KLF4 expression is upregulated in cardiomyocytes treated with Ang II, which subsequently induces the expression of SIAT7A. The elevated levels of SIAT7A, in turn, enhance the transcription of KLF4. These findings suggest a positive feedback loop between KLF4 and SIAT7A-Sialyl-Tn, ultimately promoting Ang II-induced cardiac hypertrophy.
Collapse
Affiliation(s)
- Qiying Yao
- Department of PhysiologyDalian Medical UniversityDalianLiaoningChina
| | - Xinrui Hu
- Department of PhysiologyDalian Medical UniversityDalianLiaoningChina
| | - Tiantian Bian
- Department of PhysiologyDalian Medical UniversityDalianLiaoningChina
| | - Qing Zhang
- Department of PhysiologyDalian Medical UniversityDalianLiaoningChina
| | - Zhao Xue
- Department of CardiologyThe Second Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Yuesheng Lv
- Institute of Cancer Stem CellDalian Medical UniversityDalianChina
| | - Shupeng Ren
- Department of CardiologyThe Second Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Yue Chen
- Department of PhysiologyDalian Medical UniversityDalianLiaoningChina
| | - Dongmei Zhang
- Department of PhysiologyDalian Medical UniversityDalianLiaoningChina
| | - Liang Chen
- Department of CardiologyThe Second Affiliated Hospital of Dalian Medical UniversityDalianChina
| |
Collapse
|
2
|
Zhao R, Hu J, Wen H, Zhao J, Wang Y, Niu X, Zhang M, Wang T, Li Y. Inhibition of N-acetylglucosaminyltransferase V alleviates diabetic cardiomyopathy in mice by attenuating cardiac hypertrophy and fibrosis. Nutr Metab (Lond) 2024; 21:53. [PMID: 39080739 PMCID: PMC11290217 DOI: 10.1186/s12986-024-00797-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/18/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND The pathogenesis of diabetic cardiomyopathy is closely linked to abnormal glycosylation modifications. N-acetylglucosaminyltransferase V (GnT-V), which catalyzes the production of N-linked -1-6 branching of oligosaccharides, is involved in several pathophysiological mechanisms of many disorders, including cardiac hypertrophy and heart failure. However, the mechanism by which GnT-V regulates cardiac hypertrophy in diabetic cardiomyopathy is currently poorly understood. In this study, we investigated the role of GnT-V on myocardial hypertrophy in diabetic cardiomyopathy and elucidated the underlying mechanisms. MATERIAL AND METHODS Streptozotocin (STZ) was intraperitoneally injected into mice to induce diabetic cardiomyopathy. An adeno-associated virus (AAV) carrying negative control small hairpin RNA (shNC) or GnT-V-specifc small hairpin RNA (shGnT-V) was used to manipulate GnT-V expression. In our study, forty male C57BL/6J mice were randomly divided into four groups (10 mice per group): control mice with AAV-shNC, diabetic cardiomyopathy mice with AAV-shNC, control mice with AAV-shGnT-V, and diabetic cardiomyopathy mice with AAV-shGnT-V. In addition, H9C2 cells and primary neonatal cardiac fibroblasts treated with high glucose were used as a cell model of diabetes. Analysis of cardiac hypertrophy and fibrosis, as well as functional studies, were used to investigate the underlying molecular pathways. RESULTS AAV-mediated GnT-V silencing dramatically improved cardiac function and alleviated myocardial hypertrophy and fibrosis in diabetic mice. In vitro experiments demonstrated that GnT-V was elevated in cardiomyocytes and induced cardiomyocyte hypertrophy in response to high glucose stimulation. GnT-V knockdown significantly reduced the expression of the integrinβ1 signaling pathway, as evidenced by decreased downstream ERK1/2 activity, which inhibited cardiomyocyte hypertrophy accompanied by reduced ANP, BNP, and β-MHC expression. Furthermore, knocking down GnT-V expression lowered the TGF-β1-Smads signaling pathway, which reduced the expression of α-SMA, collagen I, and collagen III. CONCLUSIONS Overall, our research indicated that GnT-V may be a useful therapeutic target to treat diabetic cardiomyopathy, primarily in the inhibition of myocardial hypertrophy and fibrosis.
Collapse
Affiliation(s)
- Ran Zhao
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xinsi Road No.569, Xi'an, 710038, People's Republic of China
| | - Jianqiang Hu
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xinsi Road No.569, Xi'an, 710038, People's Republic of China
| | - He Wen
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xinsi Road No.569, Xi'an, 710038, People's Republic of China
| | - Jieqiong Zhao
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xinsi Road No.569, Xi'an, 710038, People's Republic of China
| | - Ying Wang
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xinsi Road No.569, Xi'an, 710038, People's Republic of China
| | - Xiaona Niu
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xinsi Road No.569, Xi'an, 710038, People's Republic of China
| | - Mingming Zhang
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xinsi Road No.569, Xi'an, 710038, People's Republic of China.
| | - Tingting Wang
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xinsi Road No.569, Xi'an, 710038, People's Republic of China.
| | - Yan Li
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xinsi Road No.569, Xi'an, 710038, People's Republic of China.
| |
Collapse
|
3
|
Jiang YN, Yang SX, Guan X, Chen Q, Zhao L, Yu XY, Ren FF, Wu SJ, Wu LP, Lai TF, Li L. Loss of USP22 alleviates cardiac hypertrophy induced by pressure overload through HiF1-α-TAK1 signaling pathway. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166813. [PMID: 37488049 DOI: 10.1016/j.bbadis.2023.166813] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/24/2023] [Accepted: 07/18/2023] [Indexed: 07/26/2023]
Abstract
Ubiquitin-specific protease 22 (USP22) is a member of the ubiquitin specific protease family (ubiquitin-specific protease, USPs), the largest subfamily of deubiquitinating enzymes, and plays an important role in the treatment of tumors. USP22 is also expressed in the heart. However, the role of USP22 in heart disease remains unclear. In this study, we found that USP22 was elevated in hypertrophic mouse hearts and in angiotensin II (Ang II)-induced cardiomyocytes. The inhibition of USP22 expression with adenovirus significantly rescued hypertrophic phenotype and cardiac dysfunction induced by pressure overloaded. Consistent with in vivo study, silencing by USP22 shRNA expression in vitro had similar results. Molecular analysis revealed that transforming growth factor-β-activating protein 1 (TAK1)-(JNK1/2)/P38 signaling pathway and HIF-1α was activated in the Ang II-induced hypertrophic cardiomyocytes, whereas HIF-1α expression was decreased after the inhibition of USP22. Inhibition of HIF-1α expression reduces TAK1 expression. Co-immunoprecipitation and ubiquitination studies revealed the regulatory mechanism between USP22 and HIF1α.Under hypertrophic stress conditions, USP22 enhances the stability of HIF-1α through its deubiquitination activity, which further activates the TAK1-(JNK1/2)/P38 signaling pathway to lead to cardiac hypertrophy. Inhibition of HIF-1α expression further potentiates the in vivo pathological effects caused by USP22 deficiency. In summary, this study suggests that USP22, through HIF-1α-TAK1-(JNK1/2)/P38 signaling pathway, may be potential targets for inhibiting pathological cardiac hypertrophy induced by pressure overload.
Collapse
Affiliation(s)
- Yi-Na Jiang
- Department of Cardiology, Key Laboratory of Panvascular Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Shou-Xing Yang
- Department of Cardiology, Key Laboratory of Panvascular Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Xuan Guan
- Department of Cardiology, Key Laboratory of Panvascular Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Qiaoying Chen
- Department of Cardiology, Key Laboratory of Panvascular Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Lin Zhao
- Department of Cardiology, Key Laboratory of Panvascular Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Xiao-Yu Yu
- Department of Cardiology, Key Laboratory of Panvascular Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Fang-Fang Ren
- Department of Cardiology, Key Laboratory of Panvascular Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Shu-Jie Wu
- Department of Cardiology, Key Laboratory of Panvascular Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Lian-Pin Wu
- Department of Cardiology, Key Laboratory of Panvascular Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Teng-Fang Lai
- Department of Cardiology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China.
| | - Lei Li
- Department of Cardiology, Key Laboratory of Panvascular Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China.
| |
Collapse
|
4
|
Wen J, Liu G, Liu M, Wang H, Wan Y, Yao Z, Gao N, Sun Y, Zhu L. Transforming growth factor-β and bone morphogenetic protein signaling pathways in pathological cardiac hypertrophy. Cell Cycle 2023; 22:2467-2484. [PMID: 38179789 PMCID: PMC10802212 DOI: 10.1080/15384101.2023.2293595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/22/2023] [Accepted: 10/09/2023] [Indexed: 01/06/2024] Open
Abstract
Pathological cardiac hypertrophy (referred to as cardiac hypertrophy) is a maladaptive response of the heart to a variety of pathological stimuli, and cardiac hypertrophy is an independent risk factor for heart failure and sudden death. Currently, the treatments for cardiac hypertrophy are limited to improving symptoms and have little effect. Elucidation of the developmental process of cardiac hypertrophy at the molecular level and the identification of new targets for the treatment of cardiac hypertrophy are crucial. In this review, we summarize the research on multiple active substances related to the pathogenesis of cardiac hypertrophy and the signaling pathways involved and focus on the role of transforming growth factor-β (TGF-β) and bone morphogenetic protein (BMP) signaling in the development of cardiac hypertrophy and the identification of potential targets for molecular intervention. We aim to identify important signaling molecules with clinical value and hope to help promote the precise treatment of cardiac hypertrophy and thus improve patient outcomes.
Collapse
Affiliation(s)
- Jing Wen
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Guixiang Liu
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Mingjie Liu
- Department of Lung Function, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Huarui Wang
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yunyan Wan
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zhouhong Yao
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Nannan Gao
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yuanyuan Sun
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ling Zhu
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
5
|
Yang J, Li L, Zheng X, Lu Z, Zhou H. Dapagliflozin attenuates myocardial hypertrophy via activating the SIRT1/HIF-1α signaling pathway. Biomed Pharmacother 2023; 165:115125. [PMID: 37421782 DOI: 10.1016/j.biopha.2023.115125] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/25/2023] [Accepted: 07/02/2023] [Indexed: 07/10/2023] Open
Abstract
As a sodium-glucose transporter 2 inhibitor (SGLT2i), the cardioprotective benefits of Dapagliflozin (DAPA) are now widely appreciated. However, the underlying mechanism of DAPA on angiotensin II (Ang II)-induced myocardial hypertrophy has never been evaluated. In this study, we not only investigated the effects of DAPA on Ang II-induced myocardial hypertrophy, but explored its underlying mechanisms. Mice were injected with Ang II (500 ng /kg/min) or saline solution as control, followed by intragastric administration DAPA (1.5 mg/kg/day) or saline for four weeks. DAPA treatment alleviated the condition of decrease in left ventricular ejection fraction (LVEF) and fractional shortening (LVFS) caused by Ang II. In addition, DAPA treatment significantly alleviated Ang II-induced elevation of the ratio of heart weight to tibia length, as well as cardiac injury and hypertrophy. In mice stimulated with Ang II, the degree of myocardial fibrosis and upregulation of the markers of cardiac hypertrophy (atrial natriuretic peptide, ANP and B-type natriuretic peptide, BNP) were attenuated by DAPA. What's more, DAPA partially reversed the Ang II-induced upregulation of HIF-1α and the decrease in levels of SIRT1. Taken together, activating the SIRT1/HIF-1α signaling pathway was found to confer a protective effect against experimental myocardial hypertrophy in mice induced by Ang II, demonstrating its potential as an effective therapeutic target for pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Jingyao Yang
- Institute of Physiology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Long Li
- Department of Cardiology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaoxiao Zheng
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Zhaoyang Lu
- Department of Cardiology, Second Hospital of Shanxi Medical University, Taiyuan, China.
| | - Hua Zhou
- Department of Cardiology, Second Hospital of Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
6
|
Ectopic Acsl6 Overexpression Partially Improves Isoproterenol-Induced Cardiac Hypertrophy In Vivo and Cardiomyocyte Hypertrophy In Vitro. J Cardiovasc Pharmacol 2022; 80:792-803. [PMID: 35976155 DOI: 10.1097/fjc.0000000000001343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 07/09/2022] [Indexed: 12/13/2022]
Abstract
ABSTRACT The increase in cardiac myocyte size is a critical issue in cardiac hypertrophy development. In this study, 61 differentially expressed genes between hypertrophic rats and normal controls were enriched in the positive modulation of fatty acid uptake, fatty acid metabolism and degradation, cardiac conduction, and the oxidation of carbohydrates and other processes. Acsl6 was significantly downregulated in hypertrophic rat and mouse hearts according to online data. Based on the experimental data, Acsl6 was underexpressed in ISO-induced cardiac hypertrophy mouse model and isoproterenol (ISO)-induced cardiomyocyte hypertrophy cell model. In vivo, Acsl6 overexpression partially attenuated ISO-induced increases in the cross-sectional area and cardiac hypertrophy, elevated hypertrophic markers, and caused impairment of cardiac function. In vitro, Acsl6 overexpression partially attenuated ISO-induced cardiomyocyte hypertrophy and increased hypertrophic markers. Conclusively, Ascl6 is downregulated in ISO-induced cardiac hypertrophy mouse model and ISO-induced cardiomyocyte hypertrophy cell model. Acsl6 overexpression could partially improve cardiac hypertrophy in vivo and cardiomyocyte hypertrophy in vitro, possibly through the regulation of HIF-1α/Hippo pathway.
Collapse
|
7
|
Xu X, Zhen PH, Yu FC, Wang T, Li SN, Wei Q, Tong JY. Chronic intermittent hypoxia accelerates cardiac dysfunction and cardiac remodeling during cardiac pressure overload in mice and can be alleviated by PHD3 overexpression. Front Cardiovasc Med 2022; 9:974345. [PMID: 36172572 PMCID: PMC9510693 DOI: 10.3389/fcvm.2022.974345] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Obstructive sleep apnea (OSA) accelerates the progression of chronic heart failure (CHF). OSA is characterized by chronic intermittent hypoxia (CIH), and CIH exposure accelerates cardiac systolic dysfunction and cardiac remodeling in a cardiac afterload stress mouse model. Mechanistic experiments showed that long-term CIH exposure activated hypoxia-inducible factor 1α (HIF-1α) expression in the mouse heart and upregulated miR-29c expression and that both HIF-1α and miR-29c simultaneously inhibited sarco-/endoplasmic reticulum calcium ATPase 2a (SERCA2a) expression in the mouse heart. Cardiac HIF-1α activation promoted cardiomyocyte hypertrophy. SERCA2a expression was suppressed in mouse heart in middle- and late-stage cardiac afterload stress, and CIH exposure further downregulated SERCA2a expression and accelerated cardiac systolic dysfunction. Prolyl hydroxylases (PHDs) are physiological inhibitors of HIF-1α, and PHD3 is most highly expressed in the heart. Overexpression of PHD3 inhibited CIH-induced HIF-1α activation in the mouse heart while decreasing miR-29c expression, stabilizing the level of SERCA2a. Although PHD3 overexpression did not reduce mortality in mice, it alleviated cardiac systolic dysfunction and cardiac remodeling induced by CIH exposure.
Collapse
Affiliation(s)
- Xuan Xu
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, China
- Medical School of Southeast University, Nanjing, China
| | - Peng-Hao Zhen
- Medical School of Southeast University, Nanjing, China
| | - Fu-Chao Yu
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Tao Wang
- Medical School of Southeast University, Nanjing, China
| | - Sheng-Nan Li
- Medical School of Southeast University, Nanjing, China
| | - Qin Wei
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Jia-Yi Tong
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, China
- *Correspondence: Jia-Yi Tong
| |
Collapse
|
8
|
Zhang R, Qu Y, Ji Z, Hao C, Su Y, Yao Y, Zuo W, Chen X, Yang M, Ma G. METTL3 mediates Ang-II-induced cardiac hypertrophy through accelerating pri-miR-221/222 maturation in an m6A-dependent manner. Cell Mol Biol Lett 2022; 27:55. [PMID: 35836108 PMCID: PMC9284900 DOI: 10.1186/s11658-022-00349-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/26/2022] [Indexed: 12/14/2022] Open
Abstract
Background METTL3 is the core catalytic enzyme in m6A and is involved in a variety of cardiovascular diseases. However, whether and how METTL3 plays a role during angiotensin II (Ang-II)-induced myocardial hypertrophy is still unknown. Methods Neonatal rat cardiomyocytes (NRCMs) and C57BL/6J mice were treated with Ang-II to induce myocardial hypertrophy. qRT-PCR and western blots were used to detect the expression of RNAs and proteins. Gene function was verified by knockdown and/or overexpression, respectively. Luciferase and RNA immunoprecipitation (RIP) assays were used to verify interactions among multiple genes. Wheat germ agglutinin (WGA), hematoxylin and eosin (H&E), and immunofluorescence were used to examine myocardial size. m6A methylation was detected by a colorimetric kit. Results METTL3 and miR-221/222 expression and m6A levels were significantly increased in response to Ang-II stimulation. Knockdown of METTL3 or miR-221/222 could completely abolish the ability of NRCMs to undergo hypertrophy. The expression of miR-221/222 was positively regulated by METTL3, and the levels of pri-miR-221/222 that bind to DGCR8 or form m6A methylation were promoted by METTL3 in NRCMs. The effect of METTL3 knockdown on hypertrophy was antagonized by miR-221/222 overexpression. Mechanically, Wnt/β-catenin signaling was activated during hypertrophy and restrained by METTL3 or miR-221/222 inhibition. The Wnt/β-catenin antagonist DKK2 was directly targeted by miR-221/222, and the effect of miR-221/222 inhibitor on Wnt/β-catenin was abolished after inhibition of DKK2. Finally, AAV9-mediated cardiac METTL3 knockdown was able to attenuate Ang-II-induced cardiac hypertrophy in mouse model. Conclusions Our findings suggest that METTL3 positively modulates the pri-miR221/222 maturation process in an m6A-dependent manner and subsequently activates Wnt/β-catenin signaling by inhibiting DKK2, thus promoting Ang-II-induced cardiac hypertrophy. AAV9-mediated cardiac METTL3 knockdown could be a therapeutic for pathological myocardial hypertrophy. Supplementary Information The online version contains supplementary material available at 10.1186/s11658-022-00349-1.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Hunan road, Nanjing, 210000, Jiangsu, People's Republic of China
| | - Yangyang Qu
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Hunan road, Nanjing, 210000, Jiangsu, People's Republic of China
| | - Zhenjun Ji
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Hunan road, Nanjing, 210000, Jiangsu, People's Republic of China
| | - Chunshu Hao
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Hunan road, Nanjing, 210000, Jiangsu, People's Republic of China
| | - Yamin Su
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Hunan road, Nanjing, 210000, Jiangsu, People's Republic of China
| | - Yuyu Yao
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Hunan road, Nanjing, 210000, Jiangsu, People's Republic of China
| | - Wenjie Zuo
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Hunan road, Nanjing, 210000, Jiangsu, People's Republic of China
| | - Xi Chen
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Hunan road, Nanjing, 210000, Jiangsu, People's Republic of China
| | - Mingming Yang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Hunan road, Nanjing, 210000, Jiangsu, People's Republic of China
| | - Genshan Ma
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Hunan road, Nanjing, 210000, Jiangsu, People's Republic of China.
| |
Collapse
|
9
|
Comparative Proteomic Analysis of tPVAT during Ang II Infusion. Biomedicines 2021; 9:biomedicines9121820. [PMID: 34944635 PMCID: PMC8698607 DOI: 10.3390/biomedicines9121820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022] Open
Abstract
Perivascular adipose tissue (PVAT) homeostasis plays an important role in maintaining vascular function, and PVAT dysfunction may induce several pathophysiological situations. In this study, we investigated the effect and mechanism of the local angiotensin II (Ang II) on PVAT. High-throughput comparative proteomic analysis, based on TMT labeling combined with LC-MS/MS, were performed on an in vivo Ang II infusion mice model to obtain a comprehensive view of the protein ensembles associated with thoracic PVAT (tPVAT) dysfunction induced by Ang II. In total, 5037 proteins were confidently identified, of which 4984 proteins were quantified. Compared with the saline group, 145 proteins were upregulated and 146 proteins were downregulated during Ang II-induced tPVAT pathogenesis. Bioinformatics analyses revealed that the most enriched GO terms were annotated as gene silencing, monosaccharide binding, and extracellular matrix. In addition, some novel proteins, potentially associated with Ang II infusion, were identified, such as acyl-CoA carboxylase α, very long-chain acyl-CoA synthetase (ACSVL), uncoupling protein 1 (UCP1), perilipin, RAS protein-specific guanine nucleotide-releasing factor 2 (RasGRF2), and hypoxia inducible factor 1α (HIF-1α). Ang II could directly participate in the regulation of lipid metabolism, transportation, and adipocyte differentiation by affecting UCP1 and perilipin. Importantly, the key KEGG pathways were involved in fatty acid biosynthesis, FABP3-PPARα/γ, RasGRF2-ERK-HIF-1α, RasGRF2-PKC-HIF-1α, and STAT3-HIF-1α axis. The present study provided the most comprehensive proteome profile of mice tPVAT and some novel insights into Ang II-mediated tPVAT dysfunction and will be helpful for understanding the possible relationship between local RAS activation and PVAT dysfunction.
Collapse
|
10
|
Yang Y, Zou P, He L, Shao J, Tang Y, Li J. CBL aggravates Ang II-induced cardiac hypertrophy via the VHL/HIF-1α pathway. Exp Cell Res 2021; 405:112730. [PMID: 34242624 DOI: 10.1016/j.yexcr.2021.112730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 12/29/2022]
Abstract
CBL (Casitas B cell lymphoma), an important ubiquitin protein ligase, is involved in protein folding, protein maturation, and proteasome-dependent protein catabolism in different cells. However, its role in cardiac hypertrophy is still unclear. In this study, we found that expression of CBL is increased in an Ang II-induced mouse cardiac hypertrophy animal model and in Ang II-treated H9C2 cells. Interference with CBL expression attenuates the degree of myocardial hypertrophy as well as the expression of hypertrophy-related genes in H9C2 cells. Further research found that CBL aggravates myocardial hypertrophy by activating HIF-1α, which is an aggravating factor for hypertrophy. The effect of CBL on promoting myocardial hypertrophy was reversed by interference with HIF-1α. Mechanistically, we found that CBL directly interacted with and degraded VHL by increasing its ubiquitination level, which is a widely accepted regulatory factor of HIF-1α. Finally, our results showed that CBL was partially dependent on degradation of VHL and that activation of HIF-1α promoted myocardial hypertrophy. Collectively, these findings suggest that strategies based on activation of the CBL/HIF-1α axis might be promising for the treatment of hypertrophic cardiomyopathy.
Collapse
Affiliation(s)
- Yuting Yang
- Nanchang University, Nanchang, Jiangxi, 330006, China; Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China.
| | - Pengtao Zou
- Nanchang University, Nanchang, Jiangxi, 330006, China; Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China.
| | - Lin He
- Nanchang University, Nanchang, Jiangxi, 330006, China; Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China.
| | - Jun Shao
- Nanchang University, Nanchang, Jiangxi, 330006, China.
| | - Yanhua Tang
- Department of Cardiac Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China.
| | - Juxiang Li
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
11
|
Valle-Tenney R, Rebolledo D, Acuña MJ, Brandan E. HIF-hypoxia signaling in skeletal muscle physiology and fibrosis. J Cell Commun Signal 2020; 14:147-158. [PMID: 32088838 DOI: 10.1007/s12079-020-00553-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 02/11/2020] [Indexed: 02/06/2023] Open
Abstract
Hypoxia refers to the decrease in oxygen tension in the tissues, and the central effector of the hypoxic response is the transcription factor Hypoxia-Inducible Factor α (HIF1-α). Transient hypoxia in acute events, such as exercising or regeneration after damage, play an important role in skeletal muscle physiology and homeostasis. However, sustained activation of hypoxic signaling is a feature of skeletal muscle injury and disease, which can be a consequence of chronic damage but can also increase the severity of the pathology and worsen its outcome. Here, we review evidence that supports the idea that hypoxia and HIF-1α can contribute to the establishment of fibrosis in skeletal muscle through its crosstalk with other profibrotic factors, such as Transforming growth factor β (TGF-β), the induction of profibrotic cytokines expression, as is the case of Connective Tissue Growth Factor (CTGF/CCN2), or being the target of the Renin-angiotensin system (RAS).
Collapse
Affiliation(s)
- Roger Valle-Tenney
- Centro de Envejecimiento y Regeneración, CARE Chile UC, Santiago, Chile.,Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Daniela Rebolledo
- Centro de Envejecimiento y Regeneración, CARE Chile UC, Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.,Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O Higgins, Santiago, Chile
| | - María José Acuña
- Centro de Envejecimiento y Regeneración, CARE Chile UC, Santiago, Chile.,Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O Higgins, Santiago, Chile
| | - Enrique Brandan
- Centro de Envejecimiento y Regeneración, CARE Chile UC, Santiago, Chile. .,Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile. .,Fundación Ciencia & Vida, Santiago, Chile. .,Department Cell and Molecular Biology, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
12
|
Wang X, Chen L, Zhao X, Xiao L, Yi S, Kong Y, Jiang Y, Zhang J. A cathelicidin-related antimicrobial peptide suppresses cardiac hypertrophy induced by pressure overload by regulating IGFR1/PI3K/AKT and TLR9/AMPKα. Cell Death Dis 2020; 11:96. [PMID: 32029708 PMCID: PMC7005284 DOI: 10.1038/s41419-020-2296-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/19/2020] [Accepted: 01/22/2020] [Indexed: 11/27/2022]
Abstract
Cathelicidin-related antimicrobial peptide (CRAMP), an antimicrobial peptide, was reported to protect against myocardial ischemia/reperfusion injury. However, the effect of CRAMP on pressure overload-induced cardiac hypertrophy was unknown. This study explored the role of CRAMP on cardiac hypertrophy. A cardiac hypertrophy mouse model was induced by aortic banding surgery. Seven days after surgery, mice were given mCRAMP by intraperitoneal injection (8 mg/kg/d) for 7 weeks. Cardiac hypertrophy was evaluated by the hypertrophic response and fibrosis level as well as cardiac function. Mice were also injected with AAV9-shCRAMP to knockdown CRAMP in the mouse heart. CRAMP levels first increased and then reduced in the remodeling heart, as well as in angiotensin II-stimulated endothelial cells but not in cardiomyocytes and fibroblasts. mCRAMP protected against the pressure overload-induced cardiac remodeling process, while CRAMP knockdown accelerated this process. mCRAMP reduced the inflammatory response and oxidative stress in the hypertrophic heart, while mCRAMP deficiency deteriorated the pressure overload-induced inflammatory response and oxidative stress. mCRAMP inhibited the angiotensin II-stimulated hypertrophic response and oxidative stress in neonatal rat cardiomyocytes, but mCRAMP did not help the angiotensin II-induced inflammatory response and oxidative stress in endothelial cells. Mechanistically, we found that mCRAMP suppressed the cardiac hypertrophic response by activating the IGFR1/PI3K/AKT pathway via directly binding to IGFR1. AKT knockout mice completely reversed the anti-hypertrophic effect of mCRAMP but not its anti-oxidative effect. We also found that mCRAMP ameliorated cardiac oxidative stress by activating the TLR9/AMPKa pathway. This was confirmed by a TLR9 knockout mouse experiment, in which a TLR9 knockout partly reversed the anti-hypertrophic effect of mCRAMP and completely counteracted the anti-oxidative effect of mCRAMP. In summary, mCRAMP protected against pressure overload-induced cardiac hypertrophy by activating both the IGFR1/PI3K/AKT and TLR9/AMPKa pathways in cardiomyocytes.
Collapse
Affiliation(s)
- Xiaofang Wang
- Department of Cardiology, the First Afliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Linlin Chen
- Department of Cardiology, the First Afliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoyan Zhao
- Department of Cardiology, the First Afliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lili Xiao
- Department of Cardiology, the First Afliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shanting Yi
- Department of Cardiology, the First Afliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yawei Kong
- Department of Cardiology, the First Afliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Jiang
- Department of Neurology, the First Afliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Jinying Zhang
- Department of Cardiology, the First Afliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|