1
|
Tsang CH, Kozielewicz P. Exploring G Protein-Coupled Receptors in Hematological Cancers. ACS Pharmacol Transl Sci 2024; 7:4000-4009. [PMID: 39698279 PMCID: PMC11651347 DOI: 10.1021/acsptsci.4c00473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 12/20/2024]
Abstract
Hematological cancers, such as lymphomas and leukemias, pose significant challenges in oncology, necessitating a deeper understanding of their molecular landscape to enhance therapeutic strategies. This article critically examines and discusses recent research on the roles of G protein-coupled receptors (GPCRs) in myeloma, lymphomas, and leukemias with a particular focus on pediatric acute lymphoblastic (lymphocytic) leukemia (ALL). By utilizing RNA sequencing (RNA-seq), we analyzed GPCR expression patterns in pediatric ALL samples (aged 3-12 years old), with a further focus on Class A orphan GPCRs. Our analysis revealed distinct GPCR expression profiles in pediatric ALL, identifying several candidates with aberrant upregulated expression compared with healthy counterparts. Among these GPCRs, GPR85, GPR65, and GPR183 have varying numbers of studies in the field of hematological cancers and pediatric ALL. Furthermore, we explored missense mutations of pediatric ALL in relation to the RNA gene expression findings, providing insights into the genetic underpinnings of this disease. By integrating both RNA-seq and missense mutation data, this article aims to provide an insightful and broader perspective on the potential correlations between specific GPCR and their roles in pediatric ALL.
Collapse
Affiliation(s)
- Choi Har Tsang
- Molecular Pharmacology of GPCRs, Department Physiology & Pharmacology,
Karolinska Institutet, Biomedicum, 171 65 Stockholm,
Sweden
| | - Pawel Kozielewicz
- Molecular Pharmacology of GPCRs, Department Physiology & Pharmacology,
Karolinska Institutet, Biomedicum, 171 65 Stockholm,
Sweden
| |
Collapse
|
2
|
Chiavellini P, Lehmann M, Gallardo MD, Mallat MC, Pasquini DC, Zoller JA, Gordevicius J, Girard M, Lacunza E, Herenu CB, Horvath S, Goya RG. Young Plasma Rejuvenates Blood DNA Methylation Profile, Extends Mean Lifespan, and Improves Physical Appearance in Old Rats. J Gerontol A Biol Sci Med Sci 2024; 79:glae071. [PMID: 38430547 PMCID: PMC11020299 DOI: 10.1093/gerona/glae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Indexed: 03/04/2024] Open
Abstract
There is converging evidence that young blood conveys cells, vesicles, and molecules able to revitalize function and restore organ integrity in old individuals. We assessed the effects of young plasma on the lifespan, epigenetic age, and healthspan of old female rats. Beginning at 25.6 months of age, a group of 9 rats (group T) was intraperitoneally injected with plasma from young rats until their natural death. A group of 8 control rats of the same age received no treatment (group C). Blood samples were collected every other week. Survival curves showed that from age 26 to 30 months, none of the group T animals died, whereas the survival curve of group C rats began to decline at age 26 months. Blood DNAm age versus chronological age showed that DNAm age in young animals increased faster than chronological age, then slowed down, entering a plateau after 27 months. The DNAm age of the treated rats fell below the DNAm age of controls and, in numerical terms, remained consistently lower until natural death. When rats were grouped according to the similarities in their differential blood DNA methylation profile, samples from the treated and control rats clustered in separate groups. Analysis of promoter differential methylation in genes involved in systemic regulatory activities revealed specific GO term enrichment related to the insulin-like factors pathways as well as to cytokines and chemokines associated with immune and homeostatic functions. We conclude that young plasma therapy may constitute a natural, noninvasive intervention for epigenetic rejuvenation and health enhancement.
Collapse
Affiliation(s)
- Priscila Chiavellini
- Institute for Biochemical Research (INIBIOLP)—Histology B and Pathology B, Faculty of Medicine, School of Medicine, National University of La Plata (UNLP), La Plata, Argentina
| | - Marianne Lehmann
- Institute for Biochemical Research (INIBIOLP)—Histology B and Pathology B, Faculty of Medicine, School of Medicine, National University of La Plata (UNLP), La Plata, Argentina
| | - Maria D Gallardo
- Institute for Biochemical Research (INIBIOLP)—Histology B and Pathology B, Faculty of Medicine, School of Medicine, National University of La Plata (UNLP), La Plata, Argentina
| | - Martina Canatelli Mallat
- Institute for Biochemical Research (INIBIOLP)—Histology B and Pathology B, Faculty of Medicine, School of Medicine, National University of La Plata (UNLP), La Plata, Argentina
| | - Diana C Pasquini
- Institute for Biochemical Research (INIBIOLP)—Histology B and Pathology B, Faculty of Medicine, School of Medicine, National University of La Plata (UNLP), La Plata, Argentina
| | - Joseph A Zoller
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, California, USA
| | | | - Mauricio Girard
- Institute for Biochemical Research (INIBIOLP)—Histology B and Pathology B, Faculty of Medicine, School of Medicine, National University of La Plata (UNLP), La Plata, Argentina
| | - Ezequiel Lacunza
- Centro de Investigaciones Inmunologicas Basicas y Aplicadas (CINIBA), School of Medicine, National University of La Plata (UNLP), La Plata, Argentina
| | - Claudia B Herenu
- Institute for Experimental Pharmacology (IFEC), School of Chemical Sciences, National University of Cordoba, Cordoba, Argentina
| | - Steve Horvath
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, California, USA
- Altos Labs, San Diego, California, USA
| | - Rodolfo G Goya
- Institute for Biochemical Research (INIBIOLP)—Histology B and Pathology B, Faculty of Medicine, School of Medicine, National University of La Plata (UNLP), La Plata, Argentina
- Vitality in Aging Research Group (VIA), Fort Lauderdale, Florida, USA
| |
Collapse
|
3
|
Dargenio VN, Cristofori F, Dargenio C, Giordano P, Indrio F, Celano G, Francavilla R. Use of Limosilactobacillus reuteri DSM 17938 in paediatric gastrointestinal disorders: an updated review. Benef Microbes 2022; 13:221-242. [PMID: 35212258 DOI: 10.3920/bm2021.0151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Strains of lactobacilli are the most widely used probiotics and can be found in a large variety of food products and food supplements throughout the world. In this study, the evidence on Limosilactobacillus reuteri DSM 17938 (LR DSM 17938) has been reviewed. This species secretes reuterin and other substances singularly or in microvesicles, inhibiting pathogen growth and interacting with the intestinal microbiota and mucosa, restoring homeostasis. The use of LR DSM 17938 has been exploited in several pathological conditions. Preclinical research has shown that this probiotic can ameliorate dysbiosis and, by interacting with intestinal mucosal cells, can raise the pain threshold and promote gastrointestinal motility. These aspects are amongst the significant components in functional gastrointestinal disorders, such as colic and regurgitation in infants, functional abdominal pain and functional constipation in children and adolescents. This strain can decrease the duration of acute diarrhoea and hospitalization for acute gastroenteritis but does not seem to prevent nosocomial diarrhoea and antibiotic-associated diarrhoea. Because of its ability to survive in the gastric environment, it has been tested in Helicobacter pylori infection, showing a significant decrease of antibiotic-associated side effects and a tendency to increase the eradication rate. Finally, all these studies have shown the excellent safety of LR DSM 17938 even at higher dosages. In conclusion data from various clinical trials here reviewed can guide the clinician to find the correct dose, frequency of administration, and therapy duration.
Collapse
Affiliation(s)
- V N Dargenio
- Interdisciplinary Department of Medicine, Paediatric Section. University of Bari Aldo Moro, Children's Hospital 'Giovanni XXIII', Via Amendola 207, 70126 Bari, Italy
| | - F Cristofori
- Interdisciplinary Department of Medicine, Paediatric Section. University of Bari Aldo Moro, Children's Hospital 'Giovanni XXIII', Via Amendola 207, 70126 Bari, Italy
| | - C Dargenio
- Interdisciplinary Department of Medicine, Paediatric Section. University of Bari Aldo Moro, Children's Hospital 'Giovanni XXIII', Via Amendola 207, 70126 Bari, Italy
| | - P Giordano
- Interdisciplinary Department of Medicine, Paediatric Section. University of Bari Aldo Moro, Children's Hospital 'Giovanni XXIII', Via Amendola 207, 70126 Bari, Italy
| | - F Indrio
- Department of Paediatrics, University of Foggia, Via Pinto 1, 71100 Foggia, Italy
| | - G Celano
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Via Amendola 265/a, 70126 Bari, Italy
| | - R Francavilla
- Interdisciplinary Department of Medicine, Paediatric Section. University of Bari Aldo Moro, Children's Hospital 'Giovanni XXIII', Via Amendola 207, 70126 Bari, Italy
| |
Collapse
|
4
|
Jang MS, Ismail NSB, Yu YG. Development of a human antibody that exhibits antagonistic activity toward CC chemokine receptor 7. Antib Ther 2022; 5:192-201. [PMID: 35967907 PMCID: PMC9372883 DOI: 10.1093/abt/tbac016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Background
CC chemokine receptor 7 (CCR7) is a member of G-protein-coupled receptor family and mediates chemotactic migration of immune cells and different cancer cells induced via chemokine (C-C motif) ligand 19 (CCL19) or chemokine (C-C motif) ligand 21 (CCL21). Hence, the identification of blockade antibodies against CCR7 could lead to the development of therapeutics targeting metastatic cancer.
Methods
CCR7 was purified and stabilized in its active conformation, and antibodies specific to purified CCR7 were screened from the synthetic M13 phage library displaying humanized scFvs. The in vitro characterization of selected scFvs identified two scFvs that exhibited CCL19-competitive binding to CCR7. IgG4’s harboring selected scFv sequences were characterized for binding activity in CCR7+ cells, inhibitory activity toward CCR7-dependent cAMP attenuation, and the CCL19 or CCL21-dependent migration of CCR7+ cells.
Results
Antibodies specifically binding to purified CCR7 and CCR7+ cells were isolated and characterized. Two antibodies, IgG4(6RG11) and IgG4(72C7), showed ligand-dependent competitive binding to CCR7 with KD values of 40 nM and 50 nM, respectively. Particularly, IgG4(6RG11) showed antagonistic activity against CCR7, whereas both antibodies significantly blocked the ligand-induced migration and invasion activity of CCR7+ cancer cells.
Conclusions
Two antibody clones were successfully identified from a synthetic scFv-displaying phage library using purified recombinant CCR7 as an antigen. Antibodies specifically bound to the surface of CCR7+ cells and blocked CCR7+ cell migration. Particularly, 6RG11 showed antagonist activity against CCR7-dependent cAMP attenuation.
Statement of Significance
Antibodies targeting CCR7 were identified and could serve as therapeutic reagents against cancer metastasis.
Collapse
Affiliation(s)
- Moon-Sung Jang
- Department of Biopharmaceutical Chemistry , Kookmin University, Seoul, 02707 , Republic of Korea
- Antibody Research Institute , Kookmin University, Seoul 02707 , Republic of Korea
| | - Nurain Syahirah Binti Ismail
- Department of Biopharmaceutical Chemistry , Kookmin University, Seoul, 02707 , Republic of Korea
- Antibody Research Institute , Kookmin University, Seoul 02707 , Republic of Korea
| | - Yeon Gyu Yu
- Department of Biopharmaceutical Chemistry , Kookmin University, Seoul, 02707 , Republic of Korea
- Antibody Research Institute , Kookmin University, Seoul 02707 , Republic of Korea
| |
Collapse
|
5
|
Zheng M, Li YM, Liu ZY, Zhang X, Zhou Y, Jiang JL, Zhu P, Yang XM, Tang J, Chen ZN. Prognostic Landscape of Tumor-Infiltrating T and B Cells in Human Cancer. Front Immunol 2022; 12:731329. [PMID: 35069521 PMCID: PMC8771864 DOI: 10.3389/fimmu.2021.731329] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 11/30/2021] [Indexed: 12/19/2022] Open
Abstract
Recently, immunotherapy targeting tumor-infiltrating lymphocytes (TILs) has emerged as a critical and promising treatment in several types of cancer. However, not all cancer types have been tested in immunotherapeutic trials, and different patients and cancer types may have unpredictable clinical outcomes. This situation has created a particular exigency for analyzing the prognostic significance of tumor-infiltrating T cells (TIL-T) and B cells (TIL-B) across different cancer types. To address the critical role of TILs, the abundances of TIL-T and TIL-B cells, as determined by the protein levels of LCK and CD20, were analyzed across heterogeneous human malignancies. TIL-T and TIL-B cells showed varying prognostic significances across heterogeneous cancer types. Additionally, distinct distributions of TIL-T and TIL-B cells were observed in different cancer and tumor microenvironment (TME) subtypes. Next, we analyzed the cellular context for the TME communication network involving the well-acknowledgeable chemokine receptors of TIL-T and TIL-B cells, implying the functional interactions with TME. Additionally, these chemokine receptors, expressed by TIL-T and TIL-B cells, were remarkably correlated with the levels of TIL-T or TIL-B cell infiltrations across nearly all the cancer types, indicating these chemokine receptors as universal targets for up- and down-regulating the TIL-T and TIL-B cells. Lastly, we provide the prognostic landscape of TIL-T and TIL-B cells across 30 cancer types and the subgroups defined by gender, histopathology, histological grade, therapeutic approach, drug, and TME subtype, which are intended to be a resource to fuel the investigations of TILs, with important implications for cancer immunotherapy.
Collapse
Affiliation(s)
- Ming Zheng
- Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, China.,Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yi-Ming Li
- State Key Laboratory of Cancer Biology, Cell Engineering Research Center and Department of Cell Biology, Fourth Military Medical University, Xi'an, China.,National Translational Science Center for Molecular Medicine, Xi'an, China
| | - Zhen-Yu Liu
- State Key Laboratory of Cancer Biology, Cell Engineering Research Center and Department of Cell Biology, Fourth Military Medical University, Xi'an, China.,National Translational Science Center for Molecular Medicine, Xi'an, China
| | - Xin Zhang
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yinghui Zhou
- State Key Laboratory of Cancer Biology, Cell Engineering Research Center and Department of Cell Biology, Fourth Military Medical University, Xi'an, China.,National Translational Science Center for Molecular Medicine, Xi'an, China.,Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jian-Li Jiang
- State Key Laboratory of Cancer Biology, Cell Engineering Research Center and Department of Cell Biology, Fourth Military Medical University, Xi'an, China.,National Translational Science Center for Molecular Medicine, Xi'an, China
| | - Ping Zhu
- National Translational Science Center for Molecular Medicine, Xi'an, China.,Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiang-Min Yang
- State Key Laboratory of Cancer Biology, Cell Engineering Research Center and Department of Cell Biology, Fourth Military Medical University, Xi'an, China.,National Translational Science Center for Molecular Medicine, Xi'an, China
| | - Juan Tang
- State Key Laboratory of Cancer Biology, Cell Engineering Research Center and Department of Cell Biology, Fourth Military Medical University, Xi'an, China.,National Translational Science Center for Molecular Medicine, Xi'an, China
| | - Zhi-Nan Chen
- State Key Laboratory of Cancer Biology, Cell Engineering Research Center and Department of Cell Biology, Fourth Military Medical University, Xi'an, China.,National Translational Science Center for Molecular Medicine, Xi'an, China
| |
Collapse
|
6
|
Lewandowski EM, Kroeck KG, Jacobs LM, Fenske TG, Witt RN, Hintz AM, Ramsden ER, Zhang X, Peterson F, Volkman BF, Veldkamp CT, Chen Y. Structural Insights into Molecular Recognition by Human Chemokine CCL19. Biochemistry 2022; 61:311-318. [PMID: 35156805 PMCID: PMC9254573 DOI: 10.1021/acs.biochem.1c00759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The human chemokines CCL19 and CCL21 bind to the G protein-coupled receptor (GPCR) CCR7 and play an important role in the trafficking of immune cells as well as cancer metastasis. Conserved binding sites for sulfotyrosine residues on the receptor contribute significantly to the chemokine/GPCR interaction and have been shown to provide promising targets for new drug-discovery efforts to disrupt the chemokine/GPCR interaction and, consequently, tumor metastasis. Here, we report the first X-ray crystal structure of a truncated CCL19 (residues 7-70) at 2.50 Å resolution, revealing molecular details crucial for protein-protein interactions. Although the overall structure is similar to the previously determined NMR model, there are important variations, particularly near the N terminus and the so-called 30's and 40's loops. Computational analysis using the FTMap server indicates the potential importance of these areas in ligand binding and the differences in binding hotspots compared to CCL21. NMR titration experiments using a CCR7-derived peptide (residues 5-11, TDDYIGD) further demonstrate potential receptor recognition sites, such as those near the C terminus and 40's loop, which consist of both positively charged and hydrophobic residues that may be important for receptor binding. Taken together, the X-ray, NMR, and computational analysis herein provide insights into the overall structure and molecular features of CCL19 and enables investigation into this chemokine's function and inhibitor development.
Collapse
Affiliation(s)
- Eric M. Lewandowski
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, Florida 33612, United States
| | - Kyle G. Kroeck
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, Florida 33612, United States
| | - Lian M.C. Jacobs
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, Florida 33612, United States
| | - Tyler G. Fenske
- Department of Biochemistry and Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Robin N. Witt
- Department of Chemistry, University of Wisconsin Whitewater, Whitewater, Wisconsin 53190, United States
| | - Alyssa M. Hintz
- Department of Chemistry, University of Wisconsin Whitewater, Whitewater, Wisconsin 53190, United States
| | - Elizabeth R. Ramsden
- Department of Chemistry, University of Wisconsin Whitewater, Whitewater, Wisconsin 53190, United States
| | - Xiujun Zhang
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, Florida 33612, United States
| | - Francis Peterson
- Department of Biochemistry and Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Brian F. Volkman
- Department of Biochemistry and Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States,Corresponding authors: Brian F. Volkman, , Christopher T. Veldkamp, , Yu Chen,
| | - Christopher T. Veldkamp
- Department of Chemistry, University of Wisconsin Whitewater, Whitewater, Wisconsin 53190, United States,Corresponding authors: Brian F. Volkman, , Christopher T. Veldkamp, , Yu Chen,
| | - Yu Chen
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, Florida 33612, United States,Corresponding authors: Brian F. Volkman, , Christopher T. Veldkamp, , Yu Chen,
| |
Collapse
|
7
|
Gowhari Shabgah A, Al-Obaidi ZMJ, Sulaiman Rahman H, Kamal Abdelbasset W, Suksatan W, Bokov DO, Thangavelu L, Turki Jalil A, Jadidi-Niaragh F, Mohammadi H, Mashayekhi K, Gholizadeh Navashenaq J. Does CCL19 act as a double-edged sword in cancer development? Clin Exp Immunol 2021; 207:164-175. [PMID: 35020885 PMCID: PMC8982982 DOI: 10.1093/cei/uxab039] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 11/08/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer is considered a life-threatening disease, and several factors are involved in its development. Chemokines are small proteins that physiologically exert pivotal roles in lymphoid and non-lymphoid tissues. The imbalance or dysregulation of chemokines has contributed to the development of several diseases, especially cancer. CCL19 is one of the homeostatic chemokines that is abundantly expressed in the thymus and lymph nodes. This chemokine, which primarily regulates immune cell trafficking, is involved in cancer development. Through the induction of anti-tumor immune responses and inhibition of angiogenesis, CCL19 exerts tumor-suppressive functions. In contrast, CCL19 also acts as a tumor-supportive factor by inducing inflammation, cell growth, and metastasis. Moreover, CCL19 dysregulation in several cancers, including colorectal, breast, pancreatic, and lung cancers, has been considered a tumor biomarker for diagnosis and prognosis. Using CCL19-based therapeutic approaches has also been proposed to overcome cancer development. This review will shed more light on the multifarious function of CCL19 in cancer and elucidate its application in diagnosis, prognosis, and even therapy. It is expected that the study of CCL19 in cancer might be promising to broaden our knowledge of cancer development and might introduce novel approaches in cancer management.
Collapse
Affiliation(s)
| | - Zaid Mahdi Jaber Al-Obaidi
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Alkafeel, Najaf, Iraq,Department of Chemistry and Biochemistry, College of Medicine, University of Kerbala, Karbala, Iraq
| | - Heshu Sulaiman Rahman
- Department of Physiology, College of Medicine, University of Sulaimani, Sulaimaniyah, Iraq,Department of Medical Laboratory Sciences, Komar University of Science and Technology, Sulaimaniyah, Iraq
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia,Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Wanich Suksatan
- Faculty of Nursing, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Dmitry O Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, Moscow, Russian Federation,Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, Moscow, Russian Federation
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha institute of medical and Technical Sciences, Saveetha University, Chennai, India
| | - Abduladheem Turki Jalil
- Faculty of Biology and Ecology, Yanka Kupala State University of Grodno, Grodno, Belarus,College of Technical Engineering, The Islamic University, Najaf, Iraq
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mohammadi
- Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran,Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Kazem Mashayekhi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran,Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Jamshid Gholizadeh Navashenaq
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran,Correspondence: Jamshid Gholizadeh Navashenaq, Bam University of Medical Sciences, Bam, Kerman, Iran. E-mail: ;
| |
Collapse
|
8
|
Roberts JA, Varma VR, An Y, Varma S, Candia J, Fantoni G, Tiwari V, Anerillas C, Williamson A, Saito A, Loeffler T, Schilcher I, Moaddel R, Khadeer M, Lovett J, Tanaka T, Pletnikova O, Troncoso JC, Bennett DA, Albert MS, Yu K, Niu M, Haroutunian V, Zhang B, Peng J, Croteau DL, Resnick SM, Gorospe M, Bohr VA, Ferrucci L, Thambisetty M. A brain proteomic signature of incipient Alzheimer's disease in young APOE ε4 carriers identifies novel drug targets. SCIENCE ADVANCES 2021; 7:eabi8178. [PMID: 34757788 PMCID: PMC8580310 DOI: 10.1126/sciadv.abi8178] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/14/2021] [Indexed: 05/13/2023]
Abstract
Aptamer-based proteomics revealed differentially abundant proteins in Alzheimer’s disease (AD) brains in the Baltimore Longitudinal Study of Aging and Religious Orders Study (mean age, 89 ± 9 years). A subset of these proteins was also differentially abundant in the brains of young APOE ε4 carriers relative to noncarriers (mean age, 39 ± 6 years). Several of these proteins represent targets of approved and experimental drugs for other indications and were validated using orthogonal methods in independent human brain tissue samples as well as in transgenic AD models. Using cell culture–based phenotypic assays, we showed that drugs targeting the cytokine transducer STAT3 and the Src family tyrosine kinases, YES1 and FYN, rescued molecular phenotypes relevant to AD pathogenesis. Our findings may accelerate the development of effective interventions targeting the earliest molecular triggers of AD.
Collapse
Affiliation(s)
- Jackson A. Roberts
- Clinical and Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032
| | - Vijay R. Varma
- Clinical and Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Yang An
- Brain Aging and Behavior Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | | | - Julián Candia
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Giovanna Fantoni
- Clinical Research Core, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Vinod Tiwari
- Section on DNA Repair, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Carlos Anerillas
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Andrew Williamson
- Clinical and Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Atsushi Saito
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Tina Loeffler
- QPS Austria GmbH, Parkring 12, 8074 Grambach, Austria
| | | | - Ruin Moaddel
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Mohammed Khadeer
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jacqueline Lovett
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Toshiko Tanaka
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Olga Pletnikova
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Juan C. Troncoso
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Marilyn S. Albert
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Kaiwen Yu
- Departments of Structural Biology and Developmental Neurobiology, Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Mingming Niu
- Departments of Structural Biology and Developmental Neurobiology, Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Vahram Haroutunian
- Departments of Psychiatry and Neuroscience, The Alzheimer’s Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mental Illness Research, Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY 10468, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences and Department of Pharmacological Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Junmin Peng
- Departments of Structural Biology and Developmental Neurobiology, Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Deborah L. Croteau
- Section on DNA Repair, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Susan M. Resnick
- Brain Aging and Behavior Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Vilhelm A. Bohr
- Section on DNA Repair, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Luigi Ferrucci
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Madhav Thambisetty
- Clinical and Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
9
|
Kandikattu HK, Venkateshaiah SU, Mishra A. Chronic Pancreatitis and the Development of Pancreatic Cancer. Endocr Metab Immune Disord Drug Targets 2021; 20:1182-1210. [PMID: 32324526 DOI: 10.2174/1871530320666200423095700] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/31/2019] [Accepted: 01/20/2020] [Indexed: 02/07/2023]
Abstract
Pancreatitis is a fibro-inflammatory disorder of the pancreas that can occur acutely or chronically as a result of the activation of digestive enzymes that damage pancreatic cells, which promotes inflammation. Chronic pancreatitis with persistent fibro-inflammation of the pancreas progresses to pancreatic cancer, which is the fourth leading cause of cancer deaths across the globe. Pancreatic cancer involves cross-talk of inflammatory, proliferative, migratory, and fibrotic mechanisms. In this review, we discuss the role of cytokines in the inflammatory cell storm in pancreatitis and pancreatic cancer and their role in the activation of SDF1α/CXCR4, SOCS3, inflammasome, and NF-κB signaling. The aberrant immune reactions contribute to pathological damage of acinar and ductal cells, and the activation of pancreatic stellate cells to a myofibroblast-like phenotype. We summarize several aspects involved in the promotion of pancreatic cancer by inflammation and include a number of regulatory molecules that inhibit that process.
Collapse
Affiliation(s)
- Hemanth K Kandikattu
- Department of Medicine, Tulane Eosinophilic Disorders Centre (TEDC), Section of Pulmonary Diseases, Tulane University School of Medicine, New Orleans, LA 70112, United States
| | - Sathisha U Venkateshaiah
- Department of Medicine, Tulane Eosinophilic Disorders Centre (TEDC), Section of Pulmonary Diseases, Tulane University School of Medicine, New Orleans, LA 70112, United States
| | - Anil Mishra
- Department of Medicine, Tulane Eosinophilic Disorders Centre (TEDC), Section of Pulmonary Diseases, Tulane University School of Medicine, New Orleans, LA 70112, United States
| |
Collapse
|
10
|
A multi-cellular molecular signaling and functional network map of C-C motif chemokine ligand 18 (CCL18): a chemokine with immunosuppressive and pro-tumor functions. J Cell Commun Signal 2021; 16:293-300. [PMID: 34196939 DOI: 10.1007/s12079-021-00633-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/23/2021] [Indexed: 12/09/2022] Open
Abstract
The C-C Motif Chemokine Ligand 18 (CCL18) is a beta-chemokine sub-family member with immunomodulatory functions in primates. CCL18-dependent migration and epithelial-to-mesenchymal transition of oral squamous cell carcinoma, squamous cell carcinoma of head and neck, breast cancer, hepatocellular carcinoma, non-small cell lung carcinoma, ovarian cancer, pancreatic ductal carcinoma and bladder cancer cells are well-established. In the tumor niche, tumor-associated macrophages produce CCL18 and its overexpression is correlated with reduced patient survival in multiple cancers. Although multiple receptors including C-C chemokine receptor type 3 (CCR3), type 6 (CCR6), type 8 (CCR8) and G-protein coupled estrogen receptor (GPER1) are reported for CCL18, the Phosphatidylinositol Transfer Protein, Membrane-Associated 3 (PITPNM3) receptor is currently considered as its predominant receptor. Characterization of the molecular events and check points associated with the immunosuppressive and cancer progression support functions induced by CCL18 for their potential towards therapeutic applications is an area of active research. Hence, in this study, we assembled 917 signaling events reported to be induced by CCL18 through their studied receptors in diverse cell types as an integrated knowledgebase for reference, data integration and gene-set enrichment analysis of global transcriptomic and/or proteomics datasets.
Collapse
|
11
|
Latest update on chemokine receptors as therapeutic targets. Biochem Soc Trans 2021; 49:1385-1395. [PMID: 34060588 PMCID: PMC8286821 DOI: 10.1042/bst20201114] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/19/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022]
Abstract
The chemokine system plays a fundamental role in a diverse range of physiological processes, such as homeostasis and immune responses. Dysregulation in the chemokine system has been linked to inflammatory diseases and cancer, which renders chemokine receptors to be considered as therapeutic targets. In the past two decades, around 45 drugs targeting chemokine receptors have been developed, yet only three are clinically approved. The challenging factors include the limited understanding of aberrant chemokine signalling in malignant diseases, high redundancy of the chemokine system, differences between cell types and non-specific binding of the chemokine receptor antagonists due to the broad ligand-binding pockets. In recent years, emerging studies attempt to characterise the chemokine ligand–receptor interactions and the downstream signalling protein–protein interactions, aiming to fine tuning to the promiscuous interplay of the chemokine system for the development of precision medicine. This review will outline the updates on the mechanistic insights in the chemokine system and propose some potential strategies in the future development of targeted therapy.
Collapse
|
12
|
Rizeq B, Malki MI. The Role of CCL21/CCR7 Chemokine Axis in Breast Cancer Progression. Cancers (Basel) 2020; 12:E1036. [PMID: 32340161 PMCID: PMC7226115 DOI: 10.3390/cancers12041036] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/01/2020] [Accepted: 04/11/2020] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is a leading cause of cancer-related deaths worldwide, predominantly caused by metastasis. It is generally accepted that the pattern of breast cancer metastasis is largely determined by the interaction between the chemokine receptors on cancer cells and the chemokines expressed at the sites of metastatic disease. Chemokine receptors belong to the G-protein-coupled receptors (GPCRs) family that appear to be implicated in inflammatory diseases, tumor growth and metastasis. One of its members, C-C Chemokine receptor 7 (CCR7), binds chemokines CCL19 and CCL21, which are important for tissue homeostasis, immune surveillance and tumorigenesis. These receptors have been shown to induce the pathobiology of breast cancer due to their ability to induce cellular proliferation and migration upon the binding of the cognate chemokine receptors. The underlying signaling pathways and exact cellular interactions within this biological system are not fully understood and need further insights. Thus, in this review, we summarize the essential roles of CCR7 and its receptors in breast cancer progression. Furthermore, we discuss the mechanisms of regulation that may lead to novel opportunities for therapeutic intervention. Despite the enormous advances in our knowledge of the nature of the chemokines in breast cancer metastasis, research about the involvement of CCR7 in cancer progression is still limited. Therefore, further studies are essential to illustrate the distinct roles of CCR7 in cancer progression and validate its potential as a preventive bio-factor for human breast cancer metastasis by targeting chemokine receptor genes.
Collapse
Affiliation(s)
| | - Mohammed Imad Malki
- College of Medicine, QU Health, Qatar University, P. O. Box. 2713, Doha, Qatar;
| |
Collapse
|
13
|
Ueland T, Aukrust P, Caidahl K. CCL21 and prognosis in acute coronary syndrome. Aging (Albany NY) 2019; 11:9225-9226. [PMID: 31694981 PMCID: PMC6874457 DOI: 10.18632/aging.102443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 10/03/2019] [Indexed: 11/25/2022]
Affiliation(s)
- Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Faculty of Medicine, University of Oslo, Oslo, Norway.,K.G. Jebsen-Thrombosis Research and Expertise Center (TREC), University of Tromsø, Tromsø, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Kenneth Caidahl
- Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Physiology, Sahlgrenska University Hospital, Gothenburg, Sweden.,Departments of Molecular Medicine and Surgery and Clinical Physiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
14
|
Yan Y, Chen R, Wang X, Hu K, Huang L, Lu M, Hu Q. CCL19 and CCR7 Expression, Signaling Pathways, and Adjuvant Functions in Viral Infection and Prevention. Front Cell Dev Biol 2019; 7:212. [PMID: 31632965 PMCID: PMC6781769 DOI: 10.3389/fcell.2019.00212] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/18/2019] [Indexed: 12/11/2022] Open
Abstract
Chemokine (C–C motif) ligand 19 (CCL19) is a critical regulator of the induction of T cell activation, immune tolerance, and inflammatory responses during continuous immune surveillance, homeostasis, and development. Migration of CC-chemokine receptor 7 (CCR7)-expressing cells to secondary lymphoid organs is a crucial step in the onset of adaptive immunity, which is initiated by a complex interaction between CCR7 and its cognate ligands. Recent advances in knowledge regarding the response of the CCL19-CCR7 axis to viral infections have elucidated the complex network of interplay among the invading virus, target cells and host immune responses. Viruses use various strategies to evade or delay the cytokine response, gaining additional time to replicate in the host. In this review, we summarize the impacts of CCL19 and CCR7 expression on the regulation of viral pathogenesis with an emphasis on the corresponding signaling pathways and adjuvant mechanisms. We present and discuss the expression, signaling adaptor proteins and effects of CCL19 and CCR7 as these molecules differentially impact different viral infections and viral life cycles in host homeostatic strategies. The underlying mechanisms discussed in this review may assist in the design of novel agents to modulate chemokine activity for viral prevention.
Collapse
Affiliation(s)
- Yan Yan
- Center of Clinical Laboratory, The Fifth People's Hospital of Wuxi, Affiliated Hospital of Jiangnan University, Wuxi, China.,The International Joint Research Laboratory for Infection and Immunity (China-Germany), Jiangnan University, Wuxi, China
| | - Renfang Chen
- The International Joint Research Laboratory for Infection and Immunity (China-Germany), Jiangnan University, Wuxi, China.,Hepatology Institute of Wuxi, The Fifth People's Hospital of Wuxi, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xu Wang
- Center of Clinical Laboratory, The Fifth People's Hospital of Wuxi, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Kai Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Lihua Huang
- The International Joint Research Laboratory for Infection and Immunity (China-Germany), Jiangnan University, Wuxi, China.,Hepatology Institute of Wuxi, The Fifth People's Hospital of Wuxi, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Mengji Lu
- The International Joint Research Laboratory for Infection and Immunity (China-Germany), Jiangnan University, Wuxi, China.,Institute of Virology, University Hospital of Essen, University Duisburg-Essen, Essen, Germany
| | - Qinxue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,Institute for Infection and Immunity, St. George's, University of London, London, United Kingdom
| |
Collapse
|
15
|
Curcumae Radix Extract Decreases Mammary Tumor-Derived Lung Metastasis via Suppression of C-C Chemokine Receptor Type 7 Expression. Nutrients 2019; 11:nu11020410. [PMID: 30781353 PMCID: PMC6412318 DOI: 10.3390/nu11020410] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/11/2019] [Accepted: 02/11/2019] [Indexed: 12/29/2022] Open
Abstract
Curcumae radix is the dry root of Curcuma longa L. (turmeric) that can be used either as a spice or traditional medicine. The aim of this study was to investigate the survival benefits and the anti-metastatic activity of curcumae radix extract (CRE) in MCF7 cells and in MMTV-PyMT transgenic mice—a mouse model of breast cancer metastasis. In vitro wound scratch assay revealed that CRE treatment inhibited cell motility and cell migration in a dose-dependent manner. To investigate the effect of CRE in breast cancer metastasis, MMTV-PyMT transgenic female virgin mice were used and randomly divided into two groups. For survival curve analysis, CRE was administered in a dose of 50 mg/kg to 8–20-week-old mice. Interestingly, CRE treatment significantly increased the median and prolonged survival of MMTV-PyMT mice. Furthermore, CRE treatment decreased tumor burden and inhibited cell proliferation in primary breast tumor, and also suppressed mammary tumor-derived lung metastasis. The size of the lung metastases substantially decreased in the CRE-treated group compared with the ones in the control group. Curcumae radix extract showed anti-metastatic activity through regulating the expression of metastasis markers including C-C Chemokine Receptor Type 7, Matrix Metalloproteinase 9 and the proto-oncogenes c-fos and c-jun. We demonstrated that these metastatic regulators were decreased when CCR7 expression was suppressed in MCF7 cells transfected with CCR7 siRNA. The results of this study show that curcumae radix exerts antitumor and anti-metastatic activities, and we suggest that curcumae radix might be a potential supplement for the treatment and prevention of breast cancer metastasis.
Collapse
|
16
|
Savino F, Galliano I, Savino A, Daprà V, Montanari P, Calvi C, Bergallo M. Lactobacillus reuteri DSM 17938 Probiotics May Increase CC-Chemokine Receptor 7 Expression in Infants Treated With for Colic. Front Pediatr 2019; 7:292. [PMID: 31380326 PMCID: PMC6646728 DOI: 10.3389/fped.2019.00292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/28/2019] [Indexed: 12/27/2022] Open
Abstract
Aim: Studies have shown that Lactobacilli reuteri probiotics can affect cells that play a key role in the immune system. This in vivo Italian study investigated how Lactobacillus reuteri DSM 17938 influenced CC-chemokine receptor 7 (CCR7) and interleukin 10 (IL-10) in breastfed colicky infants. Methods: Our University hospital in Turin recruited 50 healthy outpatients, at a median age of approximately 1 month, from September 2017 to August 2018. They were randomized to daily Lactobacillus reuteri DSM17938 (1 × 108 cfu) or a placebo for 28 days from recruitment. We collected peripheral blood and evaluated the expression of CCR7 messenger ribonucleic acid using the real-time TaqMan reverse transcription polymerase chain reaction method at baseline and after the study period. Results: We found increased expression of CC-chemokine receptor 7 in infants treated with the probiotic, but not the controls (p < 0.0026). No differences were observed for interleukin 10 after the study period in either group. At baseline, daily crying time was comparable in the probiotic and control groups: 341 (25) vs. 337 (29) min., respectively (p = 0.450). After 28 days, daily mean crying time decrease statistically in the probiotic group: 78 (23) vs. 232 (31), respectively (p < 0.001). Conclusion: The increase in CC-chemokine receptor 7 might have been a response to probiotic treatment. As a relatively small sample was used to conduct this study, our research needs to be replicated in different settings, and over time, to produce comparable findings.
Collapse
Affiliation(s)
- Francesco Savino
- Department of Paediatrics, Azienda Ospedaliera Universitaria Città della Salute e della Scienza di Torino, Turin, Italy
| | - Ilaria Galliano
- Department of Public Health and Paediatric Sciences, Scuola di Medicina, Università degli Studi di Torino, Turin, Italy
| | - Andrea Savino
- Department of Public Health and Paediatric Sciences, Scuola di Medicina, Università degli Studi di Torino, Turin, Italy
| | - Valentina Daprà
- Department of Public Health and Paediatric Sciences, Scuola di Medicina, Università degli Studi di Torino, Turin, Italy
| | - Paola Montanari
- Department of Public Health and Paediatric Sciences, Scuola di Medicina, Università degli Studi di Torino, Turin, Italy
| | - Cristina Calvi
- Department of Public Health and Paediatric Sciences, Scuola di Medicina, Università degli Studi di Torino, Turin, Italy
| | - Massimiliano Bergallo
- Department of Public Health and Paediatric Sciences, Scuola di Medicina, Università degli Studi di Torino, Turin, Italy
| |
Collapse
|
17
|
Berendam SJ, Koeppel AF, Godfrey NR, Rouhani SJ, Woods AN, Rodriguez AB, Peske JD, Cummings KL, Turner SD, Engelhard VH. Comparative Transcriptomic Analysis Identifies a Range of Immunologically Related Functional Elaborations of Lymph Node Associated Lymphatic and Blood Endothelial Cells. Front Immunol 2019; 10:816. [PMID: 31057546 PMCID: PMC6478037 DOI: 10.3389/fimmu.2019.00816] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 03/27/2019] [Indexed: 12/11/2022] Open
Abstract
Lymphatic and blood vessels are formed by specialized lymphatic endothelial cells (LEC) and blood endothelial cells (BEC), respectively. These endothelial populations not only form peripheral tissue vessels, but also critical supporting structures in secondary lymphoid organs, particularly the lymph node (LN). Lymph node LEC (LN-LEC) also have been shown to have important immunological functions that are not observed in LEC from tissue lymphatics. LN-LEC can maintain peripheral tolerance through direct presentation of self-antigen via MHC-I, leading to CD8 T cell deletion; and through transfer of self-antigen to dendritic cells for presentation via MHC-II, resulting in CD4 T cell anergy. LN-LEC also can capture and archive foreign antigens, transferring them to dendritic cells for maintenance of memory CD8 T cells. The molecular basis for these functional elaborations in LN-LEC remain largely unexplored, and it is also unclear whether blood endothelial cells in LN (LN-BEC) might express similar enhanced immunologic functionality. Here, we used RNA-Seq to compare the transcriptomic profiles of freshly isolated murine LEC and BEC from LN with one another and with freshly isolated LEC from the periphery (diaphragm). We show that LN-LEC, LN-BEC, and diaphragm LEC (D-LEC) are transcriptionally distinct from one another, demonstrating both lineage and tissue-specific functional specializations. Surprisingly, tissue microenvironment differences in gene expression profiles were more numerous than those determined by endothelial cell lineage specification. In this regard, both LN-localized endothelial cell populations show a variety of functional elaborations that suggest how they may function as antigen presenting cells, and also point to as yet unexplored roles in both positive and negative regulation of innate and adaptive immune responses. The present work has defined in depth gene expression differences that point to functional specializations of endothelial cell populations in different anatomical locations, but especially the LN. Beyond the analyses provided here, these data are a resource for future work to uncover mechanisms of endothelial cell functionality.
Collapse
Affiliation(s)
- Stella J. Berendam
- Department of Microbiology, Immunology, and Cancer Biology, Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Alexander F. Koeppel
- Department of Public Health Sciences and Bioinformatics Core, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Nicole R. Godfrey
- Department of Microbiology, Immunology, and Cancer Biology, Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Sherin J. Rouhani
- Department of Microbiology, Immunology, and Cancer Biology, Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Amber N. Woods
- Department of Microbiology, Immunology, and Cancer Biology, Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Anthony B. Rodriguez
- Department of Microbiology, Immunology, and Cancer Biology, Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - J. David Peske
- Department of Microbiology, Immunology, and Cancer Biology, Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Kara L. Cummings
- Department of Microbiology, Immunology, and Cancer Biology, Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Stephen D. Turner
- Department of Public Health Sciences and Bioinformatics Core, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Victor H. Engelhard
- Department of Microbiology, Immunology, and Cancer Biology, Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, United States
- *Correspondence: Victor H. Engelhard
| |
Collapse
|
18
|
Basheer HA, Pakanavicius E, Cooper PA, Shnyder SD, Martin L, Hunter KD, Vinader V, Afarinkia K. Hypoxia modulates CCR7 expression in head and neck cancers. Oral Oncol 2018; 80:64-73. [PMID: 29706190 DOI: 10.1016/j.oraloncology.2018.03.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 03/05/2018] [Accepted: 03/23/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND The chemokine receptor CCR7 is expressed on lymphocytes and dendritic cells and is responsible for trafficking of these cells in and out of secondary lymphoid organs. It has recently been shown that CCR7 expression is elevated in a number of cancers, including head and neck cancers, and that its expression correlates to lymph node (LN) metastasis. However, little is known about the factors that can induce CCR7 expression in head and neck cancers. METHOD We compared the protein expression and functional responses of CCR7 under normoxia and hypoxia in head and neck cancer cell lines OSC-19, FaDu, SCC-4, A-253 and Detroit-562 cultured as monolayers, spheroids, and grown in vivo as xenografts in balb/c mice. In addition, we analysed the correlation between hypoxia marker HIF-1α and CCR7 expression in a tissue microarray comprising 80 clinical samples with various stages and grades of malignant tumour and normal tissue. RESULTS Under hypoxia, the expression of CCR7 is elevated in both in vitro and in vivo models. Furthermore, in malignant tissue, a correlation is observed between hypoxia marker HIF-1α and CCR7 across all clinical stages. This correlation is also strong in early histological grade of tumours. CONCLUSION Hypoxia plays a role in the regulation of the expression of CCR7 and it may contribute to the development of a metastatic phenotype in head and neck cancers through this axis.
Collapse
Affiliation(s)
- Haneen A Basheer
- The Institute of Cancer Therapeutics, University of Bradford, Bradford BD7 1DP, United Kingdom; Faculty of Pharmacy, Zarqa University, PO Box 132222, Zarqa 13132, Jordan
| | - Edvinas Pakanavicius
- Division of Biosciences, University College London, London WC1E 6BT, United Kingdom
| | - Patricia A Cooper
- The Institute of Cancer Therapeutics, University of Bradford, Bradford BD7 1DP, United Kingdom
| | - Steven D Shnyder
- The Institute of Cancer Therapeutics, University of Bradford, Bradford BD7 1DP, United Kingdom
| | - Lisette Martin
- School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, United Kingdom
| | - Keith D Hunter
- School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, United Kingdom
| | - Victoria Vinader
- The Institute of Cancer Therapeutics, University of Bradford, Bradford BD7 1DP, United Kingdom
| | - Kamyar Afarinkia
- The Institute of Cancer Therapeutics, University of Bradford, Bradford BD7 1DP, United Kingdom.
| |
Collapse
|
19
|
Saggi S, Badran KW, Han AY, Kuan EC, St John MA. Clinicopathologic Characteristics and Survival Outcomes in Floor of Mouth Squamous Cell Carcinoma: A Population-Based Study. Otolaryngol Head Neck Surg 2018; 159:51-58. [PMID: 29436280 DOI: 10.1177/0194599818756815] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Objective To describe the determinants of survival for patients with floor of mouth (FOM) squamous cell carcinoma (SCC) from 1973 to 2013 with the SEER database (Surveillance, Epidemiology, and End Results). Study Design and Setting Retrospective cohort study with a national database. Subjects and Methods The SEER registry was utilized to calculate survival trends for patients with FOM SCC between 1973 and 2013. Patient data were analyzed with respect to age, sex, race, primary site, stage at presentation, tumor size, grade, and treatment modalities (surgery and radiotherapy). Overall survival (OS) and disease-specific survival (DSS) were calculated. Results A total of 14,010 FOM SCC cases were identified. The cohort was 69.5% male, and the median age at diagnosis was 62 years. Forty-six percent of cases were treated with surgery, while 14% received radiotherapy. Kaplan-Meier analysis demonstrated OS and DSS of 39% and 59% at 5 years, respectively. Multivariate analysis showed that age, grade, stage, size, and surgery were determinants for OS and DSS (all P < .05). For early- and advanced-stage cancers, age, grade, size, and surgery predicted OS and DSS, while radiotherapy was a predictor of OS and DSS in advanced-stage tumors only (all P < .05). Conclusion To our knowledge, this study is the largest to date investigating prognostic factors for survival of patients diagnosed with FOM SCC. Determinants of survival include age, grade, stage, size, and surgery. Surgery appears to play a critical role in the management of these tumors.
Collapse
Affiliation(s)
- Satvir Saggi
- 1 Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, UCLA Medical Center, Los Angeles, California, USA
| | - Karam W Badran
- 1 Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, UCLA Medical Center, Los Angeles, California, USA
| | - Albert Y Han
- 1 Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, UCLA Medical Center, Los Angeles, California, USA
| | - Edward C Kuan
- 1 Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, UCLA Medical Center, Los Angeles, California, USA
| | - Maie A St John
- 1 Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, UCLA Medical Center, Los Angeles, California, USA.,2 Head and Neck Cancer Program, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
20
|
Ryu H, Baek SW, Moon JY, Jo IS, Kim N, Lee HJ. C-C motif chemokine receptors in gastric cancer. Mol Clin Oncol 2018; 8:3-8. [PMID: 29285394 PMCID: PMC5738695 DOI: 10.3892/mco.2017.1470] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 06/06/2017] [Indexed: 12/20/2022] Open
Abstract
Gastric cancer is the fifth most common cancer and the third leading cause of cancer-associated mortality worldwide. Despite recent advances in molecular and clinical research, patients with gastric cancer at an advanced stage have a dismal prognosis and poor survival rates, and systemic treatment relies predominantly on traditional cytotoxic chemotherapy. To improve patients' quality of life and survival, an improved understanding of the complex molecular mechanisms involved in gastric cancer progression and treatment resistance, and of its clinical application in the development of novel targeted therapies, is urgently required. Chemokines are a group of small chemotactic cytokines that interact with seven-transmembrane G-protein-coupled receptors, and this interaction serves a crucial role in various physiological processes, including organ development and the host immune response, to recruit cells to specific sites in the body. There is also accumulating evidence that chemokines and chemokine receptors (CCRs) contribute to tumor development and progression, as well as metastasis. However, research regarding the functional roles of chemokines and their receptors in cancer is dynamic and context-dependent, and much remains to be elucidated, although various aspects have been explored extensively. In gastric cancer, C-C motif CCRs are involved in the biological behavior of tumor cells, including the processes of growth, invasion and survival, as well as the epithelial-mesenchymal transition. In the present review, attention is given to the clinical relevance of C-C motif CCRs in the development, progression, and metastasis of gastric cancer, particularly CCR7 and CCR5, which have been investigated extensively, as well as their potential therapeutic implications.
Collapse
Affiliation(s)
- Hyewon Ryu
- Department of Internal Medicine, Chungnam National University Hospital, Daejeon 35015, Republic of Korea
| | - Seung Woo Baek
- Department of Internal Medicine, Chungnam National University Hospital, Daejeon 35015, Republic of Korea
| | - Ji Young Moon
- Department of Internal Medicine, Chungnam National University Hospital, Daejeon 35015, Republic of Korea
| | - In-Sook Jo
- Department of Medical Science, School of Medicine Chungnam National University and Chungnam National University Hospital, Daejeon 35015, Republic of Korea
| | - Nayoung Kim
- Department of Medical Science, School of Medicine Chungnam National University and Chungnam National University Hospital, Daejeon 35015, Republic of Korea
| | - Hyo Jin Lee
- Department of Internal Medicine, School of Medicine Chungnam National University and Chungnam National University Hospital, Daejeon 35015, Republic of Korea
- Cancer Research Institute, Chungnam National University, Daejeon 35015, Republic of Korea
| |
Collapse
|
21
|
Zhang X, Wang Y, Cao Y, Zhang X, Zhao H. Increased CCL19 expression is associated with progression in cervical cancer. Oncotarget 2017; 8:73817-73825. [PMID: 29088748 PMCID: PMC5650303 DOI: 10.18632/oncotarget.17982] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/26/2017] [Indexed: 02/06/2023] Open
Abstract
Cervical cancer is the third most common cancer and the fourth leading cause of malignancy related mortality in women worldwide. CCL19 is highly expressed in human cancer cells, and ligand CCL19 binding to CCR7 induces actin polymerization and pseudopodia formation. However, whether or not CCL19 is involved in EMT of human cervical cancer needs further investigation. Using quantitative PCR and western blot analyses, we found that CCL19 is overexpressed in cervical cancer cell lines and tissues. Knockdown of CCL19 via siRNA inhibited the proliferation of cervical cancer cells by increasing apoptosis. Further analyses showed that inhibitory effects of CCL19 on cell migration and invasion were partly associated with EMT process. In conclusion, these data indicate that CCL19 is abnormally expressed in cervical cancer, indicating a novel and important role for CCL19 in cervical cancer malignant transformation.
Collapse
Affiliation(s)
- Xiaoshu Zhang
- Department of Immunology, Binzhou Medical University, Yantai, 264003, China
| | - Yue Wang
- Department of Immunology, Binzhou Medical University, Yantai, 264003, China
| | - Yanning Cao
- Department of Immunology, Binzhou Medical University, Yantai, 264003, China
| | - Xueshan Zhang
- Department of Immunology, Binzhou Medical University, Yantai, 264003, China
| | - Haiya Zhao
- Department of Immunology, Binzhou Medical University, Yantai, 264003, China
| |
Collapse
|
22
|
Adenovirus-Mediated CCR7 and BTLA Overexpression Enhances Immune Tolerance and Migration in Immature Dendritic Cells. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3519745. [PMID: 28393074 PMCID: PMC5368407 DOI: 10.1155/2017/3519745] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 02/20/2017] [Indexed: 01/08/2023]
Abstract
Our previous report revealed that immature dendritic cells (imDCs) with adenovirus-mediated CCR7 overexpression acquired an enhanced migratory ability but also exhibited the lower immune tolerance observed in more mature cells. In the present study, we aimed to investigate whether BTLA overexpression was sufficient to preserve immune tolerance in imDCs with exogenous CCR7 overexpression. Scanning electron microscopy and surface antigens analysis revealed that BTLA overexpression suppressed DC maturation, an effect further potentiated in CCR7 and BTLA cooverexpressing cells. Correspondingly, in vitro chemotaxis assays and mixed lymphocyte reactions demonstrated increased migratory potential and immune tolerance in CCR7 and BTLA coexpressing cells. Furthermore, CCR7 and BTLA cooverexpressed imDCs suppressed IFN-γ and IL-17 expression and promoted IL-4 and TGF-beta expression of lymphocyte, indicating an increase of T helper 2 (Th2) regulatory T cell (Treg). Thus, these data indicate that CCR7 and BTLA cooverexpression imparts an intermediate immune phenotype in imDCs when compared to that in CCR7- or BTLA-expressing counterparts that show a more immunocompetent or immunotolerant phenotype, respectively. All these results indicated that adenovirus-mediated CCR7 and BTLA overexpression could enhance immune tolerance and migration of imDCs. Our study provides a basis for further studies on imDCs in immune tolerance, with the goal of developing effective cellular immunotherapies for transplant recipients.
Collapse
|
23
|
Interplay between CCR7 and Notch1 axes promotes stemness in MMTV-PyMT mammary cancer cells. Mol Cancer 2017; 16:19. [PMID: 28137279 PMCID: PMC5282896 DOI: 10.1186/s12943-017-0592-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/18/2017] [Indexed: 12/14/2022] Open
Abstract
Background Breast cancer is the major cause of cancer-related mortality in women. It is thought that quiescent stem-like cells within solid tumors are responsible for cancer maintenance, progression and eventual metastasis. We recently reported that the chemokine receptor CCR7, a multi-functional regulator of breast cancer, maintains the stem-like cell population. Methods This study used a combination of molecular and cellular assays on primary mammary tumor cells from the MMTV-PyMT transgenic mouse with or without CCR7 to examine the signaling crosstalk between CCR7 and Notch pathways. Results We show for the first time that CCR7 functionally intersects with the Notch signaling pathway to regulate mammary cancer stem-like cells. In this cell subpopulation, CCR7 stimulation activated the Notch signaling pathway, and deletion of CCR7 significantly reduced the levels of activated cleaved Notch1. Moreover, blocking Notch activity prevented specific ligand-induced signaling of CCR7 and augmentation of mammary cancer stem-like cell function. Conclusion Crosstalk between CCR7 and Notch1 promotes stemness in mammary cancer cells and may ultimately potentiate mammary tumor progression. Therefore, dual targeting of both the CCR7 receptor and Notch1 signaling axes may be a potential therapeutic avenue to specifically inhibit the functions of breast cancer stem cells. Electronic supplementary material The online version of this article (doi:10.1186/s12943-017-0592-0) contains supplementary material, which is available to authorized users.
Collapse
|
24
|
Liu M, Wang P, Zhao M, Liu DY. Intestinal Dendritic Cells Are Altered in Number, Maturity and Chemotactic Ability in Fulminant Hepatic Failure. PLoS One 2016; 11:e0166165. [PMID: 27832135 PMCID: PMC5104363 DOI: 10.1371/journal.pone.0166165] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 10/23/2016] [Indexed: 01/01/2023] Open
Abstract
Fulminant hepatic failure (FHF) is defined as rapid acute liver injury, often complicated with spontaneous bacterial peritonitis (SBP). The precise onset of FHF with SBP is still unknown, but it is thought that SBP closely correlates with a weakened intestinal barrier. Dendritic cells (DCs) play a crucial role in forming the intestinal immune barrier, therefore the number, maturity and chemotactic ability of intestinal DCs were studied in FHF. Mouse intestinal and spleen DCs were isolated by magnetic-activated cell sorting (MACS) and surface markers of DCs, namely CD11c, CD74, CD83 and CD86, were identified using flow cytometry. Immunohistochemistry and Western blotting were performed to detect the distribution and expression of CC-chemokine receptor 7 (CCR7) and CC-chemokine receptor 9 (CCR9), as well as their ligands-CC-chemokine ligand 21 (CCL21) and CC-chemokine ligand 25 (CCL25). Real-time PCR was used to detect CCR7 and CCR9 mRNA, along with their ligands-CCL21 and CCL25 mRNA. Flow cytometry analysis showed that the markers CD74, CD83 and CD86 of CD11c+DCs were lower in the D-galactosamine (D-GalN) group and were significantly decreased in the FHF group, while there were no significant changes in the expression of these markers in the lipopolysaccharide (LPS) group. Immunohistochemistry results showed that staining for CCR7 and CCR9, as well as their ligands CCL21 and CCL25, was significantly weaker in the D-GalN and FHF groups compared with the normal saline (NS) group or the LPS group; the FHF group even showed completely unstained parts. Protein expression of CCR7 and CCR9, as well as their ligands- CCL21 and CCL25, was also lower in the D-GalN group and decreased even more significantly in the FHF group. At the gene level, CCR7 and CCR9, along with CCL21 and CCL25 mRNA expression, was lower in the D-GalN group and significantly decreased in the FHF group compared to the NS and LPS groups, consisting with the protein expression. Our study indicated that intestinal DCs were decreased in number, maturity and chemotactic ability in FHF and might contribute to a decreased function of the intestinal immune barrier in FHF.
Collapse
MESH Headings
- Animals
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antigens, Differentiation, B-Lymphocyte/immunology
- Antigens, Differentiation, B-Lymphocyte/metabolism
- B7-2 Antigen/immunology
- B7-2 Antigen/metabolism
- Blotting, Western
- CD11c Antigen/immunology
- CD11c Antigen/metabolism
- Cell Count
- Chemokine CCL21/genetics
- Chemokine CCL21/immunology
- Chemokine CCL21/metabolism
- Chemokines, CC/genetics
- Chemokines, CC/immunology
- Chemokines, CC/metabolism
- Chemotaxis/immunology
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Flow Cytometry
- Gene Expression/immunology
- Histocompatibility Antigens Class II/immunology
- Histocompatibility Antigens Class II/metabolism
- Immunoglobulins/immunology
- Immunoglobulins/metabolism
- Immunohistochemistry
- Intestines/immunology
- Liver Failure, Acute/genetics
- Liver Failure, Acute/immunology
- Liver Failure, Acute/metabolism
- Male
- Membrane Glycoproteins/immunology
- Membrane Glycoproteins/metabolism
- Mice, Inbred BALB C
- Receptors, CCR/genetics
- Receptors, CCR/immunology
- Receptors, CCR/metabolism
- Receptors, CCR7/genetics
- Receptors, CCR7/immunology
- Receptors, CCR7/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- CD83 Antigen
Collapse
Affiliation(s)
- Mei Liu
- Medical Research Center, Shengjing Hospital of China Medical University, Shenyang City, Liaoning Province, China
| | - Peng Wang
- The second department of urology, Shengjing Hospital of China Medical University, Shenyang City, Liaoning Province, China
| | - Min Zhao
- Medical Research Center, Shengjing Hospital of China Medical University, Shenyang City, Liaoning Province, China
| | - DY Liu
- Medical Research Center, Shengjing Hospital of China Medical University, Shenyang City, Liaoning Province, China
| |
Collapse
|