1
|
Kiani A, Pierotti CL, Schedel F, Kokot T, Weyershaeuser J, Brehm M, Rios P, Fehrenbach K, Warscheid B, Minguet S, Schamel WW, Köhn M. Development of a Peptide Inhibitor Targeting the C-SH2 Domain of the SHP2 Phosphatase. Chembiochem 2025:e2400938. [PMID: 40318117 DOI: 10.1002/cbic.202400938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2025] [Revised: 05/02/2025] [Accepted: 05/02/2025] [Indexed: 05/07/2025]
Abstract
Src homology 2 (SH2) domain-containing phosphatase 2 (SHP2) mediates important signal transduction upon cell surface receptor stimulation, regulating multiple cellular functions. In addition to the catalytically active phosphotyrosine (pTyr) phosphatase domain, SHP2 contains two regulatory pTyr-binding domains: the N-SH2 and C-SH2 domains. While the role of the N-SH2 domain is well understood, the role of the C-SH2 domain is less clear. To support studies on the involvement of the domains in SHP2 function, herein, the development of a peptide inhibitor containing a nonhydrolysable pTyr mimetic, which selectively binds to the C-SH2 domain of SHP2 and blocks its protein-protein interactions, is described. Incorporation of the pTyr mimetic l-O-malonyltyrosine (l-OMT) results in robust binding affinity to the C-SH2 domain, while the widely used pTyr mimetic phosphonodifluoromethyl phenylalanine (F2Pmp) abolishes binding, showing that this mimetic is not a general binder of SH2 domains, which challenges existing notions. The C-SH2 inhibitor peptide (CSIP) is stable, selective, cell permeable, and noncytotoxic. CSIP enriches the toolbox of inhibitors with different modes of action targeting SHP2, and will support studies to better understand SHP2 regulation and interactions, which can ultimately inform new drug discovery efforts.
Collapse
Affiliation(s)
- Azin Kiani
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestraße 18, 79104, Freiburg im Breisgau, Germany
- Faculty of Chemistry and Pharmacy, Hermann-Staudinger Graduate School, University of Freiburg, Hebelstraße 27, 79087, Freiburg im Breisgau, Germany
- Institute of Biology III, Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg im Breisgau, Germany
| | - Catia L Pierotti
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestraße 18, 79104, Freiburg im Breisgau, Germany
- Institute of Biology III, Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg im Breisgau, Germany
- Institute for Cell Biology, Department of Molecular Cell Biology, University of Bonn, Käthe-Kümmel-Straße 1, 53115, Bonn, Germany
| | - Franziska Schedel
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestraße 18, 79104, Freiburg im Breisgau, Germany
- Faculty of Chemistry and Pharmacy, Hermann-Staudinger Graduate School, University of Freiburg, Hebelstraße 27, 79087, Freiburg im Breisgau, Germany
- Institute of Biology III, Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg im Breisgau, Germany
- Institute for Cell Biology, Department of Molecular Cell Biology, University of Bonn, Käthe-Kümmel-Straße 1, 53115, Bonn, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Albertstraße 19A, 79104, Freiburg im Breisgau, Germany
| | - Thomas Kokot
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestraße 18, 79104, Freiburg im Breisgau, Germany
- Institute of Biology III, Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg im Breisgau, Germany
| | - Judith Weyershaeuser
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestraße 18, 79104, Freiburg im Breisgau, Germany
- Institute of Biology III, Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg im Breisgau, Germany
| | - Mario Brehm
- Institute of Biology III, Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg im Breisgau, Germany
| | - Pablo Rios
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestraße 18, 79104, Freiburg im Breisgau, Germany
- Institute of Biology III, Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg im Breisgau, Germany
| | - Kerstin Fehrenbach
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestraße 18, 79104, Freiburg im Breisgau, Germany
- Institute of Biology III, Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg im Breisgau, Germany
| | - Bettina Warscheid
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestraße 18, 79104, Freiburg im Breisgau, Germany
- Biochemistry II, Theodor-Boveri-Institute, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Susana Minguet
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestraße 18, 79104, Freiburg im Breisgau, Germany
- Institute of Biology III, Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg im Breisgau, Germany
- Centre of Chronic Immunodeficiency CCI, University Clinics and Medical Faculty, Breisacher Straße 115, 79106, Freiburg im Breisgau, Germany
| | - Wolfgang W Schamel
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestraße 18, 79104, Freiburg im Breisgau, Germany
- Institute of Biology III, Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg im Breisgau, Germany
- Centre of Chronic Immunodeficiency CCI, University Clinics and Medical Faculty, Breisacher Straße 115, 79106, Freiburg im Breisgau, Germany
| | - Maja Köhn
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestraße 18, 79104, Freiburg im Breisgau, Germany
- Institute of Biology III, Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg im Breisgau, Germany
- Institute for Cell Biology, Department of Molecular Cell Biology, University of Bonn, Käthe-Kümmel-Straße 1, 53115, Bonn, Germany
| |
Collapse
|
2
|
Anguraj Vadivel AK, Pajovic S, Siddaway R, Zhu S, Sbergio SG, Matic O, Phillips L, Bu YJ, Nitz M, Hawkins C. The proteomic landscape of diffuse midline glioma highlights the therapeutic potential of non-histone protein methyltransferases. Neuro Oncol 2025:noaf033. [PMID: 39954016 DOI: 10.1093/neuonc/noaf033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND Diffuse Midline Glioma (DMG) is a highly aggressive pediatric brain tumor with limited treatment options despite extensive genomic characterization. The aim of this study was to investigate the proteomic landscape of DMG to identify potential therapeutic targets. METHODS We conducted a comprehensive proteomic analysis using LC-MS3, along with DNA methylation and DNA/RNA sequencing in 55 DMG patients' samples. PTM profiling (phosphoproteome and methylproteome) was conducted in 30 patient samples. We then investigated the effects of modulating key protein targets on protein methylation, protein synthesis, and DMG cell growth in vitro and in vivo. RESULTS DMGs exhibited high global protein methylation, with significant enrichment of translation machinery proteins and factors involved in apoptosis regulation. Surprisingly, while targets of key kinases were highly phosphorylated, overall protein phosphorylation was lower in DMG compared to normal brain tissues. Non-histone methyltransferases METTL13 and METTL21B, along with protein kinases PAK2, PRKACA, and AKT1, were identified as key players in DMG methylproteome and phosphoproteome, respectively. METTL13 knockdown led to reduced EEF1A1 protein methylation, a shift in oncoprotein synthesis, and inhibited DMG cell growth in vitro and in vivo. CONCLUSIONS Our findings highlight the dependency of DMG on methyl-signaling pathways, particularly involving METTL13, which regulates EEF1A1 protein methylation and oncoprotein synthesis. Targeting the non-histone methyltransferases offers a promising therapeutic strategy for DMG. This study underscores the potential of post-translational modifications, specifically methyl-signaling pathways, as novel therapeutic targets for DMG and possibly other currently incurable cancers.
Collapse
Affiliation(s)
- Arun Kumaran Anguraj Vadivel
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
| | - Sanja Pajovic
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
| | - Robert Siddaway
- Division of Pathology, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - Sabrina Zhu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 27 King's College Cir, Toronto, ON, M5S 1A1, Canada
| | - Stefanie-Grace Sbergio
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 27 King's College Cir, Toronto, ON, M5S 1A1, Canada
| | - Olivera Matic
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
| | - Lauren Phillips
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
| | - Yong Jia Bu
- Department of Chemistry, University of Toronto, 27 King's College Cir, Toronto, ON, M5S 1A1, Canada
| | - Mark Nitz
- Department of Chemistry, University of Toronto, 27 King's College Cir, Toronto, ON, M5S 1A1, Canada
| | - Cynthia Hawkins
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 27 King's College Cir, Toronto, ON, M5S 1A1, Canada
- Division of Pathology, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| |
Collapse
|
3
|
Jolly JT, Blackburn JS. The PACT Network: PRL, ARL, CNNM, and TRPM Proteins in Magnesium Transport and Disease. Int J Mol Sci 2025; 26:1528. [PMID: 40003994 PMCID: PMC11855589 DOI: 10.3390/ijms26041528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/06/2025] [Accepted: 02/09/2025] [Indexed: 02/27/2025] Open
Abstract
Magnesium, the most abundant divalent metal within the cell, is essential for physiological function and critical in cellular signaling. To maintain cellular homeostasis, intracellular magnesium levels are tightly regulated, as dysregulation is linked to numerous diseases, including cancer, diabetes, cardiovascular disorders, and neurological conditions. Over the past two decades, extensive research on magnesium-regulating proteins has provided valuable insight into their pathogenic and therapeutic potential. This review explores an emerging mechanism of magnesium homeostasis involving proteins in the PRL (phosphatase of regenerating liver), ARL (ADP ribosylation factor-like GTPase family), CNNM (cyclin and cystathionine β-synthase domain magnesium transport mediator), and TRPM (transient receptor potential melastatin) families, collectively termed herein as the PACT network. While each PACT protein has been studied within its individual signaling and disease contexts, their interactions suggest a broader regulatory network with therapeutic potential. This review consolidates the current knowledge on the PACT proteins' structure, function, and interactions and identifies research gaps to encourage future investigation. As the field of magnesium homeostasis continues to advance, understanding PACT protein interactions offers new opportunities for basic research and therapeutic development targeting magnesium-related disorders.
Collapse
Affiliation(s)
- Jeffery T. Jolly
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
- Markey Comprehensive Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Jessica S. Blackburn
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
- Markey Comprehensive Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
4
|
Kokot T, Zimmermann JP, Chand Y, Krier F, Reimann L, Scheinost L, Höfflin N, Esch A, Höhfeld J, Warscheid B, Köhn M. Identification of phosphatases that dephosphorylate the co-chaperone BAG3. Life Sci Alliance 2025; 8:e202402734. [PMID: 39562141 PMCID: PMC11576475 DOI: 10.26508/lsa.202402734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/21/2024] Open
Abstract
The co-chaperone BAG3 plays critical roles in maintaining cellular proteostasis. It associates with 14-3-3 proteins during the trafficking of aggregation-prone proteins and facilitates their degradation through chaperone-assisted selective autophagy in cooperation with small heat shock proteins. Although reversible phosphorylation regulates BAG3 function, the involved phosphatases remain unknown. Here, we used affinity purification mass spectrometry to identify phosphatases that target BAG3. Of the hits, we evaluated the involvement of protein phosphatase-1 (PP1) using chemical inhibitors and activators in in vitro and cellular approaches. Our results demonstrate that PP1 can dephosphorylate BAG3-pS136 in cells and counteract 14-3-3γ association with BAG3 at this motif. Furthermore, protein phosphatase-5 (PP5) co-enriched with proteostasis-related proteins, and it has the capacity to dephosphorylate a BAG3 phosphorylation-site cluster regulating the interaction of BAG3 with small heat shock proteins and BAG3-mediated protein degradation. Our findings provide new insights into the regulation of BAG3 by phosphatases. This paves the way for future research focused on the precise control of BAG3 function through its regulatory proteins, potentially holding therapeutic promise for diseases characterized by disrupted proteostasis.
Collapse
Affiliation(s)
- Thomas Kokot
- Institute of Biology III, Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg im Breisgau, Germany
| | - Johannes P Zimmermann
- Biochemistry II, Theodor-Boveri-Institute, University of Würzburg, Würzburg, Germany
| | - Yamini Chand
- Institute of Biology III, Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg im Breisgau, Germany
| | - Fabrice Krier
- Institute of Biology III, Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg im Breisgau, Germany
| | - Lena Reimann
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Laura Scheinost
- Institute of Biology III, Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg im Breisgau, Germany
| | - Nico Höfflin
- Institute of Biology III, Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg im Breisgau, Germany
| | - Alessandra Esch
- Institute for Cell Biology, University of Bonn, Bonn, Germany
| | - Jörg Höhfeld
- Institute for Cell Biology, University of Bonn, Bonn, Germany
| | - Bettina Warscheid
- Biochemistry II, Theodor-Boveri-Institute, University of Würzburg, Würzburg, Germany
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Maja Köhn
- Institute of Biology III, Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg im Breisgau, Germany
- Institute for Cell Biology, University of Bonn, Bonn, Germany
| |
Collapse
|
5
|
Gingrich PW, Chitsazi R, Biswas A, Jiang C, Zhao L, Tym J, Brammer KM, Li J, Shu Z, Maxwell DS, Tacy J, Mica IL, Darkoh M, di Micco P, Russell KP, Workman P, Al-Lazikani B. canSAR 2024-an update to the public drug discovery knowledgebase. Nucleic Acids Res 2025; 53:D1287-D1294. [PMID: 39535036 PMCID: PMC11701553 DOI: 10.1093/nar/gkae1050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/16/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
canSAR (https://cansar.ai) continues to serve as the largest publicly available platform for cancer-focused drug discovery and translational research. It integrates multidisciplinary data from disparate and otherwise siloed public data sources as well as data curated uniquely for canSAR. In addition, canSAR deploys a suite of curation and standardization tools together with AI algorithms to generate new knowledge from these integrated data to inform hypothesis generation. Here we report the latest updates to canSAR. As well as increasing available data, we provide enhancements to our algorithms to improve the offering to the user. Notably, our enhancements include a revised ligandability classifier leveraging Positive Unlabeled Learning that finds twice as many ligandable opportunities across the pocketome, and our revised chemical standardization pipeline and hierarchy better enables the aggregation of structurally related molecular records.
Collapse
Affiliation(s)
- Phillip W Gingrich
- Department of Genomic Medicine; Therapeutics Discovery Division; and The Institute for Data Science in Oncology; University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rezvan Chitsazi
- Department of Genomic Medicine; Therapeutics Discovery Division; and The Institute for Data Science in Oncology; University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ansuman Biswas
- Department of Genomic Medicine; Therapeutics Discovery Division; and The Institute for Data Science in Oncology; University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chunjie Jiang
- Department of Genomic Medicine; Therapeutics Discovery Division; and The Institute for Data Science in Oncology; University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Li Zhao
- Department of Genomic Medicine; Therapeutics Discovery Division; and The Institute for Data Science in Oncology; University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Joseph E Tym
- Enterprise Development and Integration, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kevin M Brammer
- Enterprise Development and Integration, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jun Li
- Enterprise Development and Integration, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhigang Shu
- Enterprise Development and Integration, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David S Maxwell
- Department of Genomic Medicine; Therapeutics Discovery Division; and The Institute for Data Science in Oncology; University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jeffrey A Tacy
- Enterprise Development and Integration, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ioan L Mica
- Enterprise Development and Integration, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michael Darkoh
- Department of Genomic Medicine; Therapeutics Discovery Division; and The Institute for Data Science in Oncology; University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Patrizio di Micco
- Department of Genomic Medicine; Therapeutics Discovery Division; and The Institute for Data Science in Oncology; University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kaitlyn P Russell
- Department of Genomic Medicine; Therapeutics Discovery Division; and The Institute for Data Science in Oncology; University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Paul Workman
- Centre for Cancer Drug Discovery, Division of Cancer Therapeutics, The Institute of Cancer Research, London SW7 3RP, UK
| | - Bissan Al-Lazikani
- Department of Genomic Medicine; Therapeutics Discovery Division; and The Institute for Data Science in Oncology; University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
6
|
Jin H, Wang X, Li L, Rui C, Gan H, Wang Q, Tao F, Zhu Y. Integrated proteomic and transcriptomic landscape of human placenta in small for gestational age infants. iScience 2024; 27:111423. [PMID: 39687015 PMCID: PMC11648249 DOI: 10.1016/j.isci.2024.111423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 09/01/2024] [Accepted: 11/15/2024] [Indexed: 12/18/2024] Open
Abstract
Small for gestational age (SGA) infants affected by placental insufficiency are exposed to the risk of stillbirth and long-term complications. Based on RNA-seq and mass spectrometry, we identified dysregulated RNAs and proteins from the comparisons of SGA placental tissues and controls. We revealed two SGA-relevant co-expression modules (SRMs) that also significantly distinguished SGA from controls. Then we performed an integrated analysis of transcriptomic and proteomic profiles to trace their links to SGA as well as their significant correlations. For the core functional molecules we screened, we revealed their potential upstream regulators and validated them experimentally in an independent cohort. Overall, we pointed out insights into different molecular pathways for the pathological mechanisms of SGA and indicated potential target molecules that may be drivers of placental aberrations in the SGA infants.
Collapse
Affiliation(s)
- Heyue Jin
- Department of Maternal & Child and Adolescent Health, School of Public Health, MOE Key Laboratory of Population Health Across Life Cycle, Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui 230032, China
- Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Xianyan Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Lingyu Li
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Chen Rui
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Hong Gan
- Department of Maternal & Child and Adolescent Health, School of Public Health, MOE Key Laboratory of Population Health Across Life Cycle, Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui 230032, China
| | - Qunan Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Fangbiao Tao
- Department of Maternal & Child and Adolescent Health, School of Public Health, MOE Key Laboratory of Population Health Across Life Cycle, Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui 230032, China
| | - Yumin Zhu
- Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
| |
Collapse
|
7
|
Kamel W, Ruscica V, Embarc-Buh A, de Laurent ZR, Garcia-Moreno M, Demyanenko Y, Orton RJ, Noerenberg M, Madhusudhan M, Iselin L, Järvelin AI, Hannan M, Kitano E, Moore S, Merits A, Davis I, Mohammed S, Castello A. Alphavirus infection triggers selective cytoplasmic translocation of nuclear RBPs with moonlighting antiviral roles. Mol Cell 2024; 84:4896-4911.e7. [PMID: 39642884 DOI: 10.1016/j.molcel.2024.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 07/29/2024] [Accepted: 11/11/2024] [Indexed: 12/09/2024]
Abstract
RNA is a central molecule for viruses; however, the interactions that viral RNA (vRNA) establishes with the host cell is only starting to be elucidated. Here, we determine the ribonucleoprotein (RNP) composition of the prototypical arthropod-borne Sindbis virus (SINV). We show that SINV RNAs engage with hundreds of cellular proteins, including a group of nuclear RNA-binding proteins (RBPs) with unknown roles in infection. We demonstrate that these nuclear RBPs are selectively translocated to the cytoplasm after infection, where they accumulate in the viral replication organelles (ROs). These nuclear RBPs strongly suppress viral gene expression, with activities spanning viral species and families. Particularly, the U2 small nuclear RNP (snRNP) emerges as an antiviral complex, with both its U2 small nuclear RNA (snRNA) and protein components contributing to the recognition of the vRNA and the antiviral phenotype. These results suggest that the U2 snRNP has RNA-driven antiviral activity in a mechanism reminiscent of the RNAi pathway.
Collapse
Affiliation(s)
- Wael Kamel
- MRC, University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, UK.
| | - Vincenzo Ruscica
- MRC, University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, UK
| | - Azman Embarc-Buh
- MRC, University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, UK
| | - Zaydah R de Laurent
- MRC, University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, UK
| | - Manuel Garcia-Moreno
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Yana Demyanenko
- The Rosalind Franklin Institute, Didcot, Oxfordshire OX11 0FA, UK
| | - Richard J Orton
- MRC, University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, UK
| | - Marko Noerenberg
- MRC, University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, UK
| | - Meghana Madhusudhan
- MRC, University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, UK
| | - Louisa Iselin
- MRC, University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, UK; Nuffield Department of Medicine, University of Oxford, Peter Medawar Building for Pathogen Research,11, Oxford OX1 3SY, UK
| | - Aino I Järvelin
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Maximilian Hannan
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Eduardo Kitano
- The Rosalind Franklin Institute, Didcot, Oxfordshire OX11 0FA, UK
| | - Samantha Moore
- MRC, University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, UK
| | - Andres Merits
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Ilan Davis
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Shabaz Mohammed
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK; The Rosalind Franklin Institute, Didcot, Oxfordshire OX11 0FA, UK; Department of Chemistry, University of Oxford, Mansfield Road 16, Oxford OX1 3TA, UK.
| | - Alfredo Castello
- MRC, University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, UK.
| |
Collapse
|
8
|
Han C, Fu S, Chen M, Gou Y, Liu D, Zhang C, Huang X, Xiao L, Zhao M, Zhang J, Xiao Q, Peng D, Xue Y. GPSD: a hybrid learning framework for the prediction of phosphatase-specific dephosphorylation sites. Brief Bioinform 2024; 26:bbae694. [PMID: 39749667 PMCID: PMC11695897 DOI: 10.1093/bib/bbae694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/30/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025] Open
Abstract
Protein phosphorylation is dynamically and reversibly regulated by protein kinases and protein phosphatases, and plays an essential role in orchestrating a wide range of biological processes. Although a number of tools have been developed for predicting kinase-specific phosphorylation sites (p-sites), computational prediction of phosphatase-specific dephosphorylation sites remains to be a great challenge. In this study, we manually curated 4393 experimentally identified site-specific phosphatase-substrate relationships for 3463 dephosphorylation sites occurring on phosphoserine, phosphothreonine, and/or phosphotyrosine residues, from the literature and public databases. Then, we developed a hybrid learning framework, the group-based prediction system for the prediction of phosphatase-specific dephosphorylation sites (GPSD). For model training, we integrated 10 types of sequence features and utilized three types of machine learning methods, including penalized logistic regression, deep neural networks, and transformer neural networks. First, a pretrained model was constructed using 561 416 nonredundant p-sites and then fine-tuned to generate computational models for predicting general dephosphorylation sites. In addition, 103 individual phosphatase-specific predictors were constructed via transfer learning and meta-learning. For site prediction, one or multiple protein sequences in FASTA format could be inputted, and the prediction results will be shown together with additional annotations, such as protein-protein interactions, structural information, and disorder propensity. The online service of GPSD is freely available at https://gpsd.biocuckoo.cn/. We believe that GPSD can serve as a valuable tool for further analysis of dephosphorylation.
Collapse
Affiliation(s)
- Cheng Han
- Department of Bioinformatics and Systems Biology, MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, Hubei 430074, China
| | - Shanshan Fu
- Department of Bioinformatics and Systems Biology, MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, Hubei 430074, China
| | - Miaomiao Chen
- Department of Bioinformatics and Systems Biology, MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, Hubei 430074, China
| | - Yujie Gou
- Department of Bioinformatics and Systems Biology, MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, Hubei 430074, China
| | - Dan Liu
- Department of Bioinformatics and Systems Biology, MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, Hubei 430074, China
| | - Chi Zhang
- Department of Bioinformatics and Systems Biology, MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, Hubei 430074, China
| | - Xinhe Huang
- Department of Bioinformatics and Systems Biology, MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, Hubei 430074, China
| | - Leming Xiao
- Department of Bioinformatics and Systems Biology, MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, Hubei 430074, China
| | - Miaoying Zhao
- Department of Bioinformatics and Systems Biology, MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, Hubei 430074, China
| | - Jiayi Zhang
- Department of Bioinformatics and Systems Biology, MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, Hubei 430074, China
| | - Qiang Xiao
- School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, Hubei 430074, China
| | - Di Peng
- Department of Bioinformatics and Systems Biology, MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, Hubei 430074, China
| | - Yu Xue
- Department of Bioinformatics and Systems Biology, MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, Hubei 430074, China
| |
Collapse
|
9
|
Maller C, Marouda E, Köhn M. Photo-Claisen Rearrangement in a Coumarin-Caged Peptide Leads to a Surprising Enzyme Hyperactivation. Chembiochem 2024; 25:e202400561. [PMID: 39172538 DOI: 10.1002/cbic.202400561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 08/24/2024]
Abstract
Protein phosphatase-1 (PP1) is a ubiquitous enzyme that counteracts hundreds of kinases in cells. PP1 interacts with regulatory proteins via an RVxF peptide motif that binds to a hydrophobic groove on the enzyme. PP1-disrupting peptides (PDPs) compete with these regulatory proteins, leading to the release of the active PP1 subunit and promoting substrate dephosphorylation. Building on previous strategies employing the ortho-nitrobenzyl (o-Nb) group as a photocage to control PDP activity, we introduced coumarin derivatives into a PDP via an ether bond to explore their effects on PP1 activity. Surprisingly, our study revealed that the coumarin-caged peptides (PDP-DEACM and PDP-CM) underwent a photo-Claisen rearrangement, resulting in an unexpected hyperactivation of PP1. Our findings underscore the importance of linker design in controlling uncaging efficiency of photocages and highlight the need for comprehensive in vitro analysis before cellular experiments.
Collapse
Affiliation(s)
- Corina Maller
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Schänzlestrasse 18, Freiburg, 79104, Germany
- Faculty of Chemistry and Pharmacy, Hermann-Staudinger Graduate School, University of Freiburg, Hebelstrasse 27, Freiburg, 79104, Germany
| | - Eirini Marouda
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Schänzlestrasse 18, Freiburg, 79104, Germany
| | - Maja Köhn
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Schänzlestrasse 18, Freiburg, 79104, Germany
| |
Collapse
|
10
|
van de Kooij B, van der Wal FJ, Rother MB, Wiegant WW, Creixell P, Stout M, Joughin BA, Vornberger J, Altmeyer M, van Vugt MATM, Yaffe MB, van Attikum H. The Fanconi anemia core complex promotes CtIP-dependent end resection to drive homologous recombination at DNA double-strand breaks. Nat Commun 2024; 15:7076. [PMID: 39152113 PMCID: PMC11329772 DOI: 10.1038/s41467-024-51090-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 07/17/2024] [Indexed: 08/19/2024] Open
Abstract
During the repair of interstrand crosslinks (ICLs) a DNA double-strand break (DSB) is generated. The Fanconi anemia (FA) core complex, which is recruited to ICLs, promotes high-fidelity repair of this DSB by homologous recombination (HR). However, whether the FA core complex also promotes HR at ICL-independent DSBs, for example induced by ionizing irradiation or nucleases, remains controversial. Here, we identified the FA core complex members FANCL and Ube2T as HR-promoting factors in a CRISPR/Cas9-based screen. Using isogenic cell line models, we further demonstrated an HR-promoting function of FANCL and Ube2T, and of their ubiquitination substrate FANCD2. We show that FANCL and Ube2T localize at DSBs in a FANCM-dependent manner, and are required for the DSB accumulation of FANCD2. Mechanistically, we demonstrate that FANCL ubiquitin ligase activity is required for the accumulation of CtIP at DSBs, thereby promoting end resection and Rad51 loading. Together, these data demonstrate a dual genome maintenance function of the FA core complex and FANCD2 in promoting repair of both ICLs and DSBs.
Collapse
Affiliation(s)
- Bert van de Kooij
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands.
- Koch Institute for Integrative Cancer Research, MIT Center for Precision Cancer Medicine, Departments of Biology and Bioengineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| | - Fenna J van der Wal
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Magdalena B Rother
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Wouter W Wiegant
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Pau Creixell
- Koch Institute for Integrative Cancer Research, MIT Center for Precision Cancer Medicine, Departments of Biology and Bioengineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- CRUK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Merula Stout
- Department of Molecular Mechanisms of Disease, University of Zurich (UZH), Zurich, Switzerland
| | - Brian A Joughin
- Koch Institute for Integrative Cancer Research, MIT Center for Precision Cancer Medicine, Departments of Biology and Bioengineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Julia Vornberger
- Department of Molecular Mechanisms of Disease, University of Zurich (UZH), Zurich, Switzerland
| | - Matthias Altmeyer
- Department of Molecular Mechanisms of Disease, University of Zurich (UZH), Zurich, Switzerland
| | - Marcel A T M van Vugt
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Michael B Yaffe
- Koch Institute for Integrative Cancer Research, MIT Center for Precision Cancer Medicine, Departments of Biology and Bioengineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Surgery, Beth Israel Deaconess Medical Center, Divisions of Acute Care Surgery, Trauma, and Critical Care and Surgical Oncology, Harvard Medical School, Boston, USA.
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
11
|
Liu J, Cao S, Imbach KJ, Gritsenko MA, Lih TSM, Kyle JE, Yaron-Barir TM, Binder ZA, Li Y, Strunilin I, Wang YT, Tsai CF, Ma W, Chen L, Clark NM, Shinkle A, Naser Al Deen N, Caravan W, Houston A, Simin FA, Wyczalkowski MA, Wang LB, Storrs E, Chen S, Illindala R, Li YD, Jayasinghe RG, Rykunov D, Cottingham SL, Chu RK, Weitz KK, Moore RJ, Sagendorf T, Petyuk VA, Nestor M, Bramer LM, Stratton KG, Schepmoes AA, Couvillion SP, Eder J, Kim YM, Gao Y, Fillmore TL, Zhao R, Monroe ME, Southard-Smith AN, Li YE, Jui-Hsien Lu R, Johnson JL, Wiznerowicz M, Hostetter G, Newton CJ, Ketchum KA, Thangudu RR, Barnholtz-Sloan JS, Wang P, Fenyö D, An E, Thiagarajan M, Robles AI, Mani DR, Smith RD, Porta-Pardo E, Cantley LC, Iavarone A, Chen F, Mesri M, Nasrallah MP, Zhang H, Resnick AC, Chheda MG, Rodland KD, Liu T, Ding L. Multi-scale signaling and tumor evolution in high-grade gliomas. Cancer Cell 2024; 42:1217-1238.e19. [PMID: 38981438 PMCID: PMC11337243 DOI: 10.1016/j.ccell.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/12/2024] [Accepted: 06/10/2024] [Indexed: 07/11/2024]
Abstract
Although genomic anomalies in glioblastoma (GBM) have been well studied for over a decade, its 5-year survival rate remains lower than 5%. We seek to expand the molecular landscape of high-grade glioma, composed of IDH-wildtype GBM and IDH-mutant grade 4 astrocytoma, by integrating proteomic, metabolomic, lipidomic, and post-translational modifications (PTMs) with genomic and transcriptomic measurements to uncover multi-scale regulatory interactions governing tumor development and evolution. Applying 14 proteogenomic and metabolomic platforms to 228 tumors (212 GBM and 16 grade 4 IDH-mutant astrocytoma), including 28 at recurrence, plus 18 normal brain samples and 14 brain metastases as comparators, reveals heterogeneous upstream alterations converging on common downstream events at the proteomic and metabolomic levels and changes in protein-protein interactions and glycosylation site occupancy at recurrence. Recurrent genetic alterations and phosphorylation events on PTPN11 map to important regulatory domains in three dimensions, suggesting a central role for PTPN11 signaling across high-grade gliomas.
Collapse
Affiliation(s)
- Jingxian Liu
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Song Cao
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Kathleen J Imbach
- Josep Carreras Leukaemia Research Institute, Badalona, Spain; Universidad Autónoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Marina A Gritsenko
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Tung-Shing M Lih
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jennifer E Kyle
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Tomer M Yaron-Barir
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA; Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Zev A Binder
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yize Li
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Ilya Strunilin
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Yi-Ting Wang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Chia-Feng Tsai
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Weiping Ma
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lijun Chen
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Natalie M Clark
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Andrew Shinkle
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Nataly Naser Al Deen
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Wagma Caravan
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Andrew Houston
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Faria Anjum Simin
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Matthew A Wyczalkowski
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Liang-Bo Wang
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Erik Storrs
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Siqi Chen
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Ritvik Illindala
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Neurology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Yuping D Li
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Neurology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Reyka G Jayasinghe
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Dmitry Rykunov
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sandra L Cottingham
- Department of Pathology, Spectrum Health and Helen DeVos Children's Hospital, Grand Rapids, MI, USA
| | - Rosalie K Chu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Karl K Weitz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Ronald J Moore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Tyler Sagendorf
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Vladislav A Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Michael Nestor
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Lisa M Bramer
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Kelly G Stratton
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Athena A Schepmoes
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Sneha P Couvillion
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Josie Eder
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Young-Mo Kim
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Yuqian Gao
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Thomas L Fillmore
- Department of Pathology, Spectrum Health and Helen DeVos Children's Hospital, Grand Rapids, MI, USA
| | - Rui Zhao
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Matthew E Monroe
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Austin N Southard-Smith
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Yang E Li
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rita Jui-Hsien Lu
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Jared L Johnson
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Maciej Wiznerowicz
- International Institute for Molecular Oncology, Poznań, Poland; Poznan University of Medical Sciences, Poznań, Poland
| | | | | | | | | | - Jill S Barnholtz-Sloan
- Center for Biomedical Informatics and Information Technology & Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20850, USA
| | - Pei Wang
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - David Fenyö
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Eunkyung An
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA
| | | | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA
| | - D R Mani
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | | | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Antonio Iavarone
- Department of Neurological Surgery and Department of Biochemistry, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Feng Chen
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Mehdi Mesri
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA
| | - MacLean P Nasrallah
- Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Adam C Resnick
- Center for Data Driven Discovery in Biomedicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Neurosurgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Milan G Chheda
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Neurology, Washington University in St. Louis, St. Louis, MO 63130, USA.
| | - Karin D Rodland
- Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, OR 97221, USA.
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA.
| | - Li Ding
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA; Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
12
|
Bradley D, Garand C, Belda H, Gagnon-Arsenault I, Treeck M, Elowe S, Landry CR. The substrate quality of CK2 target sites has a determinant role on their function and evolution. Cell Syst 2024; 15:544-562.e8. [PMID: 38861992 DOI: 10.1016/j.cels.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 02/29/2024] [Accepted: 05/20/2024] [Indexed: 06/13/2024]
Abstract
Most biological processes are regulated by signaling modules that bind to short linear motifs. For protein kinases, substrates may have full or only partial matches to the kinase recognition motif, a property known as "substrate quality." However, it is not clear whether differences in substrate quality represent neutral variation or if they have functional consequences. We examine this question for the kinase CK2, which has many fundamental functions. We show that optimal CK2 sites are phosphorylated at maximal stoichiometries and found in many conditions, whereas minimal substrates are more weakly phosphorylated and have regulatory functions. Optimal CK2 sites tend to be more conserved, and substrate quality is often tuned by selection. For intermediate sites, increases or decreases in substrate quality may be deleterious, as we demonstrate for a CK2 substrate at the kinetochore. The results together suggest a strong role for substrate quality in phosphosite function and evolution. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- David Bradley
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Québec City, QC G1V 0A6, Canada; Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC G1V 0A6, Canada; PROTEO, Le regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, Université Laval, Québec City, QC G1V 0A6, Canada; Centre de Recherche sur les Données Massives (CRDM), Université Laval, Québec City, QC G1V 0A6, Canada; Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec City, QC G1V 0A6, Canada.
| | - Chantal Garand
- PROTEO, Le regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, Université Laval, Québec City, QC G1V 0A6, Canada; Axe de Reproduction, Santé de la mère et de l'enfant, CHU de Québec, Université Laval, Québec City, QC, Canada
| | - Hugo Belda
- Signalling in Host-Pathogen Interaction Laboratory, The Francis Crick Institute, London NW11AT, UK
| | - Isabelle Gagnon-Arsenault
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Québec City, QC G1V 0A6, Canada; Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC G1V 0A6, Canada; PROTEO, Le regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, Université Laval, Québec City, QC G1V 0A6, Canada; Centre de Recherche sur les Données Massives (CRDM), Université Laval, Québec City, QC G1V 0A6, Canada; Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Moritz Treeck
- Signalling in Host-Pathogen Interaction Laboratory, The Francis Crick Institute, London NW11AT, UK; Cell Biology of Host-Pathogen Interaction Laboratory, The Gulbenkian Institute of Science, Oeiras 2780-156, Portugal
| | - Sabine Elowe
- PROTEO, Le regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, Université Laval, Québec City, QC G1V 0A6, Canada; Axe de Reproduction, Santé de la mère et de l'enfant, CHU de Québec, Université Laval, Québec City, QC, Canada; Department of Pediatrics, Faculty of Medicine, Université Laval, Québec City, QC, Canada; Centre de Recherche sur le Cancer, CHU de Québec, Université Laval, Québec City, QC, Canada
| | - Christian R Landry
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Québec City, QC G1V 0A6, Canada; Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC G1V 0A6, Canada; PROTEO, Le regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, Université Laval, Québec City, QC G1V 0A6, Canada; Centre de Recherche sur les Données Massives (CRDM), Université Laval, Québec City, QC G1V 0A6, Canada; Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec City, QC G1V 0A6, Canada.
| |
Collapse
|
13
|
Liu Y, Jang H, Nussinov R. SHP2-EGFR States in Dephosphorylation Can Inform Selective SHP2 Inhibitors, Dampening RasGAP Action. J Phys Chem B 2024; 128:5175-5187. [PMID: 38747619 DOI: 10.1021/acs.jpcb.4c00873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
SHP2 is a positive regulator of the EGFR-dependent Ras/MAPK pathway. It dephosphorylates a regulatory phosphorylation site in EGFR that serves as the binding site to RasGAP (RASA1 or p120RasGAP). RASA1 is activated by binding to the EGFR phosphate group. Active RASA1 deactivates Ras by hydrolyzing Ras-bound GTP to GDP. Thus, SHP2 dephosphorylation of EGFR effectively prevents RASA1-mediated deactivation of Ras, thereby stimulating proliferation. Despite knowledge of this vital regulation in cell life, mechanistic in-depth structural understanding of the involvement of SHP2, EGFR, and RASA1 in the Ras/MAPK pathway has largely remained elusive. Here we elucidate the interactions, the factors influencing EGFR's recruitment of RASA1, and SHP2's recognition of the substrate site in EGFR. We reveal that RASA1 specifically interacts with the DEpY992LIP motif in EGFR featuring a proline residue at the +3 position C-terminal to pY primarily through its nSH2 domain. This interaction is strengthened by the robust attraction of two acidic residues, E991 and D990, of EGFR to two basic residues in the BC-loop near the pY-binding pocket of RASA1's nSH2. In the stable precatalytic state of SHP2 with EGFR (DADEpY992LIPQ), the E-loop of SHP2's active site favors the interaction with the (-2)-position D990 and (-4)-position D988 N-terminal to pY992 in EGFR, while the pY-loop constrains the (+4)-position Q996 C-terminal to pY992. These specific interactions not only provide a structural basis for identifying negative regulatory sites in other RTKs but can inform selective, high-affinity active-site SHP2 inhibitors tailored for SHP2 mutants.
Collapse
Affiliation(s)
- Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
14
|
Brewer A, Sathe G, Pflug BE, Clarke RG, Macartney TJ, Sapkota GP. Mapping the substrate landscape of protein phosphatase 2A catalytic subunit PPP2CA. iScience 2024; 27:109302. [PMID: 38450154 PMCID: PMC10915630 DOI: 10.1016/j.isci.2024.109302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/18/2023] [Accepted: 02/16/2024] [Indexed: 03/08/2024] Open
Abstract
Protein phosphatase 2A (PP2A) is an essential Ser/Thr phosphatase. The PP2A holoenzyme complex comprises a scaffolding (A), regulatory (B), and catalytic (C) subunit, with PPP2CA being the principal catalytic subunit. The full scope of PP2A substrates in cells remains to be defined. To address this, we employed dTAG proteolysis-targeting chimeras to efficiently and selectively degrade dTAG-PPP2CA in homozygous knock-in HEK293 cells. Unbiased global phospho-proteomics identified 2,204 proteins with significantly increased phosphorylation upon dTAG-PPP2CA degradation, implicating them as potential PPP2CA substrates. A vast majority of these are novel. Bioinformatic analyses revealed involvement of the potential PPP2CA substrates in spliceosome function, cell cycle, RNA transport, and ubiquitin-mediated proteolysis. We identify a pSP/pTP motif as a predominant target for PPP2CA and confirm some of our phospho-proteomic data with immunoblotting. We provide an in-depth atlas of potential PPP2CA substrates and establish targeted degradation as a robust tool to unveil phosphatase substrates in cells.
Collapse
Affiliation(s)
- Abigail Brewer
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Gajanan Sathe
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Billie E. Pflug
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Rosemary G. Clarke
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Thomas J. Macartney
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Gopal P. Sapkota
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
15
|
Hoermann B, Dürr EM, Ludwig C, Ercan M, Köhn M. A strategy to disentangle direct and indirect effects on (de)phosphorylation by chemical modulators of the phosphatase PP1 in complex cellular contexts. Chem Sci 2024; 15:2792-2804. [PMID: 38404380 PMCID: PMC10882499 DOI: 10.1039/d3sc04746f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/12/2024] [Indexed: 02/27/2024] Open
Abstract
Chemical activators and inhibitors are useful probes to identify substrates and downstream effects of enzymes; however, due to the complex signaling environment within cells, it is challenging to distinguish between direct and indirect effects. This is particularly the case for phosphorylation, where a single (de)phosphorylation event can trigger rapid changes in many other phosphorylation sites. An additional complication arises when a single catalytic entity, which acts in the form of many different holoenzymes with different substrates, is activated or inhibited, as it is unclear which holoenzymes are affected, and in turn which of their substrates are (de)phosphorylated. Direct target engaging MS-based technologies to study targets of drugs do not address these challenges. Here, we tackle this by studying the modulation of protein phosphatase-1 (PP1) activity by PP1-disrupting peptides (PDPs), as well as their selectivity toward PP1, by using a combination of mass spectrometry-based experiments. By combining cellular treatment with the PDP with in vitro dephosphorylation by the enzyme, we identify high confidence substrate candidates and begin to separate direct and indirect effects. Together with experiments analyzing which holoenzymes are particularly susceptible to this treatment, we obtain insights into the effect of the modulator on the complex network of protein (de)phosphorylation. This strategy holds promise for enhancing our understanding of PP1 in particular and, due to the broad applicability of the workflow and the MS-based read-out, of chemical modulators with complex mode of action in general.
Collapse
Affiliation(s)
- Bernhard Hoermann
- Faculty of Biology, Institute of Biology III, University of Freiburg Freiburg Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg Freiburg Germany
| | - Eva-Maria Dürr
- Faculty of Biology, Institute of Biology III, University of Freiburg Freiburg Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg Freiburg Germany
| | - Christina Ludwig
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM) Freising Germany
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich (TUM) Freising Germany
| | - Melda Ercan
- Faculty of Biology, Institute of Biology III, University of Freiburg Freiburg Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg Freiburg Germany
| | - Maja Köhn
- Faculty of Biology, Institute of Biology III, University of Freiburg Freiburg Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg Freiburg Germany
| |
Collapse
|
16
|
Savage SR, Zhang Y, Jaehnig EJ, Liao Y, Shi Z, Pham HA, Xu H, Zhang B. IDPpub: Illuminating the Dark Phosphoproteome Through PubMed Mining. Mol Cell Proteomics 2024; 23:100682. [PMID: 37993103 PMCID: PMC10716774 DOI: 10.1016/j.mcpro.2023.100682] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/25/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023] Open
Abstract
Global phosphoproteomics experiments quantify tens of thousands of phosphorylation sites. However, data interpretation is hampered by our limited knowledge on functions, biological contexts, or precipitating enzymes of the phosphosites. This study establishes a repository of phosphosites with associated evidence in biomedical abstracts, using deep learning-based natural language processing techniques. Our model for illuminating the dark phosphoproteome through PubMed mining (IDPpub) was generated by fine-tuning BioBERT, a deep learning tool for biomedical text mining. Trained using sentences containing protein substrates and phosphorylation site positions from 3000 abstracts, the IDPpub model was then used to extract phosphorylation sites from all MEDLINE abstracts. The extracted proteins were normalized to gene symbols using the National Center for Biotechnology Information gene query, and sites were mapped to human UniProt sequences using ProtMapper and mouse UniProt sequences by direct match. Precision and recall were calculated using 150 curated abstracts, and utility was assessed by analyzing the CPTAC (Clinical Proteomics Tumor Analysis Consortium) pan-cancer phosphoproteomics datasets and the PhosphoSitePlus database. Using 10-fold cross validation, pairs of correct substrates and phosphosite positions were extracted with an average precision of 0.93 and recall of 0.94. After entity normalization and site mapping to human reference sequences, an independent validation achieved a precision of 0.91 and recall of 0.77. The IDPpub repository contains 18,458 unique human phosphorylation sites with evidence sentences from 58,227 abstracts and 5918 mouse sites in 14,610 abstracts. This included evidence sentences for 1803 sites identified in CPTAC studies that are not covered by manually curated functional information in PhosphoSitePlus. Evaluation results demonstrate the potential of IDPpub as an effective biomedical text mining tool for collecting phosphosites. Moreover, the repository (http://idppub.ptmax.org), which can be automatically updated, can serve as a powerful complement to existing resources.
Collapse
Affiliation(s)
- Sara R Savage
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | | | - Eric J Jaehnig
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Yuxing Liao
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Zhiao Shi
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | | | - Hua Xu
- Section of Biomedical Informatics and Data Science, School of Medicine, Yale University, Connecticut, USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.
| |
Collapse
|
17
|
Prešern U, Goličnik M. Enzyme Databases in the Era of Omics and Artificial Intelligence. Int J Mol Sci 2023; 24:16918. [PMID: 38069254 PMCID: PMC10707154 DOI: 10.3390/ijms242316918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/24/2023] [Accepted: 11/26/2023] [Indexed: 12/18/2023] Open
Abstract
Enzyme research is important for the development of various scientific fields such as medicine and biotechnology. Enzyme databases facilitate this research by providing a wide range of information relevant to research planning and data analysis. Over the years, various databases that cover different aspects of enzyme biology (e.g., kinetic parameters, enzyme occurrence, and reaction mechanisms) have been developed. Most of the databases are curated manually, which improves reliability of the information; however, such curation cannot keep pace with the exponential growth in published data. Lack of data standardization is another obstacle for data extraction and analysis. Improving machine readability of databases is especially important in the light of recent advances in deep learning algorithms that require big training datasets. This review provides information regarding the current state of enzyme databases, especially in relation to the ever-increasing amount of generated research data and recent advancements in artificial intelligence algorithms. Furthermore, it describes several enzyme databases, providing the reader with necessary information for their use.
Collapse
Affiliation(s)
| | - Marko Goličnik
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia;
| |
Collapse
|
18
|
Liao Y, Savage SR, Dou Y, Shi Z, Yi X, Jiang W, Lei JT, Zhang B. A proteogenomics data-driven knowledge base of human cancer. Cell Syst 2023; 14:777-787.e5. [PMID: 37619559 PMCID: PMC10530292 DOI: 10.1016/j.cels.2023.07.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/11/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023]
Abstract
By combining mass-spectrometry-based proteomics and phosphoproteomics with genomics, epi-genomics, and transcriptomics, proteogenomics provides comprehensive molecular characterization of cancer. Using this approach, the Clinical Proteomic Tumor Analysis Consortium (CPTAC) has characterized over 1,000 primary tumors spanning 10 cancer types, many with matched normal tissues. Here, we present LinkedOmicsKB, a proteogenomics data-driven knowledge base that makes consistently processed and systematically precomputed CPTAC pan-cancer proteogenomics data available to the public through ∼40,000 gene-, protein-, mutation-, and phenotype-centric web pages. Visualization techniques facilitate efficient exploration and reasoning of complex, interconnected data. Using three case studies, we illustrate the practical utility of LinkedOmicsKB in providing new insights into genes, phosphorylation sites, somatic mutations, and cancer phenotypes. With precomputed results of 19,701 coding genes, 125,969 phosphosites, and 256 genotypes and phenotypes, LinkedOmicsKB provides a comprehensive resource to accelerate proteogenomics data-driven discoveries to improve our understanding and treatment of human cancer. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Yuxing Liao
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sara R Savage
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yongchao Dou
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhiao Shi
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xinpei Yi
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Wen Jiang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jonathan T Lei
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
19
|
van de Kooij B, van der Wal FJ, Rother MB, Creixell P, Stout M, Wiegant W, Joughin BA, Vornberger J, van Vugt MA, Altmeyer M, Yaffe MB, van Attikum H. The Fanconi anemia core complex promotes CtIP-dependent end-resection to drive homologous recombination at DNA double-strand breaks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.05.556391. [PMID: 37732274 PMCID: PMC10508776 DOI: 10.1101/2023.09.05.556391] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Homologous Recombination (HR) is a high-fidelity repair mechanism of DNA Double-Strand Breaks (DSBs), which are induced by irradiation, genotoxic chemicals or physiological DNA damaging processes. DSBs are also generated as intermediates during the repair of interstrand crosslinks (ICLs). In this context, the Fanconi anemia (FA) core complex, which is effectively recruited to ICLs, promotes HR-mediated DSB-repair. However, whether the FA core complex also promotes HR at ICL-independent DSBs remains controversial. Here, we identified the FA core complex members FANCL and Ube2T as HR-promoting factors in a CRISPR/Cas9-based screen with cells carrying the DSB-repair reporter DSB-Spectrum. Using isogenic cell-line models, we validated the HR-function of FANCL and Ube2T, and demonstrated a similar function for their ubiquitination-substrate FANCD2. We further show that FANCL and Ube2T are directly recruited to DSBs and are required for the accumulation of FANCD2 at these break sites. Mechanistically, we demonstrate that FANCL ubiquitin ligase activity is required for the accumulation of the nuclease CtIP at DSBs, and consequently for optimal end-resection and Rad51 loading. CtIP overexpression rescues HR in FANCL-deficient cells, validating that FANCL primarily regulates HR by promoting CtIP recruitment. Together, these data demonstrate that the FA core complex and FANCD2 have a dual genome maintenance function by promoting repair of DSBs as well as the repair of ICLs.
Collapse
Affiliation(s)
- Bert van de Kooij
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
- Current address: Department of Medical Oncology, University Medical Center Groningen, University of Groningen, the Netherlands
| | - Fenna J. van der Wal
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Magdalena B. Rother
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Pau Creixell
- Koch Institute for Integrative Cancer Research, MIT Center for Precision Cancer Medicine, Departments of Biology and Bioengineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Current address: CRUK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Merula Stout
- Department of Molecular Mechanisms of Disease, University of Zurich (UZH), Zurich, Switzerland
| | - Wouter Wiegant
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Brian A. Joughin
- Koch Institute for Integrative Cancer Research, MIT Center for Precision Cancer Medicine, Departments of Biology and Bioengineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Julia Vornberger
- Department of Molecular Mechanisms of Disease, University of Zurich (UZH), Zurich, Switzerland
| | - Marcel A.T.M. van Vugt
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, the Netherlands
| | - Matthias Altmeyer
- Department of Molecular Mechanisms of Disease, University of Zurich (UZH), Zurich, Switzerland
| | - Michael B. Yaffe
- Koch Institute for Integrative Cancer Research, MIT Center for Precision Cancer Medicine, Departments of Biology and Bioengineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Surgery, Beth Israel Deaconess Medical Center, Divisions of Acute Care Surgery, Trauma, and Critical Care and Surgical Oncology, Harvard Medical School, Boston
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
20
|
Kliche J, Garvanska DH, Simonetti L, Badgujar D, Dobritzsch D, Nilsson J, Davey NE, Ivarsson Y. Large-scale phosphomimetic screening identifies phospho-modulated motif-based protein interactions. Mol Syst Biol 2023; 19:e11164. [PMID: 37219487 PMCID: PMC10333884 DOI: 10.15252/msb.202211164] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/24/2023] Open
Abstract
Phosphorylation is a ubiquitous post-translation modification that regulates protein function by promoting, inhibiting or modulating protein-protein interactions. Hundreds of thousands of phosphosites have been identified but the vast majority have not been functionally characterised and it remains a challenge to decipher phosphorylation events modulating interactions. We generated a phosphomimetic proteomic peptide-phage display library to screen for phosphosites that modulate short linear motif-based interactions. The peptidome covers ~13,500 phospho-serine/threonine sites found in the intrinsically disordered regions of the human proteome. Each phosphosite is represented as wild-type and phosphomimetic variant. We screened 71 protein domains to identify 248 phosphosites that modulate motif-mediated interactions. Affinity measurements confirmed the phospho-modulation of 14 out of 18 tested interactions. We performed a detailed follow-up on a phospho-dependent interaction between clathrin and the mitotic spindle protein hepatoma-upregulated protein (HURP), demonstrating the essentiality of the phospho-dependency to the mitotic function of HURP. Structural characterisation of the clathrin-HURP complex elucidated the molecular basis for the phospho-dependency. Our work showcases the power of phosphomimetic ProP-PD to discover novel phospho-modulated interactions required for cellular function.
Collapse
Affiliation(s)
- Johanna Kliche
- Department of Chemistry, BMCUppsala UniversityUppsalaSweden
| | - Dimitriya Hristoforova Garvanska
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein ResearchUniversity of CopenhagenCopenhagenDenmark
| | | | - Dilip Badgujar
- Department of Chemistry, BMCUppsala UniversityUppsalaSweden
| | | | - Jakob Nilsson
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein ResearchUniversity of CopenhagenCopenhagenDenmark
| | - Norman E Davey
- Division of Cancer BiologyThe Institute of Cancer ResearchLondonUK
| | - Ylva Ivarsson
- Department of Chemistry, BMCUppsala UniversityUppsalaSweden
| |
Collapse
|
21
|
Wang X, Zhang H, Zhang M, Zhang X, Mao W, Gao M. Proteogenomic characterization of ferroptosis regulators reveals therapeutic potential in glioblastoma. BMC Cancer 2023; 23:415. [PMID: 37158834 PMCID: PMC10165763 DOI: 10.1186/s12885-023-10894-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/27/2023] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND Ferroptosis is iron-dependent non-apoptotic cell death, that is characterized by the excessive accumulation of lipid peroxides. Ferroptosis-inducing therapy also shows promise in the treatment of cancers. However, ferroptosis-inducing therapy for glioblastoma multiforme (GBM) is still in the exploratory stage. METHODS We identified the differentially expressed ferroptosis regulators using Mann-Whitney U test in the proteome data from Clinical Proteomic Tumor Analysis Consortium (CPTAC). We next analyzed the effect of mutation on protein abundance. A multivariate Cox model was constructed to identify the prognostic signature. RESULTS In this study, we systemically portrayed the proteogenomic landscape of ferroptosis regulators in GBM. We observed that some mutation-specific ferroptosis regulators, such as down-regulated ACSL4 in EGFR-mutated patients and up-regulated FADS2 in IDH1-mutated patients, were linked to the inhibited ferroptosis activity in GBM. To interrogate the valuable treatment targets, we performed the survival analysis and identified five ferroptosis regulators (ACSL3, HSPB1, ELAVL1, IL33, and GPX4) as the prognostic biomarkers. We also validated their efficiency in external validation cohorts. Notably, we found overexpressed protein and phosphorylation abundances of HSPB1 were poor prognosis markers for overall survival of GBM to inhibit ferroptosis activity. Alternatively, HSPB1 showed a significant association with macrophage infiltration levels. Macrophage-secreted SPP1 could be a potential activator for HSPB1 in glioma cells. Finally, we recognized that ipatasertib, a novel pan-Akt inhibitor, could be a potential drug for suppressing HSPB1 phosphorylation, inducing ferroptosis of glioma cells. CONCLUSION In summary, our study characterized the proteogenomic landscape of ferroptosis regulators and identified that HSPB1 could be a candidate target for ferroptosis-inducing therapy strategy for GBM.
Collapse
Affiliation(s)
- Xinzhuang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Hong Zhang
- Department of Hematology, Liaocheng People's Hospital, Liaocheng, China
| | - Mingchu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xuezhi Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenbin Mao
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ming Gao
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
22
|
Varshney N, Mishra AK. Deep Learning in Phosphoproteomics: Methods and Application in Cancer Drug Discovery. Proteomes 2023; 11:proteomes11020016. [PMID: 37218921 DOI: 10.3390/proteomes11020016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/24/2023] Open
Abstract
Protein phosphorylation is a key post-translational modification (PTM) that is a central regulatory mechanism of many cellular signaling pathways. Several protein kinases and phosphatases precisely control this biochemical process. Defects in the functions of these proteins have been implicated in many diseases, including cancer. Mass spectrometry (MS)-based analysis of biological samples provides in-depth coverage of phosphoproteome. A large amount of MS data available in public repositories has unveiled big data in the field of phosphoproteomics. To address the challenges associated with handling large data and expanding confidence in phosphorylation site prediction, the development of many computational algorithms and machine learning-based approaches have gained momentum in recent years. Together, the emergence of experimental methods with high resolution and sensitivity and data mining algorithms has provided robust analytical platforms for quantitative proteomics. In this review, we compile a comprehensive collection of bioinformatic resources used for the prediction of phosphorylation sites, and their potential therapeutic applications in the context of cancer.
Collapse
Affiliation(s)
- Neha Varshney
- Division of Biological Sciences, Department of Cellular and Molecular Medicine, University of California, San Diego, CA 93093, USA
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA
| | - Abhinava K Mishra
- Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
23
|
Mariano NC, Rusin SF, Nasa I, Kettenbach AN. Inducible protein degradation as a strategy to identify Phosphoprotein Phosphatase 6 substrates in RAS-mutant colorectal cancer cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.25.534211. [PMID: 36993243 PMCID: PMC10055397 DOI: 10.1101/2023.03.25.534211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Protein phosphorylation is an essential regulatory mechanism that controls most cellular processes, including cell cycle progression, cell division, and response to extracellular stimuli, among many others, and is deregulated in many diseases. Protein phosphorylation is coordinated by the opposing activities of protein kinases and protein phosphatases. In eukaryotic cells, most serine/threonine phosphorylation sites are dephosphorylated by members of the Phosphoprotein Phosphatase (PPP) family. However, we only know for a few phosphorylation sites which specific PPP dephosphorylates them. Although natural compounds such as calyculin A and okadaic acid inhibit PPPs at low nanomolar concentrations, no selective chemical PPP inhibitors exist. Here, we demonstrate the utility of endogenous tagging of genomic loci with an auxin-inducible degron (AID) as a strategy to investigate specific PPP signaling. Using Protein Phosphatase 6 (PP6) as an example, we demonstrate how rapidly inducible protein degradation can be employed to identify dephosphorylation SITES and elucidate PP6 biology. Using genome editing, we introduce AID-tags into each allele of the PP6 catalytic subunit (PP6c) in DLD-1 cells expressing the auxin receptor Tir1. Upon rapid auxin-induced degradation of PP6c, we perform quantitative mass spectrometry-based proteomics and phosphoproteomics to identify PP6 substrates in mitosis. PP6 is an essential enzyme with conserved roles in mitosis and growth signaling. Consistently, we identify candidate PP6c-dependent phosphorylation sites on proteins implicated in coordinating the mitotic cell cycle, cytoskeleton, gene expression, and mitogen-activated protein kinase (MAPK) and Hippo signaling. Finally, we demonstrate that PP6c opposes the activation of large tumor suppressor 1 (LATS1) by dephosphorylating Threonine 35 (T35) on Mps One Binder (MOB1), thereby blocking the interaction of MOB1 and LATS1. Our analyses highlight the utility of combining genome engineering, inducible degradation, and multiplexed phosphoproteomics to investigate signaling by individual PPPs on a global level, which is currently limited by the lack of tools for specific interrogation.
Collapse
|
24
|
Baron L, Hadjerci J, Thoidingjam L, Plays M, Bucci R, Morris N, Müller S, Sindikubwabo F, Solier S, Cañeque T, Colombeau L, Blouin CM, Lamaze C, Puisieux A, Bono Y, Gaillet C, Laraia L, Vauzeilles B, Taran F, Papot S, Karoyan P, Duval R, Mahuteau-Betzer F, Arimondo P, Cariou K, Guichard G, Micouin L, Ethève-Quelquejeu M, Verga D, Versini A, Gasser G, Tang C, Belmont P, Linkermann A, Bonfio C, Gillingham D, Poulsen T, Di Antonio M, Lopez M, Guianvarc'h D, Thomas C, Masson G, Gautier A, Johannes L, Rodriguez R. PSL Chemical Biology Symposia Third Edition: A Branch of Science in its Explosive Phase. Chembiochem 2023; 24:e202300093. [PMID: 36942862 DOI: 10.1002/cbic.202300093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Indexed: 03/23/2023]
Abstract
This symposium is the third PSL (Paris Sciences & Lettres) Chemical Biology meeting (2016, 2019, 2023) held at Institut Curie. This initiative originally started at Institut de Chimie des Substances Naturelles (ICSN) in Gif-sur-Yvette (2013, 2014), under the directorship of Professor Max Malacria, with a strong focus on chemistry. It was then continued at the Institut Curie (2015) covering a larger scope, before becoming the official PSL Chemical Biology meeting. This latest edition was postponed twice for the reasons that we know. This has given us the opportunity to invite additional speakers of great standing. This year, Institut Curie hosted around 300 participants, including 220 on site and over 80 online. The pandemic has had, at least, the virtue of promoting online meetings, which we came to realize is not perfect but has its own merits. In particular, it enables those with restricted time and resources to take part in events and meetings, which can now accommodate unlimited participants. We apologize to all those who could not attend in person this time due to space limitation at Institut Curie.
Collapse
Affiliation(s)
- Leeroy Baron
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Justine Hadjerci
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Leishemba Thoidingjam
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Marina Plays
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Romain Bucci
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Nolwenn Morris
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Sebastian Müller
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Fabien Sindikubwabo
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Stéphanie Solier
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Tatiana Cañeque
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Ludovic Colombeau
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Cedric M Blouin
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Christophe Lamaze
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Alain Puisieux
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Yannick Bono
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Christine Gaillet
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Luca Laraia
- Technical University of Denmark, Department of Chemistry, 2800, Kgs. Lyngby, Denmark
| | - Boris Vauzeilles
- Université Paris-Saclay, CNRS UPR 2301, 91198, Gif-sur-Yvette, France
| | - Frédéric Taran
- Université Paris-Saclay, CEA, 91191, Gif-sur-Yvette, France
| | - Sébastien Papot
- Université de Poitiers, CNRS UMR 7285, 86073, Poitiers, France
| | - Philippe Karoyan
- PSL Université Paris, Sorbonne Université Ecole Normale Supérieure, CNRS UMR 7203, 75005, Paris, France
| | - Romain Duval
- Faculté de Pharmacie de Paris, Université Paris Cité CNRS UMR 261, 75006, Paris, France
| | | | | | - Kevin Cariou
- PSL Université Paris, Chimie ParisTech, CNRS, Institute of Chemistry and Health Sciences CNRS UMR 8060, 75005, Paris, France
| | - Gilles Guichard
- Université de Bordeaux, CNRS, Bordeaux INP CBMN, UMR 5248, 33600, Pessac, France
| | | | | | - Daniela Verga
- PSL Université Paris, Institut Curie CNRS UMR 9187, INSERM U1196, 91405, Orsay, France
| | - Antoine Versini
- University of Zurich, Department of Chemistry, 8057, Zurich, Switzerland
| | - Gilles Gasser
- PSL Université Paris, Chimie ParisTech, CNRS, Institute of Chemistry and Health Sciences CNRS UMR 8060, 75005, Paris, France
| | - Cong Tang
- Universidade de Lisboa, Instituto de Medicina Molecular João Lobo Antunes, 1649-028, Lisboa, Portugal
| | | | - Andreas Linkermann
- Technische Universität Dresden Department of Internal Medicine 3, 01062, Dresden, Germany
| | - Claudia Bonfio
- Université de Strasbourg, CNRS UMR 7006, 67000, Strasbourg, France
| | | | - Thomas Poulsen
- Aarhus University, Department of Chemistry, 8000, Aarhus C Aarhus, Denmark
| | - Marco Di Antonio
- Imperial College London, Molecular Sciences Research Hub, London, W12 0BZ, UK
| | - Marie Lopez
- Université de Montpellier, CNRS UMR 5247, 34000, Montpellier, France
| | | | - Christophe Thomas
- PSL Université Paris, Chimie ParisTech CNRS UMR 6226, 75005, Paris, France
| | - Géraldine Masson
- Université Paris-Saclay, CNRS UPR 2301, 91198, Gif-sur-Yvette, France
| | - Arnaud Gautier
- Sorbonne Université, École Normale Supérieure, Université PSL, CNRS, Laboratoire des Biomolécules, LBM, 75005, Paris, France
| | - Ludger Johannes
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Raphaël Rodriguez
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| |
Collapse
|
25
|
Hegde M, Girisa S, Kunnumakkara AB. A compilation of bioinformatic approaches to identify novel downstream targets for the detection and prophylaxis of cancer. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 134:75-113. [PMID: 36858743 DOI: 10.1016/bs.apcsb.2022.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The paradigm of cancer genomics has been radically changed by the development in next-generation sequencing (NGS) technologies making it possible to envisage individualized treatment based on tumor and stromal cells genome in a clinical setting within a short timeframe. The abundance of data has led to new avenues for studying coordinated alterations that impair biological processes, which in turn has increased the demand for bioinformatic tools for pathway analysis. While most of this work has been concentrated on optimizing certain algorithms to obtain quicker and more accurate results. Large volumes of these existing algorithm-based data are difficult for the biologists and clinicians to access, download and reanalyze them. In the present study, we have listed the bioinformatics algorithms and user-friendly graphical user interface (GUI) tools that enable code-independent analysis of big data without compromising the quality and time. We have also described the advantages and drawbacks of each of these platforms. Additionally, we emphasize the importance of creating new, more user-friendly solutions to provide better access to open data and talk about relevant problems like data sharing and patient privacy.
Collapse
Affiliation(s)
- Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, India
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, India.
| |
Collapse
|
26
|
Murray HC, Miller K, Brzozowski JS, Kahl RGS, Smith ND, Humphrey SJ, Dun MD, Verrills NM. Synergistic Targeting of DNA-PK and KIT Signaling Pathways in KIT Mutant Acute Myeloid Leukemia. Mol Cell Proteomics 2023; 22:100503. [PMID: 36682716 PMCID: PMC9986649 DOI: 10.1016/j.mcpro.2023.100503] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 12/19/2022] [Accepted: 01/13/2023] [Indexed: 01/21/2023] Open
Abstract
Acute myeloid leukemia (AML) is the most common and aggressive form of acute leukemia, with a 5-year survival rate of just 24%. Over a third of all AML patients harbor activating mutations in kinases, such as the receptor tyrosine kinases FLT3 (receptor-type tyrosine-protein kinase FLT3) and KIT (mast/stem cell growth factor receptor kit). FLT3 and KIT mutations are associated with poor clinical outcomes and lower remission rates in response to standard-of-care chemotherapy. We have recently identified that the core kinase of the non-homologous end joining DNA repair pathway, DNA-PK (DNA-dependent protein kinase), is activated downstream of FLT3; and targeting DNA-PK sensitized FLT3-mutant AML cells to standard-of-care therapies. Herein, we investigated DNA-PK as a possible therapeutic vulnerability in KIT mutant AML, using isogenic FDC-P1 mouse myeloid progenitor cell lines transduced with oncogenic mutant KIT (V560G and D816V) or vector control. Targeted quantitative phosphoproteomic profiling identified phosphorylation of DNA-PK in the T2599/T2605/S2608/S2610 cluster in KIT mutant cells, indicative of DNA-PK activation. Accordingly, proliferation assays revealed that KIT mutant FDC-P1 cells were more sensitive to the DNA-PK inhibitors M3814 or NU7441, compared with empty vector controls. DNA-PK inhibition combined with inhibition of KIT signaling using the kinase inhibitors dasatinib or ibrutinib, or the protein phosphatase 2A activators FTY720 or AAL(S), led to synergistic cell death. Global phosphoproteomic analysis of KIT-D816V cells revealed that dasatinib and M3814 single-agent treatments inhibited extracellular signal-regulated kinase and AKT (RAC-alpha serine/threonine-protein kinase)/MTOR (serine/threonine-protein kinase mTOR) activity, with greater inhibition of both pathways when used in combination. Combined dasatinib and M3814 treatment also synergistically inhibited phosphorylation of the transcriptional regulators MYC and MYB. This study provides insight into the oncogenic pathways regulated by DNA-PK beyond its canonical role in DNA repair and demonstrates that DNA-PK is a promising therapeutic target for KIT mutant cancers.
Collapse
Affiliation(s)
- Heather C Murray
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, and Hunter Cancer Research Alliance and Precision Medicine Program, Hunter Medical Research Institute, Callaghan, New South Wales, Australia
| | - Kasey Miller
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, and Hunter Cancer Research Alliance and Precision Medicine Program, Hunter Medical Research Institute, Callaghan, New South Wales, Australia
| | - Joshua S Brzozowski
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, and Hunter Cancer Research Alliance and Precision Medicine Program, Hunter Medical Research Institute, Callaghan, New South Wales, Australia
| | - Richard G S Kahl
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, and Hunter Cancer Research Alliance and Precision Medicine Program, Hunter Medical Research Institute, Callaghan, New South Wales, Australia
| | - Nathan D Smith
- Analytical and Biomolecular Research Facility, Advanced Mass Spectrometry Unit, University of Newcastle, Callaghan, New South Wales, Australia
| | - Sean J Humphrey
- School of Life and Environmental Sciences, and The Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Matthew D Dun
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, and Hunter Cancer Research Alliance and Precision Medicine Program, Hunter Medical Research Institute, Callaghan, New South Wales, Australia
| | - Nicole M Verrills
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, and Hunter Cancer Research Alliance and Precision Medicine Program, Hunter Medical Research Institute, Callaghan, New South Wales, Australia.
| |
Collapse
|
27
|
Li Y, Lih TSM, Dhanasekaran SM, Mannan R, Chen L, Cieslik M, Wu Y, Lu RJH, Clark DJ, Kołodziejczak I, Hong R, Chen S, Zhao Y, Chugh S, Caravan W, Naser Al Deen N, Hosseini N, Newton CJ, Krug K, Xu Y, Cho KC, Hu Y, Zhang Y, Kumar-Sinha C, Ma W, Calinawan A, Wyczalkowski MA, Wendl MC, Wang Y, Guo S, Zhang C, Le A, Dagar A, Hopkins A, Cho H, Leprevost FDV, Jing X, Teo GC, Liu W, Reimers MA, Pachynski R, Lazar AJ, Chinnaiyan AM, Van Tine BA, Zhang B, Rodland KD, Getz G, Mani DR, Wang P, Chen F, Hostetter G, Thiagarajan M, Linehan WM, Fenyö D, Jewell SD, Omenn GS, Mehra R, Wiznerowicz M, Robles AI, Mesri M, Hiltke T, An E, Rodriguez H, Chan DW, Ricketts CJ, Nesvizhskii AI, Zhang H, Ding L. Histopathologic and proteogenomic heterogeneity reveals features of clear cell renal cell carcinoma aggressiveness. Cancer Cell 2023; 41:139-163.e17. [PMID: 36563681 PMCID: PMC9839644 DOI: 10.1016/j.ccell.2022.12.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/18/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022]
Abstract
Clear cell renal cell carcinomas (ccRCCs) represent ∼75% of RCC cases and account for most RCC-associated deaths. Inter- and intratumoral heterogeneity (ITH) results in varying prognosis and treatment outcomes. To obtain the most comprehensive profile of ccRCC, we perform integrative histopathologic, proteogenomic, and metabolomic analyses on 305 ccRCC tumor segments and 166 paired adjacent normal tissues from 213 cases. Combining histologic and molecular profiles reveals ITH in 90% of ccRCCs, with 50% demonstrating immune signature heterogeneity. High tumor grade, along with BAP1 mutation, genome instability, increased hypermethylation, and a specific protein glycosylation signature define a high-risk disease subset, where UCHL1 expression displays prognostic value. Single-nuclei RNA sequencing of the adverse sarcomatoid and rhabdoid phenotypes uncover gene signatures and potential insights into tumor evolution. In vitro cell line studies confirm the potential of inhibiting identified phosphoproteome targets. This study molecularly stratifies aggressive histopathologic subtypes that may inform more effective treatment strategies.
Collapse
Affiliation(s)
- Yize Li
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Tung-Shing M Lih
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21213, USA
| | - Saravana M Dhanasekaran
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Rahul Mannan
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lijun Chen
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21213, USA
| | - Marcin Cieslik
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yige Wu
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Rita Jiu-Hsien Lu
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - David J Clark
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21213, USA
| | - Iga Kołodziejczak
- International Institute for Molecular Oncology, 60-203 Poznań, Poland; Postgraduate School of Molecular Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Runyu Hong
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Siqi Chen
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Yanyan Zhao
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Seema Chugh
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wagma Caravan
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Nataly Naser Al Deen
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Noshad Hosseini
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Karsten Krug
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Yuanwei Xu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218, USA
| | - Kyung-Cho Cho
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21213, USA
| | - Yingwei Hu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21213, USA
| | - Yuping Zhang
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chandan Kumar-Sinha
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Weiping Ma
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Anna Calinawan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Matthew A Wyczalkowski
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Michael C Wendl
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA; Department of Genetics, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Mathematics, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Yuefan Wang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21213, USA
| | - Shenghao Guo
- Department of Biomedical Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218, USA
| | - Cissy Zhang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21213, USA
| | - Anne Le
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21213, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Aniket Dagar
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alex Hopkins
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hanbyul Cho
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Xiaojun Jing
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Guo Ci Teo
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wenke Liu
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Melissa A Reimers
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63130, USA; Division of Medical Oncology, Department of Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Russell Pachynski
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63130, USA; Division of Medical Oncology, Department of Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Alexander J Lazar
- Departments of Pathology and Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Arul M Chinnaiyan
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Brian A Van Tine
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Karin D Rodland
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Gad Getz
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - D R Mani
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Pei Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Feng Chen
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | | | | | - W Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David Fenyö
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Scott D Jewell
- Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Gilbert S Omenn
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Human Genetics, and School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rohit Mehra
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Maciej Wiznerowicz
- International Institute for Molecular Oncology, 60-203 Poznań, Poland; Heliodor Swiecicki Clinical Hospital in Poznań, ul. Przybyszewskiego 49, 60-355 Poznań, Poland; Poznań University of Medical Sciences, 61-701 Poznań, Poland
| | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA
| | - Mehdi Mesri
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA
| | - Tara Hiltke
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA
| | - Eunkyung An
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA
| | - Daniel W Chan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21213, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher J Ricketts
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21213, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Li Ding
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA; Department of Genetics, Washington University in St. Louis, St. Louis, MO 63130, USA; Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
28
|
Biswas D, Kumari N, Lachén-Montes M, Dutta S, Agrawal I, Samanta D, Shenoy SV, Halder A, Fernández-Irigoyen J, Padhye AR, Santamaría E, Srivastava S. Deep Phosphoproteome Landscape of Interhemispheric Functionality of Neuroanatomical Regions of the Human Brain. J Proteome Res 2022; 22:1043-1055. [PMID: 36317652 DOI: 10.1021/acs.jproteome.2c00244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Post-translational modifications (PTMs) are one of the compulsive and predominant biological processes that regulate the diverse molecular mechanism, modulate the onset of disease, and are the reason behind the functional diversity of proteins. Despite the widespread research findings in neuroproteomics, one of the key drawbacks has been the lack of proteome-level knowledge of hemispheric lateralization. We have investigated the proteome level expression in different neuroanatomical regions under the Human Brain Proteome Project (HBPP) and developed the global interhemispheric brain proteome map (Brainprot) earlier. Furthermore, this study has extended to decipher the phosphoproteome map of human brain interhemispheric regions through high-resolution mass spectrometry. The phosphoproteomics examination of 12 unique interhemispheric neurological brain regions using Orbitrap fusion liquid chromatography with tandem mass spectrometry provided comprehensive coverage of 996 phosphoproteins, 2010 phosphopeptides, and 3567 phosphosites. Moreover, interhemispheric phosphoproteome profiling has been categorized according to synaptic ontologies and interhemispheric expression to understand the functionality. Finally, we have integrated the phosphosites data under the PhosphoMap section in the Inter-Hemispheric Brain Proteome Map Portal (https://www.brainprot.org/) for the advancement and support of the ongoing neuroproteomics research worldwide. Data is available via ProteomeXchange with the identifier PXD031188.
Collapse
Affiliation(s)
- Deeptarup Biswas
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai400076, India
| | - Neha Kumari
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai400076, India
| | - Mercedes Lachén-Montes
- Clinical Neuroproteomics Unit, Proteomics Platform, Proteored-ISCIII, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Navarra Institute for Health Research (IdiSNA), 31008Pamplona, Spain
| | - Sampurna Dutta
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata700032, India
| | - Ishita Agrawal
- Department of Molecular and Human Genetics, Banaras Hindu University, Varanasi221005, India
| | - Debabrata Samanta
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal721302, India
| | - Sanjyot Vinayak Shenoy
- Department of Mathematics, Indian Institute of Technology Bombay, Powai, Mumbai400076, India
| | - Ankit Halder
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai400076, India
| | - Joaquín Fernández-Irigoyen
- Clinical Neuroproteomics Unit, Proteomics Platform, Proteored-ISCIII, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Navarra Institute for Health Research (IdiSNA), 31008Pamplona, Spain
| | - Advait Rahul Padhye
- Department of Computer Science and Engineering, Indian Institute of Technology Bombay, Powai, Mumbai400076, India
| | - Enrique Santamaría
- Clinical Neuroproteomics Unit, Proteomics Platform, Proteored-ISCIII, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Navarra Institute for Health Research (IdiSNA), 31008Pamplona, Spain
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai400076, India
| |
Collapse
|
29
|
Hu CW, Xie J, Jiang J. The Emerging Roles of Protein Interactions with O-GlcNAc Cycling Enzymes in Cancer. Cancers (Basel) 2022; 14:5135. [PMID: 36291918 PMCID: PMC9600386 DOI: 10.3390/cancers14205135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 09/11/2023] Open
Abstract
The dynamic O-GlcNAc modification of intracellular proteins is an important nutrient sensor for integrating metabolic signals into vast networks of highly coordinated cellular activities. Dysregulation of the sole enzymes responsible for O-GlcNAc cycling, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), and the associated cellular O-GlcNAc profile is a common feature across nearly every cancer type. Many studies have investigated the effects of aberrant OGT/OGA expression on global O-GlcNAcylation activity in cancer cells. However, recent studies have begun to elucidate the roles of protein-protein interactions (PPIs), potentially through regions outside of the immediate catalytic site of OGT/OGA, that regulate greater protein networks to facilitate substrate-specific modification, protein translocalization, and the assembly of larger biomolecular complexes. Perturbation of OGT/OGA PPI networks makes profound changes in the cell and may directly contribute to cancer malignancies. Herein, we highlight recent studies on the structural features of OGT and OGA, as well as the emerging roles and molecular mechanisms of their aberrant PPIs in rewiring cancer networks. By integrating complementary approaches, the research in this area will aid in the identification of key protein contacts and functional modules derived from OGT/OGA that drive oncogenesis and will illuminate new directions for anti-cancer drug development.
Collapse
Affiliation(s)
| | | | - Jiaoyang Jiang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
30
|
Zhu P, Wu X, Zhang RY, Hsu CC, Zhang ZY, Tao WA. An Integrated Proteomic Strategy to Identify SHP2 Substrates. J Proteome Res 2022; 21:2515-2525. [PMID: 36103635 PMCID: PMC9597472 DOI: 10.1021/acs.jproteome.2c00481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein phosphatases play an essential role in normal cell physiology and the development of diseases such as cancer. The innate challenges associated with studying protein phosphatases have limited our understanding of their substrates, molecular mechanisms, and unique functions within highly coordinated networks. Here, we introduce a novel strategy using substrate-trapping mutants coupled with quantitative proteomics methods to identify physiological substrates of Src homology 2 containing protein tyrosine phosphatase 2 (SHP2) in a high-throughput manner. The technique integrates three parallel mass spectrometry-based proteomics experiments, including affinity isolation of substrate-trapping mutant complex using wild-type and SHP2 KO cells, in vivo global quantitative phosphoproteomics, and in vitro phosphatase reaction. We confidently identified 18 direct substrates of SHP2 in the epidermal growth factor receptor signaling pathways, including both known and novel SHP2 substrates. Docking protein 1 was further validated using biochemical assays as a novel SHP2 substrate, providing a mechanism for SHP2-mediated Ras activation. This advanced workflow improves the systemic identification of direct substrates of protein phosphatases, facilitating our understanding of the equally important roles of protein phosphatases in cellular signaling.
Collapse
Affiliation(s)
- Peipei Zhu
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Xiaofeng Wu
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ruo-Yu Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Chuan-Chih Hsu
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Zhong-Yin Zhang
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - W Andy Tao
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
31
|
Kokot T, Köhn M. Emerging insights into serine/threonine-specific phosphoprotein phosphatase function and selectivity. J Cell Sci 2022; 135:277104. [DOI: 10.1242/jcs.259618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
ABSTRACT
Protein phosphorylation on serine and threonine residues is a widely distributed post-translational modification on proteins that acts to regulate their function. Phosphoprotein phosphatases (PPPs) contribute significantly to a plethora of cellular functions through the accurate dephosphorylation of phosphorylated residues. Most PPPs accomplish their purpose through the formation of complex holoenzymes composed of a catalytic subunit with various regulatory subunits. PPP holoenzymes then bind and dephosphorylate substrates in a highly specific manner. Despite the high prevalence of PPPs and their important role for cellular function, their mechanisms of action in the cell are still not well understood. Nevertheless, substantial experimental advancements in (phospho-)proteomics, structural and computational biology have contributed significantly to a better understanding of PPP biology in recent years. This Review focuses on recent approaches and provides an overview of substantial new insights into the complex mechanism of PPP holoenzyme regulation and substrate selectivity.
Collapse
Affiliation(s)
- Thomas Kokot
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg 1 , Freiburg 79104 , Germany
- University of Freiburg, 2 Faculty of Biology , Freiburg 79104 , Germany
| | - Maja Köhn
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg 1 , Freiburg 79104 , Germany
- University of Freiburg, 2 Faculty of Biology , Freiburg 79104 , Germany
| |
Collapse
|
32
|
Evolutionary genomic relationships and coupling in MK-STYX and STYX pseudophosphatases. Sci Rep 2022; 12:4139. [PMID: 35264672 PMCID: PMC8907265 DOI: 10.1038/s41598-022-07943-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 02/28/2022] [Indexed: 11/08/2022] Open
Abstract
The dual specificity phosphatase (DUSP) family has catalytically inactive members, called pseudophosphatases. They have mutations in their catalytic motifs that render them enzymatically inactive. This study analyzes the significance of two pseudophosphatases, MK-STYX [MAPK (mitogen-activated protein kinase phosphoserine/threonine/tyrosine-binding protein]) and STYX (serine/threonine/tyrosine-interacting protein), throughout their evolution and provides measurements and comparison of their evolutionary conservation. Phylogenetic trees were constructed to show any deviation from various species evolutionary paths. Data was collected on a large set of proteins that have either one of the two domains of MK-STYX, the DUSP domain or the cdc-25 homology (CH2) /rhodanese-like domain. The distance between species pairs for MK-STYX or STYX and Ka/Ks ratio were calculated. In addition, both pseudophosphatases were ranked among a large set of related proteins, including the active homologs of MK-STYX, MKP (MAPK phosphatase)-1 and MKP-3. MK-STYX had one of the highest species-species protein distances and was under weaker purifying selection pressure than most proteins with its domains. In contrast, the protein distances of STYX were lower than 82% of the DUSP-containing proteins and was under one of the strongest purifying selection pressures. However, there was similar selection pressure on the N-terminal sequences of MK-STYX, STYX, MKP-1, and MKP-3. We next perform statistical coupling analysis, a process that reveals interconnected regions within the proteins. We find that while MKP-1,-3, and STYX all have 2 functional units (sectors), MK-STYX only has one, and that MK-STYX is similar to MKP-3 in the evolutionary coupling of the active site and KIM domain. Within those two domains, the mean coupling is also most similar for MK-STYX and MKP-3. This study reveals striking distinctions between the evolutionary patterns of MK-STYX and STYX, suggesting a very specific role for each pseudophosphatase, further highlighting the relevance of these atypical members of DUSP as signaling regulators. Therefore, our study provides computational evidence and evolutionary reasons to further explore the properties of pseudophosphatases, in particular MK-STYX and STYX.
Collapse
|
33
|
Kliche J, Ivarsson Y. Orchestrating serine/threonine phosphorylation and elucidating downstream effects by short linear motifs. Biochem J 2022; 479:1-22. [PMID: 34989786 PMCID: PMC8786283 DOI: 10.1042/bcj20200714] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022]
Abstract
Cellular function is based on protein-protein interactions. A large proportion of these interactions involves the binding of short linear motifs (SLiMs) by folded globular domains. These interactions are regulated by post-translational modifications, such as phosphorylation, that create and break motif binding sites or tune the affinity of the interactions. In addition, motif-based interactions are involved in targeting serine/threonine kinases and phosphatases to their substrate and contribute to the specificity of the enzymatic actions regulating which sites are phosphorylated. Here, we review how SLiM-based interactions assist in determining the specificity of serine/threonine kinases and phosphatases, and how phosphorylation, in turn, affects motif-based interactions. We provide examples of SLiM-based interactions that are turned on/off, or are tuned by serine/threonine phosphorylation and exemplify how this affects SLiM-based protein complex formation.
Collapse
Affiliation(s)
- Johanna Kliche
- Department of Chemistry – BMC, Uppsala University, Husargatan 3, Box 576 751 23 Uppsala, Sweden
| | - Ylva Ivarsson
- Department of Chemistry – BMC, Uppsala University, Husargatan 3, Box 576 751 23 Uppsala, Sweden
| |
Collapse
|
34
|
Schwarz JJ, Grundmann L, Kokot T, Kläsener K, Fotteler S, Medgyesi D, Köhn M, Reth M, Warscheid B. Quantitative proteomics identifies PTP1B as modulator of B cell antigen receptor signaling. Life Sci Alliance 2021; 4:4/11/e202101084. [PMID: 34526379 PMCID: PMC8473724 DOI: 10.26508/lsa.202101084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/28/2021] [Accepted: 09/01/2021] [Indexed: 11/24/2022] Open
Abstract
This study analyses the function of the protein tyrosine phosphatase 1B identifying its binding partners and dephosphorylation targets for modulating B cell antigen receptor signaling. B cell antigen receptor (BCR) signaling is initiated by protein kinases and limited by counteracting phosphatases that currently are less well studied in their regulation of BCR signaling. Here, we used the B cell line Ramos to identify and quantify human B cell signaling components. Specifically, a protein tyrosine phosphatase profiling revealed a high expression of the protein tyrosine phosphatase 1B (PTP1B) in Ramos and human naïve B cells. The loss of PTP1B leads to increased B cell activation. Through substrate trapping in combination with quantitative mass spectrometry, we identified 22 putative substrates or interactors of PTP1B. We validated Igα, CD22, PLCγ1/2, CBL, BCAP, and APLP2 as specific substrates of PTP1B in Ramos B cells. The tyrosine kinase BTK and the two adaptor proteins GRB2 and VAV1 were identified as direct binding partners and potential substrates of PTP1B. We showed that PTP1B dephosphorylates the inhibitory receptor protein CD22 at phosphotyrosine 807. We conclude that PTP1B negatively modulates BCR signaling by dephosphorylating distinct phosphotyrosines in B cell-specific receptor proteins and various downstream signaling components.
Collapse
Affiliation(s)
- Jennifer J Schwarz
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Lorenz Grundmann
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Thomas Kokot
- Integrative Signalling Research, Institute of Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Kathrin Kläsener
- Department for Molecular Immunology, Institute of Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Sandra Fotteler
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - David Medgyesi
- Department for Molecular Immunology, Institute of Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Maja Köhn
- Integrative Signalling Research, Institute of Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Michael Reth
- Department for Molecular Immunology, Institute of Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Bettina Warscheid
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany .,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| |
Collapse
|
35
|
Vitorino R, Choudhury M, Guedes S, Ferreira R, Thongboonkerd V, Sharma L, Amado F, Srivastava S. Peptidomics and proteogenomics: background, challenges and future needs. Expert Rev Proteomics 2021; 18:643-659. [PMID: 34517741 DOI: 10.1080/14789450.2021.1980388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION With available genomic data and related information, it is becoming possible to better highlight mutations or genomic alterations associated with a particular disease or disorder. The advent of high-throughput sequencing technologies has greatly advanced diagnostics, prognostics, and drug development. AREAS COVERED Peptidomics and proteogenomics are the two post-genomic technologies that enable the simultaneous study of peptides and proteins/transcripts/genes. Both technologies add a remarkably large amount of data to the pool of information on various peptides associated with gene mutations or genome remodeling. Literature search was performed in the PubMed database and is up to date. EXPERT OPINION This article lists various techniques used for peptidomic and proteogenomic analyses. It also explains various bioinformatics workflows developed to understand differentially expressed peptides/proteins and their role in disease pathogenesis. Their role in deciphering disease pathways, cancer research, and biomarker discovery using biofluids is highlighted. Finally, the challenges and future requirements to overcome the current limitations for their effective clinical use are also discussed.
Collapse
Affiliation(s)
- Rui Vitorino
- Faculdade de Medicina da Universidade do Porto, Porto, Portugal.,iBiMED, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal.,Laqv/requimte, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Manisha Choudhury
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Powai, India
| | - Sofia Guedes
- Laqv/requimte, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Rita Ferreira
- Laqv/requimte, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Francisco Amado
- Laqv/requimte, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Powai, India
| |
Collapse
|
36
|
Proteome Landscape of Epithelial-to-Mesenchymal Transition (EMT) of Retinal Pigment Epithelium Shares Commonalities With Malignancy-Associated EMT. Mol Cell Proteomics 2021; 20:100131. [PMID: 34455105 PMCID: PMC8482521 DOI: 10.1016/j.mcpro.2021.100131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 07/09/2021] [Accepted: 07/30/2021] [Indexed: 02/08/2023] Open
Abstract
Stress and injury to the retinal pigment epithelium (RPE) often lead to dedifferentiation and epithelial-to-mesenchymal transition (EMT). These processes have been implicated in several retinal diseases, including proliferative vitreoretinopathy, diabetic retinopathy, and age-related macular degeneration. Despite the importance of RPE-EMT and the large body of data characterizing malignancy-related EMT, comprehensive proteomic studies to define the protein changes and pathways underlying RPE-EMT have not been reported. This study sought to investigate the temporal protein expression changes that occur in a human-induced pluripotent stem cell–based RPE-EMT model. We utilized multiplexed isobaric tandem mass tag labeling followed by high-resolution tandem MS for precise and in-depth quantification of the RPE-EMT proteome. We have identified and quantified 7937 protein groups in our tandem mass tag–based MS analysis. We observed a total of 532 proteins that are differentially regulated during RPE-EMT. Furthermore, we integrated our proteomic data with prior transcriptomic (RNA-Seq) data to provide additional insights into RPE-EMT mechanisms. To validate these results, we have performed a label-free single-shot data-independent acquisition MS study. Our integrated analysis indicates both the commonality and uniqueness of RPE-EMT compared with malignancy-associated EMT. Our comparative analysis also revealed that multiple age-related macular degeneration–associated risk factors are differentially regulated during RPE-EMT. Together, our integrated dataset provides a comprehensive RPE-EMT atlas and resource for understanding the molecular signaling events and associated biological pathways that underlie RPE-EMT onset. This resource has already facilitated the identification of chemical modulators that could inhibit RPE-EMT, and it will hopefully aid in ongoing efforts to develop EMT inhibition as an approach for the treatment of retinal disease. Proteomics data were integrated with prior transcriptomic (RNA-Seq) data on RPE-EMT. Dysregulated RPE-EMT proteome shares commonality with malignancy-associated EMT. Altered RPE-EMT proteome signatures correlated with known AMD-associated risk factors. Protein kinases and phosphatases crosstalk modulate RPE-EMT.
Collapse
|
37
|
Chaudhari M, Thapa N, Ismail H, Chopade S, Caragea D, Köhn M, Newman RH, Kc DB. DTL-DephosSite: Deep Transfer Learning Based Approach to Predict Dephosphorylation Sites. Front Cell Dev Biol 2021; 9:662983. [PMID: 34249915 PMCID: PMC8264445 DOI: 10.3389/fcell.2021.662983] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/20/2021] [Indexed: 11/17/2022] Open
Abstract
Phosphorylation, which is mediated by protein kinases and opposed by protein phosphatases, is an important post-translational modification that regulates many cellular processes, including cellular metabolism, cell migration, and cell division. Due to its essential role in cellular physiology, a great deal of attention has been devoted to identifying sites of phosphorylation on cellular proteins and understanding how modification of these sites affects their cellular functions. This has led to the development of several computational methods designed to predict sites of phosphorylation based on a protein’s primary amino acid sequence. In contrast, much less attention has been paid to dephosphorylation and its role in regulating the phosphorylation status of proteins inside cells. Indeed, to date, dephosphorylation site prediction tools have been restricted to a few tyrosine phosphatases. To fill this knowledge gap, we have employed a transfer learning strategy to develop a deep learning-based model to predict sites that are likely to be dephosphorylated. Based on independent test results, our model, which we termed DTL-DephosSite, achieved efficiency scores for phosphoserine/phosphothreonine residues of 84%, 84% and 0.68 with respect to sensitivity (SN), specificity (SP) and Matthew’s correlation coefficient (MCC). Similarly, DTL-DephosSite exhibited efficiency scores of 75%, 88% and 0.64 for phosphotyrosine residues with respect to SN, SP, and MCC.
Collapse
Affiliation(s)
- Meenal Chaudhari
- Department of Computational Data Science and Engineering, North Carolina A&T State University, Greensboro, NC, United States
| | - Niraj Thapa
- Department of Computational Data Science and Engineering, North Carolina A&T State University, Greensboro, NC, United States
| | - Hamid Ismail
- Department of Computational Data Science and Engineering, North Carolina A&T State University, Greensboro, NC, United States
| | - Sandhya Chopade
- Department of Computational Data Science and Engineering, North Carolina A&T State University, Greensboro, NC, United States
| | - Doina Caragea
- Department of Computer Science, Kansas State University, Manhattan, KS, United States
| | - Maja Köhn
- Faculty of Biology, Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Robert H Newman
- Department of Biology, North Carolina A&T State University, Greensboro, NC, United States
| | - Dukka B Kc
- Department of Electrical Engineering and Computer Science, Wichita State University, Wichita, KS, United States
| |
Collapse
|
38
|
Zhang Q, Fan Z, Zhang L, You Q, Wang L. Strategies for Targeting Serine/Threonine Protein Phosphatases with Small Molecules in Cancer. J Med Chem 2021; 64:8916-8938. [PMID: 34156850 DOI: 10.1021/acs.jmedchem.1c00631] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Among numerous posttranslational regulation patterns, phosphorylation is reversibly controlled by the balance of kinases and phosphatases. The major form of cellular signaling involves the reversible phosphorylation of proteins on tyrosine, serine, or threonine residues. However, altered phosphorylation levels are found in diverse diseases, including cancer, making kinases and phosphatases ideal drug targets. In contrast to the success of prosperous kinase inhibitors, design of small molecules targeting phosphatase is struggling due to past bias and difficulty. This is especially true for serine/threonine phosphatases, one of the largest phosphatase families. From this perspective, we aim to provide insights into serine/threonine phosphatases and the small molecules targeting these proteins for drug development, especially in cancer. Through highlighting the modulation strategies, we aim to provide basic principles for the design of small molecules and future perspectives for the application of drugs targeting serine/threonine phosphatases.
Collapse
Affiliation(s)
- Qiuyue Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhongjiao Fan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lianshan Zhang
- Shanghai Hengrui Pharmaceutical Co., Ltd., Shanghai 200245, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
39
|
Zhang X, Maity TK, Ross KE, Qi Y, Cultraro CM, Bahta M, Pitts S, Keswani M, Gao S, Nguyen KDP, Cowart J, Kirkali F, Wu C, Guha U. Alterations in the Global Proteome and Phosphoproteome in Third Generation EGFR TKI Resistance Reveal Drug Targets to Circumvent Resistance. Cancer Res 2021; 81:3051-3066. [PMID: 33727228 PMCID: PMC8182571 DOI: 10.1158/0008-5472.can-20-2435] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 02/08/2021] [Accepted: 03/10/2021] [Indexed: 11/16/2022]
Abstract
Lung cancer is the leading cause of cancer mortality worldwide. The treatment of patients with lung cancer harboring mutant EGFR with orally administered EGFR tyrosine kinase inhibitors (TKI) has been a paradigm shift. Osimertinib and rociletinib are third-generation irreversible EGFR TKIs targeting the EGFR T790M mutation. Osimertinib is the current standard of care for patients with EGFR mutations due to increased efficacy, lower side effects, and enhanced brain penetrance. Unfortunately, all patients develop resistance. Genomic approaches have primarily been used to interrogate resistance mechanisms. Here we characterized the proteome and phosphoproteome of a series of isogenic EGFR-mutant lung adenocarcinoma cell lines that are either sensitive or resistant to these drugs, comprising the most comprehensive proteomic dataset resource to date to investigate third generation EGFR TKI resistance in lung adenocarcinoma. Unbiased global quantitative mass spectrometry uncovered alterations in signaling pathways, revealed a proteomic signature of epithelial-mesenchymal transition, and identified kinases and phosphatases with altered expression and phosphorylation in TKI-resistant cells. Decreased tyrosine phosphorylation of key sites in the phosphatase SHP2 suggests its inhibition, resulting in subsequent inhibition of RAS/MAPK and activation of PI3K/AKT pathways. Anticorrelation analyses of this phosphoproteomic dataset with published drug-induced P100 phosphoproteomic datasets from the Library of Integrated Network-Based Cellular Signatures program predicted drugs with the potential to overcome EGFR TKI resistance. The PI3K/MTOR inhibitor dactolisib in combination with osimertinib overcame resistance both in vitro and in vivo. Taken together, this study reveals global proteomic alterations upon third generation EGFR TKI resistance and highlights potential novel approaches to overcome resistance. SIGNIFICANCE: Global quantitative proteomics reveals changes in the proteome and phosphoproteome in lung cancer cells resistant to third generation EGFR TKIs, identifying the PI3K/mTOR inhibitor dactolisib as a potential approach to overcome resistance.
Collapse
Affiliation(s)
- Xu Zhang
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland.
| | - Tapan K Maity
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Karen E Ross
- Dept. of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, D.C
| | - Yue Qi
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Constance M Cultraro
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Meriam Bahta
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Stephanie Pitts
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Meghana Keswani
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Shaojian Gao
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Khoa Dang P Nguyen
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Julie Cowart
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware
| | - Fatos Kirkali
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Cathy Wu
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware
| | - Udayan Guha
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland.
| |
Collapse
|
40
|
Kitata RB, Choong WK, Tsai CF, Lin PY, Chen BS, Chang YC, Nesvizhskii AI, Sung TY, Chen YJ. A data-independent acquisition-based global phosphoproteomics system enables deep profiling. Nat Commun 2021; 12:2539. [PMID: 33953186 PMCID: PMC8099862 DOI: 10.1038/s41467-021-22759-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 03/29/2021] [Indexed: 01/07/2023] Open
Abstract
Phosphoproteomics can provide insights into cellular signaling dynamics. To achieve deep and robust quantitative phosphoproteomics profiling for minute amounts of sample, we here develop a global phosphoproteomics strategy based on data-independent acquisition (DIA) mass spectrometry and hybrid spectral libraries derived from data-dependent acquisition (DDA) and DIA data. Benchmarking the method using 166 synthetic phosphopeptides shows high sensitivity (<0.1 ng), accurate site localization and reproducible quantification (~5% median coefficient of variation). As a proof-of-concept, we use lung cancer cell lines and patient-derived tissue to construct a hybrid phosphoproteome spectral library covering 159,524 phosphopeptides (88,107 phosphosites). Based on this library, our single-shot streamlined DIA workflow quantifies 36,350 phosphosites (19,755 class 1) in cell line samples within two hours. Application to drug-resistant cells and patient-derived lung cancer tissues delineates site-specific phosphorylation events associated with resistance and tumor progression, showing that our workflow enables the characterization of phosphorylation signaling with deep coverage, high sensitivity and low between-run missing values.
Collapse
Affiliation(s)
| | - Wai-Kok Choong
- Institute of Information Science, Academia Sinica, Taipei, 11529, Taiwan
| | - Chia-Feng Tsai
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, 99354, USA
| | - Pei-Yi Lin
- Institute of Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Bo-Shiun Chen
- Institute of Chemistry, Academia Sinica, Taipei, 11529, Taiwan
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Yun-Chien Chang
- Institute of Chemistry, Academia Sinica, Taipei, 11529, Taiwan
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Alexey I Nesvizhskii
- Department of Computational Medicine and Bioinformatics, and Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, 48109, USA
| | - Ting-Yi Sung
- Institute of Information Science, Academia Sinica, Taipei, 11529, Taiwan
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei, 11529, Taiwan.
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
41
|
Türei D, Valdeolivas A, Gul L, Palacio‐Escat N, Klein M, Ivanova O, Ölbei M, Gábor A, Theis F, Módos D, Korcsmáros T, Saez‐Rodriguez J. Integrated intra- and intercellular signaling knowledge for multicellular omics analysis. Mol Syst Biol 2021; 17:e9923. [PMID: 33749993 PMCID: PMC7983032 DOI: 10.15252/msb.20209923] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 02/11/2021] [Accepted: 02/15/2021] [Indexed: 12/12/2022] Open
Abstract
Molecular knowledge of biological processes is a cornerstone in omics data analysis. Applied to single-cell data, such analyses provide mechanistic insights into individual cells and their interactions. However, knowledge of intercellular communication is scarce, scattered across resources, and not linked to intracellular processes. To address this gap, we combined over 100 resources covering interactions and roles of proteins in inter- and intracellular signaling, as well as transcriptional and post-transcriptional regulation. We added protein complex information and annotations on function, localization, and role in diseases for each protein. The resource is available for human, and via homology translation for mouse and rat. The data are accessible via OmniPath's web service (https://omnipathdb.org/), a Cytoscape plug-in, and packages in R/Bioconductor and Python, providing access options for computational and experimental scientists. We created workflows with tutorials to facilitate the analysis of cell-cell interactions and affected downstream intracellular signaling processes. OmniPath provides a single access point to knowledge spanning intra- and intercellular processes for data analysis, as we demonstrate in applications studying SARS-CoV-2 infection and ulcerative colitis.
Collapse
Affiliation(s)
- Dénes Türei
- Faculty of Medicine and Heidelberg University HospitalInstitute of Computational BiomedicineHeidelberg UniversityHeidelbergGermany
| | - Alberto Valdeolivas
- Faculty of Medicine and Heidelberg University HospitalInstitute of Computational BiomedicineHeidelberg UniversityHeidelbergGermany
| | | | - Nicolàs Palacio‐Escat
- Faculty of Medicine and Heidelberg University HospitalInstitute of Computational BiomedicineHeidelberg UniversityHeidelbergGermany
- Faculty of MedicineJoint Research Centre for Computational Biomedicine (JRC‐COMBINE)RWTH Aachen UniversityAachenGermany
- Faculty of BiosciencesHeidelberg UniversityHeidelbergGermany
| | - Michal Klein
- Institute of Computational BiologyHelmholtz Zentrum MünchenNeuherbergGermany
| | - Olga Ivanova
- Faculty of Medicine and Heidelberg University HospitalInstitute of Computational BiomedicineHeidelberg UniversityHeidelbergGermany
| | - Márton Ölbei
- Earlham InstituteNorwichUK
- Quadram Institute BioscienceNorwichUK
| | - Attila Gábor
- Faculty of Medicine and Heidelberg University HospitalInstitute of Computational BiomedicineHeidelberg UniversityHeidelbergGermany
| | - Fabian Theis
- Institute of Computational BiologyHelmholtz Zentrum MünchenNeuherbergGermany
- Department of MathematicsTechnical University of MunichGarchingGermany
| | - Dezső Módos
- Earlham InstituteNorwichUK
- Quadram Institute BioscienceNorwichUK
| | | | - Julio Saez‐Rodriguez
- Faculty of Medicine and Heidelberg University HospitalInstitute of Computational BiomedicineHeidelberg UniversityHeidelbergGermany
- Faculty of MedicineJoint Research Centre for Computational Biomedicine (JRC‐COMBINE)RWTH Aachen UniversityAachenGermany
| |
Collapse
|
42
|
Mitsopoulos C, Di Micco P, Fernandez EV, Dolciami D, Holt E, Mica IL, Coker EA, Tym JE, Campbell J, Che KH, Ozer B, Kannas C, Antolin AA, Workman P, Al-Lazikani B. canSAR: update to the cancer translational research and drug discovery knowledgebase. Nucleic Acids Res 2021; 49:D1074-D1082. [PMID: 33219674 PMCID: PMC7778970 DOI: 10.1093/nar/gkaa1059] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/17/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022] Open
Abstract
canSAR (http://cansar.icr.ac.uk) is the largest, public, freely available, integrative translational research and drug discovery knowledgebase for oncology. canSAR integrates vast multidisciplinary data from across genomic, protein, pharmacological, drug and chemical data with structural biology, protein networks and more. It also provides unique data, curation and annotation and crucially, AI-informed target assessment for drug discovery. canSAR is widely used internationally by academia and industry. Here we describe significant developments and enhancements to the data, web interface and infrastructure of canSAR in the form of the new implementation of the system: canSARblack. We demonstrate new functionality in aiding translation hypothesis generation and experimental design, and show how canSAR can be adapted and utilised outside oncology.
Collapse
Affiliation(s)
- Costas Mitsopoulos
- Department of Data Science, The Institute of Cancer Research, London SM2 5NG, UK
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SM2 5NG, UK
| | - Patrizio Di Micco
- Department of Data Science, The Institute of Cancer Research, London SM2 5NG, UK
| | | | - Daniela Dolciami
- Department of Data Science, The Institute of Cancer Research, London SM2 5NG, UK
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SM2 5NG, UK
| | - Esty Holt
- Department of Data Science, The Institute of Cancer Research, London SM2 5NG, UK
| | - Ioan L Mica
- Department of Data Science, The Institute of Cancer Research, London SM2 5NG, UK
| | - Elizabeth A Coker
- Department of Data Science, The Institute of Cancer Research, London SM2 5NG, UK
| | - Joseph E Tym
- Department of Data Science, The Institute of Cancer Research, London SM2 5NG, UK
| | - James Campbell
- Department of Data Science, The Institute of Cancer Research, London SM2 5NG, UK
| | - Ka Hing Che
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SM2 5NG, UK
| | - Bugra Ozer
- Department of Data Science, The Institute of Cancer Research, London SM2 5NG, UK
| | - Christos Kannas
- Department of Data Science, The Institute of Cancer Research, London SM2 5NG, UK
| | - Albert A Antolin
- Department of Data Science, The Institute of Cancer Research, London SM2 5NG, UK
| | - Paul Workman
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SM2 5NG, UK
| | - Bissan Al-Lazikani
- Department of Data Science, The Institute of Cancer Research, London SM2 5NG, UK
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SM2 5NG, UK
| |
Collapse
|
43
|
Acharige NPN, Pflum MKH. l-Lactate Dehydrogenase Identified as a Protein Tyrosine Phosphatase 1B Substrate by Using K-BIPS. Chembiochem 2021; 22:186-192. [PMID: 33002308 PMCID: PMC8104301 DOI: 10.1002/cbic.202000499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/30/2020] [Indexed: 11/10/2022]
Abstract
Kinases and phosphatases are major players in a variety of cellular events, including cell signaling. Aberrant activity or mutations in kinases and phosphatases can lead to diseases such as cancer, diabetes, and Alzheimer's. Compared to kinases, phosphatases are understudied; this is partly a result of the limited methods for identifying substrates. As a solution, we developed a proteomics-based method called kinase-catalyzed biotinylation to identify phosphatase substrates (K-BIPS) that previously identified substrates of Ser/Thr phosphatases using small molecule inhibitors. Here, for the first time, K-BIPS was applied to identify substrates of a tyrosine phosphatase, protein tyrosine phosphatase 1B (PTP1B), under siRNA knockdown conditions. Eight possible substrates of PTP1B were discovered in HEK293 cells, including the known substrate pyruvate kinase. In addition, l-lactate dehydrogenase (LDHA) was validated as a novel PTP1B substrate. With the ability to use knockdown conditions with Ser/Thr or Tyr phosphatases, K-BIPS represents a general discovery tool to explore phosphatases biology by identifying unanticipated substrates.
Collapse
Affiliation(s)
- Nuwan P N Acharige
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - Mary Kay H Pflum
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| |
Collapse
|
44
|
Reiterer V, Pawłowski K, Desrochers G, Pause A, Sharpe HJ, Farhan H. The dead phosphatases society: a review of the emerging roles of pseudophosphatases. FEBS J 2020; 287:4198-4220. [PMID: 32484316 DOI: 10.1111/febs.15431] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/12/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022]
Abstract
Phosphatases are a diverse family of enzymes, comprising at least 10 distinct protein folds. Like most other enzyme families, many have sequence variations that predict an impairment or loss of catalytic activity classifying them as pseudophosphatases. Research on pseudoenzymes is an emerging area of interest, with new biological functions repurposed from catalytically active relatives. Here, we provide an overview of the pseudophosphatases identified to date in all major phosphatase families. We will highlight the degeneration of the various catalytic sequence motifs and discuss the challenges associated with the experimental determination of catalytic inactivity. We will also summarize the role of pseudophosphatases in various diseases and discuss the major challenges and future directions in this field.
Collapse
Affiliation(s)
| | | | - Guillaume Desrochers
- Department of Biochemistry, McGill University, Montréal, QC, Canada.,Goodman Cancer Research Centre, McGill University, Montréal, QC, Canada
| | - Arnim Pause
- Department of Biochemistry, McGill University, Montréal, QC, Canada.,Goodman Cancer Research Centre, McGill University, Montréal, QC, Canada
| | | | - Hesso Farhan
- Institute of Basic Medical Sciences, University of Oslo, Norway
| |
Collapse
|
45
|
Köhn M. Turn and Face the Strange: A New View on Phosphatases. ACS CENTRAL SCIENCE 2020; 6:467-477. [PMID: 32341996 PMCID: PMC7181316 DOI: 10.1021/acscentsci.9b00909] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Indexed: 05/08/2023]
Abstract
Phosphorylation as a post-translational modification is critical for cellular homeostasis. Kinases and phosphatases regulate phosphorylation levels by adding or removing, respectively, a phosphate group from proteins or other biomolecules. Imbalances in phosphorylation levels are involved in a multitude of diseases. Phosphatases are often thought of as the black sheep, the strangers, of phosphorylation-mediated signal transduction, particularly when it comes to drug discovery and development. This is due to past difficulties to study them and unsuccessful attempts to target them; however, phosphatases have regained strong attention and are actively pursued now in clinical trials. By giving examples for current hot topics in phosphatase biology and for new approaches to target them, it is illustrated here how and why phosphatases made their comeback, and what is envisioned to come in the future.
Collapse
Affiliation(s)
- Maja Köhn
- Faculty
of Biology, Institute of Biology III, University
of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- Signalling
Research Centres BIOSS and CIBSS, University
of Freiburg, Freiburg, Germany
| |
Collapse
|