1
|
Ardie SW, Nugroho RB, Dirpan A, Anshori MF. Foxtail millet research in supporting climate change resilience efforts: Bibliometric analysis and focused literature review. Heliyon 2025; 11:e42348. [PMID: 39968133 PMCID: PMC11834093 DOI: 10.1016/j.heliyon.2025.e42348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 01/28/2025] [Accepted: 01/28/2025] [Indexed: 02/20/2025] Open
Abstract
Foxtail millet is part of the millet group but is less popular than sorghum and pearl millet. Nevertheless, the potential of this plant is considered promising for diversifying food nutrition, health products, feed, biofuel, and several other uses, as indicated by various publications, including review articles. However, studies, analyses, and development trends of foxtail millet are lacking, and the current development status of foxtail millet and future projections cannot be systematically identified. Bibliometric analysis offers a method to clarify the current state of the development and interaction of a study topic for systematic analysis. Therefore, this study conducted a bibliometric review to examine the development, interaction, and projections of foxtail millet research regarding publication trends, countries involved, and keywords. Publications related to foxtail millet were first mined from the Scopus database and analyzed using Biblioshiny R Studio and VOSviewer software, with 2091 Scopus documents identified as being associated with the topic of foxtail millet. A significant development occurred in 2012 when the entire foxtail millet genome was explored. The main countries that focus on developing foxtail millet are China and India. The development of foxtail millet is focused on optimizing omics-based approaches to support the use of its potential, especially in research efforts involving climate change tolerance systems. Therefore, innovation, exploration, and potential use of foxtail millet in the future will continue to develop along with submarginal land and public health problems, including in Indonesia, which has the fourth largest population globally.
Collapse
Affiliation(s)
- Sintho Wahyuning Ardie
- Department of Agronomy and Horticulture, Faculty of Agriculture, IPB University, Bogor, 11680, Indonesia
| | - Rizki Bagus Nugroho
- Plant Breeding and Biotechnology Study Program, Graduate School, IPB University, Bogor, 11680, Indonesia
| | - Andi Dirpan
- Department of Agricultural Technology, Hasanuddin University, Makassar, 90245, Indonesia
- Research Group for Post-Harvest Technology and Biotechnology, Makassar, 90245, Indonesia
| | - Muhammad Fuad Anshori
- Research Group for Post-Harvest Technology and Biotechnology, Makassar, 90245, Indonesia
- Department of Agronomy, Hasanuddin University, Makassar, 90245, Indonesia
| |
Collapse
|
2
|
Chandra T, Jaiswal S, Tomar RS, Iquebal MA, Kumar D. Realizing visionary goals for the International Year of Millet (IYoM): accelerating interventions through advances in molecular breeding and multiomics resources. PLANTA 2024; 260:103. [PMID: 39304579 DOI: 10.1007/s00425-024-04520-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/30/2024] [Indexed: 09/22/2024]
Abstract
MAIN CONCLUSION Leveraging advanced breeding and multi-omics resources is vital to position millet as an essential "nutricereal resource," aligning with IYoM goals, alleviating strain on global cereal production, boosting resilience to climate change, and advancing sustainable crop improvement and biodiversity. The global challenges of food security, nutrition, climate change, and agrarian sustainability demand the adoption of climate-resilient, nutrient-rich crops to support a growing population amidst shifting environmental conditions. Millets, also referred to as "Shree Anna," emerge as a promising solution to address these issues by bolstering food production, improving nutrient security, and fostering biodiversity conservation. Their resilience to harsh environments, nutritional density, cultural significance, and potential to enhance dietary quality index made them valuable assets in global agriculture. Recognizing their pivotal role, the United Nations designated 2023 as the "International Year of Millets (IYoM 2023)," emphasizing their contribution to climate-resilient agriculture and nutritional enhancement. Scientific progress has invigorated efforts to enhance millet production through genetic and genomic interventions, yielding a wealth of advanced molecular breeding technologies and multi-omics resources. These advancements offer opportunities to tackle prevailing challenges in millet, such as anti-nutritional factors, sensory acceptability issues, toxin contamination, and ancillary crop improvements. This review provides a comprehensive overview of molecular breeding and multi-omics resources for nine major millet species, focusing on their potential impact within the framework of IYoM. These resources include whole and pan-genome, elucidating adaptive responses to abiotic stressors, organelle-based studies revealing evolutionary resilience, markers linked to desirable traits for efficient breeding, QTL analysis facilitating trait selection, functional gene discovery for biotechnological interventions, regulatory ncRNAs for trait modulation, web-based platforms for stakeholder communication, tissue culture techniques for genetic modification, and integrated omics approaches enabled by precise application of CRISPR/Cas9 technology. Aligning these resources with the seven thematic areas outlined by IYoM catalyzes transformative changes in millet production and utilization, thereby contributing to global food security, sustainable agriculture, and enhanced nutritional consequences.
Collapse
Affiliation(s)
- Tilak Chandra
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Sarika Jaiswal
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Rukam Singh Tomar
- Department of Biotechnology, Junagadh Agricultural University, Junagadh, Gujarat, 110012, India
| | - Mir Asif Iquebal
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India.
| | - Dinesh Kumar
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| |
Collapse
|
3
|
Itoo H, Shah RA, Qurat S, Jeelani A, Khursheed S, Bhat ZA, Mir MA, Rather GH, Zargar SM, Shah MD, Padder BA. Genome-wide characterization and development of SSR markers for genetic diversity analysis in northwestern Himalayas Walnut ( Juglans regia L.). 3 Biotech 2023; 13:136. [PMID: 37124992 PMCID: PMC10130282 DOI: 10.1007/s13205-023-03563-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 04/15/2023] [Indexed: 05/02/2023] Open
Abstract
In the present study, we designed and validated genome-wide polymorphic SSR markers (110 SSRs) by mining the walnut genome. A total of 198,924 SSR loci were identified. Among these, successful primers were designed for 162,594 (81.73%) SSR loci. Dinucleotides were the most predominant accounting for 88.40% (175,075) of total SSRs. The SSR frequency was 377.312 SSR/Mb and it showed a decreasing trend from dinucleotide to octanucleotide motifs. We identified 20 highly polymorphic SSR markers and used them to genotype 72 walnut accessions. Over all, we obtained 118 alleles that ranged from 2 to 12 with an average value of 5.9. The higher SSR PIC values indicate their robustness in discriminating walnut genotypes. Heat map, PCA, and population structure categorized 72 walnut genotypes into 2 distinct clusters. The genetic variation within population was higher than among population as inferred by analysis of molecular variance (AMOVA). For walnut improvement, it is necessary to have a large repository of SSRs with high discriminative power. The present study reports 150,000 SSRs, which is the largest SSR repository for this important nut crop. Scientific communities may use this repository for walnut improvement such as QTL mapping, genetic studies, linkage map construction, and marker-assisted selection. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03563-6.
Collapse
Affiliation(s)
- H. Itoo
- Ambri Apple Research Centre, Pahnoo Shopian, Sheri-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, J&K 192303 India
| | - Rafiq Ahmad Shah
- Ambri Apple Research Centre, Pahnoo Shopian, Sheri-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, J&K 192303 India
| | - S. Qurat
- Division of Fruit Science, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Faculty of Horticulture, Shalimar, Kashmir, Srinagar, J&K 190 025 India
| | - Afnan Jeelani
- Division of Fruit Science, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Faculty of Horticulture, Shalimar, Kashmir, Srinagar, J&K 190 025 India
| | - Sheikh Khursheed
- Ambri Apple Research Centre, Pahnoo Shopian, Sheri-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, J&K 192303 India
| | - Zahoor A. Bhat
- Ambri Apple Research Centre, Pahnoo Shopian, Sheri-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, J&K 192303 India
| | - M. A. Mir
- Ambri Apple Research Centre, Pahnoo Shopian, Sheri-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, J&K 192303 India
| | - G. H. Rather
- Ambri Apple Research Centre, Pahnoo Shopian, Sheri-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, J&K 192303 India
| | - Sajad Majeed Zargar
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Faculty of Horticulture, Shalimar, Kashmir, Srinagar, J&K 190 025 India
| | - M. D. Shah
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Kashmir, 190 025 Srinagar, J&K India
| | - Bilal A. Padder
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Kashmir, 190 025 Srinagar, J&K India
| |
Collapse
|
4
|
Sharma R, Chaudhary L, Kumar M. Microsatellites based assessment of genetic diversity and population structure of indian lentil (Lens culinaris Medik.) genotypes. Biologia (Bratisl) 2023. [DOI: 10.1007/s11756-023-01385-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
5
|
Ramesh P, Juturu VN, Yugandhar P, Pedersen S, Hemasundar A, Yolcu S, Chandra Obul Reddy P, Chandra Mohan Reddy CV, Veerabramha Chari P, Mohan R, Chandra Sekhar A. Molecular genetics and phenotypic assessment of foxtail millet ( Setaria italica (L.) P. Beauv.) landraces revealed remarkable variability of morpho-physiological, yield, and yield-related traits. Front Genet 2023; 14:1052575. [PMID: 36760993 PMCID: PMC9905688 DOI: 10.3389/fgene.2023.1052575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Foxtail millet (Setaria italica (L.) P. Beauv.) is highly valued for nutritional traits, stress tolerance and sustainability in resource-poor dryland agriculture. However, the low productivity of this crop in semi-arid regions of Southern India, is further threatened by climate stress. Landraces are valuable genetic resources, regionally adapted in form of novel alleles that are responsible for cope up the adverse conditions used by local farmers. In recent years, there is an erosion of genetic diversity. We have hypothesized that plant genetic resources collected from the semi-arid climatic zone would serve as a source of novel alleles for the development of climate resilience foxtail millet lines with enhanced yield. Keeping in view, there is an urgent need for conservation of genetic resources. To explore the genetic diversity, to identify superior genotypes and novel alleles, we collected a heterogeneous mixture of foxtail millet landraces from farmer fields. In an extensive multi-year study, we developed twenty genetically fixed foxtail millet landraces by single seed descent method. These landraces characterized along with four released cultivars with agro-morphological, physiological, yield and yield-related traits assessed genetic diversity and population structure. The landraces showed significant diversity in all the studied traits. We identified landraces S3G5, Red, Black and S1C1 that showed outstanding grain yield with earlier flowering, and maturity as compared to released cultivars. Diversity analysis using 67 simple sequence repeat microsatellite and other markers detected 127 alleles including 11 rare alleles, averaging 1.89 alleles per locus, expected heterozygosity of 0.26 and an average polymorphism information content of 0.23, collectively indicating a moderate genetic diversity in the landrace populations. Euclidean Ward's clustering, based on the molecular markers, principal coordinate analysis and structure analysis concordantly distinguished the genotypes into two to three sub-populations. A significant phenotypic and genotypic diversity observed in the landraces indicates a diverse gene pool that can be utilized for sustainable foxtail millet crop improvement.
Collapse
Affiliation(s)
- Palakurthi Ramesh
- Molecular Genetics and Functional Genomics Laboratory, Department of Biotechnology, School of Life Sciences, Yogi Vemana University, Kadapa, Andhra Pradesh, India
| | - Vijaya Naresh Juturu
- Molecular Genetics and Functional Genomics Laboratory, Department of Biotechnology, School of Life Sciences, Yogi Vemana University, Kadapa, Andhra Pradesh, India
| | - Poli Yugandhar
- Plant Molecular Biology Laboratory, Indian Institute of Rice Research, Hyderabad, Telangana, India
| | - Sydney Pedersen
- Department of Biology, Mercyhurst University, Erie, PA, United States
| | - Alavilli Hemasundar
- Department of Bioresources Engineering, Sejong University, Seoul, South Korea
| | - Seher Yolcu
- Department of Life Sciences, Sogang University, Seoul, South Korea
| | - Puli Chandra Obul Reddy
- Plant Molecular Biology Laboratory, Department of Botany, School of Life Sciences, Yogi Vemana University, Kadapa, Andhra Pradesh, India
| | | | - P. Veerabramha Chari
- Department of Biotechnology, Krishna University, Machilipatnam, Andhra Pradesh, India
| | - Rajinikanth Mohan
- Department of Biology, Mercyhurst University, Erie, PA, United States,*Correspondence: Akila Chandra Sekhar, , ; Rajinikanth Mohan,
| | - Akila Chandra Sekhar
- Molecular Genetics and Functional Genomics Laboratory, Department of Biotechnology, School of Life Sciences, Yogi Vemana University, Kadapa, Andhra Pradesh, India,*Correspondence: Akila Chandra Sekhar, , ; Rajinikanth Mohan,
| |
Collapse
|
6
|
Ge W, Chen H, Zhang Y, Feng S, Wang S, Shang Q, Wu M, Li Z, Zhang L, Guo H, Jin Y, Wang X. Integrative genomics analysis of the ever-shrinking pectin methylesterase (PME) gene family in foxtail millet ( Setaria italica). FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:874-886. [PMID: 35781367 DOI: 10.1071/fp21319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 06/10/2022] [Indexed: 05/26/2023]
Abstract
Pectin methylesterase (PME) plays a vital role in the growth and development of plants. Their genes can be classified into two types, with Type-1 having an extra domain, PMEI. PME genes in foxtail millet (Setaria italica L.) have not been identified, and their sequence features and evolution have not been explored. Here, we identified 41 foxtail millet PME genes. Decoding the pro-region, containing the PMEI domain, revealed its more active nature than the DNA encoding PME domain, easier to be lost to produce Type-2 PME genes. We inferred that the active nature of the pro-region could be related to its harbouring more repetitive DNA sequences. Further, we revealed that though whole-genome duplication and tandem duplication contributed to producing new copies of PME genes, phylogenetic analysis provided clear evidence of ever-shrinking gene family size in foxtail millet and the other grasses in the past 100 million years. Phylogenetic analysis also supports the existence of two gene groups, Group I and Group II, with genes in Group II being more conservative. Our research contributes to understanding how DNA sequence structure affects the functional innovation and evolution of PME genes.
Collapse
Affiliation(s)
- Weina Ge
- School of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Huilong Chen
- School of Life Sciences, North China University of Science and Technology, Tangshan 063210, China; and School of Information Science and Technology, Yanching Institute of Technology, Langfang 065000, Hebei, China
| | - Yingchao Zhang
- School of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Shuyan Feng
- School of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Shuailei Wang
- School of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Qian Shang
- School of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Meng Wu
- School of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Ziqi Li
- School of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Lan Zhang
- School of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - He Guo
- School of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Yongchao Jin
- College of Science, North China University of Science and Technology, Tangshan 063210, China
| | - Xiyin Wang
- School of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| |
Collapse
|
7
|
Aggarwal PR, Pramitha L, Choudhary P, Singh RK, Shukla P, Prasad M, Muthamilarasan M. Multi-omics intervention in Setaria to dissect climate-resilient traits: Progress and prospects. FRONTIERS IN PLANT SCIENCE 2022; 13:892736. [PMID: 36119586 PMCID: PMC9470963 DOI: 10.3389/fpls.2022.892736] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Millets constitute a significant proportion of underutilized grasses and are well known for their climate resilience as well as excellent nutritional profiles. Among millets, foxtail millet (Setaria italica) and its wild relative green foxtail (S. viridis) are collectively regarded as models for studying broad-spectrum traits, including abiotic stress tolerance, C4 photosynthesis, biofuel, and nutritional traits. Since the genome sequence release, the crop has seen an exponential increase in omics studies to dissect agronomic, nutritional, biofuel, and climate-resilience traits. These studies have provided first-hand information on the structure, organization, evolution, and expression of several genes; however, knowledge of the precise roles of such genes and their products remains elusive. Several open-access databases have also been instituted to enable advanced scientific research on these important crops. In this context, the current review enumerates the contemporary trend of research on understanding the climate resilience and other essential traits in Setaria, the knowledge gap, and how the information could be translated for the crop improvement of related millets, biofuel crops, and cereals. Also, the review provides a roadmap for studying other underutilized crop species using Setaria as a model.
Collapse
Affiliation(s)
- Pooja Rani Aggarwal
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Lydia Pramitha
- School of Agriculture and Biosciences, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, India
| | - Pooja Choudhary
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | | | - Pooja Shukla
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Manoj Prasad
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
- National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Mehanathan Muthamilarasan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| |
Collapse
|
8
|
The Landscape of Genome-Wide and Gender-Specific Microsatellites in Indo-Pacific Humpback Dolphin and Potential Applications in Cetacean Resource Investigation. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10060834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Microsatellites are one of the important genome characterizations that can be a valuable resource for variety identification, genetic diversity, phylogenetic analysis, as well as comparative and conservation genomics research. Here, we developed comprehensive microsatellites through genome-wide mining for the threatened cetacean Indo-Pacific humpback dolphin (Sousa chinensis). We found 87,757 microsatellites with 2–6 bp nucleotide motifs, showing that about 32.5 microsatellites per megabase comprises microsatellites sequences. Approximately 97.8% of the markers developed in this study were consistent with the published identified markers. About 75.3% microsatellites were with dinucleotide motifs, followed by tetranucleotide motifs (17.4%), sharing the same composition pattern as other cetaceans. The microsatellites were not evenly distributed in the S. chinensis genome, mainly in non-coding regions, with only about 0.5% of the markers located in coding regions. The microsatellite-containing genes were mainly functionally enriched in the methylation process, probably demonstrating the potential impacts of microsatellites on biological functions. Polymorphic microsatellites were developed between different genders of S. chinensis, which was expected to lay the foundation for genetic diversity investigation in cetaceans. The specific markers for a male Indo-Pacific humpback dolphin will provide comprehensive and representative male candidate markers for sex identification, providing a potential biomolecular tool for further analysis of population structure and social behavior of wild populations, population trend evaluation, and species conservation management.
Collapse
|
9
|
Zhong S, Chen W, Yang H, Shen J, Ren T, Li Z, Tan F, Luo P. Characterization of Microsatellites in the Akebia trifoliata Genome and Their Transferability and Development of a Whole Set of Effective, Polymorphic, and Physically Mapped Simple Sequence Repeat Markers. FRONTIERS IN PLANT SCIENCE 2022; 13:860101. [PMID: 35371184 PMCID: PMC8971770 DOI: 10.3389/fpls.2022.860101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Akebia trifoliata is a perennial climbing woody liana plant with a high potential for commercial exploitation and theoretical research. Similarly, microsatellites (simple sequence repeats, SSRs) also have dual roles: as critical markers and as essential elements of the eukaryotic genome. To characterize the profile of SSRs and develop molecular markers, the high-quality assembled genome of A. trifoliata was used. Additionally, to determine the potential transferability of SSR loci, the genomes of Amborella trichopoda, Oryza sativa, Vitis vinifera, Arabidopsis thaliana, Papaver somniferum, and Aquilegia coerulea were also used. We identified 434,293 SSRs with abundant short repeats, such as 290,868 (66.98%) single-nucleotide repeats (SNRs) and 113,299 (26.09%) dinucleotide repeats (DNRs) in the A. trifoliata genome. 398,728 (91.81%) SSRs on 344,283 loci were physically mapped on the chromosomes, and a positive correlation (r = 0.98) was found between the number of SSRs and chromosomal length. Additionally, 342,916 (99.60%) potential SSR markers could be designed from the 344,283 physically mapped loci, while only 36,160 could be viewed as high-polymorphism-potential (HPP) markers, findings that were validated by PCR. Finally, SSR loci exhibited broad potential transferability, particularly DNRs such as the "AT/AT" and "AG/CT" loci, among all angiosperms, a finding that was not related to the genetic divergence distance. Practically, we developed a whole set of effective, polymorphic, and physically anchored molecular markers and found that, evolutionarily, DNRs could be responsible for microsatellite origin and protecting gene function.
Collapse
Affiliation(s)
- Shengfu Zhong
- Provincial Key Laboratory for Plant Genetics and Breeding, College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Wei Chen
- Provincial Key Laboratory for Plant Genetics and Breeding, College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Huai Yang
- Provincial Key Laboratory for Plant Genetics and Breeding, College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Jinliang Shen
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Tianheng Ren
- Provincial Key Laboratory for Plant Genetics and Breeding, College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Zhi Li
- Provincial Key Laboratory for Plant Genetics and Breeding, College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Feiquan Tan
- Provincial Key Laboratory for Plant Genetics and Breeding, College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Peigao Luo
- Provincial Key Laboratory for Plant Genetics and Breeding, College of Agronomy, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
10
|
Chen H, Ge W. Identification, Molecular Characteristics, and Evolution of GRF Gene Family in Foxtail Millet (Setaria italica L.). Front Genet 2022; 12:727674. [PMID: 35185998 PMCID: PMC8851420 DOI: 10.3389/fgene.2021.727674] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Growth-regulating factor (GRF) is a multigene family that plays a vital role in the growth and development of plants. In the past, the GRF family of many plants has been studied. However, there is not a report about identification and evolution of GRF in foxtail millet (Setaria italia). Here, we identified 10 GRF genes in foxtail millet. Seven (70.00%) were regulated by Sit-miR396, and there were 19 optimal codons in GRFs of foxtail millet. Additionally, we found that WGD or segmental duplication have affected GRFs in foxtail millet between 15.07 and 45.97 million years ago. Regarding the GRF gene family of land plants, we identified a total of 157 GRF genes in 15 representative land plants. We found that GRF gene family originated from Group E, and the GRF gene family in monocots was gradually shrinking. Also, more loss resulted from the small number of GRF genes in lower plants. Exploring the evolution of GRF and functional analysis in the foxtail millet help us to understand GRF better and make a further study about the mechanism of GRF. These results provide a basis for the genetic improvement of foxtail millet and indicate an improvement of the yield.
Collapse
|
11
|
Wei W, Wang P, Li S, Fan G, Zhao F, Zhang X, Shi G, Feng X, Song G, Wang X, Wang F, Wang D, Zhang W, Qiu F, Zhang Y, Li X, Pei J, Zhou X, Zhao Z. Rapid identification of candidate genes controlling male-sterility in Foxtail millet ( Setaria italica). MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:73. [PMID: 37309520 PMCID: PMC10236058 DOI: 10.1007/s11032-021-01269-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 11/18/2021] [Indexed: 06/14/2023]
Abstract
Photo-(thermo-) sensitive genic male-sterile line is the key component of two-line hybridization system in foxtail millet (Setaria italica), but the genetic basis of male sterility in most male-sterile lines is still unclear. In the present study, a large F2 population was developed derived from a cross between the photo-(thermo-) sensitive male-sterile line A2 and the fertile-line 1484-5. Thirty plants with extreme high and extreme low fertility were selected from the population to construct a sterile DNA pool and a fertile DNA pool, respectively. Sequencing both DNA pools and data analysis revealed that two QTLs conferred male-sterility, qSiMS6.1 with a major effect and qSiMS6.2 with a minor effect, on chromosome 6. Both QTLs exhibited complete dominance. The major QTL, qSiMS6.1, was delimited to a 186-kb interval between the markers SiM20 and SiM9 by the joint analysis of QTL-seq and QTL mapping with SSR and structure variation markers. Millet_GLEAN_10020454 in this region is the most likely candidate gene for qSiMS6.1 since it is predicted to encode a male-sterile 5 like protein. These results lay a solid foundation for qSiMS6.1 cloning and provided gene resources for breeding new male-sterile lines. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-021-01269-2.
Collapse
Affiliation(s)
- Wei Wei
- Institute of Millet, Zhangjiakou Academy of Agricultural Science, Zhangjiakou, 075032 China
| | - Pengfei Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
| | - Shuangdong Li
- Institute of Millet, Zhangjiakou Academy of Agricultural Science, Zhangjiakou, 075032 China
| | - Guangyu Fan
- Institute of Millet, Zhangjiakou Academy of Agricultural Science, Zhangjiakou, 075032 China
| | - Fang Zhao
- Institute of Millet, Zhangjiakou Academy of Agricultural Science, Zhangjiakou, 075032 China
| | - Xiaolei Zhang
- Institute of Millet, Zhangjiakou Academy of Agricultural Science, Zhangjiakou, 075032 China
| | - Gaolei Shi
- Institute of Millet, Zhangjiakou Academy of Agricultural Science, Zhangjiakou, 075032 China
| | - Xiaolei Feng
- Institute of Millet, Zhangjiakou Academy of Agricultural Science, Zhangjiakou, 075032 China
| | - Guoliang Song
- Institute of Millet, Zhangjiakou Academy of Agricultural Science, Zhangjiakou, 075032 China
| | - Xiaoming Wang
- Institute of Millet, Zhangjiakou Academy of Agricultural Science, Zhangjiakou, 075032 China
| | - Feng Wang
- Institute of Millet, Zhangjiakou Academy of Agricultural Science, Zhangjiakou, 075032 China
| | - Dequan Wang
- Institute of Millet, Zhangjiakou Academy of Agricultural Science, Zhangjiakou, 075032 China
| | - Wenying Zhang
- Institute of Millet, Zhangjiakou Academy of Agricultural Science, Zhangjiakou, 075032 China
| | - Fengcang Qiu
- Institute of Millet, Zhangjiakou Academy of Agricultural Science, Zhangjiakou, 075032 China
| | - Yali Zhang
- Institute of Millet, Zhangjiakou Academy of Agricultural Science, Zhangjiakou, 075032 China
| | - Xinru Li
- Institute of Millet, Zhangjiakou Academy of Agricultural Science, Zhangjiakou, 075032 China
| | - Jingjing Pei
- Institute of Millet, Zhangjiakou Academy of Agricultural Science, Zhangjiakou, 075032 China
| | - Xiangchun Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
| | - Zhihai Zhao
- Institute of Millet, Zhangjiakou Academy of Agricultural Science, Zhangjiakou, 075032 China
| |
Collapse
|
12
|
Malhotra EV, Jain R, Bansal S, Mali SC, Sharma N, Agrawal A. Development of a new set of genic SSR markers in the genus Gentiana: in silico mining, characterization and validation. 3 Biotech 2021; 11:430. [PMID: 34527507 DOI: 10.1007/s13205-021-02969-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 08/19/2021] [Indexed: 11/26/2022] Open
Abstract
Gentiana is an important genus of around 360 medicinally important species, majority of which are not well characterized. Despite its importance, very few genomic resources are available for Gentiana L. Till date, the number of informative and robust simple sequence repeat (SSR)-based markers is limited and very few efforts have been made for their development. A set of robust, freely accessible and informative SSR markers for Gentiana is a pre-requisite for any molecular systematic as well as improvement studies in this group of pharmacologically valuable plants. In view of the importance of these plants, Expressed Sequence Tag (EST) sequences of 18 Gentiana species were surveyed for the development of a large set of non-redundant SSR markers. A total of 5808 perfect SSR with an average length of 17 bp and relative abundance of 214 loci/Mb were identified in the analysed 47,487 EST sequences using Krait software. Mapping of the ESTs resulted in gene ontology annotations of 49.14% of the sequences. Based on these perfect SSRs, 2902 primer pairs were designed, and 60 markers were randomly selected and validated on a set of Gentiana kurroo Royle accessions. Among the screened markers, 39 (65%) were found to be cross-species transferable. This is the first report of the largest set of functional, novel genic SSR markers in Gentiana, which will be a valuable resource for future characterization, genotype identification, conservation and genomic studies in the various species of this group of important medicinal plants. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02969-4.
Collapse
Affiliation(s)
- Era Vaidya Malhotra
- Tissue Culture and Cryopreservation Unit, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Rishu Jain
- Tissue Culture and Cryopreservation Unit, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Sangita Bansal
- Tissue Culture and Cryopreservation Unit, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Suresh Chand Mali
- Tissue Culture and Cryopreservation Unit, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Neelam Sharma
- Tissue Culture and Cryopreservation Unit, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Anuradha Agrawal
- Tissue Culture and Cryopreservation Unit, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| |
Collapse
|
13
|
Tiwari KK, Thakkar NJ, Dharajiya DT, Bhilocha HL, Barvaliya PP, Galvadiya BP, Prajapati NN, Patel MP, Solanki SD. Genome-wide microsatellites in amaranth: development, characterization, and cross-species transferability. 3 Biotech 2021; 11:395. [PMID: 34422536 DOI: 10.1007/s13205-021-02930-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 07/15/2021] [Indexed: 11/30/2022] Open
Abstract
Amaranth (Amaranthus spp.) belonging to Amaranthaceae, is known as "the crop of the future" because of its incredible nutritional quality. Amaranthus spp. (> 70) have a huge diversity in terms of their plant morphology, production and nutritional quality; however, these species are not well characterized at molecular level due to unavailability of robust and reproducible molecular markers, which is essential for crop improvement programs. In the present study, 13,051 genome-wide microsatellite motifs were identified and subsequently utilized for marker development using A. hypochondriacus (L.) genome (JPXE01.1). Out of those, 1538 motifs were found with flanking sequences suitable for primer designing. Among designed primers, 225 were utilized for validation of which 119 (52.89%) primers were amplified. Cross-species transferability and evolutionary relatedness among ten species of Amaranthus (A. hypochondriacus, A. caudatus, A. retroflexus, A. cruentus, A. tricolor, A. lividus, A. hybridus, A. viridis, A. edulis, and A. dubius) were also studied using 45 microsatellite motifs. The maximum (86.67%) and minimum (28.89%) cross-species transferability were observed in A. caudatus and A. dubius, respectively, that indicated high variability present across the Amaranthus spp. Total 97 alleles were detected among 10 species of Amaranthus. The averages of major allele frequency, gene diversity, heterozygosity and PIC were 0.733, 0.347, 0.06, and 0.291, respectively. Nei's genetic dissimilarity coefficients ranged from 0.0625 (between A. tricolor and A. hybridus) to 0.7918 (between A. viridis and A. lividus). The phylogenetic tree grouped ten species into three major clusters. Genome-wide development of microsatellite markers and their transferability revealed relationships among amaranth species which ultimately can be useful for species identification, DNA fingerprinting, and QTLs/gene(s) identification. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02930-5.
Collapse
Affiliation(s)
- Kapil K Tiwari
- Bio Science Research Centre, Sardarkrushinagar Dantiwada Agricultural University (SDAU), Sardarkrushinagar, Gujarat 385506 India
- Department of Plant Molecular Biology and Biotechnology/Department of Genetics and Plant Breeding, C. P. College of Agriculture, SDAU, Sardarkrushinagar, Gujarat 385506 India
| | - Nevya J Thakkar
- Department of Plant Molecular Biology and Biotechnology/Department of Genetics and Plant Breeding, C. P. College of Agriculture, SDAU, Sardarkrushinagar, Gujarat 385506 India
| | - Darshan T Dharajiya
- Bio Science Research Centre, Sardarkrushinagar Dantiwada Agricultural University (SDAU), Sardarkrushinagar, Gujarat 385506 India
- Department of Plant Molecular Biology and Biotechnology/Department of Genetics and Plant Breeding, C. P. College of Agriculture, SDAU, Sardarkrushinagar, Gujarat 385506 India
| | - Hetal L Bhilocha
- Department of Plant Molecular Biology and Biotechnology/Department of Genetics and Plant Breeding, C. P. College of Agriculture, SDAU, Sardarkrushinagar, Gujarat 385506 India
| | - Parita P Barvaliya
- Department of Plant Molecular Biology and Biotechnology/Department of Genetics and Plant Breeding, C. P. College of Agriculture, SDAU, Sardarkrushinagar, Gujarat 385506 India
| | - Bhemji P Galvadiya
- Bio Science Research Centre, Sardarkrushinagar Dantiwada Agricultural University (SDAU), Sardarkrushinagar, Gujarat 385506 India
- Department of Plant Molecular Biology and Biotechnology/Department of Genetics and Plant Breeding, C. P. College of Agriculture, SDAU, Sardarkrushinagar, Gujarat 385506 India
| | - N N Prajapati
- Centre for Crop Improvement, SDAU, Sardarkrushinagar, Gujarat 385506 India
| | - M P Patel
- Department of Plant Molecular Biology and Biotechnology/Department of Genetics and Plant Breeding, C. P. College of Agriculture, SDAU, Sardarkrushinagar, Gujarat 385506 India
- Pulses Research Station, SDAU, Sardarkrushinagar, Gujarat 385506 India
| | - S D Solanki
- Department of Plant Molecular Biology and Biotechnology/Department of Genetics and Plant Breeding, C. P. College of Agriculture, SDAU, Sardarkrushinagar, Gujarat 385506 India
| |
Collapse
|
14
|
Xie H, Hou J, Fu N, Wei M, Li Y, Yu K, Song H, Li S, Liu J. Identification of QTL related to anther color and hull color by RAD sequencing in a RIL population of Setaria italica. BMC Genomics 2021; 22:556. [PMID: 34281524 PMCID: PMC8290542 DOI: 10.1186/s12864-021-07882-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 06/30/2021] [Indexed: 11/13/2022] Open
Abstract
Background Foxtail millet (Setaria italica) is one of the oldest domesticated crops and has been considered as an ideal model plant for C4 grasses. It has abundant type of anther and hull colors which is not only a most intuitive morphological marker for color selection in seed production, but also has very important biological significance for the study of molecular mechanism of regulating the synthesis and metabolism of flavonoids and lignin. However, only a few genetic studies have been reported for anther color and hull color in foxtail millet. Results Quantitative trait loci (QTL) analysis for anther color and hull color was conducted using 400 F6 and F7 recombinant inbreed lines (RILs) derived from a cross between parents Yugu18 and Jigu19. Using restriction-site associated DNA sequencing, 43,001 single-nucleotide polymorphisms (SNPs) and 3,022 indels were identified between both the parents and the RILs. A total of 1,304 bin markers developed from the SNPs and indels were used to construct a genetic map that spanned 2196 cM of the foxtail millet genome with an average of 1.68 cM/bin. Combined with this genetic map and the phenotypic data observed in two locations for two years, two QTL located on chromosome 6 (Chr6) in a 1.215-Mb interval (33,627,819–34,877,940 bp) for anther color (yellow - white) and three QTL located on Chr1 in a 6.23-Mb interval (1–6,229,734 bp) for hull color (gold-reddish brown) were detected. To narrow the QTL regions identified from the genetic map and QTL analysis, we developed a new method named “inconsistent rate analysis” and efficiently narrowed the QTL regions of anther color into a 60-kb interval (34.13–34.19 Mb) in Chr6, and narrowed the QTL regions of hull color into 70-kb (5.43–5.50 Mb) and 30-kb (5.69–5.72 Mb) intervals in Chr1. Two genes (Seita.6G228600.v2.2 and Seita.6G228700.v2.2) and a cinnamyl alcohol dehydrogenase (CAD) gene (Seita.1G057300.v2.2) with amino acid changes between the parents detected by whole-genome resequencing were identified as candidate genes for anther and hull color, respectively. Conclusions This work presents the related QTL and candidate genes of anther and hull color in foxtail millet and developed a new method named inconsistent rate analysis to detect the chromosome fragments linked with the quality trait in RILs. This is the first study of the QTL related to hull color in foxtail millet and clarifying that the CAD gene (Seita.1G057300.v2.2) is the key gene responsible for this trait. It lays the foundation for further cloning of the functional genes and provides a powerful tool to detect the chromosome fragments linked with quality traits in RILs. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07882-x.
Collapse
Affiliation(s)
- Huifang Xie
- Anyang Academy of Agriculture Sciences, 455000, Anyang, Henan, China
| | - Junliang Hou
- BGI Institute of Applied Agriculture, BGI-Shenzhen, 518120, Shenzhen, Guangdong, China
| | - Nan Fu
- Anyang Academy of Agriculture Sciences, 455000, Anyang, Henan, China
| | - Menghan Wei
- Anyang Academy of Agriculture Sciences, 455000, Anyang, Henan, China
| | - Yunfei Li
- BGI Institute of Applied Agriculture, BGI-Shenzhen, 518120, Shenzhen, Guangdong, China
| | - Kang Yu
- BGI Institute of Applied Agriculture, BGI-Shenzhen, 518120, Shenzhen, Guangdong, China
| | - Hui Song
- Anyang Academy of Agriculture Sciences, 455000, Anyang, Henan, China
| | - Shiming Li
- BGI Institute of Applied Agriculture, BGI-Shenzhen, 518120, Shenzhen, Guangdong, China.
| | - Jinrong Liu
- Anyang Academy of Agriculture Sciences, 455000, Anyang, Henan, China.
| |
Collapse
|
15
|
Li W, Shi C, Li K, Zhang QJ, Tong Y, Zhang Y, Wang J, Clark L, Gao LZ. Draft genome of the herbaceous bamboo Raddia distichophylla. G3-GENES GENOMES GENETICS 2021; 11:6066164. [PMID: 33585868 PMCID: PMC8022951 DOI: 10.1093/g3journal/jkaa049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/01/2020] [Indexed: 11/19/2022]
Abstract
Bamboos are important nontimber forest plants widely distributed in the tropical and subtropical regions of Asia, Africa, America, and Pacific islands. They comprise the Bambusoideae in the grass family (Poaceae), including approximately 1700 described species in 127 genera. In spite of the widespread uses of bamboo for food, construction, and bioenergy, the gene repertoire of bamboo still remains largely unexplored. Raddia distichophylla (Schrad. ex Nees) Chase, belonging to the tribe Olyreae (Bambusoideae, Poaceae), is a diploid herbaceous bamboo with only slightly lignified stems. In this study, we report a draft genome assembly of the ∼589 Mb whole-genome sequence of R. distichophylla with a contig N50 length of 86.36 Kb. Repeat sequences account for ∼49.08% of the genome assembly, of which LTR retrotransposons occupy ∼35.99% of the whole genome. A total of 30,763 protein-coding genes were annotated in the R. distichophylla genome with an average transcript size of 2887 bp. Access to this herbaceous bamboo genome sequence will provide novel insights into biochemistry, molecular marker-assisted breeding programs, and germplasm conservation for bamboo species worldwide.
Collapse
Affiliation(s)
- Wei Li
- Institution of Genomics and Bioinformatics, South China Agricultural University, Guangzhou 510642, China
| | - Cong Shi
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species in Southwestern China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China
| | - Kui Li
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species in Southwestern China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China
| | - Qun-Jie Zhang
- Institution of Genomics and Bioinformatics, South China Agricultural University, Guangzhou 510642, China
| | - Yan Tong
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species in Southwestern China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China
| | - Yun Zhang
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species in Southwestern China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China
| | - Jun Wang
- Institution of Sustainable Development, Southwest China Forestry University, Kunming 650224, China
| | - Lynn Clark
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011-1020, USA
| | - Li-Zhi Gao
- Institution of Genomics and Bioinformatics, South China Agricultural University, Guangzhou 510642, China.,Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species in Southwestern China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China
| |
Collapse
|
16
|
Patil PG, Singh NV, Bohra A, Raghavendra KP, Mane R, Mundewadikar DM, Babu KD, Sharma J. Comprehensive Characterization and Validation of Chromosome-Specific Highly Polymorphic SSR Markers From Pomegranate ( Punica granatum L.) cv. Tunisia Genome. FRONTIERS IN PLANT SCIENCE 2021; 12:645055. [PMID: 33796127 PMCID: PMC8007985 DOI: 10.3389/fpls.2021.645055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/12/2021] [Indexed: 05/05/2023]
Abstract
The simple sequence repeat (SSR) survey of 'Tunisia' genome (296.85 Mb) identified a total of 365,279 perfect SSRs spanning eight chromosomes, with a mean marker density of 1,230.6 SSRs/Mb. We found a positive trend in chromosome length and the SSR abundance as marker density enhanced with a shorter chromosome length. The highest number of SSRs (60,708) was mined from chromosome 1 (55.56 Mb), whereas the highest marker density (1,294.62 SSRs/Mb) was recorded for the shortest chromosome 8 (27.99 Mb). Furthermore, we categorized all SSR motifs into three major classes based on their tract lengths. Across the eight chromosomes, the class III had maximum number of SSR motifs (301,684, 82.59%), followed by the class II (31,056, 8.50%) and the class I (5,003, 1.37%). Examination of the distribution of SSR motif types within a chromosome suggested the abundance of hexanucleotide repeats in each chromosome followed by dinucleotides, and these results are consistent with 'Tunisia' genome features as a whole. Concerning major repeat types, AT/AG was the most frequent (14.16%), followed by AAAAAT/AAAAAG (7.89%), A/C (7.54%), AAT/AAG (5.23%), AAAT/AAAG (4.37%), and AAAAT/AAAAG (1.2%) types. We designed and validated a total of 3,839 class I SSRs in the 'Tunisia' genome through electronic polymerase chain reaction (ePCR) and found 1,165 (30.34%) SSRs producing a single amplicon. Then, we selected 906 highly variable SSRs (> 40 nt) from the ePCR-verified class I SSRs and in silico validated across multiple draft genomes of pomegranate, which provided us a subset of 265 highly polymorphic SSRs. Of these, 235 primers were validated on six pomegranate genotypes through wet-lab experiment. We found 221 (94%) polymorphic SSRs on six genotypes, and 187 of these SSRs had ≥ 0.5 PIC values. The utility of the developed SSRs was demonstrated by analyzing genetic diversity of 30 pomegranate genotypes using 16 HvSSRs spanning eight pomegranate chromosomes. In summary, we developed a comprehensive set of highly polymorphic genome-wide SSRs. These chromosome-specific SSRs will serve as a powerful genomic tool to leverage future genetic studies, germplasm management, and genomics-assisted breeding in pomegranate.
Collapse
Affiliation(s)
- Prakash Goudappa Patil
- ICAR-National Research Centre on Pomegranate, Solapur, India
- *Correspondence: Prakash Goudappa Patil,
| | | | | | | | - Rushikesh Mane
- ICAR-National Research Centre on Pomegranate, Solapur, India
| | | | | | - Jyotsana Sharma
- ICAR-National Research Centre on Pomegranate, Solapur, India
| |
Collapse
|
17
|
Biswas MK, Bagchi M, Biswas D, Harikrishna JA, Liu Y, Li C, Sheng O, Mayer C, Yi G, Deng G. Genome-Wide Novel Genic Microsatellite Marker Resource Development and Validation for Genetic Diversity and Population Structure Analysis of Banana. Genes (Basel) 2020; 11:genes11121479. [PMID: 33317074 PMCID: PMC7763637 DOI: 10.3390/genes11121479] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/20/2020] [Accepted: 11/20/2020] [Indexed: 11/17/2022] Open
Abstract
Trait tagging through molecular markers is an important molecular breeding tool for crop improvement. SSR markers encoded by functionally relevant parts of a genome are well suited for this task because they may be directly related to traits. However, a limited number of these markers are known for Musa spp. Here, we report 35136 novel functionally relevant SSR markers (FRSMs). Among these, 17,561, 15,373 and 16,286 FRSMs were mapped in-silico to the genomes of Musa acuminata, M. balbisiana and M. schizocarpa, respectively. A set of 273 markers was validated using eight accessions of Musa spp., from which 259 markers (95%) produced a PCR product of the expected size and 203 (74%) were polymorphic. In-silico comparative mapping of FRSMs onto Musa and related species indicated sequence-based orthology and synteny relationships among the chromosomes of Musa and other plant species. Fifteen FRSMs were used to estimate the phylogenetic relationships among 50 banana accessions, and the results revealed that all banana accessions group into two major clusters according to their genomic background. Here, we report the first large-scale development and characterization of functionally relevant Musa SSR markers. We demonstrate their utility for germplasm characterization, genetic diversity studies, and comparative mapping in Musa spp. and other monocot species. The sequences for these novel markers are freely available via a searchable web interface called Musa Marker Database.
Collapse
Affiliation(s)
- Manosh Kumar Biswas
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Tianhe District, Guangzhou 510640, China; (Y.L.); (C.L.); (O.S.); (G.Y.)
- Department of Genetics, University of Leicester, Leicester LE1 7RH, UK; (M.B.); (J.A.H.)
- Correspondence: (M.K.B.); (G.D.)
| | - Mita Bagchi
- Department of Genetics, University of Leicester, Leicester LE1 7RH, UK; (M.B.); (J.A.H.)
- The College of Economics and Managements, South China Agricultural University, Guangzhou 510640, China
| | - Dhiman Biswas
- Department of Computer Science and Engineering, Maulana Abul Kalam Azad University of Technology, West Bengal 700064, India;
| | - Jennifer Ann Harikrishna
- Department of Genetics, University of Leicester, Leicester LE1 7RH, UK; (M.B.); (J.A.H.)
- University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Yuxuan Liu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Tianhe District, Guangzhou 510640, China; (Y.L.); (C.L.); (O.S.); (G.Y.)
| | - Chunyu Li
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Tianhe District, Guangzhou 510640, China; (Y.L.); (C.L.); (O.S.); (G.Y.)
| | - Ou Sheng
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Tianhe District, Guangzhou 510640, China; (Y.L.); (C.L.); (O.S.); (G.Y.)
| | - Christoph Mayer
- Forschungsmuseum Alexander Koenig, Bonn, Adenauerallee 160, 53113 Bonn, Germany;
| | - Ganjun Yi
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Tianhe District, Guangzhou 510640, China; (Y.L.); (C.L.); (O.S.); (G.Y.)
| | - Guiming Deng
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Tianhe District, Guangzhou 510640, China; (Y.L.); (C.L.); (O.S.); (G.Y.)
- Correspondence: (M.K.B.); (G.D.)
| |
Collapse
|
18
|
Singh RK, Prasad A, Muthamilarasan M, Parida SK, Prasad M. Breeding and biotechnological interventions for trait improvement: status and prospects. PLANTA 2020; 252:54. [PMID: 32948920 PMCID: PMC7500504 DOI: 10.1007/s00425-020-03465-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/12/2020] [Indexed: 05/06/2023]
Abstract
Present review describes the molecular tools and strategies deployed in the trait discovery and improvement of major crops. The prospects and challenges associated with these approaches are discussed. Crop improvement relies on modulating the genes and genomic regions underlying key traits, either directly or indirectly. Direct approaches include overexpression, RNA interference, genome editing, etc., while breeding majorly constitutes the indirect approach. With the advent of latest tools and technologies, these strategies could hasten the improvement of crop species. Next-generation sequencing, high-throughput genotyping, precision editing, use of space technology for accelerated growth, etc. had provided a new dimension to crop improvement programmes that work towards delivering better varieties to cope up with the challenges. Also, studies have widened from understanding the response of plants to single stress to combined stress, which provides insights into the molecular mechanisms regulating tolerance to more than one stress at a given point of time. Altogether, next-generation genetics and genomics had made tremendous progress in delivering improved varieties; however, the scope still exists to expand its horizon to other species that remain underutilized. In this context, the present review systematically analyses the different genomics approaches that are deployed for trait discovery and improvement in major species that could serve as a roadmap for executing similar strategies in other crop species. The application, pros, and cons, and scope for improvement of each approach have been discussed with examples, and altogether, the review provides comprehensive coverage on the advances in genomics to meet the ever-growing demands for agricultural produce.
Collapse
Affiliation(s)
- Roshan Kumar Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ashish Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Mehanathan Muthamilarasan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Swarup K Parida
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
19
|
Biswas MK, Darbar JN, Borrell JS, Bagchi M, Biswas D, Nuraga GW, Demissew S, Wilkin P, Schwarzacher T, Heslop-Harrison JS. The landscape of microsatellites in the enset (Ensete ventricosum) genome and web-based marker resource development. Sci Rep 2020; 10:15312. [PMID: 32943659 PMCID: PMC7498607 DOI: 10.1038/s41598-020-71984-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 08/24/2020] [Indexed: 12/25/2022] Open
Abstract
Ensete ventricosum (Musaceae, enset) is an Ethiopian food security crop. To realize the potential of enset for rural livelihoods, further knowledge of enset diversity, genetics and genomics is required to support breeding programs and conservation. This study was conducted to explore the enset genome to develop molecular markers, genomics resources, and characterize enset landraces while giving insight into the organization of the genome. We identified 233 microsatellites (simple sequence repeats, SSRs) per Mbp in the enset genome, representing 0.28% of the genome. Mono- and di-nucleotide repeats motifs were found in a higher proportion than other classes of SSR-motifs. In total, 154,586 non-redundant enset microsatellite markers (EMM) were identified and 40 selected for primer development. Marker validation by PCR and low-cost agarose gel electrophoresis revealed that 92.5% were polymorphic, showing a high PIC (Polymorphism Information Content; 0.87) and expected heterozygosity (He = 0.79-0.82). In silico analysis of genomes of closely related species showed 46.86% of the markers were transferable among enset species and 1.90% were transferable to Musa. The SSRs are robust (with basic PCR methods and agarose gel electrophoresis), informative, and applicable in measuring enset diversity, genotyping, selection and potentially breeding. Enset SSRs are available in a web-based database at https://enset-project.org/EnMom@base.html (or https://enset.aau.edu.et/index.html , downloadable from Figshare).
Collapse
Affiliation(s)
- Manosh Kumar Biswas
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK.
| | - Jaypal N Darbar
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK
| | | | - Mita Bagchi
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK
| | - Dhiman Biswas
- Department of Computer Science and Engineering, Maulana Abul Kalam Azad University of Technology, Kolkata, West Bengal, India
| | - Gizachew Woldesenbet Nuraga
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK.,Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Sebsebe Demissew
- Department of Plant Biology and Biodiversity Management, Addis Ababa University, Addis Ababa, Ethiopia
| | - Paul Wilkin
- Royal Botanic Gardens, Kew, Richmond, TW9 3AE, Surrey, UK
| | - Trude Schwarzacher
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK.,South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - J S Heslop-Harrison
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK. .,South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, People's Republic of China.
| |
Collapse
|
20
|
Li J, Ye C. Genome-wide analysis of microsatellite and sex-linked marker identification in Gleditsia sinensis. BMC PLANT BIOLOGY 2020; 20:338. [PMID: 32680463 PMCID: PMC7367340 DOI: 10.1186/s12870-020-02551-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/12/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Gleditsia sinensis Lam. (Leguminosae), a dioecious perennial arbor, demonstrates important medicinal properties and economic value. These properties can be harnessed depending on the sex of the plant. However, the sex of the plants is difficult to identify accurately through morphological methods before the flowering. RESULTS We used bulked segregant analysis to screen sex-specific simple sequence repeat (SSR) markers in G. sinensis. Five male and five female plants were pooled to form the male and female bulks, respectively, and subjected to whole-genome sequencing. After high-throughput sequencing, 5,350,359 sequences were obtained, in which 2,065,210 SSRs were searched. Among them, the number of duplicated SSRs was the highest. The male plants could reach 857,874, which accounted for 60.86% of the total number of male plants. The female plants could reach 1,447,603, which accounted for 56.25% of the total model of the female plants. Among all the nucleotide repeat types, the A/T-rich motif was the most abundant. A total of 309,516 female strain-specific SSRs were selected by clustering. After designing the primers, the male and female gene pools were amplified, and five pairs of primers (i.e., 27, 34, 36, 39, and 41) were found to amplify the differential bands in the male and female gene pools. Using the five pairs of primers, we performed PCR verification on 10 individuals of known sex, which constructed the gene pool. The female plants amplified a single fragment of lengths (i.e., 186, 305, 266, 203, and 260 bp) and no male plant strip, thereby completing the identification of the male and female sexes of the G. sinensis. CONCLUSIONS This study provides accurate sex identification strategies between female and male plants, thus improving the utilization rate of G. sinensis resources.
Collapse
Affiliation(s)
- Jianjun Li
- College of Life Science, Henan Normal University, Green Medicine Biotechnology Henan Engineering Laboratory, Engineering Technology Research Center of Nursing and Utilization of Genuine Chinese Crude Drugs in Henan Province, Xinxiang, 453007 China
| | - Chenglin Ye
- College of Life Science, Henan Normal University, Green Medicine Biotechnology Henan Engineering Laboratory, Engineering Technology Research Center of Nursing and Utilization of Genuine Chinese Crude Drugs in Henan Province, Xinxiang, 453007 China
| |
Collapse
|
21
|
Genetic and genomic resources, and breeding for accelerating improvement of small millets: current status and future interventions. THE NUCLEUS 2020. [DOI: 10.1007/s13237-020-00322-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AbstractCurrent agricultural and food systems encourage research and development on major crops, neglecting regionally important minor crops. Small millets include a group of small- seeded cereal crops of the grass family Poaceae. This includes finger millet, foxtail millet, proso millet, barnyard millet, kodo millet, little millet, teff, fonio, job’s tears, guinea millet, and browntop millet. Small millets are an excellent choice to supplement major staple foods for crop and dietary diversity because of their diverse adaptation on marginal lands, less water requirement, lesser susceptibility to stresses, and nutritional superiority compared to major cereal staples. Growing interest among consumers about healthy diets together with climate-resilient features of small millets underline the necessity of directing more research and development towards these crops. Except for finger millet and foxtail millet, and to some extent proso millet and teff, other small millets have received minimal research attention in terms of development of genetic and genomic resources and breeding for yield enhancement. Considerable breeding efforts were made in finger millet and foxtail millet in India and China, respectively, proso millet in the United States of America, and teff in Ethiopia. So far, five genomes, namely foxtail millet, finger millet, proso millet, teff, and Japanese barnyard millet, have been sequenced, and genome of foxtail millet is the smallest (423-510 Mb) while the largest one is finger millet (1.5 Gb). Recent advances in phenotyping and genomics technologies, together with available germplasm diversity, could be utilized in small millets improvement. This review provides a comprehensive insight into the importance of small millets, the global status of their germplasm, diversity, promising germplasm resources, and breeding approaches (conventional and genomic approaches) to accelerate climate-resilient and nutrient-dense small millets for sustainable agriculture, environment, and healthy food systems.
Collapse
|
22
|
Genomic dissection and expression analysis of stress-responsive genes in C4 panicoid models, Setaria italica and Setaria viridis. J Biotechnol 2020; 318:57-67. [DOI: 10.1016/j.jbiotec.2020.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/23/2020] [Accepted: 05/11/2020] [Indexed: 02/02/2023]
|
23
|
Renganathan VG, Vanniarajan C, Karthikeyan A, Ramalingam J. Barnyard Millet for Food and Nutritional Security: Current Status and Future Research Direction. Front Genet 2020; 11:500. [PMID: 32655612 PMCID: PMC7325689 DOI: 10.3389/fgene.2020.00500] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/22/2020] [Indexed: 01/09/2023] Open
Abstract
Barnyard millet (Echinochloa species) has become one of the most important minor millet crops in Asia, showing a firm upsurge in world production. The genus Echinochloa comprises of two major species, Echinochloa esculenta and Echinochloa frumentacea, which are predominantly cultivated for human consumption and livestock feed. They are less susceptible to biotic and abiotic stresses. Barnyard millet grain is a good source of protein, carbohydrate, fiber, and, most notably, contains more micronutrients (iron and zinc) than other major cereals. Despite its nutritional and agronomic benefits, barnyard millet has remained an underutilized crop. Over the past decades, very limited attempts have been made to study the features of this crop. Hence, more concerted research efforts are required to characterize germplasm resources, identify trait-specific donors, develop mapping population, and discover QTL/gene (s). The recent release of genome and transcriptome sequences of wild and cultivated Echinochloa species, respectively has facilitated in understanding the genetic architecture and decoding the rapport between genotype and phenotype of micronutrients and agronomic traits in this crop. In this review, we highlight the importance of barnyard millet in the current scenario and discuss the up-to-date status of genetic and genomics research and the research gaps to be worked upon by suggesting directions for future research to make barnyard millet a potential crop in contributing to food and nutritional security.
Collapse
Affiliation(s)
- Vellaichamy Gandhimeyyan Renganathan
- Department of Plant Breeding and Genetics, Agricultural College & Research Institute, Tamil Nadu Agricultural University, Madurai, India
- Department of Biotechnology, Centre of Innovation, Agricultural College & Research Institute, Tamil Nadu Agricultural University, Madurai, India
| | - Chockalingam Vanniarajan
- Department of Plant Breeding and Genetics, Agricultural College & Research Institute, Tamil Nadu Agricultural University, Madurai, India
| | - Adhimoolam Karthikeyan
- Department of Biotechnology, Centre of Innovation, Agricultural College & Research Institute, Tamil Nadu Agricultural University, Madurai, India
| | - Jegadeesan Ramalingam
- Department of Biotechnology, Centre of Innovation, Agricultural College & Research Institute, Tamil Nadu Agricultural University, Madurai, India
| |
Collapse
|
24
|
Rodríguez JP, Rahman H, Thushar S, Singh RK. Healthy and Resilient Cereals and Pseudo-Cereals for Marginal Agriculture: Molecular Advances for Improving Nutrient Bioavailability. Front Genet 2020; 11:49. [PMID: 32174958 PMCID: PMC7056906 DOI: 10.3389/fgene.2020.00049] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/16/2020] [Indexed: 11/13/2022] Open
Abstract
With the ever-increasing world population, an extra 1.5 billion mouths need to be fed by 2050 with continuously dwindling arable land. Hence, it is imperative that extra food come from the marginal lands that are expected to be unsuitable for growing major staple crops under the adverse climate change scenario. Crop diversity provides right alternatives for marginal environments to improve food, feed, and nutritional security. Well-adapted and climate-resilient crops will be the best fit for such a scenario to produce seed and biomass. The minor millets are known for their high nutritional profile and better resilience for several abiotic stresses that make them the suitable crops for arid and salt-affected soils and poor-quality waters. Finger millet (Eleucine coracana) and foxtail millet (Setaria italica), also considered as orphan crops, are highly tolerant grass crop species that grow well in marginal and degraded lands of Africa and Asia with better nutritional profile. Another category of grains, called pseudo-cereals, is considered as rich foods because of their protein quality and content, high mineral content, and healthy and balance food quality. Quinoa (Chenopodium quinoa), amaranth (Amaranthus sp.), and buckwheat (Fagopyrum esculentum) fall under this category. Nevertheless, both minor millets and pseudo-cereals are morphologically different, although similar for micronutrient bioavailability, and their grains are gluten-free. The cultivation of these millets can make dry lands productive and ensure future food as well as nutritional security. Although the natural nutrient profile of these crop plant species is remarkably good, little development has occurred in advances in molecular genetics and breeding efforts to improve the bioavailability of nutrients. Recent advances in NGS have enabled the genome and transcriptome sequencing of these millets and pseudo-cereals for the faster development of molecular markers and application in molecular breeding. Genomic information on finger millet (1,196 Mb with 85,243 genes); S. italica, a model small millet (well-annotated draft genome of 420 Mb with 38,801 protein-coding genes); amaranth (466 Mb genome and 23,059 protein-coding genes); buckwheat (genome size of 1.12 Gb with 35,816 annotated genes); and quinoa (genome size of 1.5 Gb containing 54,438 protein-coding genes) could pave the way for the genetic improvement of these grains. These genomic resources are an important first step toward genetic improvement of these crops. This review highlights the current advances and available resources on genomics to improve nutrient bioavailability in these five suitable crops for the sustained healthy livelihood.
Collapse
Affiliation(s)
| | | | | | - Rakesh K. Singh
- Crop Diversification and Genetics Program, International Center for Biosaline Agriculture, Dubai, United Arab Emirates
| |
Collapse
|
25
|
QTL mapping of yield component traits on bin map generated from resequencing a RIL population of foxtail millet (Setaria italica). BMC Genomics 2020; 21:141. [PMID: 32041544 PMCID: PMC7011527 DOI: 10.1186/s12864-020-6553-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 02/04/2020] [Indexed: 01/19/2023] Open
Abstract
Background Foxtail millet (Setaria italica) has been developed into a model genetical system for deciphering architectural evolution, C4 photosynthesis, nutritional properties, abiotic tolerance and bioenergy in cereal grasses because of its advantageous characters with the small genome size, self-fertilization, short growing cycle, small growth stature, efficient genetic transformation and abundant diverse germplasm resources. Therefore, excavating QTLs of yield component traits, which are closely related to aspects mentioned above, will further facilitate genetic research in foxtail millet and close cereal species. Results Here, 164 Recombinant inbreed lines from a cross between Longgu7 and Yugu1 were created and 1,047,978 SNPs were identified between both parents via resequencing. A total of 3413 bin markers developed from SNPs were used to construct a binary map, containing 3963 recombinant breakpoints and totaling 1222.26 cM with an average distance of 0.36 cM between adjacent markers. Forty-seven QTLs were identified for four traits of straw weight, panicle weight, grain weight per plant and 1000-grain weight. These QTLs explained 5.5–14.7% of phenotypic variance. Thirty-nine favorable QTL alleles were found to inherit from Yugu1. Three stable QTLs were detected in multi-environments, and nine QTL clusters were identified on Chromosome 3, 6, 7 and 9. Conclusions A high-density genetic map with 3413 bin markers was constructed and three stable QTLs and 9 QTL clusters for yield component traits were identified. The results laid a powerful foundation for fine mapping, identifying candidate genes, elaborating molecular mechanisms and application in foxtail millet breeding programs by marker-assisted selection.
Collapse
|
26
|
Kumari R, Wankhede DP, Bajpai A, Maurya A, Prasad K, Gautam D, Rangan P, Latha M, John K. J, A. S, Bhat KV, Gaikwad AB. Genome wide identification and characterization of microsatellite markers in black pepper (Piper nigrum): A valuable resource for boosting genomics applications. PLoS One 2019; 14:e0226002. [PMID: 31834893 PMCID: PMC6910694 DOI: 10.1371/journal.pone.0226002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 11/18/2019] [Indexed: 11/23/2022] Open
Abstract
Black pepper is one of the most valued and widely used spices in the world and dominates multi-billion dollar global spices trade. India is amongst the major producers, consumers and exporters of black pepper. In spite of its commercial and cultural importance, black pepper has received meagre attention in terms of generation of genomic resources. Availability of markers distributed throughout the genome would facilitate and accelerate genetic studies, QTL identification, genetic enhancement and crop improvement in black pepper. In this perspective, the sequence information from the recently sequenced black pepper (Piper nigrum) genome has been used for identification and characterisation of Simple Sequence Repeats (SSRs). Total 69,126 SSRs were identified from assembled genomic sequence of P. nigrum. The SSR frequency was 158 per MB making it, one SSR for every 6.3 kb in the assembled genome. Among the different types of microsatellite repeat motifs, dinucleotides were the most abundant (48.6%), followed by trinucleotide (23.7%) and compound repeats (20.62%). A set of 85 SSRs were used for validation, of which 74 produced amplification products of expected size. Genetic diversity of 30 black pepper accessions using 50 SSRs revealed four distinct clusters. Further, the cross species transferability of the SSRs was checked in nine other Piper species. Out of 50 SSRs used, 19 and 31 SSRs were amplified in nine and seven species, respectively. Thus the identified SSRs may have application in other species of the genus Piper where genome sequence is not available yet. Present study reports the first NGS based genomic SSRs in black pepper and thus constitute a valuable resource for a whole fleet of applications in genetics and plant breeding studies such as genetic map construction, QTL identification, map-based gene cloning, marker-assisted selection and evolutionary studies in Piper nigrum and related species.
Collapse
Affiliation(s)
- Ratna Kumari
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | | | - Akansha Bajpai
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Avantika Maurya
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Kartikay Prasad
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Dikshant Gautam
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Parimalan Rangan
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - M. Latha
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Joseph John K.
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Suma A.
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Kangila V. Bhat
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Ambika B. Gaikwad
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
- * E-mail:
| |
Collapse
|
27
|
Sood S, Joshi DC, Chandra AK, Kumar A. Phenomics and genomics of finger millet: current status and future prospects. PLANTA 2019; 250:731-751. [PMID: 30968267 DOI: 10.1007/s00425-019-03159-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
Diverse gene pool, advanced plant phenomics and genomics methods enhanced genetic gain and understanding of important agronomic, adaptation and nutritional traits in finger millet. Finger millet (Eleusine coracana L. Gaertn) is an important minor millet for food and nutritional security in semi-arid regions of the world. The crop has wide adaptability and can be grown right from high hills in Himalayan region to coastal plains. It provides food grain as well as palatable straw for cattle, and is fairly climate resilient. The crop has large gene pool with distinct features of both Indian and African germplasm types. Interspecific hybridization between Indian and African germplasm has resulted in greater yield enhancement and disease resistance. The crop has shown numerous advantages over major cereals in terms of stress adaptation, nutritional quality and health benefits. It has indispensable repository of novel genes for the benefits of mankind. Although rapid strides have been made in allele mining in model crops and major cereals, the progress in finger millet genomics is lacking. Comparative genomics have paved the way for the marker-assisted selection, where resistance gene homologues of rice for blast and sequence variants for nutritional traits from other cereals have been invariably used. Transcriptomics studies have provided preliminary understanding of the nutritional variation, drought and salinity tolerance. However, the genetics of many important traits in finger millet is poorly understood and need systematic efforts from biologists across disciplines. Recently, deciphered finger millet genome will enable identification of candidate genes for agronomically and nutritionally important traits. Further, improvement in genome assembly and application of genomic selection as well as genome editing in near future will provide plethora of information and opportunity to understand the genetics of complex traits.
Collapse
Affiliation(s)
- Salej Sood
- ICAR-Central Potato Research Institute, Shimla, HP, India.
| | - Dinesh C Joshi
- ICAR-Vivekananda Institute of Hill Agriculture, Almora, Uttarakhand, India
| | - Ajay Kumar Chandra
- GB Pant University of Agricultural Sciences and Technology, Pantnagar, Uttarakhand, India
| | - Anil Kumar
- GB Pant University of Agricultural Sciences and Technology, Pantnagar, Uttarakhand, India.
- Rani Lakshmi Bai Central Agricultural University, Jhanshi, UP, India.
| |
Collapse
|
28
|
Muthamilarasan M, Singh NK, Prasad M. Multi-omics approaches for strategic improvement of stress tolerance in underutilized crop species: A climate change perspective. ADVANCES IN GENETICS 2019; 103:1-38. [PMID: 30904092 DOI: 10.1016/bs.adgen.2019.01.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
For several decades, researchers are working toward improving the "major" crops for better adaptability and tolerance to environmental stresses. However, little or no research attention is given toward neglected and underutilized crop species (NUCS) which hold the potential to ensure food and nutritional security among the ever-growing global population. NUCS are predominantly climate resilient, but their yield and quality are compromised due to selective breeding. In this context, the importance of omics technologies namely genomics, transcriptomics, proteomics, phenomics and ionomics in delineating the complex molecular machinery governing growth, development and stress responses of NUCS is underlined. However, gaining insights through individual omics approaches will not be sufficient to address the research questions, whereas integrating these technologies could be an effective strategy to decipher the gene function, genome structures, biological pathways, metabolic and regulatory networks underlying complex traits. Given this, the chapter enlists the importance of NUCS in food and nutritional security and provides an overview of deploying omics approaches to study the NUCS. Also, the chapter enumerates the status of crop improvement programs in NUCS and suggests implementing "integrating omics" for gaining a better understanding of crops' response to abiotic and biotic stresses.
Collapse
Affiliation(s)
- Mehanathan Muthamilarasan
- National Institute of Plant Genome Research, New Delhi, India; ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
| | - Nagendra Kumar Singh
- ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, New Delhi, India.
| |
Collapse
|
29
|
Cao X, Hu L, Chen X, Zhang R, Cheng D, Li H, Xu Z, Li L, Zhou Y, Liu A, Song J, Liu C, Liu J, Zhao Z, Chen M, Ma Y. Genome-wide analysis and identification of the low potassium stress responsive gene SiMYB3 in foxtail millet (Setariaitalica L.). BMC Genomics 2019; 20:136. [PMID: 30767761 PMCID: PMC6377754 DOI: 10.1186/s12864-019-5519-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 02/07/2019] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Potassium (K) is essential to plant growth and development. Foxtail millet (Setaria italic L.) is an important fodder grain crop in arid and semi-arid regions of Asia and Africa because of its strong tolerance to drought and barren stresses. The molecular mechanisms of physiological and biochemical responses and regulations to various abiotic stresses such as low potassium conditions in foxtail millet are not fully understood, which hinders the research and exploitation of this valuable resource. RESULTS In this research, we demonstrated that the millet variety Longgu 25 was the most insensitive variety to low potassium stress among other five varieties. The transcriptome analysis of Longgu 25 variety revealed a total of 26,192 and 26,849 genes from the K+-deficient and normal transcriptomic libraries by RNA-seq, respectively. A total of 1982 differentially expressed genes (DEGs) were identified including 866 up-regulated genes and 1116 down-regulated genes. We conducted a comparative analysis of these DEGs under low-K+ stress conditions and discovered 248 common DEGs for potassium deprivation among foxtail millet, rice and Arabidopsis. Further Gene Ontology (GO) enrichment analysis identified a series of candidate genes that may involve in K+-deficient response and in intersection of molecular functions among foxtail millet, rice and Arabidopsis. The expression profiles of randomly selected 18 candidate genes were confirmed as true DEGs with RT-qPCR. Furthermore, one of the 18 DEGs, SiMYB3, is specifically expressed only in the millet under low-K+ stress conditions. Overexpression of SiMYB3 promoted the main root elongation and improved K+ deficiency tolerance in transgenic Arabidopsis plants. The fresh weight of the transgenic plants was higher, the primary root length was longer and the root surface-area was larger than those of control plants after K+ deficiency treatments. CONCLUSIONS This study provides a global view of transcriptomic resources relevant to the K+-deficient tolerance in foxtail millet, and shows that SiMYB3 is a valuable genetic resource for the improvement of K+ deficiency tolerance in foxtail millet.
Collapse
Affiliation(s)
- Xinyou Cao
- Crop Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Laboratory for Wheat and Maize/Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow and Huai River Valley, Ministry of Agriculture, Jinan, 250100, People's Republic of China
| | - Liqin Hu
- National Key Facility for Crop Genetic Resources and Genetic Improvement, Key Laboratory of Crop Genetics and Breeding, Ministry of Agriculture/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Xueyan Chen
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences/Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China
| | - Rongzhi Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Laboratory for Wheat and Maize/Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow and Huai River Valley, Ministry of Agriculture, Jinan, 250100, People's Republic of China
| | - Dungong Cheng
- Crop Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Laboratory for Wheat and Maize/Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow and Huai River Valley, Ministry of Agriculture, Jinan, 250100, People's Republic of China
| | - Haosheng Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Laboratory for Wheat and Maize/Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow and Huai River Valley, Ministry of Agriculture, Jinan, 250100, People's Republic of China
| | - Zhaoshi Xu
- National Key Facility for Crop Genetic Resources and Genetic Improvement, Key Laboratory of Crop Genetics and Breeding, Ministry of Agriculture/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Liancheng Li
- National Key Facility for Crop Genetic Resources and Genetic Improvement, Key Laboratory of Crop Genetics and Breeding, Ministry of Agriculture/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Yongbin Zhou
- National Key Facility for Crop Genetic Resources and Genetic Improvement, Key Laboratory of Crop Genetics and Breeding, Ministry of Agriculture/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Aifeng Liu
- Crop Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Laboratory for Wheat and Maize/Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow and Huai River Valley, Ministry of Agriculture, Jinan, 250100, People's Republic of China
| | - Jianming Song
- Crop Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Laboratory for Wheat and Maize/Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow and Huai River Valley, Ministry of Agriculture, Jinan, 250100, People's Republic of China
| | - Cheng Liu
- Crop Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Laboratory for Wheat and Maize/Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow and Huai River Valley, Ministry of Agriculture, Jinan, 250100, People's Republic of China
| | - Jianjun Liu
- Crop Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Laboratory for Wheat and Maize/Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow and Huai River Valley, Ministry of Agriculture, Jinan, 250100, People's Republic of China
| | - Zhendong Zhao
- Crop Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Laboratory for Wheat and Maize/Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow and Huai River Valley, Ministry of Agriculture, Jinan, 250100, People's Republic of China
| | - Ming Chen
- National Key Facility for Crop Genetic Resources and Genetic Improvement, Key Laboratory of Crop Genetics and Breeding, Ministry of Agriculture/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
| | - Youzhi Ma
- National Key Facility for Crop Genetic Resources and Genetic Improvement, Key Laboratory of Crop Genetics and Breeding, Ministry of Agriculture/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
| |
Collapse
|
30
|
Development and validation of whole genome-wide and genic microsatellite markers in oil palm (Elaeis guineensis Jacq.): First microsatellite database (OpSatdb). Sci Rep 2019; 9:1899. [PMID: 30760842 PMCID: PMC6374426 DOI: 10.1038/s41598-018-37737-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 12/11/2018] [Indexed: 01/27/2023] Open
Abstract
The availability of large expressed sequence tag (EST) and whole genome databases of oil palm enabled the development of a data base of microsatellite markers. For this purpose, an EST database consisting of 40,979 EST sequences spanning 27 Mb and a chromosome-wise whole genome databases were downloaded. A total of 3,950 primer pairs were identified and developed from EST sequences. The tri and tetra nucleotide repeat motifs were most prevalent (each 24.75%) followed by di-nucleotide repeat motifs. Whole genome-wide analysis found a total of 245,654 SSR repeats across the 16 chromosomes of oil palm, of which 38,717 were compound microsatellite repeats. A web application, OpSatdb, the first microsatellite database of oil palm, was developed using the PHP and MySQL database ( https://ssr.icar.gov.in/index.php ). It is a simple and systematic web-based search engine for searching SSRs based on repeat motif type, repeat type, and primer details. High synteny was observed between oil palm and rice genomes. The mapping of ESTs having SSRs by Blast2GO resulted in the identification of 19.2% sequences with gene ontology (GO) annotations. Randomly, a set of ten genic SSRs and five genomic SSRs were used for validation and genetic diversity on 100 genotypes belonging to the world oil palm genetic resources. The grouping pattern was observed to be broadly in accordance with the geographical origin of the genotypes. The identified genic and genome-wide SSRs can be effectively useful for various genomic applications of oil palm, such as genetic diversity, linkage map construction, mapping of QTLs, marker-assisted selection, and comparative population studies.
Collapse
|
31
|
Sun J, Luu NS, Chen Z, Chen B, Cui X, Wu J, Zhang Z, Lu T. Generation and Characterization of a Foxtail Millet ( Setaria italica) Mutant Library. FRONTIERS IN PLANT SCIENCE 2019; 10:369. [PMID: 31001298 PMCID: PMC6455083 DOI: 10.3389/fpls.2019.00369] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/11/2019] [Indexed: 05/20/2023]
Abstract
Foxtail millet (Setaria italica) is attractive to plant scientists as a model plant because of several distinct characteristics, such as its short stature, rapid life cycle, sufficient seed production per plant, self-compatibility, true diploid nature, high photosynthetic efficiency, small genome size, and tolerance to abiotic and biotic stress. However, the study on the genetic resources of foxtail millet largely lag behind those of the other model plants such as Arabidopsis, rice and maize. Mutagenized populations cannot only create new germplasm resources, but also provide materials for gene function research. In this manuscript, an ethyl methanesulfonate (EMS)-induced foxtail millet population comprising ∼15,000 individual M1 lines was established. Total 1353 independent lines with diverse abnormal phenotypes of leaf color, plant morphologies and panicle shapes were identified in M2. Resequencing of sixteen randomly selected M2 plants showed an average estimated mutation density of 1 loci/213 kb. Moreover, we provided an example for rapid cloning of the WP1 gene by a map-based cloning method. A white panicle mutant, named as wp1.a, exhibited significantly reduced chlorophyll (Chl) and carotenoid contents in leaf and panicle. Map-based cloning results showed an eight-base pair deletion located at the sixth exon of wp1.a in LOC101786849, which caused the premature termination. WP1 encoded phytoene synthase. Moreover, the sequencing analysis and cross test verified that a white panicle mutant wp1.b was an allelic mutant of wp1.a. The filed phenotypic observation and gene cloning example showed that our foxtail millet EMS-induced mutant population would be used as an important resource for functional genomics studies of foxtail millet.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Tiegang Lu
- *Correspondence: Zhiguo Zhang, Tiegang Lu,
| |
Collapse
|
32
|
Bhat NN, Mahiya-Farooq, Padder BA, Shah M, Dar M, Nabi A, Bano A, Rasool RS, Sana-Surma. Microsatellite mining in the genus Colletotrichum. GENE REPORTS 2018. [DOI: 10.1016/j.genrep.2018.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
33
|
Microsatellite markers of finger millet (Eleusine coracana (L.) Gaertn) and foxtail millet (Setaria italica (L.) Beauv) provide resources for cross-genome transferability and genetic diversity analyses in other millets. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.09.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
Wang Z, Zhao K, Pan Y, Wang J, Song X, Ge W, Yuan M, Lei T, Wang L, Zhang L, Li Y, Liu T, Chen W, Meng W, Sun C, Cui X, Bai Y, Wang X. Genomic, expressional, protein-protein interactional analysis of Trihelix transcription factor genes in Setaria italia and inference of their evolutionary trajectory. BMC Genomics 2018; 19:665. [PMID: 30208846 PMCID: PMC6134603 DOI: 10.1186/s12864-018-5051-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/31/2018] [Indexed: 02/07/2023] Open
Abstract
Background Trihelix transcription factors (TTF) play important roles in plant growth and response to adversity stress. Until now, genome-wide identification and analysis of this gene family in foxtail millet has not been available. Here, we identified TTF genes in the foxtail millet and its grass relatives, and characterized their functional domains. Results As to sequence divergence, TTF genes were previously divided into five subfamilies, I-V. We found that Trihelix family members in foxtail millet and other grasses mostly preserved their ancestral chromosomal locations during millions of years’ evolution. Six amino acid sites of the SIP1 subfamily possibly were likely subjected to significant positive selection. Highest expression level was observed in the spica, with the SIP1 subfamily having highest expression level. As to the origination and expansion of the gene family, notably we showed that a subgroup of subfamily IV was the oldest, and therefore was separated to define a new subfamily O. Overtime, starting from the subfamily O, certain genes evolved to form subfamilies III and I, and later from subfamily I to develop subfamilies II and V. The oldest gene, Si1g016284, has the most structural changes, and a high expression in different tissues. What’s more interesting is that it may have bridge the interaction with different proteins. Conclusions By performing phylogenetic analysis using non-plant species, notably we showed that a subgroup of subfamily IV was the oldest, and therefore was separated to define a new subfamily O. Starting from the subfamily O, certain genes evolved to form other subfamilies. Our work will contribute to understanding the structural and functional innovation of Trihelix transcription factor, and the evolutionary trajectory. Electronic supplementary material The online version of this article (10.1186/s12864-018-5051-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhenyi Wang
- College of Life Sciences, North China University of Science and Technology, Caofeidian Dist, Tangshan, 063210, Hebei, China. .,Center for Genomics and Computational Biology, North China University of Science and Technology, Caofeidian Dist, Tangshan, 063210, Hebei, China.
| | - Kanglu Zhao
- College of Life Sciences, North China University of Science and Technology, Caofeidian Dist, Tangshan, 063210, Hebei, China
| | - Yuxin Pan
- College of Life Sciences, North China University of Science and Technology, Caofeidian Dist, Tangshan, 063210, Hebei, China.,Center for Genomics and Computational Biology, North China University of Science and Technology, Caofeidian Dist, Tangshan, 063210, Hebei, China
| | - Jinpeng Wang
- College of Life Sciences, North China University of Science and Technology, Caofeidian Dist, Tangshan, 063210, Hebei, China.,Center for Genomics and Computational Biology, North China University of Science and Technology, Caofeidian Dist, Tangshan, 063210, Hebei, China
| | - Xiaoming Song
- College of Life Sciences, North China University of Science and Technology, Caofeidian Dist, Tangshan, 063210, Hebei, China.,Center for Genomics and Computational Biology, North China University of Science and Technology, Caofeidian Dist, Tangshan, 063210, Hebei, China
| | - Weina Ge
- College of Life Sciences, North China University of Science and Technology, Caofeidian Dist, Tangshan, 063210, Hebei, China.,Center for Genomics and Computational Biology, North China University of Science and Technology, Caofeidian Dist, Tangshan, 063210, Hebei, China
| | - Min Yuan
- College of Life Sciences, North China University of Science and Technology, Caofeidian Dist, Tangshan, 063210, Hebei, China.,Center for Genomics and Computational Biology, North China University of Science and Technology, Caofeidian Dist, Tangshan, 063210, Hebei, China
| | - Tianyu Lei
- College of Life Sciences, North China University of Science and Technology, Caofeidian Dist, Tangshan, 063210, Hebei, China.,Center for Genomics and Computational Biology, North China University of Science and Technology, Caofeidian Dist, Tangshan, 063210, Hebei, China
| | - Li Wang
- College of Life Sciences, North China University of Science and Technology, Caofeidian Dist, Tangshan, 063210, Hebei, China.,Center for Genomics and Computational Biology, North China University of Science and Technology, Caofeidian Dist, Tangshan, 063210, Hebei, China
| | - Lan Zhang
- College of Life Sciences, North China University of Science and Technology, Caofeidian Dist, Tangshan, 063210, Hebei, China.,Center for Genomics and Computational Biology, North China University of Science and Technology, Caofeidian Dist, Tangshan, 063210, Hebei, China
| | - Yuxian Li
- College of Life Sciences, North China University of Science and Technology, Caofeidian Dist, Tangshan, 063210, Hebei, China.,Center for Genomics and Computational Biology, North China University of Science and Technology, Caofeidian Dist, Tangshan, 063210, Hebei, China
| | - Tao Liu
- Center for Genomics and Computational Biology, North China University of Science and Technology, Caofeidian Dist, Tangshan, 063210, Hebei, China.,College of Science, North China University of Science and Technology, Caofeidian Dist, Tangshan, 063210, Hebei, China
| | - Wei Chen
- Center for Genomics and Computational Biology, North China University of Science and Technology, Caofeidian Dist, Tangshan, 063210, Hebei, China.,College of Science, North China University of Science and Technology, Caofeidian Dist, Tangshan, 063210, Hebei, China
| | - Wenjing Meng
- College of Life Sciences, North China University of Science and Technology, Caofeidian Dist, Tangshan, 063210, Hebei, China
| | - Changkai Sun
- College of Life Sciences, North China University of Science and Technology, Caofeidian Dist, Tangshan, 063210, Hebei, China
| | - Xiaobo Cui
- College of Life Sciences, North China University of Science and Technology, Caofeidian Dist, Tangshan, 063210, Hebei, China
| | - Yun Bai
- College of Life Sciences, North China University of Science and Technology, Caofeidian Dist, Tangshan, 063210, Hebei, China
| | - Xiyin Wang
- College of Life Sciences, North China University of Science and Technology, Caofeidian Dist, Tangshan, 063210, Hebei, China. .,Center for Genomics and Computational Biology, North China University of Science and Technology, Caofeidian Dist, Tangshan, 063210, Hebei, China.
| |
Collapse
|
35
|
Wang X, Yang S, Chen Y, Zhang S, Zhao Q, Li M, Gao Y, Yang L, Bennetzen JL. Comparative genome-wide characterization leading to simple sequence repeat marker development for Nicotiana. BMC Genomics 2018; 19:500. [PMID: 29945549 PMCID: PMC6020451 DOI: 10.1186/s12864-018-4878-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 06/18/2018] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Simple sequence repeats (SSRs) are tandem repeats of DNA that have been used to develop robust genetic markers. These molecular markers are powerful tools for basic and applied studies such as molecular breeding. In the model plants in Nicotiana genus e.g. N. benthamiana, a comprehensive assessment of SSR content has become possible now because several Nicotiana genomes have been sequenced. We conducted a genome-wide SSR characterization and marker development across seven Nicotiana genomes. RESULTS Here, we initially characterized 2,483,032 SSRs (repeat units of 1-10 bp) from seven genomic sequences of Nicotiana and developed SSR markers using the GMATA® software package. Of investigated repeat units, mono-, di- and tri-nucleotide SSRs account for 98% of all SSRs in Nicotiana. More complex SSR motifs, although rare, are highly variable between Nicotiana genomes. A total of 1,224,048 non-redundant Nicotiana (NIX) markers were developed, of which 99.98% are novel. An efficient and uniform genotyping protocol for NIX markers was developed and validated. We created a web-based database of NIX marker information including amplicon sizes of alleles in each genome for downloading and online analysis. CONCLUSIONS The present work constitutes the first deep characterization of SSRs in seven genomes of Nicotiana, and the development of NIX markers for these SSRs. Our online marker database and an efficient genotyping protocol facilitate the application of these markers. The NIX markers greatly expand Nicotiana marker resources, thus providing a useful tool for future research and breeding. We demonstrate a novel protocol for SSR marker development and utilization at the whole genome scale that can be applied to any lineage of organisms. The Tobacco Markers & Primers Database (TMPD) is available at http://biodb.sdau.edu.cn/tmpd/index.html.
Collapse
Affiliation(s)
- Xuewen Wang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201 People’s Republic of China
- Department of Genetics, University of Georgia, Athens, GA 30602 USA
| | - Shuai Yang
- Agricultural Big-Data Research Center, College of Plant Protection, Shandong Agricultural University, Tai’an, 271018 China
| | - Yongdui Chen
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650223 People’s Republic of China
| | - Shumeng Zhang
- Department of Genetics, University of Georgia, Athens, GA 30602 USA
| | - Qingshi Zhao
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201 People’s Republic of China
| | - Meng Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201 People’s Republic of China
| | - Yulong Gao
- Tobacco Breeding Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021 Yunnan China
| | - Long Yang
- Agricultural Big-Data Research Center, College of Plant Protection, Shandong Agricultural University, Tai’an, 271018 China
| | - Jeffrey L. Bennetzen
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201 People’s Republic of China
- Department of Genetics, University of Georgia, Athens, GA 30602 USA
| |
Collapse
|
36
|
Hu H, Mauro-Herrera M, Doust AN. Domestication and Improvement in the Model C4 Grass, Setaria. FRONTIERS IN PLANT SCIENCE 2018; 9:719. [PMID: 29896214 PMCID: PMC5986938 DOI: 10.3389/fpls.2018.00719] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 05/14/2018] [Indexed: 05/17/2023]
Abstract
Setaria viridis (green foxtail) and its domesticated relative S. italica (foxtail millet) are diploid C4 panicoid grasses that are being developed as model systems for studying grass genomics, genetics, development, and evolution. According to archeological evidence, foxtail millet was domesticated from green foxtail approximately 9,000 to 6,000 YBP in China. Under long-term human selection, domesticated foxtail millet developed many traits adapted to human cultivation and agricultural production. In comparison with its wild ancestor, foxtail millet has fewer vegetative branches, reduced grain shattering, delayed flowering time and less photoperiod sensitivity. Foxtail millet is the only present-day crop in the genus Setaria, although archeological records suggest that other species were domesticated and later abandoned in the last 10,000 years. We present an overview of domestication in foxtail millet, by reviewing recent studies on the genetic regulation of several domesticated traits in foxtail millet and discuss how the foxtail millet and green foxtail system could be further developed to both better understand its domestication history, and to provide more tools for future breeding efforts.
Collapse
Affiliation(s)
| | | | - Andrew N. Doust
- Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
37
|
Kalyana Babu B, Sood S, Kumar D, Joshi A, Pattanayak A, Kant L, Upadhyaya HD. Cross-genera transferability of rice and finger millet genomic SSRs to barnyard millet ( Echinochloa spp.). 3 Biotech 2018; 8:95. [PMID: 29430357 DOI: 10.1007/s13205-018-1118-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 01/12/2018] [Indexed: 11/29/2022] Open
Abstract
Barnyard millet (Echinochloa spp.) is an important crop from nutritional point of view, nevertheless, the genetic information is very scarce. In the present investigation, rice and finger millet genomic SSRs were used for assessing cross transferability, identification of polymorphic markers, syntenic regions, genetic diversity and population structure analysis of barnyard millet genotypes. We observed 100% cross transferability for finger millet SSRs, of which 91% were polymorphic, while 71% of rice markers were cross transferable with 48% polymorphic out of them. Twenty-nine and sixteen highly polymorphic finger millet and rice SSRs yielded a mean of 4.3 and 3.38 alleles per locus in barnyard millet genotypes, respectively. The PIC values varied from 0.27 to 0.73 at an average of 0.54 for finger millet SSRs, whereas it was from 0.15 to 0.67 at an average of 0.44 for rice SSRs. High synteny was observed for markers related to panicle length, yield-related traits, spikelet fertility, plant height, root traits, leaf senescence, blast and brown plant hopper resistance. Although the rice SSRs located on chromosome 10 followed by chromosome 6 and 11 were found to be more transferable to barnyard millet, the finger millet SSRs were more polymorphic and transferable to barnyard millet genotypes. These SSR data of finger millet and rice individually as well as combined together grouped the 11 barnyard millet genotypes into 2 major clusters. The results of population structure analysis were similar to cluster analysis.
Collapse
Affiliation(s)
- B Kalyana Babu
- ICAR-Vivekananda Parvatiya Krishi Anusanthan Sansthan, Almora, Uttarakhand 263601 India
- 3Present Address: ICAR-Indian Institute of Oil Palm Research, Pedavegi, West Godavari, AndhraPradesh 534450 India
| | - Salej Sood
- ICAR-Vivekananda Parvatiya Krishi Anusanthan Sansthan, Almora, Uttarakhand 263601 India
- 4Present Address: ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh 171001 India
| | - Dinesh Kumar
- ICAR-Vivekananda Parvatiya Krishi Anusanthan Sansthan, Almora, Uttarakhand 263601 India
| | - Anjeli Joshi
- ICAR-Vivekananda Parvatiya Krishi Anusanthan Sansthan, Almora, Uttarakhand 263601 India
| | - A Pattanayak
- ICAR-Vivekananda Parvatiya Krishi Anusanthan Sansthan, Almora, Uttarakhand 263601 India
| | - Lakshmi Kant
- ICAR-Vivekananda Parvatiya Krishi Anusanthan Sansthan, Almora, Uttarakhand 263601 India
| | - H D Upadhyaya
- 2International Crop Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana 502 324 India
| |
Collapse
|
38
|
Chander S, Bhat KV, Kumari R, Sen S, Gaikwad AB, Gowda MVC, Dikshit N. Analysis of spatial distribution of genetic diversity and validation of Indian foxtail millet core collection. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2017; 23:663-673. [PMID: 28878504 PMCID: PMC5567709 DOI: 10.1007/s12298-017-0448-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/02/2017] [Accepted: 05/12/2017] [Indexed: 05/28/2023]
Abstract
Foxtail millet [Setaria italica (L.) P. Beauv.] is an important small millet, grown as a short duration, drought tolerant crop across the world. This crop can be grown on wide ranges of soil conditions and has an immense potential for food and fodder in rainfed and arid regions of the India. In the present study, 31 primer pairs (27 SSR and 4 EST-SSR) were used to analyse the genetic diversity in 223 core collection accessions. Analysis resulted in detection of a total of 136 alleles with an average of 4.38 alleles per locus. Among these 136 alleles, 22 were rare, 70 were common and 44 were frequent. The PIC value ranged from 0.01 to 0.86 with an average of 0.31. The average number of observed alleles ranged from 2.0 (northern hills of India accessions) to 4.06 (exotic) with an average of 2.72. The mean Shannon's Information Index ranged from 0.44 (northern hills of India) to 0.69 (exotic) with an average of 0.52. Pair-wise Fst values indicated little to moderate genetic differentiation among the group of accessions. UPGMA clustering grouped the accessions into two major groups while analysis for population substructure indicated presence of four subpopulations. However there was no statistically well supported grouping of the accessions based on eco-geographic specificities. The core collection designated here represented substantial genetic diversity at molecular level, hence may be a good source of diversity for use in foxtail improvement programs in the region.
Collapse
Affiliation(s)
| | - K. V. Bhat
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, 110 012 India
| | - Ratna Kumari
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, 110 012 India
| | - Sanjay Sen
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, 110 012 India
| | - A. B. Gaikwad
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, 110 012 India
| | - M. V. C. Gowda
- All India Co-ordinated Small Millets Improvement Project, GKVK, Bengaluru, 560 065 India
| | - N. Dikshit
- ICAR-National Bureau of Plant Genetic Resources, Regional Station, Akola, 444 104 India
| |
Collapse
|
39
|
Wang J, Wang Z, Du X, Yang H, Han F, Han Y, Yuan F, Zhang L, Peng S, Guo E. A high-density genetic map and QTL analysis of agronomic traits in foxtail millet [Setaria italica (L.) P. Beauv.] using RAD-seq. PLoS One 2017. [PMID: 28644843 PMCID: PMC5482450 DOI: 10.1371/journal.pone.0179717] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Foxtail millet (Setaria italica), a very important grain crop in China, has become a new model plant for cereal crops and biofuel grasses. Although its reference genome sequence was released recently, quantitative trait loci (QTLs) controlling complex agronomic traits remains limited. The development of massively parallel genotyping methods and next-generation sequencing technologies provides an excellent opportunity for developing single-nucleotide polymorphisms (SNPs) for linkage map construction and QTL analysis of complex quantitative traits. In this study, a high-throughput and cost-effective RAD-seq approach was employed to generate a high-density genetic map for foxtail millet. A total of 2,668,587 SNP loci were detected according to the reference genome sequence; meanwhile, 9,968 SNP markers were used to genotype 124 F2 progenies derived from the cross between Hongmiaozhangu and Changnong35; a high-density genetic map spanning 1648.8 cM, with an average distance of 0.17 cM between adjacent markers was constructed; 11 major QTLs for eight agronomic traits were identified; five co-dominant DNA markers were developed. These findings will be of value for the identification of candidate genes and marker-assisted selection in foxtail millet.
Collapse
Affiliation(s)
- Jun Wang
- Millet Research Institute, Shanxi Academy of Agricultural Sciences, Changzhi, Shanxi, China
- Shanxi Key Laboratory of Genetic Resources and Breeding in Minor Crops, Changzhi, Shanxi, China
- * E-mail: (JW); (EG)
| | - Zhilan Wang
- Millet Research Institute, Shanxi Academy of Agricultural Sciences, Changzhi, Shanxi, China
- Shanxi Key Laboratory of Genetic Resources and Breeding in Minor Crops, Changzhi, Shanxi, China
| | - Xiaofen Du
- Millet Research Institute, Shanxi Academy of Agricultural Sciences, Changzhi, Shanxi, China
- Shanxi Key Laboratory of Genetic Resources and Breeding in Minor Crops, Changzhi, Shanxi, China
| | - Huiqing Yang
- Millet Research Institute, Shanxi Academy of Agricultural Sciences, Changzhi, Shanxi, China
- Shanxi Key Laboratory of Genetic Resources and Breeding in Minor Crops, Changzhi, Shanxi, China
| | - Fang Han
- Research Institute of Agriculture Sciences of Yanan, Yanan, Shaanxi, China
| | - Yuanhuai Han
- Shanxi Agricultural University, Taigu, Shanxi, China
| | - Feng Yuan
- Millet Research Institute, Shanxi Academy of Agricultural Sciences, Changzhi, Shanxi, China
- Shanxi Key Laboratory of Genetic Resources and Breeding in Minor Crops, Changzhi, Shanxi, China
| | - Linyi Zhang
- Millet Research Institute, Shanxi Academy of Agricultural Sciences, Changzhi, Shanxi, China
- Shanxi Key Laboratory of Genetic Resources and Breeding in Minor Crops, Changzhi, Shanxi, China
| | - Shuzhong Peng
- Millet Research Institute, Shanxi Academy of Agricultural Sciences, Changzhi, Shanxi, China
- Shanxi Key Laboratory of Genetic Resources and Breeding in Minor Crops, Changzhi, Shanxi, China
| | - Erhu Guo
- Millet Research Institute, Shanxi Academy of Agricultural Sciences, Changzhi, Shanxi, China
- Shanxi Key Laboratory of Genetic Resources and Breeding in Minor Crops, Changzhi, Shanxi, China
- * E-mail: (JW); (EG)
| |
Collapse
|
40
|
In silico development and characterization of tri-nucleotide simple sequence repeat markers in hazelnut (Corylus avellana L.). PLoS One 2017; 12:e0178061. [PMID: 28531233 PMCID: PMC5439716 DOI: 10.1371/journal.pone.0178061] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 05/08/2017] [Indexed: 01/31/2023] Open
Abstract
Plant genomes are now sequenced rapidly and inexpensively. In silico approaches allow efficient development of simple sequence repeat markers, also known as microsatellite markers, from these sequences. A search of the genome sequence of 'Jefferson' hazelnut (Corylus avellana L.) identified 8,708 tri-nucleotide simple sequence repeats with at least five repeat units, and stepwise removal of the less promising sequences led to the development of 150 polymorphic markers. Fragments in the 'Jefferson' sequence containing tri-nucleotide repeats were used as references and aligned with genomic sequences from seven other cultivars. Following in silico alignment, sequences that showed variation in number of repeat units were selected and primer pairs were designed for 243 of them. Screening on agarose gels identified 173 as polymorphic. Removal of duplicate and previously published sequences reduced the number to 150, for which fluorescent primers and capillary electrophoresis were used for amplicon sizing. These were characterized using 50 diverse hazelnut accessions. Of the 150, 132 generated the expected one or two alleles per accession while 18 amplified more than two amplicons in at least one accession. Diversity parameters of the 132 marker loci averaged 4.73 for number of alleles, 0.51 for expected heterozygosity (He), 0.49 for observed heterozygosity (Ho), 0.46 for polymorphism information content (PIC), and 0.04 for frequency of null alleles. The clustering of the 50 accessions in a dendrogram constructed from the 150 markers confirmed the wide genetic diversity and presence of three of the four major geographic groups: Central European, Black Sea, and Spanish-Italian. In the mapping population, 105 loci segregated, of which 101 were assigned to a linkage group (LG), with positions well-dispersed across all 11 LGs. These new markers will be useful for cultivar fingerprinting, diversity studies, genome comparisons, mapping, and alignment of the linkage map with the genome sequence and physical map.
Collapse
|
41
|
Pandey G, Yadav CB, Sahu PP, Muthamilarasan M, Prasad M. Salinity induced differential methylation patterns in contrasting cultivars of foxtail millet (Setaria italica L.). PLANT CELL REPORTS 2017; 36:759-772. [PMID: 27999979 DOI: 10.1007/s00299-016-2093-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 12/07/2016] [Indexed: 05/18/2023]
Abstract
Genome-wide methylation analysis of foxtail millet cultivars contrastingly differing in salinity tolerance revealed DNA demethylation events occurring in tolerant cultivar under salinity stress, eventually modulating the expression of stress-responsive genes. Reduced productivity and significant yield loss are the adverse effects of environmental conditions on physiological and biochemical pathways in crop plants. In this context, understanding the epigenetic machinery underlying the tolerance traits in a naturally stress tolerant crop is imperative. Foxtail millet (Setaria italica) is known for its better tolerance to abiotic stresses compared to other cereal crops. In the present study, methylation-sensitive amplified polymorphism (MSAP) technique was used to quantify the salt-induced methylation changes in two foxtail millet cultivars contrastingly differing in their tolerance levels to salt stress. The study highlighted that the DNA methylation level was significantly reduced in tolerant cultivar compared to sensitive cultivar. A total of 86 polymorphic MSAP fragments were identified, sequenced and functionally annotated. These fragments showed sequence similarity to several genes including ABC transporter, WRKY transcription factor, serine threonine-protein phosphatase, disease resistance, oxidoreductases, cell wall-related enzymes and retrotransposon and transposase like proteins, suggesting salt stress-induced methylation in these genes. Among these, four genes were chosen for expression profiling which showed differential expression pattern between both cultivars of foxtail millet. Altogether, the study infers that salinity stress induces genome-wide DNA demethylation, which in turn, modulates expression of corresponding genes.
Collapse
Affiliation(s)
- Garima Pandey
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110 067, India
| | - Chandra Bhan Yadav
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110 067, India
| | - Pranav Pankaj Sahu
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110 067, India
| | | | - Manoj Prasad
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110 067, India.
| |
Collapse
|
42
|
Anuradha N, Satyavathi CT, Bharadwaj C, Nepolean T, Sankar SM, Singh SP, Meena MC, Singhal T, Srivastava RK. Deciphering Genomic Regions for High Grain Iron and Zinc Content Using Association Mapping in Pearl Millet. FRONTIERS IN PLANT SCIENCE 2017; 8:412. [PMID: 28507551 PMCID: PMC5410614 DOI: 10.3389/fpls.2017.00412] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 03/10/2017] [Indexed: 05/11/2023]
Abstract
Micronutrient malnutrition, especially deficiency of two mineral elements, iron [Fe] and zinc [Zn] in the developing world needs urgent attention. Pearl millet is one of the best crops with many nutritional properties and is accessible to the poor. We report findings of the first attempt to mine favorable alleles for grain iron and zinc content through association mapping in pearl millet. An association mapping panel of 130 diverse lines was evaluated at Delhi, Jodhpur and Dharwad, representing all the three pearl millet growing agro-climatic zones of India, during 2014 and 2015. Wide range of variation was observed for grain iron (32.3-111.9 ppm) and zinc (26.6-73.7 ppm) content. Genotyping with 114 representative polymorphic SSRs revealed 0.35 mean gene diversity. STRUCTURE analysis revealed presence of three sub-populations which was further supported by Neighbor-Joining method of clustering and principal coordinate analysis (PCoA). Marker-trait associations (MTAs) were analyzed with 267 markers (250 SSRs and 17 genic markers) in both general linear model (GLM) and mixed linear model (MLM), however, MTAs resulting from MLM were considered for more robustness of the associations. After appropriate Bonferroni correction, Xpsmp 2261 (13.34% R2-value), Xipes 0180 (R2-value of 11.40%) and Xipes 0096 (R2-value of 11.38%) were consistently associated with grain iron and zinc content for all the three locations. Favorable alleles and promising lines were identified for across and specific environments. PPMI 1102 had highest number (7) of favorable alleles, followed by four each for PPMFeZMP 199 and PPMI 708 for across the environment performance for both grain Fe and Zn content, while PPMI 1104 had alleles specific to Dharwad for grain Fe and Zn content. When compared with the reference genome Tift 23D2B1-P1-P5, Xpsmp 2261 amplicon was identified in intergenic region on pseudomolecule 5, while the other marker, Xipes 0810 was observed to be overlapping with aspartic proteinase (Asp) gene on pseudomolecule 3. Thus, this study can help in breeding new lines with enhanced micronutrient content using marker-assisted selection (MAS) in pearl millet leading to improved well-being especially for women and children.
Collapse
Affiliation(s)
- N. Anuradha
- Division of Genetics, ICAR-Indian Agricultural Research InstituteNew Delhi, India
| | - C. Tara Satyavathi
- Division of Genetics, ICAR-Indian Agricultural Research InstituteNew Delhi, India
- *Correspondence: C. Tara Satyavathi
| | - C. Bharadwaj
- Division of Genetics, ICAR-Indian Agricultural Research InstituteNew Delhi, India
| | - T. Nepolean
- Division of Genetics, ICAR-Indian Agricultural Research InstituteNew Delhi, India
| | - S. Mukesh Sankar
- Division of Genetics, ICAR-Indian Agricultural Research InstituteNew Delhi, India
| | - Sumer P. Singh
- Division of Genetics, ICAR-Indian Agricultural Research InstituteNew Delhi, India
| | - Mahesh C. Meena
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research InstituteNew Delhi, India
| | - Tripti Singhal
- Division of Genetics, ICAR-Indian Agricultural Research InstituteNew Delhi, India
| | - Rakesh K. Srivastava
- International Crops Research Institute for the Semi-Arid TropicsPatancheru, India
- Rakesh K. Srivastava
| |
Collapse
|
43
|
Bandyopadhyay T, Muthamilarasan M, Prasad M. Millets for Next Generation Climate-Smart Agriculture. FRONTIERS IN PLANT SCIENCE 2017; 8:1266. [PMID: 28769966 PMCID: PMC5513978 DOI: 10.3389/fpls.2017.01266] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 07/05/2017] [Indexed: 05/04/2023]
|
44
|
Genome-wide characterization of microsatellites in Triticeae species: abundance, distribution and evolution. Sci Rep 2016; 6:32224. [PMID: 27561724 PMCID: PMC4999822 DOI: 10.1038/srep32224] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 07/20/2016] [Indexed: 11/08/2022] Open
Abstract
Microsatellites are an important constituent of plant genome and distributed across entire genome. In this study, genome-wide analysis of microsatellites in 8 Triticeae species and 9 model plants revealed that microsatellite characteristics were similar among the Triticeae species. Furthermore, genome-wide microsatellite markers were designed in wheat and then used to analyze the evolutionary relationship of wheat and other Triticeae species. Results displayed that Aegilops tauschii was found to be the closest species to Triticum aestivum, followed by Triticum urartu, Triticum turgidum and Aegilops speltoides, while Triticum monococcum, Aegilops sharonensis and Hordeum vulgare showed a relatively lower PCR amplification effectivity. Additionally, a significantly higher PCR amplification effectivity was found in chromosomes at the same subgenome than its homoeologous when these markers were subjected to search against different chromosomes in wheat. After a rigorous screening process, a total of 20,666 markers showed high amplification and polymorphic potential in wheat and its relatives, which were integrated with the public available wheat markers and then anchored to the genome of wheat (CS). This study not only provided the useful resource for SSR markers development in Triticeae species, but also shed light on the evolution of polyploid wheat from the perspective of microsatellites.
Collapse
|
45
|
Gimode D, Odeny DA, de Villiers EP, Wanyonyi S, Dida MM, Mneney EE, Muchugi A, Machuka J, de Villiers SM. Identification of SNP and SSR Markers in Finger Millet Using Next Generation Sequencing Technologies. PLoS One 2016; 11:e0159437. [PMID: 27454301 PMCID: PMC4959724 DOI: 10.1371/journal.pone.0159437] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 07/01/2016] [Indexed: 01/18/2023] Open
Abstract
Finger millet is an important cereal crop in eastern Africa and southern India with excellent grain storage quality and unique ability to thrive in extreme environmental conditions. Since negligible attention has been paid to improving this crop to date, the current study used Next Generation Sequencing (NGS) technologies to develop both Simple Sequence Repeat (SSR) and Single Nucleotide Polymorphism (SNP) markers. Genomic DNA from cultivated finger millet genotypes KNE755 and KNE796 was sequenced using both Roche 454 and Illumina technologies. Non-organelle sequencing reads were assembled into 207 Mbp representing approximately 13% of the finger millet genome. We identified 10,327 SSRs and 23,285 non-homeologous SNPs and tested 101 of each for polymorphism across a diverse set of wild and cultivated finger millet germplasm. For the 49 polymorphic SSRs, the mean polymorphism information content (PIC) was 0.42, ranging from 0.16 to 0.77. We also validated 92 SNP markers, 80 of which were polymorphic with a mean PIC of 0.29 across 30 wild and 59 cultivated accessions. Seventy-six of the 80 SNPs were polymorphic across 30 wild germplasm with a mean PIC of 0.30 while only 22 of the SNP markers showed polymorphism among the 59 cultivated accessions with an average PIC value of 0.15. Genetic diversity analysis using the polymorphic SNP markers revealed two major clusters; one of wild and another of cultivated accessions. Detailed STRUCTURE analysis confirmed this grouping pattern and further revealed 2 sub-populations within wild E. coracana subsp. africana. Both STRUCTURE and genetic diversity analysis assisted with the correct identification of the new germplasm collections. These polymorphic SSR and SNP markers are a significant addition to the existing 82 published SSRs, especially with regard to the previously reported low polymorphism levels in finger millet. Our results also reveal an unexploited finger millet genetic resource that can be included in the regional breeding programs in order to efficiently optimize productivity.
Collapse
Affiliation(s)
- Davis Gimode
- Kenyatta University, P.O. Box 43844–00100, Nairobi, Kenya
| | | | | | | | | | - Emmarold E. Mneney
- Mikocheni Agricultural Research Institute, P.O. Box 6226, Dar-Es-Salaam, Tanzania
| | - Alice Muchugi
- Kenyatta University, P.O. Box 43844–00100, Nairobi, Kenya
- ICRAF-Nairobi, P.O Box 30677, Nairobi, Kenya
| | - Jesse Machuka
- Kenyatta University, P.O. Box 43844–00100, Nairobi, Kenya
| | | |
Collapse
|
46
|
Singh AK, Singh R, Subramani R, Kumar R, Wankhede DP. Molecular Approaches to Understand Nutritional Potential of Coarse Cereals. Curr Genomics 2016; 17:177-92. [PMID: 27252585 PMCID: PMC4869005 DOI: 10.2174/1389202917666160202215308] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 06/26/2015] [Accepted: 06/29/2015] [Indexed: 01/01/2023] Open
Abstract
Coarse grains are important group of crops that constitutes staple food for large population residing primarily in the arid and semi-arid regions of the world. Coarse grains are designated as nutri-cereals as they are rich in essential amino acids, minerals and vitamins. In spite of having several nutritional virtues in coarse grain as mentioned above, there is still scope for improvement in quality parameters such as cooking qualities, modulation of nutritional constituents and reduction or elimination of anti-nutritional factors. Besides its use in traditional cooking, coarse grains have been used mainly in the weaning food preparation and other malted food production. Improvement in quality parameters will certainly increase consumer's preference for coarse grains and increase their demand. The overall genetic gain in quality traits of economic importance in the cultivated varieties will enhance their industrial value and simultaneously increase income of farmers growing these varieties. The urgent step for improvement of quality traits in coarse grains requires a detailed understanding of molecular mechanisms responsible for varied level of different nutritional contents in different genotypes of these crops. In this review we have discussed the progresses made in understanding of coarse grain biology with various omics tool coupled with modern breeding approaches and the current status with regard to our effort towards dissecting traits related to improvement of quality and nutritional constituents of grains.
Collapse
Affiliation(s)
- Amit Kumar Singh
- Division of Genomic Resources, ICAR- National Bureau of Plant Genetic Resources, New Delhi, India
| | - Rakesh Singh
- Division of Genomic Resources, ICAR- National Bureau of Plant Genetic Resources, New Delhi, India
| | - Rajkumar Subramani
- Division of Genomic Resources, ICAR- National Bureau of Plant Genetic Resources, New Delhi, India
| | - Rajesh Kumar
- Division of Genomic Resources, ICAR- National Bureau of Plant Genetic Resources, New Delhi, India
| | | |
Collapse
|
47
|
Characterization and Transferable Utility of Microsatellite Markers in the Wild and Cultivated Arachis Species. PLoS One 2016; 11:e0156633. [PMID: 27243460 PMCID: PMC4887017 DOI: 10.1371/journal.pone.0156633] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 05/17/2016] [Indexed: 11/19/2022] Open
Abstract
Microsatellite or simple sequence repeat (SSR) is one of the most widely distributed molecular markers that have been widely utilized to assess genetic diversity and genetic mapping for important traits in plants. However, the understanding of microsatellite characteristics in Arachis species and the currently available amount of high-quality SSR markers remain limited. In this study, we identified 16,435 genome survey sequences SSRs (GSS-SSRs) and 40,199 expressed sequence tag SSRs (EST-SSRs) in Arachis hypogaea and its wild relative species using the publicly available sequence data. The GSS-SSRs had a density of 159.9–239.8 SSRs/Mb for wild Arachis and 1,015.8 SSR/Mb for cultivated Arachis, whereas the EST-SSRs had the density of 173.5–384.4 SSR/Mb and 250.9 SSRs/Mb for wild and cultivated Arachis, respectively. The trinucleotide SSRs were predominant across Arachis species, except that the dinucleotide accounted for most in A. hypogaea GSSs. From Arachis GSS-SSR and EST-SSR sequences, we developed 2,589 novel SSR markers that showed a high polymorphism in six diverse A. hypogaea accessions. A genetic linkage map that contained 540 novel SSR loci and 105 anchor SSR loci was constructed by case of a recombinant inbred lines F6 population. A subset of 82 randomly selected SSR markers were used to screen 39 wild and 22 cultivated Arachis accessions, which revealed a high transferability of the novel SSRs across Arachis species. Our results provided informative clues to investigate microsatellite patterns across A. hypogaea and its wild relative species and potentially facilitate the germplasm evaluation and gene mapping in Arachis species.
Collapse
|
48
|
Fang X, Dong K, Wang X, Liu T, He J, Ren R, Zhang L, Liu R, Liu X, Li M, Huang M, Zhang Z, Yang T. A high density genetic map and QTL for agronomic and yield traits in Foxtail millet [Setaria italica (L.) P. Beauv]. BMC Genomics 2016; 17:336. [PMID: 27146360 PMCID: PMC4857278 DOI: 10.1186/s12864-016-2628-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 04/16/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Foxtail millet [Setaria italica (L.) P. Beauv.], a crop of historical importance in China, has been adopted as a model crop for studying C-4 photosynthesis, stress biology and biofuel traits. Construction of a high density genetic map and identification of stable quantitative trait loci (QTL) lay the foundation for marker-assisted selection for agronomic traits and yield improvement. RESULT A total of 10598 SSR markers were developed according to the reference genome sequence of foxtail millet cultivar 'Yugu1'. A total of 1013 SSR markers showing polymorphism between Yugu1 and Longgu7 were used to genotype 167 individuals from a Yugu1 × Longgu7 F2 population, and a high density genetic map was constructed. The genetic map contained 1035 loci and spanned 1318.8 cM with an average distance of 1.27 cM between adjacent markers. Based on agronomic and yield traits identified in 2 years, 29 QTL were identified for 11 traits with combined analysis and single environment analysis. These QTL explained from 7.0 to 14.3 % of phenotypic variation. Favorable QTL alleles for peduncle length originated from Longgu7 whereas favorable alleles for the other traits originated from Yugu1 except for qLMS6.1. CONCLUSIONS New SSR markers, a high density genetic map and QTL identified for agronomic and yield traits lay the ground work for functional gene mapping, map-based cloning and marker-assisted selection in foxtail millet.
Collapse
Affiliation(s)
- Xiaomei Fang
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, People's Republic of China
| | - Kongjun Dong
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, Gansu, People's Republic of China
| | - Xiaoqin Wang
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, People's Republic of China
| | - Tianpeng Liu
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, Gansu, People's Republic of China
| | - Jihong He
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, Gansu, People's Republic of China
| | - Ruiyu Ren
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, Gansu, People's Republic of China
| | - Lei Zhang
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, Gansu, People's Republic of China
| | - Rui Liu
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, People's Republic of China
| | - Xueying Liu
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, People's Republic of China
| | - Man Li
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, People's Republic of China
| | - Mengzhu Huang
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, People's Republic of China
| | - Zhengsheng Zhang
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, People's Republic of China.
| | - Tianyu Yang
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, Gansu, People's Republic of China.
| |
Collapse
|
49
|
Cheng J, Zhao Z, Li B, Qin C, Wu Z, Trejo-Saavedra DL, Luo X, Cui J, Rivera-Bustamante RF, Li S, Hu K. A comprehensive characterization of simple sequence repeats in pepper genomes provides valuable resources for marker development in Capsicum. Sci Rep 2016; 6:18919. [PMID: 26739748 PMCID: PMC4703971 DOI: 10.1038/srep18919] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/30/2015] [Indexed: 02/05/2023] Open
Abstract
The sequences of the full set of pepper genomes including nuclear, mitochondrial and chloroplast are now available for use. However, the overall of simple sequence repeats (SSR) distribution in these genomes and their practical implications for molecular marker development in Capsicum have not yet been described. Here, an average of 868,047.50, 45.50 and 30.00 SSR loci were identified in the nuclear, mitochondrial and chloroplast genomes of pepper, respectively. Subsequently, systematic comparisons of various species, genome types, motif lengths, repeat numbers and classified types were executed and discussed. In addition, a local database composed of 113,500 in silico unique SSR primer pairs was built using a homemade bioinformatics workflow. As a pilot study, 65 polymorphic markers were validated among a wide collection of 21 Capsicum genotypes with allele number and polymorphic information content value per marker raging from 2 to 6 and 0.05 to 0.64, respectively. Finally, a comparison of the clustering results with those of a previous study indicated the usability of the newly developed SSR markers. In summary, this first report on the comprehensive characterization of SSR motifs in pepper genomes and the very large set of SSR primer pairs will benefit various genetic studies in Capsicum.
Collapse
Affiliation(s)
- Jiaowen Cheng
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Zicheng Zhao
- Department of Computer Science, City University of Hong Kong, Hong Kong 999077, China
| | - Bo Li
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Cheng Qin
- Pepper Institute, Zunyi Academy of Agricultural Sciences, Zunyi, Guizhou 563102, China
| | - Zhiming Wu
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Diana L. Trejo-Saavedra
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav)-Unidad Irapuato, Irapuato 36821, México
| | - Xirong Luo
- Pepper Institute, Zunyi Academy of Agricultural Sciences, Zunyi, Guizhou 563102, China
| | - Junjie Cui
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Rafael F. Rivera-Bustamante
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav)-Unidad Irapuato, Irapuato 36821, México
| | - Shuaicheng Li
- Department of Computer Science, City University of Hong Kong, Hong Kong 999077, China
| | - Kailin Hu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
50
|
Sood S, Kumar A, Babu BK, Gaur VS, Pandey D, Kant L, Pattnayak A. Gene Discovery and Advances in Finger Millet [ Eleusine coracana (L.) Gaertn.] Genomics-An Important Nutri-Cereal of Future. FRONTIERS IN PLANT SCIENCE 2016; 7:1634. [PMID: 27881984 PMCID: PMC5101212 DOI: 10.3389/fpls.2016.01634] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 10/17/2016] [Indexed: 05/22/2023]
Abstract
The rapid strides in molecular marker technologies followed by genomics, and next generation sequencing advancements in three major crops (rice, maize and wheat) of the world have given opportunities for their use in the orphan, but highly valuable future crops, including finger millet [Eleusine coracana (L.) Gaertn.]. Finger millet has many special agronomic and nutritional characteristics, which make it an indispensable crop in arid, semi-arid, hilly and tribal areas of India and Africa. The crop has proven its adaptability in harsh conditions and has shown resilience to climate change. The adaptability traits of finger millet have shown the advantage over major cereal grains under stress conditions, revealing it as a storehouse of important genomic resources for crop improvement. Although new technologies for genomic studies are now available, progress in identifying and tapping these important alleles or genes is lacking. RAPDs were the default choice for genetic diversity studies in the crop until the last decade, but the subsequent development of SSRs and comparative genomics paved the way for the marker assisted selection in finger millet. Resistance gene homologs from NBS-LRR region of finger millet for blast and sequence variants for nutritional traits from other cereals have been developed and used invariably. Population structure analysis studies exhibit 2-4 sub-populations in the finger millet gene pool with separate grouping of Indian and exotic genotypes. Recently, the omics technologies have been efficiently applied to understand the nutritional variation, drought tolerance and gene mining. Progress has also occurred with respect to transgenics development. This review presents the current biotechnological advancements along with research gaps and future perspective of genomic research in finger millet.
Collapse
Affiliation(s)
- Salej Sood
- Indian Council of Agricultural Research, Vivekananda Institute of Hill AgricultureAlmora, India
- *Correspondence: Salej Sood ;
| | - Anil Kumar
- Molecular Biology and Genetic Engineering, Govind Ballabh Pant University of Agriculture and TechnologyPantnagar, India
- Anil Kumar
| | - B. Kalyana Babu
- Indian Council of Agricultural Research, Indian Institute of Oil Palm ResearchPedavegi, India
| | | | - Dinesh Pandey
- Molecular Biology and Genetic Engineering, Govind Ballabh Pant University of Agriculture and TechnologyPantnagar, India
| | - Lakshmi Kant
- Indian Council of Agricultural Research, Vivekananda Institute of Hill AgricultureAlmora, India
| | - Arunava Pattnayak
- Indian Council of Agricultural Research, Vivekananda Institute of Hill AgricultureAlmora, India
| |
Collapse
|