1
|
Sharma S, Prusty A, Dansana PK, Kapoor S, Tyagi AK. Overexpression of the general transcription factor OsTFIIB5 alters rice development and seed quality. PLANT CELL REPORTS 2025; 44:27. [PMID: 39794608 DOI: 10.1007/s00299-025-03423-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025]
Abstract
KEY MESSAGE Overexpression of general transcription factor OsTFIIB5 in rice affects seedling growth, plant height, flowering time, panicle architecture, and seed protein/starch levels and involves modulation of expression of associated genes. TFIIB, a key general transcription factor (GTF), plays a critical role in pre-initiation complex (PIC) formation and facilitates RNA polymerase II-mediated transcription. In humans and yeast, TFIIB is encoded by a single gene; however, in plants it is encoded by a multigene family whose products may perform specialized transcriptional functions. The role of plant TFIIBs, particularly in monocots, remains largely unexplored. This study presents the first functional characterization of the rice TFIIB gene, OsTFIIB5 (LOC_Os09g36440), during development. Expression profiling of OsTFIIB5 revealed differential patterns across various developmental stages, with pronounced transcript accumulation during seed development. Overexpression of OsTFIIB5 impacted multiple stages of plant growth and development, leading to phenotypic changes such as altered seedling growth, reduced plant height, early heading, altered panicle architecture, decreased yield, and changes in seed storage substances. Notably, there were no effects on seed germination, pollen development, and grain size. Reduction in shoot length and plant height was linked to altered expression of genes involved in gibberellin (GA) biosynthesis, signalling, and deactivation. Overexpression of OsTFIIB5 enhanced the expression of genes involved in the photoperiodic flowering pathway, resulting in early panicle emergence. Higher expression levels of OsTFIIB5 also induced the accumulation of seed storage proteins (SSPs), while reducing starch content and altering the proportions of amylose and amylopectin in seeds. These findings suggest that OsTFIIB5 functions as a transcriptional regulator, governing multiple aspects of rice growth and development.
Collapse
Affiliation(s)
- Shivam Sharma
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus (UDSC), Benito Juarez Marg, New Delhi, 110021, India
| | - Ankita Prusty
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus (UDSC), Benito Juarez Marg, New Delhi, 110021, India
| | - Prasant Kumar Dansana
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus (UDSC), Benito Juarez Marg, New Delhi, 110021, India
| | - Sanjay Kapoor
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus (UDSC), Benito Juarez Marg, New Delhi, 110021, India
| | - Akhilesh Kumar Tyagi
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus (UDSC), Benito Juarez Marg, New Delhi, 110021, India.
| |
Collapse
|
2
|
Ma J, Li S, Wang T, Tao Z, Huang S, Lin N, Zhao Y, Wang C, Li P. Cooperative condensation of RNA-DIRECTED DNA METHYLATION 16 splicing isoforms enhances heat tolerance in Arabidopsis. Nat Commun 2025; 16:433. [PMID: 39762263 PMCID: PMC11704304 DOI: 10.1038/s41467-025-55850-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025] Open
Abstract
Dissecting the mechanisms underlying heat tolerance is important for understanding how plants acclimate to heat stress. Here, we identify a heat-responsive gene in Arabidopsis thaliana, RNA-DIRECTED DNA METHYLATION 16 (RDM16), which encodes a pre-mRNA splicing factor. Knockout mutants of RDM16 are hypersensitive to heat stress, which is associated with impaired splicing of the mRNAs of 18 out of 20 HEAT SHOCK TRANSCRIPTION FACTOR (HSF) genes. RDM16 forms condensates upon exposure to heat. The arginine residues in intrinsically disordered region 1 (IDR1) of RDM16 are responsible for RDM16 condensation and its function in heat stress tolerance. Notably, RDM16 produces two alternatively spliced transcripts designated RDM16-LONG (RDL) and RDM16-SHORT (RDS). RDS also forms condensates and can promote RDL condensation to improve heat tolerance. Our findings provide insight into the cooperative condensation of the two RDM16 isoforms encoded by RDM16 splice variants in enhancing heat tolerance in Arabidopsis.
Collapse
Affiliation(s)
- Jing Ma
- The National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Shuai Li
- The National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Tengyue Wang
- The National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Zhen Tao
- The National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Shijie Huang
- The National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Ning Lin
- The National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Yibing Zhao
- The National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Chuanhong Wang
- The National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China.
| | - Peijin Li
- The National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China.
| |
Collapse
|
3
|
Yang L, Yang L, Zhao C, Bai Z, Xie M, Liu J, Cui X, Bouwmeester K, Liu S. Unravelling alternative splicing patterns in susceptible and resistant Brassica napus lines in response to Xanthomonas campestris infection. BMC PLANT BIOLOGY 2024; 24:1027. [PMID: 39472805 PMCID: PMC11523580 DOI: 10.1186/s12870-024-05728-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 10/18/2024] [Indexed: 11/02/2024]
Abstract
BACKGROUND Rapeseed (Brassica napus L.) is an important oil and industrial crop worldwide. Black rot caused by the bacterial pathogen Xanthomonas campestris pv. campestris (Xcc) is an infectious vascular disease that leads to considerable yield losses in rapeseed. Resistance improvement through genetic breeding is an effective and sustainable approach to control black rot disease in B. napus. However, the molecular mechanisms underlying Brassica-Xcc interactions are not yet fully understood, especially regarding the impact of post-transcriptional gene regulation via alternative splicing (AS). RESULTS In this study, we compared the AS landscapes of a susceptible parental line and two mutagenized B. napus lines with contrasting levels of black rot resistance. Different types of AS events were identified in these B. napus lines at three time points upon Xcc infection, among which intron retention was the most common AS type. A total of 1,932 genes was found to show differential AS patterns between different B. napus lines. Multiple defense-related differential alternative splicing (DAS) hub candidates were pinpointed through an isoform-based co-expression network analysis, including genes involved in pathogen recognition, defense signalling, transcriptional regulation, and oxidation reduction. CONCLUSION This study provides new insights into the potential effects of post-transcriptional regulation on immune responses in B. napus towards Xcc attack. These findings could be beneficial for the genetic improvement of B. napus to achieve durable black rot resistance in the future.
Collapse
Affiliation(s)
- Li Yang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei, 430062, China
- Biosystematics Group, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands
- Present Address: School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Lingli Yang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei, 430062, China
- Present Address: National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chuanji Zhao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei, 430062, China
| | - Zetao Bai
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei, 430062, China
| | - Meili Xie
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei, 430062, China
| | - Jie Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei, 430062, China
| | - Xiaobo Cui
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei, 430062, China
| | - Klaas Bouwmeester
- Biosystematics Group, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands.
| | - Shengyi Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei, 430062, China.
| |
Collapse
|
4
|
Sharma S, Kapoor S, Ansari A, Tyagi AK. The general transcription factors (GTFs) of RNA polymerase II and their roles in plant development and stress responses. Crit Rev Biochem Mol Biol 2024; 59:267-309. [PMID: 39361782 PMCID: PMC12051360 DOI: 10.1080/10409238.2024.2408562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/03/2024] [Accepted: 09/21/2024] [Indexed: 10/05/2024]
Abstract
In eukaryotes, general transcription factors (GTFs) enable recruitment of RNA polymerase II (RNA Pol II) to core promoters to facilitate initiation of transcription. Extensive research in mammals and yeast has unveiled their significance in basal transcription as well as in diverse biological processes. Unlike mammals and yeast, plant GTFs exhibit remarkable degree of variability and flexibility. This is because plant GTFs and GTF subunits are often encoded by multigene families, introducing complexity to transcriptional regulation at both cellular and biological levels. This review provides insights into the general transcription mechanism, GTF composition, and their cellular functions. It further highlights the involvement of RNA Pol II-related GTFs in plant development and stress responses. Studies reveal that GTFs act as important regulators of gene expression in specific developmental processes and help equip plants with resilience against adverse environmental conditions. Their functions may be direct or mediated through their cofactor nature. The versatility of GTFs in controlling gene expression, and thereby influencing specific traits, adds to the intricate complexity inherent in the plant system.
Collapse
Affiliation(s)
- Shivam Sharma
- Inter-disciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Sanjay Kapoor
- Inter-disciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Athar Ansari
- Department of Biological Science, Wayne State University, Detroit, MI, USA
| | - Akhilesh Kumar Tyagi
- Inter-disciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| |
Collapse
|
5
|
Szentpéteri V, Virág E, Mayer Z, Duc NH, Hegedűs G, Posta K. First Peek into the Transcriptomic Response in Heat-Stressed Tomato Inoculated with Septoglomus constrictum. PLANTS (BASEL, SWITZERLAND) 2024; 13:2266. [PMID: 39204702 PMCID: PMC11359853 DOI: 10.3390/plants13162266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/29/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
In this study, we report the interaction between an arbuscular mycorrhizal fungus, Septoglomus constrictum, and tomato plants under heat stress. For the first time, this interaction was studied by Illumina RNA-seq, followed by a comprehensive bioinformatic analysis that investigated root and leaf tissue samples. The genome-wide transcriptional profiling displayed fewer transcriptomic changes in the root under heat-stress conditions caused by S. constrictum. The top 50 DEGs suggested significant changes in the expression of genes encoding heat-shock proteins, transporter proteins, and genes of phytohormone metabolism involving jasmonic acid signalling. S. constrictum induced the upregulation of genes associated with pathways such as 'drought-responsive' and the 'development of root hair' in the root, as well as 'glycolipid desaturation', 'intracellular auxin transport', and 'ethylene biosynthesis' in the leaf. The pathways 'biotin biosynthesis' and 'threonine degradation' were found in both investigated tissue types. Expression analysis of transcription factors showed 2 and 11 upregulated transcription factors in heat-stressed root and leaf tissues, respectively. However, we did not find shared transcription factors. Heat-stressed arbuscular mycorrhizal plants suffered less oxidative stress when exposed to high temperatures. Colorimetric tests demonstrated less accumulation of H2O2 and MDA in heat-stressed mycorrhizal plants. This phenomenon was accompanied by the higher expression of six stress genes that encode peroxidases, glutathione S-transferase and ubiquitin carboxyl-terminal hydrolase in roots and leaves. Our findings provide a new perspective on elucidating the functional metabolic processes of tomato plants under mycorrhizal-heat stressed conditions.
Collapse
Affiliation(s)
- Viktor Szentpéteri
- Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (V.S.); (Z.M.); (N.H.D.)
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| | - Eszter Virág
- Institute of One Health, University of Debrecen, 4032 Debrecen, Hungary;
- Research Institute for Medicinal Plants and Herbs Ltd., 2011 Budakalász, Hungary
| | - Zoltán Mayer
- Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (V.S.); (Z.M.); (N.H.D.)
| | - Nguyen Hong Duc
- Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (V.S.); (Z.M.); (N.H.D.)
| | - Géza Hegedűs
- Department of Information Technology and Its Applications, Faculty of Information Technology, University of Pannonia, 8900 Zalaegerszeg, Hungary;
| | - Katalin Posta
- Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (V.S.); (Z.M.); (N.H.D.)
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| |
Collapse
|
6
|
Gan J, Qiu Y, Tao Y, Zhang L, Okita TW, Yan Y, Tian L. RNA-seq analysis reveals transcriptome reprogramming and alternative splicing during early response to salt stress in tomato root. FRONTIERS IN PLANT SCIENCE 2024; 15:1394223. [PMID: 38966147 PMCID: PMC11222332 DOI: 10.3389/fpls.2024.1394223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/30/2024] [Indexed: 07/06/2024]
Abstract
Salt stress is one of the dominant abiotic stress conditions that cause severe damage to plant growth and, in turn, limiting crop productivity. It is therefore crucial to understand the molecular mechanism underlying plant root responses to high salinity as such knowledge will aid in efforts to develop salt-tolerant crops. Alternative splicing (AS) of precursor RNA is one of the important RNA processing steps that regulate gene expression and proteome diversity, and, consequently, many physiological and biochemical processes in plants, including responses to abiotic stresses like salt stress. In the current study, we utilized high-throughput RNA-sequencing to analyze the changes in the transcriptome and characterize AS landscape during the early response of tomato root to salt stress. Under salt stress conditions, 10,588 genes were found to be differentially expressed, including those involved in hormone signaling transduction, amino acid metabolism, and cell cycle regulation. More than 700 transcription factors (TFs), including members of the MYB, bHLH, and WRKY families, potentially regulated tomato root response to salt stress. AS events were found to be greatly enhanced under salt stress, where exon skipping was the most prevalent event. There were 3709 genes identified as differentially alternatively spliced (DAS), the most prominent of which were serine/threonine protein kinase, pentatricopeptide repeat (PPR)-containing protein, E3 ubiquitin-protein ligase. More than 100 DEGs were implicated in splicing and spliceosome assembly, which may regulate salt-responsive AS events in tomato roots. This study uncovers the stimulation of AS during tomato root response to salt stress and provides a valuable resource of salt-responsive genes for future studies to improve tomato salt tolerance.
Collapse
Affiliation(s)
- Jianghuang Gan
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Yongqi Qiu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Yilin Tao
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Laining Zhang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Thomas W. Okita
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Yanyan Yan
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Li Tian
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Kim N, Lee J, Yeom SI, Kang NJ, Kang WH. The landscape of abiotic and biotic stress-responsive splice variants with deep RNA-seq datasets in hot pepper. Sci Data 2024; 11:381. [PMID: 38615136 PMCID: PMC11016105 DOI: 10.1038/s41597-024-03239-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 04/05/2024] [Indexed: 04/15/2024] Open
Abstract
Alternative splicing (AS) is a widely observed phenomenon in eukaryotes that plays a critical role in development and stress responses. In plants, the large number of RNA-seq datasets in response to different environmental stressors can provide clues for identification of condition-specific and/or common AS variants for preferred agronomic traits. We report RNA-seq datasets (350.7 Gb) from Capsicum annuum inoculated with one of three bacteria, one virus, or one oomycete and obtained additional existing transcriptome datasets. In this study, we investigated the landscape of AS in response to environmental stressors, signaling molecules, and tissues from 425 total samples comprising 841.49 Gb. In addition, we identified genes that undergo AS under specific and shared stress conditions to obtain potential genes that may be involved in enhancing tolerance to stressors. We uncovered 1,642,007 AS events and identified 4,354 differential alternative splicing genes related to environmental stressors, tissues, and signaling molecules. This information and approach provide useful data for basic-research focused on enhancing tolerance to environmental stressors in hot pepper or establishing breeding programs.
Collapse
Affiliation(s)
- Nayoung Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju, South Korea
| | - Junesung Lee
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju, South Korea
| | - Seon-In Yeom
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju, South Korea
- Department of Horticulture, Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, South Korea
| | - Nam-Jun Kang
- Department of Horticulture, Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, South Korea
| | - Won-Hee Kang
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju, South Korea.
- Department of Horticulture, Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, South Korea.
| |
Collapse
|
8
|
Graci S, Barone A. Tomato plant response to heat stress: a focus on candidate genes for yield-related traits. FRONTIERS IN PLANT SCIENCE 2024; 14:1245661. [PMID: 38259925 PMCID: PMC10800405 DOI: 10.3389/fpls.2023.1245661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024]
Abstract
Climate change and global warming represent the main threats for many agricultural crops. Tomato is one of the most extensively grown and consumed horticultural products and can survive in a wide range of climatic conditions. However, high temperatures negatively affect both vegetative growth and reproductive processes, resulting in losses of yield and fruit quality traits. Researchers have employed different parameters to evaluate the heat stress tolerance, including evaluation of leaf- (stomatal conductance, net photosynthetic rate, Fv/Fm), flower- (inflorescence number, flower number, stigma exertion), pollen-related traits (pollen germination and viability, pollen tube growth) and fruit yield per plant. Moreover, several authors have gone even further, trying to understand the plants molecular response mechanisms to this stress. The present review focused on the tomato molecular response to heat stress during the reproductive stage, since the increase of temperatures above the optimum usually occurs late in the growing tomato season. Reproductive-related traits directly affects the final yield and are regulated by several genes such as transcriptional factors, heat shock proteins, genes related to flower, flowering, pollen and fruit set, and epigenetic mechanisms involving DNA methylation, histone modification, chromatin remodelling and non-coding RNAs. We provided a detailed list of these genes and their function under high temperature conditions in defining the final yield with the aim to summarize the recent findings and pose the attention on candidate genes that could prompt on the selection and constitution of new thermotolerant tomato plant genotypes able to face this abiotic challenge.
Collapse
Affiliation(s)
| | - Amalia Barone
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Naples, Italy
| |
Collapse
|
9
|
Wu B, Xia Y, Zhang G, Wang Y, Wang J, Ma S, Song Y, Yang Z, Ma L, Niu N. Transcriptomics reveals a core transcriptional network of K-type cytoplasmic male sterility microspore abortion in wheat (Triticum aestivum L.). BMC PLANT BIOLOGY 2023; 23:618. [PMID: 38057735 DOI: 10.1186/s12870-023-04611-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 11/15/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Cytoplasmic male sterility (CMS) plays a crucial role in hybrid production. K-type CMS, a cytoplasmic male sterile line of wheat with the cytoplasms of Aegilops kotschyi, is widely used due to its excellent characteristics of agronomic performance, easy maintenance and easy restoration. However, the mechanism of its pollen abortion is not yet clear. RESULTS In this study, wheat K-type CMS MS(KOTS)-90-110 (MS line) and it's fertile near-isogenic line MR (KOTS)-90-110 (MR line) were investigated. Cytological analysis indicated that the anthers of MS line microspore nucleus failed to divide normally into two sperm nucleus and lacked starch in mature pollen grains, and the key abortive period was the uninucleate stage to dinuclear stage. Then, we compared the transcriptome of MS line and MR line anthers at these two stages. 11,360 and 5182 differentially expressed genes (DEGs) were identified between the MS and MR lines in the early uninucleate and binucleate stages, respectively. Based on GO enrichment and KEGG pathways analysis, it was evident that significant transcriptomic differences were "plant hormone signal transduction", "MAPK signaling pathway" and "spliceosome". We identified 17 and 10 DEGs associated with the IAA and ABA signal transduction pathways, respectively. DEGs related to IAA signal transduction pathway were downregulated in the early uninucleate stage of MS line. The expression level of DEGs related to ABA pathway was significantly upregulated in MS line at the binucleate stage compared to MR line. The determination of plant hormone content and qRT-PCR further confirmed that hormone imbalance in MS lines. Meanwhile, 1 and 2 DEGs involved in ABA and Ethylene metabolism were also identified in the MAPK cascade pathway, respectively; the significant up regulation of spliceosome related genes in MS line may be another important factor leading to pollen abortion. CONCLUSIONS We proposed a transcriptome-mediated pollen abortion network for K-type CMS in wheat. The main idea is hormone imbalance may be the primary factor, MAPK cascade pathway and alternative splicing (AS) may also play important regulatory roles in this process. These findings provided intriguing insights for the molecular mechanism of microspore abortion in K-type CMS, and also give useful clues to identify the crucial genes of CMS in wheat.
Collapse
Affiliation(s)
- Baolin Wu
- College of Agronomy, Northwest A & F University, Key Laboratory of Crop Heterosis of Shaanxi Province, Wheat Breeding Engineering Research Center, Ministry of Education, Yangling, 712100, Shaanxi, China
| | - Yu Xia
- College of Agronomy, Northwest A & F University, Key Laboratory of Crop Heterosis of Shaanxi Province, Wheat Breeding Engineering Research Center, Ministry of Education, Yangling, 712100, Shaanxi, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Gaisheng Zhang
- College of Agronomy, Northwest A & F University, Key Laboratory of Crop Heterosis of Shaanxi Province, Wheat Breeding Engineering Research Center, Ministry of Education, Yangling, 712100, Shaanxi, China
| | - Yongqing Wang
- College of Agronomy, Northwest A & F University, Key Laboratory of Crop Heterosis of Shaanxi Province, Wheat Breeding Engineering Research Center, Ministry of Education, Yangling, 712100, Shaanxi, China
| | - Junwei Wang
- College of Agronomy, Northwest A & F University, Key Laboratory of Crop Heterosis of Shaanxi Province, Wheat Breeding Engineering Research Center, Ministry of Education, Yangling, 712100, Shaanxi, China
| | - Shoucai Ma
- College of Agronomy, Northwest A & F University, Key Laboratory of Crop Heterosis of Shaanxi Province, Wheat Breeding Engineering Research Center, Ministry of Education, Yangling, 712100, Shaanxi, China
| | - Yulong Song
- College of Agronomy, Northwest A & F University, Key Laboratory of Crop Heterosis of Shaanxi Province, Wheat Breeding Engineering Research Center, Ministry of Education, Yangling, 712100, Shaanxi, China
| | - Zhiquan Yang
- College of Agronomy, Northwest A & F University, Key Laboratory of Crop Heterosis of Shaanxi Province, Wheat Breeding Engineering Research Center, Ministry of Education, Yangling, 712100, Shaanxi, China
| | - Lingjian Ma
- College of Agronomy, Northwest A & F University, Key Laboratory of Crop Heterosis of Shaanxi Province, Wheat Breeding Engineering Research Center, Ministry of Education, Yangling, 712100, Shaanxi, China.
| | - Na Niu
- College of Agronomy, Northwest A & F University, Key Laboratory of Crop Heterosis of Shaanxi Province, Wheat Breeding Engineering Research Center, Ministry of Education, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
10
|
Wang L, Wang L, Tan M, Wang L, Zhao W, You J, Wang L, Yan X, Wang W. The pattern of alternative splicing and DNA methylation alteration and their interaction in linseed (Linum usitatissimum L.) response to repeated drought stresses. Biol Res 2023; 56:12. [PMID: 36922868 PMCID: PMC10018860 DOI: 10.1186/s40659-023-00424-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Drought stress has significantly hampered agricultural productivity worldwide and can also result in modifications to DNA methylation levels. However, the dynamics of DNA methylation and its association with the changes in gene transcription and alternative splicing (AS) under drought stress are unknown in linseed, which is frequently cultivated in arid and semiarid regions. RESULTS We analysed AS events and DNA methylation patterns in drought-tolerant (Z141) and drought-sensitive (NY-17) linseed under drought stress (DS) and repeated drought stress (RD) treatments. We found that the number of intron-retention (IR) and alternative 3' splice site (Alt3'SS) events were significantly higher in Z141 and NY-17 under drought stress. We found that the linseed response to the DS treatment was mainly regulated by transcription, while the response to the RD treatment was coregulated by transcription and AS. Whole genome-wide DNA methylation analysis revealed that drought stress caused an increase in the overall methylation level of linseed. Although we did not observe any correlation between differentially methylated genes (DMGs) and differentially spliced genes (DSGs) in this study, we found that the DSGs whose gene body region was hypermethylated in Z141 and hypomethylated in NY-17 were enriched in abiotic stress response Gene Ontology (GO) terms. This finding implies that gene body methylation plays an important role in AS regulation in some specific genes. CONCLUSION Our study is the first comprehensive genome-wide analysis of the relationship between linseed methylation changes and AS under drought and repeated drought stress. Our study revealed different interaction patterns between differentially expressed genes (DEGs) and DSGs under DS and RD treatments and differences between methylation and AS regulation in drought-tolerant and drought-sensitive linseed varieties. The findings will probably be of interest in the future. Our results provide interesting insights into the association between gene expression, AS, and DNA methylation in linseed under drought stress. Differences in these associations may account for the differences in linseed drought tolerance.
Collapse
Affiliation(s)
- Ling Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture and Rural Affairs Oil Crops Research Institute of Chinese Academy of Agricultural Science, Wuhan, 430062, China
| | - Lei Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture and Rural Affairs Oil Crops Research Institute of Chinese Academy of Agricultural Science, Wuhan, 430062, China
| | - Meilian Tan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture and Rural Affairs Oil Crops Research Institute of Chinese Academy of Agricultural Science, Wuhan, 430062, China
| | - Linhai Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture and Rural Affairs Oil Crops Research Institute of Chinese Academy of Agricultural Science, Wuhan, 430062, China
| | - Wei Zhao
- Crop Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
| | - Jun You
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture and Rural Affairs Oil Crops Research Institute of Chinese Academy of Agricultural Science, Wuhan, 430062, China
| | | | - Xingchu Yan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture and Rural Affairs Oil Crops Research Institute of Chinese Academy of Agricultural Science, Wuhan, 430062, China
| | - Wei Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture and Rural Affairs Oil Crops Research Institute of Chinese Academy of Agricultural Science, Wuhan, 430062, China.
| |
Collapse
|
11
|
Ruggiero A, Punzo P, Van Oosten MJ, Cirillo V, Esposito S, Costa A, Maggio A, Grillo S, Batelli G. Transcriptomic and splicing changes underlying tomato responses to combined water and nutrient stress. FRONTIERS IN PLANT SCIENCE 2022; 13:974048. [PMID: 36507383 PMCID: PMC9732681 DOI: 10.3389/fpls.2022.974048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
Tomato is a horticultural crop of high economic and nutritional value. Suboptimal environmental conditions, such as limited water and nutrient availability, cause severe yield reductions. Thus, selection of genotypes requiring lower inputs is a goal for the tomato breeding sector. We screened 10 tomato varieties exposed to water deficit, low nitrate or a combination of both. Biometric, physiological and molecular analyses revealed different stress responses among genotypes, identifying T270 as severely affected, and T250 as tolerant to the stresses applied. Investigation of transcriptome changes caused by combined stress in roots and leaves of these two genotypes yielded a low number of differentially expressed genes (DEGs) in T250 compared to T270, suggesting that T250 tailors changes in gene expression to efficiently respond to combined stress. By contrast, the susceptible tomato activated approximately one thousand and two thousand genes in leaves and roots respectively, indicating a more generalized stress response in this genotype. In particular, developmental and stress-related genes were differentially expressed, such as hormone responsive factors and transcription factors. Analysis of differential alternative splicing (DAS) events showed that combined stress greatly affects the splicing landscape in both genotypes, highlighting the important role of AS in stress response mechanisms. In particular, several stress and growth-related genes as well as transcription and splicing factors were differentially spliced in both tissues. Taken together, these results reveal important insights into the transcriptional and post-transcriptional mechanisms regulating tomato adaptation to growth under reduced water and nitrogen inputs.
Collapse
Affiliation(s)
- Alessandra Ruggiero
- CNR-IBBR, National Research Council of Italy, Institute of Biosciences and Bioresources, Research Division, Portici, Italy
| | - Paola Punzo
- CNR-IBBR, National Research Council of Italy, Institute of Biosciences and Bioresources, Research Division, Portici, Italy
| | | | - Valerio Cirillo
- Department of Agricultural Sciences, University of Naples, Federico II, Portici, Italy
| | - Salvatore Esposito
- CREA-CI, Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, Foggia, Italy
| | - Antonello Costa
- CNR-IBBR, National Research Council of Italy, Institute of Biosciences and Bioresources, Research Division, Portici, Italy
| | - Albino Maggio
- Department of Agricultural Sciences, University of Naples, Federico II, Portici, Italy
| | - Stefania Grillo
- CNR-IBBR, National Research Council of Italy, Institute of Biosciences and Bioresources, Research Division, Portici, Italy
| | - Giorgia Batelli
- CNR-IBBR, National Research Council of Italy, Institute of Biosciences and Bioresources, Research Division, Portici, Italy
| |
Collapse
|
12
|
Singh AK, Mishra P, Kashyap SP, Karkute SG, Singh PM, Rai N, Bahadur A, Behera TK. Molecular insights into mechanisms underlying thermo-tolerance in tomato. FRONTIERS IN PLANT SCIENCE 2022; 13:1040532. [PMID: 36388532 PMCID: PMC9645296 DOI: 10.3389/fpls.2022.1040532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Plant productivity is being seriously compromised by climate-change-induced temperature extremities. Agriculture and food safety are threatened due to global warming, and in many cases the negative impacts have already begun. Heat stress leads to significant losses in yield due to changes in growth pattern, plant phonologies, sensitivity to pests, flowering, grain filling, maturity period shrinkage, and senescence. Tomato is the second most important vegetable crop. It is very sensitive to heat stress and thus, yield losses in tomato due to heat stress could affect food and nutritional security. Tomato plants respond to heat stress with a variety of cellular, physiological, and molecular responses, beginning with the early heat sensing, followed by signal transduction, antioxidant defense, osmolyte synthesis and regulated gene expression. Recent findings suggest that specific plant organs are extremely sensitive to heat compared to the entire plant, redirecting the research more towards generative tissues. This is because, during sexual reproduction, developing pollens are the most sensitive to heat. Often, just a few degrees of temperature elevation during pollen development can have a negative effect on crop production. Furthermore, recent research has discovered certain genetic and epigenetic mechanisms playing key role in thermo-tolerance and have defined new directions for tomato heat stress response (HSR). Present challenges are to increase the understanding of molecular mechanisms underlying HS, and to identify superior genotypes with more tolerance to extreme temperatures. Several metabolites, genes, heat shock factors (HSFs) and microRNAs work together to regulate the plant HSR. The present review provides an insight into molecular mechanisms of heat tolerance and current knowledge of genetic and epigenetic control of heat-tolerance in tomato for sustainable agriculture in the future. The information will significantly contribute to improve breeding programs for development of heat tolerant cultivars.
Collapse
Affiliation(s)
- Achuit K. Singh
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh, India
| | - Pallavi Mishra
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh, India
| | - Sarvesh Pratap Kashyap
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh, India
| | - Suhas G. Karkute
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh, India
| | - Prabhakar Mohan Singh
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh, India
| | - Nagendra Rai
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh, India
| | - Anant Bahadur
- Division of Crop Production, ICAR-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh, India
| | - Tusar K. Behera
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh, India
| |
Collapse
|
13
|
Klodová B, Potěšil D, Steinbachová L, Michailidis C, Lindner AC, Hackenberg D, Becker JD, Zdráhal Z, Twell D, Honys D. Regulatory dynamics of gene expression in the developing male gametophyte of Arabidopsis. PLANT REPRODUCTION 2022:10.1007/s00497-022-00452-5. [PMID: 36282332 PMCID: PMC10363097 DOI: 10.1007/s00497-022-00452-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Sexual reproduction in angiosperms requires the production and delivery of two male gametes by a three-celled haploid male gametophyte. This demands synchronized gene expression in a short developmental window to ensure double fertilization and seed set. While transcriptomic changes in developing pollen are known for Arabidopsis, no studies have integrated RNA and proteomic data in this model. Further, the role of alternative splicing has not been fully addressed, yet post-transcriptional and post-translational regulation may have a key role in gene expression dynamics during microgametogenesis. We have refined and substantially updated global transcriptomic and proteomic changes in developing pollen for two Arabidopsis accessions. Despite the superiority of RNA-seq over microarray-based platforms, we demonstrate high reproducibility and comparability. We identify thousands of long non-coding RNAs as potential regulators of pollen development, hundreds of changes in alternative splicing and provide insight into mRNA translation rate and storage in developing pollen. Our analysis delivers an integrated perspective of gene expression dynamics in developing Arabidopsis pollen and a foundation for studying the role of alternative splicing in this model.
Collapse
Affiliation(s)
- Božena Klodová
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, Praha 2, 128 00, Czech Republic
| | - David Potěšil
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Lenka Steinbachová
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czech Republic
| | - Christos Michailidis
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czech Republic
| | - Ann-Cathrin Lindner
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | - Dieter Hackenberg
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK
- KWS SAAT SE & Co. KGaA, Grimsehlstraße 31, 37574, Einbeck, Germany
| | - Jörg D Becker
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157, Oeiras, Portugal
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | - Zbyněk Zdráhal
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - David Twell
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK.
| | - David Honys
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czech Republic.
| |
Collapse
|
14
|
Wu TY, Hoh KL, Boonyaves K, Krishnamoorthi S, Urano D. Diversification of heat shock transcription factors expanded thermal stress responses during early plant evolution. THE PLANT CELL 2022; 34:3557-3576. [PMID: 35849348 PMCID: PMC9516188 DOI: 10.1093/plcell/koac204] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/06/2022] [Indexed: 05/19/2023]
Abstract
The copy numbers of many plant transcription factor (TF) genes substantially increased during terrestrialization. This allowed TFs to acquire new specificities and thus create gene regulatory networks (GRNs) with new biological functions to help plants adapt to terrestrial environments. Through characterizing heat shock factor (HSF) genes MpHSFA1 and MpHSFB1 in the liverwort Marchantia polymorpha, we explored how heat-responsive GRNs widened their functions in M. polymorpha and Arabidopsis thaliana. An interspecies comparison of heat-induced transcriptomes and the evolutionary rates of HSFs demonstrated the emergence and subsequent rapid evolution of HSFB prior to terrestrialization. Transcriptome and metabolome analyses of M. polymorpha HSF-null mutants revealed that MpHSFA1 controls canonical heat responses such as thermotolerance and metabolic changes. MpHSFB1 also plays essential roles in heat responses, as well as regulating developmental processes including meristem branching and antheridiophore formation. Analysis of cis-regulatory elements revealed development- and stress-related TFs that function directly or indirectly downstream of HSFB. Male gametophytes of M. polymorpha showed higher levels of thermotolerance than female gametophytes, which could be explained by different expression levels of MpHSFA1U and MpHSFA1V on sex chromosome. We propose that the diversification of HSFs is linked to the expansion of HS responses, which enabled coordinated multicellular reactions in land plants.
Collapse
Affiliation(s)
- Ting-Ying Wu
- Temasek Life Sciences Laboratory, 1 Research Link, 117604, Singapore
| | - Kar Ling Hoh
- Temasek Life Sciences Laboratory, 1 Research Link, 117604, Singapore
- Department of Biological Sciences, National University of Singapore, 117558, Singapore
| | - Kulaporn Boonyaves
- Temasek Life Sciences Laboratory, 1 Research Link, 117604, Singapore
- Singapore-MIT Alliance for Research and Technology, Singapore
| | | | - Daisuke Urano
- Temasek Life Sciences Laboratory, 1 Research Link, 117604, Singapore
- Department of Biological Sciences, National University of Singapore, 117558, Singapore
- Singapore-MIT Alliance for Research and Technology, Singapore
| |
Collapse
|
15
|
Chen S, Mo Y, Zhang Y, Zhu H, Ling Y. Insights into sweet potato SR proteins: from evolution to species-specific expression and alternative splicing. PLANTA 2022; 256:72. [PMID: 36083517 DOI: 10.1007/s00425-022-03965-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
SR proteins from sweet potato have conserved functional domains and similar gene structures as that of Arabidopsis and rice in general. However, expression patterns and alternative splicing regulations of SR genes from different species have changed under stresses. Novel alternative splicing regulations were found in sweet potato SR genes. Serine/arginine-rich (SR) proteins play important roles in plant development and stress response by regulating the pre-mRNA splicing process. However, SR proteins have not been identified so far from an important crop sweet potato. Through bioinformatics analysis, our study identified 24 SR proteins from sweet potato, with comprehensively analyzing of protein characteristics, gene structure, chromosome localization, and cis-acting elements in promotors. Salt, heat, and mimic drought stresses triggered extensive but different expressional regulations on sweet potato SR genes. Interestingly, heat stress caused the most active disturbances in both gene transcription and pre-mRNA alternative splicing (AS). Tissue and species-specific transcriptional and pre-mRNA AS regulations in response to stresses were found in sweet potato, in comparison with Arabidopsis and rice. Moreover, novel patterns of pre-mRNA alternative splicing were found in SR proteins from sweet potato. Our study provided an insight into similarities and differences of SR proteins in different plant species from gene sequences to gene structures and stress responses, indicating SR proteins may regulate their downstream genes differently between different species and tissues by varied transcriptional and pre-mRNA AS regulations.
Collapse
Affiliation(s)
- Shanlan Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China
| | - Yujian Mo
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China
| | - Yingjie Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China
| | - Hongbao Zhu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China
| | - Yu Ling
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China.
| |
Collapse
|
16
|
Rosenkranz RRE, Ullrich S, Löchli K, Simm S, Fragkostefanakis S. Relevance and Regulation of Alternative Splicing in Plant Heat Stress Response: Current Understanding and Future Directions. FRONTIERS IN PLANT SCIENCE 2022; 13:911277. [PMID: 35812973 PMCID: PMC9260394 DOI: 10.3389/fpls.2022.911277] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/26/2022] [Indexed: 05/26/2023]
Abstract
Alternative splicing (AS) is a major mechanism for gene expression in eukaryotes, increasing proteome diversity but also regulating transcriptome abundance. High temperatures have a strong impact on the splicing profile of many genes and therefore AS is considered as an integral part of heat stress response. While many studies have established a detailed description of the diversity of the RNAome under heat stress in different plant species and stress regimes, little is known on the underlying mechanisms that control this temperature-sensitive process. AS is mainly regulated by the activity of splicing regulators. Changes in the abundance of these proteins through transcription and AS, post-translational modifications and interactions with exonic and intronic cis-elements and core elements of the spliceosomes modulate the outcome of pre-mRNA splicing. As a major part of pre-mRNAs are spliced co-transcriptionally, the chromatin environment along with the RNA polymerase II elongation play a major role in the regulation of pre-mRNA splicing under heat stress conditions. Despite its importance, our understanding on the regulation of heat stress sensitive AS in plants is scarce. In this review, we summarize the current status of knowledge on the regulation of AS in plants under heat stress conditions. We discuss possible implications of different pathways based on results from non-plant systems to provide a perspective for researchers who aim to elucidate the molecular basis of AS under high temperatures.
Collapse
Affiliation(s)
| | - Sarah Ullrich
- Molecular Cell Biology of Plants, Goethe University Frankfurt, Frankfurt, Germany
| | - Karin Löchli
- Molecular Cell Biology of Plants, Goethe University Frankfurt, Frankfurt, Germany
| | - Stefan Simm
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | | |
Collapse
|
17
|
Krawczyk HE, Rotsch AH, Herrfurth C, Scholz P, Shomroni O, Salinas-Riester G, Feussner I, Ischebeck T. Heat stress leads to rapid lipid remodeling and transcriptional adaptations in Nicotiana tabacum pollen tubes. PLANT PHYSIOLOGY 2022; 189:490-515. [PMID: 35302599 PMCID: PMC9157110 DOI: 10.1093/plphys/kiac127] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/19/2022] [Indexed: 06/12/2023]
Abstract
After reaching the stigma, pollen grains germinate and form a pollen tube that transports the sperm cells to the ovule. Due to selection pressure between pollen tubes, pollen grains likely evolved mechanisms to quickly adapt to temperature changes to sustain elongation at the highest possible rate. We investigated these adaptions in tobacco (Nicotiana tabacum) pollen tubes grown in vitro under 22°C and 37°C by a multi-omics approach including lipidomic, metabolomic, and transcriptomic analysis. Both glycerophospholipids and galactoglycerolipids increased in saturated acyl chains under heat stress (HS), while triacylglycerols (TGs) changed less in respect to desaturation but increased in abundance. Free sterol composition was altered, and sterol ester levels decreased. The levels of sterylglycosides and several sphingolipid classes and species were augmented. Most amino acid levels increased during HS, including the noncodogenic amino acids γ-amino butyrate and pipecolate. Furthermore, the sugars sedoheptulose and sucrose showed higher levels. Also, the transcriptome underwent pronounced changes with 1,570 of 24,013 genes being differentially upregulated and 813 being downregulated. Transcripts coding for heat shock proteins and many transcriptional regulators were most strongly upregulated but also transcripts that have so far not been linked to HS. Transcripts involved in TG synthesis increased, while the modulation of acyl chain desaturation seemed not to be transcriptionally controlled, indicating other means of regulation. In conclusion, we show that tobacco pollen tubes are able to rapidly remodel their lipidome under HS likely by post-transcriptional and/or post-translational regulation.
Collapse
Affiliation(s)
- Hannah Elisa Krawczyk
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen 37077, Germany
| | - Alexander Helmut Rotsch
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen 37077, Germany
| | - Cornelia Herrfurth
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen 37077, Germany
- Service Unit for Metabolomics and Lipidomics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen 37077, Germany
| | - Patricia Scholz
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen 37077, Germany
| | - Orr Shomroni
- NGS—Integrative Genomics Core Unit (NIG), University Medical Center Göttingen (UMG), Institute of Human Genetics, Göttingen 37077, Germany
| | - Gabriela Salinas-Riester
- NGS—Integrative Genomics Core Unit (NIG), University Medical Center Göttingen (UMG), Institute of Human Genetics, Göttingen 37077, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen 37077, Germany
- Service Unit for Metabolomics and Lipidomics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen 37077, Germany
| | - Till Ischebeck
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen 37077, Germany
- Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Green Biotechnology, Münster 48143, Germany
| |
Collapse
|
18
|
ABA Mediates Plant Development and Abiotic Stress via Alternative Splicing. Int J Mol Sci 2022; 23:ijms23073796. [PMID: 35409156 PMCID: PMC8998868 DOI: 10.3390/ijms23073796] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/25/2022] [Accepted: 03/27/2022] [Indexed: 02/01/2023] Open
Abstract
Alternative splicing (AS) exists in eukaryotes to increase the complexity and adaptability of systems under biophysiological conditions by increasing transcriptional and protein diversity. As a classic hormone, abscisic acid (ABA) can effectively control plant growth, improve stress resistance, and promote dormancy. At the transcriptional level, ABA helps plants respond to the outside world by regulating transcription factors through signal transduction pathways to regulate gene expression. However, at the post-transcriptional level, the mechanism by which ABA can regulate plant biological processes by mediating alternative splicing is not well understood. Therefore, this paper briefly introduces the mechanism of ABA-induced alternative splicing and the role of ABA mediating AS in plant response to the environment and its own growth.
Collapse
|
19
|
Sun J, Liu Z, Quan J, Li L, Zhao G, Lu J. RNA-seq Analysis Reveals Alternative Splicing Under Heat Stress in Rainbow Trout (Oncorhynchus mykiss). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:5-17. [PMID: 34787764 DOI: 10.1007/s10126-021-10082-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
Rainbow trout (Oncorhynchus mykiss) is one of the most economically important cold-water farmed species in the world, and transcriptomic studies in response to heat stress have been conducted and will be studied in depth. Alternative splicing (AS), a post-transcriptional regulatory process that regulates gene expression and increases proteomic diversity, is still poorly understood in rainbow trout under heat stress. In the present study, 18,623 alternative splicing events were identified from 9936 genes using RNA transcriptome sequencing technology (RNA-Seq) and genomic information. A total of 2731 differential alternative splicing (DAS) events were found among 2179 differentially expressed genes (DEGs). Gene ontology analysis revealed that the DEGs were mainly enriched in cellular metabolic process, cell part, and organic cyclic compound binding under heat stress. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis displayed that the DEGs were enriched for 39 pathways, and some key pathways, such as lysine degradation, are involved in the regulation of heat stress in liver tissues of rainbow trout. The results were validated by qRT-PCR, confirming reliability of our bioinformatics analysis.
Collapse
Affiliation(s)
- Jun Sun
- College of Animal Science & Technology, Gansu Province, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, People's Republic of China
| | - Zhe Liu
- College of Animal Science & Technology, Gansu Province, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, People's Republic of China.
| | - Jinqiang Quan
- College of Animal Science & Technology, Gansu Province, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, People's Republic of China
| | - Lanlan Li
- College of Animal Science & Technology, Gansu Province, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, People's Republic of China
| | - Guiyan Zhao
- College of Animal Science & Technology, Gansu Province, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, People's Republic of China
| | - Junhao Lu
- College of Animal Science & Technology, Gansu Province, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, People's Republic of China
| |
Collapse
|
20
|
Kumar S, Thakur M, Mitra R, Basu S, Anand A. Sugar metabolism during pre- and post-fertilization events in plants under high temperature stress. PLANT CELL REPORTS 2022; 41:655-673. [PMID: 34628530 DOI: 10.1007/s00299-021-02795-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
High temperature challenges global crop production by limiting the growth and development of the reproductive structures and seed. It impairs the developmental stages of male and female gametogenesis, pollination, fertilization, endosperm formation and embryo development. Among these, the male reproductive processes are highly prone to abnormalities under high temperature at various stages of development. The disruption of source-sink balance is the main constraint for satisfactory growth of the reproductive structures which is disturbed at the level of sucrose import and utilization within the tissue. Seed development after fertilization is affected by modulation in the activity of enzymes involved in starch metabolism. In addition, the alteration in the seed-filling rate and its duration affects the seed weight and quality. The present review critically discusses the role of sugar metabolism in influencing the various stages of gamete and seed development under high temperature stress. It also highlights the interaction of the sugars with hormones that mediate the transport of sugars to sink tissues. The role of transcription factors for the regulation of sugar availability under high temperature has also been discussed. Further, the omics-based systematic investigation has been suggested to understand the synergistic or antagonistic interactions between sugars, hormones and reactive oxygen species at various points of sucrose flow from source to sink under high temperature stress.
Collapse
Affiliation(s)
- Sunil Kumar
- Division of Seed Science and Technology, ICAR- Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Meenakshi Thakur
- College of Horticulture and Forestry, Dr. Y.S. Parmar University of Horticulture and Forestry, Neri, Hamirpur, 177 001, Himachal Pradesh, India
| | - Raktim Mitra
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Sudipta Basu
- Division of Seed Science and Technology, ICAR- Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Anjali Anand
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India.
| |
Collapse
|
21
|
Ding YQ, Fan K, Wang Y, Fang WP, Zhu XJ, Chen L, Sun LT, Qiu C, Ding ZT. Drought and Heat Stress-Mediated Modulation of Alternative Splicing in the Genes Involved in Biosynthesis of Metabolites Related to Tea Quality. Mol Biol 2022. [DOI: 10.1134/s0026893322020042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Zhou Y, Zhu G, Wang Y, He Z, Zhou W. A Comparative Transcriptional Landscape of Two Castor Cultivars Obtained by Single-Molecule Sequencing Comparative Analysis. Front Genet 2021; 12:749340. [PMID: 34733316 PMCID: PMC8558441 DOI: 10.3389/fgene.2021.749340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/30/2021] [Indexed: 11/25/2022] Open
Abstract
Background and Objectives: Castor (Ricinus communis L.) is an important non-edible oilseed crop. Lm-type female strains and normal amphiprotic strains are important castor cultivars, and are mainly different in their inflorescence structures and leaf shapes. To better understand the mechanisms underlying these differences at the molecular level, we performed a comparative transcriptional analysis. Materials and Methods: Full-length transcriptome sequencing and short-read RNA sequencing were employed. Results: A total of 76,068 and 44,223 non-redundant transcripts were obtained from high-quality transcripts of Lm-type female strains and normal amphiprotic strains, respectively. In Lm-type female strains and normal amphiprotic strains, 51,613 and 20,152 alternative splicing events were found, respectively. There were 13,239 transcription factors identified from the full-length transcriptomes. Comparative analysis showed a great variety of gene expression of common and unique transcription factors between the two cultivars. Meanwhile, a functional analysis of the isoforms was conducted. The full-length sequences were used as a reference genome, and a short-read RNA sequencing analysis was performed to conduct differential gene analysis. Furthermore, the function of DEGs were performed to annotation analysis. Conclusion: The results revealed considerable differences and expression diversity between the two cultivars, well beyond what was reported in previous studies and likely reflecting the differences in architecture between these two cultivars.
Collapse
Affiliation(s)
- Yaxing Zhou
- Agricultural College of Inner Mongolia Minzu University, Tongliao, China
| | - Guoli Zhu
- Tongliao Academy of Agricultural Science, Tongliao, China
| | - Yun Wang
- Agricultural College of Inner Mongolia Minzu University, Tongliao, China
| | - Zhibiao He
- Tongliao Academy of Agricultural Science, Tongliao, China
| | - Wei Zhou
- Agricultural College of Inner Mongolia Minzu University, Tongliao, China
| |
Collapse
|
23
|
Global Survey of the Full-Length Cabbage Transcriptome ( Brassica oleracea Var. capitata L.) Reveals Key Alternative Splicing Events Involved in Growth and Disease Response. Int J Mol Sci 2021; 22:ijms221910443. [PMID: 34638781 PMCID: PMC8508790 DOI: 10.3390/ijms221910443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 11/25/2022] Open
Abstract
Cabbage (Brassica oleracea L. var. capitata L.) is an important vegetable crop cultivated around the world. Previous studies of cabbage gene transcripts were primarily based on next-generation sequencing (NGS) technology which cannot provide accurate information concerning transcript assembly and structure analysis. To overcome these issues and analyze the whole cabbage transcriptome at the isoform level, PacBio RS II Single-Molecule Real-Time (SMRT) sequencing technology was used for a global survey of the full-length transcriptomes of five cabbage tissue types (root, stem, leaf, flower, and silique). A total of 77,048 isoforms, capturing 18,183 annotated genes, were discovered from the sequencing data generated through SMRT. The patterns of both alternative splicing (AS) and alternative polyadenylation (APA) were comprehensively analyzed. In total, we detected 13,468 genes which had isoforms containing APA sites and 8978 genes which underwent AS events. Moreover, 5272 long non-coding RNAs (lncRNAs) were discovered, and most exhibited tissue-specific expression. In total, 3147 transcription factors (TFs) were detected and 10 significant gene co-expression network modules were identified. In addition, we found that Fusarium wilt, black rot and clubroot infection significantly influenced AS in resistant cabbage. In summary, this study provides abundant cabbage isoform transcriptome data, which promotes reannotation of the cabbage genome, deepens our understanding of their post-transcriptional regulation mechanisms, and can be used for future functional genomic research.
Collapse
|
24
|
Vitoriano CB, Calixto CPG. Reading between the Lines: RNA-seq Data Mining Reveals the Alternative Message of the Rice Leaf Transcriptome in Response to Heat Stress. PLANTS 2021; 10:plants10081647. [PMID: 34451692 PMCID: PMC8400768 DOI: 10.3390/plants10081647] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 11/21/2022]
Abstract
Rice (Oryza sativa L.) is a major food crop but heat stress affects its yield and grain quality. To identify mechanistic solutions to improve rice yield under rising temperatures, molecular responses of thermotolerance must be understood. Transcriptional and post-transcriptional controls are involved in a wide range of plant environmental responses. Alternative splicing (AS), in particular, is a widespread mechanism impacting the stress defence in plants but it has been completely overlooked in rice genome-wide heat stress studies. In this context, we carried out a robust data mining of publicly available RNA-seq datasets to investigate the extension of heat-induced AS in rice leaves. For this, datasets of interest were subjected to filtering and quality control, followed by accurate transcript-specific quantifications. Powerful differential gene expression (DE) and differential AS (DAS) identified 17,143 and 2162 heat response genes, respectively, many of which are novel. Detailed analysis of DAS genes coding for key regulators of gene expression suggests that AS helps shape transcriptome and proteome diversity in response to heat. The knowledge resulting from this study confirmed a widespread transcriptional and post-transcriptional response to heat stress in plants, and it provided novel candidates for rapidly advancing rice breeding in response to climate change.
Collapse
|
25
|
Mareri L, Faleri C, Aloisi I, Parrotta L, Del Duca S, Cai G. Insights into the Mechanisms of Heat Priming and Thermotolerance in Tobacco Pollen. Int J Mol Sci 2021; 22:8535. [PMID: 34445241 PMCID: PMC8395212 DOI: 10.3390/ijms22168535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 07/30/2021] [Accepted: 08/06/2021] [Indexed: 12/29/2022] Open
Abstract
Global warming leads to a progressive rise in environmental temperature. Plants, as sessile organisms, are threatened by these changes; the male gametophyte is extremely sensitive to high temperature and its ability to preserve its physiological status under heat stress is known as acquired thermotolerance. This latter can be achieved by exposing plant to a sub-lethal temperature (priming) or to a progressive increase in temperature. The present research aims to investigate the effects of heat priming on the functioning of tobacco pollen grains. In addition to evaluating basic physiological parameters (e.g., pollen viability, germination and pollen tube length), several aspects related to a correct pollen functioning were considered. Calcium (Ca2+) level, reactive oxygen species (ROS) and related antioxidant systems were investigated, also to the organization of actin filaments and cytoskeletal protein such as tubulin (including tyrosinated and acetylated isoforms) and actin. We also focused on sucrose synthase (Sus), a key metabolic enzyme and on the content of main soluble sugars, including UDP-glucose. Results here obtained showed that a pre-exposure to sub-lethal temperatures can positively enhance pollen performance by altering its metabolism. This can have a considerable impact, especially from the point of view of breeding strategies aimed at improving crop species.
Collapse
Affiliation(s)
- Lavinia Mareri
- Department of Life Sciences, University of Siena, Via P.A. Mattioli 4, 53100 Siena, Italy; (L.M.); (C.F.); (G.C.)
| | - Claudia Faleri
- Department of Life Sciences, University of Siena, Via P.A. Mattioli 4, 53100 Siena, Italy; (L.M.); (C.F.); (G.C.)
| | - Iris Aloisi
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy; (I.A.); (S.D.D.)
| | - Luigi Parrotta
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy; (I.A.); (S.D.D.)
- Interdepartmental Centre for Agri-Food Industrial Research, University of Bologna, Via Quinto Bucci 336, 47521 Cesena, Italy
| | - Stefano Del Duca
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy; (I.A.); (S.D.D.)
- Interdepartmental Centre for Agri-Food Industrial Research, University of Bologna, Via Quinto Bucci 336, 47521 Cesena, Italy
| | - Giampiero Cai
- Department of Life Sciences, University of Siena, Via P.A. Mattioli 4, 53100 Siena, Italy; (L.M.); (C.F.); (G.C.)
| |
Collapse
|
26
|
Chaturvedi P, Wiese AJ, Ghatak A, Záveská Drábková L, Weckwerth W, Honys D. Heat stress response mechanisms in pollen development. THE NEW PHYTOLOGIST 2021; 231:571-585. [PMID: 33818773 PMCID: PMC9292940 DOI: 10.1111/nph.17380] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Indexed: 05/03/2023]
Abstract
Being rooted in place, plants are faced with the challenge of responding to unfavourable local conditions. One such condition, heat stress, contributes massively to crop losses globally. Heatwaves are predicted to increase, and it is of vital importance to generate crops that are tolerant to not only heat stress but also to several other abiotic stresses (e.g. drought stress, salinity stress) to ensure that global food security is protected. A better understanding of the molecular mechanisms that underlie the temperature stress response in pollen will be a significant step towards developing effective breeding strategies for high and stable production in crop plants. While most studies have focused on the vegetative phase of plant growth to understand heat stress tolerance, it is the reproductive phase that requires more attention as it is more sensitive to elevated temperatures. Every phase of reproductive development is affected by environmental challenges, including pollen and ovule development, pollen tube growth, male-female cross-talk, fertilization, and embryo development. In this review we summarize how pollen is affected by heat stress and the molecular mechanisms employed during the stress period, as revealed by classical and -omics experiments.
Collapse
Affiliation(s)
- Palak Chaturvedi
- Molecular Systems Biology (MOSYS)Department of Functional and Evolutionary EcologyFaculty of Life SciencesUniversity of ViennaAlthanstrasse 14Vienna1090Austria
| | - Anna J. Wiese
- Laboratory of Pollen BiologyInstitute of Experimental Botany of the Czech Academy of SciencesRozvojová 263Prague 6165 02Czech Republic
| | - Arindam Ghatak
- Molecular Systems Biology (MOSYS)Department of Functional and Evolutionary EcologyFaculty of Life SciencesUniversity of ViennaAlthanstrasse 14Vienna1090Austria
| | - Lenka Záveská Drábková
- Laboratory of Pollen BiologyInstitute of Experimental Botany of the Czech Academy of SciencesRozvojová 263Prague 6165 02Czech Republic
| | - Wolfram Weckwerth
- Molecular Systems Biology (MOSYS)Department of Functional and Evolutionary EcologyFaculty of Life SciencesUniversity of ViennaAlthanstrasse 14Vienna1090Austria
- Vienna Metabolomics Center (VIME)University of ViennaAlthanstrasse 14Vienna1090Austria
| | - David Honys
- Laboratory of Pollen BiologyInstitute of Experimental Botany of the Czech Academy of SciencesRozvojová 263Prague 6165 02Czech Republic
| |
Collapse
|
27
|
Li Z, Tang J, Bassham DC, Howell SH. Daily temperature cycles promote alternative splicing of RNAs encoding SR45a, a splicing regulator in maize. PLANT PHYSIOLOGY 2021; 186:1318-1335. [PMID: 33705553 PMCID: PMC8195531 DOI: 10.1093/plphys/kiab110] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 02/18/2021] [Indexed: 05/04/2023]
Abstract
Elevated temperatures enhance alternative RNA splicing in maize (Zea mays) with the potential to expand the repertoire of plant responses to heat stress. Alternative RNA splicing generates multiple RNA isoforms for many maize genes, and here we observed changes in the pattern of RNA isoforms with temperature changes. Increases in maximum daily temperature elevated the frequency of the major modes of alternative splices (AS), in particular retained introns and skipped exons. The genes most frequently targeted by increased AS with temperature encode factors involved in RNA processing and plant development. Genes encoding regulators of alternative RNA splicing were themselves among the principal AS targets in maize. Under controlled environmental conditions, daily changes in temperature comparable to field conditions altered the abundance of different RNA isoforms, including the RNAs encoding the splicing regulator SR45a, a member of the SR45 gene family. We established an "in protoplast" RNA splicing assay to show that during the afternoon on simulated hot summer days, SR45a RNA isoforms were produced with the potential to encode proteins efficient in splicing model substrates. With the RNA splicing assay, we also defined the exonic splicing enhancers that the splicing-efficient SR45a forms utilize to aid in the splicing of model substrates. Hence, with rising temperatures on hot summer days, SR45a RNA isoforms in maize are produced with the capability to encode proteins with greater RNA splicing potential.
Collapse
Affiliation(s)
- Zhaoxia Li
- Plant Sciences Institute, Iowa State University, Ames, Iowa 50011, USA
| | - Jie Tang
- Genetics, Development and Cell Biology Department, Iowa State University, Ames, Iowa 50011, USA
| | - Diane C Bassham
- Genetics, Development and Cell Biology Department, Iowa State University, Ames, Iowa 50011, USA
| | - Stephen H. Howell
- Plant Sciences Institute, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
28
|
Rosenkranz RRE, Bachiri S, Vraggalas S, Keller M, Simm S, Schleiff E, Fragkostefanakis S. Identification and Regulation of Tomato Serine/Arginine-Rich Proteins Under High Temperatures. FRONTIERS IN PLANT SCIENCE 2021; 12:645689. [PMID: 33854522 PMCID: PMC8039515 DOI: 10.3389/fpls.2021.645689] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/03/2021] [Indexed: 05/15/2023]
Abstract
Alternative splicing is an important mechanism for the regulation of gene expression in eukaryotes during development, cell differentiation or stress response. Alterations in the splicing profiles of genes under high temperatures that cause heat stress (HS) can impact the maintenance of cellular homeostasis and thermotolerance. Consequently, information on factors involved in HS-sensitive alternative splicing is required to formulate the principles of HS response. Serine/arginine-rich (SR) proteins have a central role in alternative splicing. We aimed for the identification and characterization of SR-coding genes in tomato (Solanum lycopersicum), a plant extensively used in HS studies. We identified 17 canonical SR and two SR-like genes. Several SR-coding genes show differential expression and altered splicing profiles in different organs as well as in response to HS. The transcriptional induction of five SR and one SR-like genes is partially dependent on the master regulator of HS response, HS transcription factor HsfA1a. Cis-elements in the promoters of these SR genes were predicted, which can be putatively recognized by HS-induced transcription factors. Further, transiently expressed SRs show reduced or steady-state protein levels in response to HS. Thus, the levels of SRs under HS are regulated by changes in transcription, alternative splicing and protein stability. We propose that the accumulation or reduction of SRs under HS can impact temperature-sensitive alternative splicing.
Collapse
Affiliation(s)
- Remus R. E. Rosenkranz
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Frankfurt am Main, Germany
| | - Samia Bachiri
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Frankfurt am Main, Germany
| | - Stavros Vraggalas
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Frankfurt am Main, Germany
| | - Mario Keller
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt am Main, Germany
| | - Stefan Simm
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | - Enrico Schleiff
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt am Main, Germany
- Frankfurt Institute of Advanced Studies, Frankfurt am Main, Germany
- *Correspondence: Enrico Schleiff
| | - Sotirios Fragkostefanakis
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Frankfurt am Main, Germany
- Sotirios Fragkostefanakis
| |
Collapse
|
29
|
Lu Y, Zhao P, Zhang A, Ma L, Xu S, Wang X. Alternative Splicing Diversified the Heat Response and Evolutionary Strategy of Conserved Heat Shock Protein 90s in Hexaploid Wheat ( Triticum aestivum L.). Front Genet 2020; 11:577897. [PMID: 33329715 PMCID: PMC7729002 DOI: 10.3389/fgene.2020.577897] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/29/2020] [Indexed: 11/13/2022] Open
Abstract
Crops are challenged by the increasing high temperature. Heat shock protein 90 (HSP90), a molecular chaperone, plays a critical role in the heat response in plants. However, the evolutionary conservation and divergence of HSP90s homeologs in polyploidy crops are largely unknown. Using the newly released hexaploid wheat reference sequence, we identified 18 TaHSP90s that are evenly distributed as homeologous genes among three wheat subgenomes, and were highly conserved in terms of sequence identity and gene structure among homeologs. Intensive time-course transcriptomes showed uniform expression and transcriptional response profiles among the three TaHSP90 homeologs. Based on the comprehensive isoforms generated by combining full-length single-molecule sequencing and Illumina short read sequencing, 126 isoforms, including 90 newly identified isoforms of TaHSP90s, were identified, and each TaHSP90 generated one to three major isoforms. Intriguingly, the numbers and the splicing modes of the major isoforms generated by three TaHSP90 homeologs were obviously different. Furthermore, the quantified expression profiles of the major isoforms generated by three TaHSP90 homeologs are also distinctly varied, exhibiting differential alternative splicing (AS) responses of homeologs. Our results showed that the AS diversified the heat response of the conserved TaHSP90s and provided a new perspective for understanding about functional conservation and divergence of homologous genes.
Collapse
Affiliation(s)
- Yunze Lu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Peng Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Aihua Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Lingjian Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Shengbao Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Xiaoming Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| |
Collapse
|
30
|
Qian Y, Cao L, Zhang Q, Amee M, Chen K, Chen L. SMRT and Illumina RNA sequencing reveal novel insights into the heat stress response and crosstalk with leaf senescence in tall fescue. BMC PLANT BIOLOGY 2020; 20:366. [PMID: 32746857 PMCID: PMC7397585 DOI: 10.1186/s12870-020-02572-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 07/23/2020] [Indexed: 05/31/2023]
Abstract
BACKGROUND As a cool-season grass species, tall fescue (Festuca arundinacea) is challenged by increasing temperatures. Heat acclimation or activation of leaf senescence, are two main strategies when tall fescue is exposed to heat stress (HS). However, lacking a genome sequence, the complexity of hexaploidy nature, and the short read of second-generation sequencing hinder a comprehensive understanding of the mechanism. This study aims to characterize the molecular mechanism of heat adaptation and heat-induced senescence at transcriptional and post-transcriptional levels. RESULTS Transcriptome of heat-treated (1 h and 72 h) and senescent leaves of tall fescue were generated by combining single-molecular real-time and Illumina sequencing. In total, 4076; 6917, and 11,918 differentially expressed genes (DEGs) were induced by short- and long-term heat stress (HS), and senescence, respectively. Venn and bioinformatics analyses of DEGs showed that short-term HS strongly activated heat shock proteins (Hsps) and heat shock factors (Hsfs), as well as specifically activated FK506-binding proteins (FKBPs), calcium signaling genes, glutathione S-transferase genes, photosynthesis-related genes, and phytohormone signaling genes. By contrast, long-term HS shared most of DEGs with senescence, including the up-regulated chlorophyll catabolic genes, phytohormone synthesis/degradation genes, stress-related genes, and NACs, and the down-regulated photosynthesis-related genes, FKBPs, and catalases. Subsequently, transient overexpression in tobacco showed that FaHsfA2a (up-regulated specifically by short-term HS) reduced cell membrane damages caused by HS, but FaNAC029 and FaNAM-B1 (up-regulated by long-term HS and senescence) increased the damages. Besides, alternative splicing was widely observed in HS and senescence responsive genes, including Hsps, Hsfs, and phytohormone signaling/synthesis genes. CONCLUSIONS The short-term HS can stimulate gene responses and improve thermotolerance, but long-term HS is a damage and may accelerate leaf senescence. These results contribute to our understanding of the molecular mechanism underlying heat adaptation and heat-induced senescence.
Collapse
Affiliation(s)
- Yiguang Qian
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, People’s Republic of China
| | - Liwen Cao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Qiang Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Maurice Amee
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Ke Chen
- College of Resources and Environmental Science, Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, People’s Republic of China
| | - Liang Chen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| |
Collapse
|
31
|
Keller M, Schleiff E, Simm S. miRNAs involved in transcriptome remodeling during pollen development and heat stress response in Solanum lycopersicum. Sci Rep 2020; 10:10694. [PMID: 32612181 PMCID: PMC7329895 DOI: 10.1038/s41598-020-67833-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 06/10/2020] [Indexed: 01/11/2023] Open
Abstract
Cellular transitions during development and stress response depend on coordinated transcriptomic and proteomic alterations. Pollen is particular because its development is a complex process that includes meiotic and mitotic divisions which causes a high heat sensitivity of these cells. Development and stress response are accompanied by a reprogramming of the transcriptome, e.g. by post-transcriptional regulation via miRNAs. We identified known and potentially novel miRNAs in the transcriptome of developing and heat-stressed pollen of Solanum lycopersicum (tomato). The prediction of target mRNAs yielded an equal number of predicted target-sites in CDS and 3'UTR regions of target mRNAs. The result enabled the postulation of a possible link between miRNAs and a fine-tuning of transcription factor abundance during pollen development. miRNAs seem to play a role in the pollen heat stress response as well. We identified several heat stress transcription factors and heat shock proteins as putative targets of miRNAs in response to heat stress, thereby placing these miRNAs as important elements of thermotolerance. Moreover, for members of the AP2, SBP and ARF family members we could predict a miRNA-mediated regulation during development via the miR172, mir156 and mir160-family strengthening the current concept of a cross-connection between development and stress response in plants.
Collapse
Affiliation(s)
- Mario Keller
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, 60438, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University, 60438, Frankfurt am Main, Germany
| | - Enrico Schleiff
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, 60438, Frankfurt am Main, Germany.
- Frankfurt Institute of Advanced Studies, 60438, Frankfurt am Main, Germany.
- Buchmann Institute for Molecular Life Sciences, Goethe University, 60438, Frankfurt am Main, Germany.
| | - Stefan Simm
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, 60438, Frankfurt am Main, Germany
- Frankfurt Institute of Advanced Studies, 60438, Frankfurt am Main, Germany
- Institute of Bioinformatics, University Medicine Greifswald, 17475, Greifswald, Germany
| |
Collapse
|
32
|
Ding Y, Wang Y, Qiu C, Qian W, Xie H, Ding Z. Alternative splicing in tea plants was extensively triggered by drought, heat and their combined stresses. PeerJ 2020; 8:e8258. [PMID: 32030318 PMCID: PMC6995271 DOI: 10.7717/peerj.8258] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/20/2019] [Indexed: 11/20/2022] Open
Abstract
Drought and heat stresses can influence the expressions of genes, and thereby affect the growth and development of plants. Alternative splicing (AS) of genes plays crucial roles through increasing transcriptome diversity in plant stress responses. Tea plants, widely cultivated in the tropics and subtropics, are often simultaneously exposed to drought and heat stresses. In the present study, we performed a global transcriptome of tea leaves treated with drought, heat or their combination. In total, 19,019, 20,025 and 20,253 genes underwent AS in response to drought (DT), heat (HT) and their combined stress (HD), respectively, of which 12,178, 11,912 and 14,413 genes differentially spliced in response to DT, HT and HD, respectively. Also, 2,447 specific differentially spliced genes (DSGs) were found only in response to HD. All DSGs accounted for 48% of the annotated genes in tea tree genome. Comparison of DSGs and differentially expressive genes (DEGs) showed that the proportions of HT and HD-induced DSGs were 13.4% and 9.2%, while the proportion of DT increased to 28.1%. Moreover, the DEG-DSG overlapped genes tended to be enriched in a wide large of pathways in response to DT. The results indicated that the AS of genes in tea leaves was extensively triggered by drought, heat and their combined stresses. In addition, the AS enhanced the transcriptome adaption in response to drought and heat stresses, and the AS also provoked specific molecular functions in response to drought and heat synergy stress. The study might have practical significance for molecular genetic breeding of tea plants with stress resistance.
Collapse
Affiliation(s)
- Yiqian Ding
- Tea Research Institute, Qingdao Agricultural University, Qingdao, China
| | - Yu Wang
- Tea Research Institute, Qingdao Agricultural University, Qingdao, China
| | - Chen Qiu
- Tea Research Institute, Qingdao Agricultural University, Qingdao, China
| | - Wenjun Qian
- Tea Research Institute, Qingdao Agricultural University, Qingdao, China
| | - Hui Xie
- Tea Research Institute, Qingdao Agricultural University, Qingdao, China
| | - Zhaotang Ding
- Tea Research Institute, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
33
|
Wang R, Liu H, Liu Z, Zou J, Meng J, Wang J. Genome-wide analysis of alternative splicing divergences between Brassica hexaploid and its parents. PLANTA 2019; 250:603-628. [PMID: 31139927 DOI: 10.1007/s00425-019-03198-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/24/2019] [Indexed: 05/23/2023]
Abstract
Compared with its parents, Brassica hexaploid underwent significant AS changes, which may provide diversified gene expression regulation patterns and could enhance its adaptability during evolution Polyploidization is considered a significant evolution force that promotes species formation. Alternative splicing (AS) plays a crucial role in multiple biological processes during plant growth and development. To explore the effects of allopolyploidization on the AS patterns of genes, a genome-wide AS analysis was performed by RNA-seq in Brassica hexaploid and its parents. In total, we found 7913 (27540 AS events), 14447 (70179 AS events), and 13205 (60804 AS events) AS genes in Brassica rapa, Brassica carinata, and Brassica hexaploid, respectively. A total of 920 new AS genes were discovered in Brassica hexaploid. There were 56 differently spliced genes between Brassica hexaploid and its parents. In addition, most of the alternative 5' splice sites were located 4 bp upstream of the dominant 5' splice sites, and most of the alternative 3' splice sites were located 3 bp downstream of the dominant 3' splice sites in Brassica hexapliod, which was similar to B. carinata. Furthermore, we cloned and sequenced all amplicons from the RT-PCR products of GRP7/8, namely, Bol045859, Bol016025 and Bol02880. The three genes were found to produce AS transcripts in a new way. The AS patterns of genes were diverse between Brassica hexaploid and its parents, including the loss and gain of AS events. Allopolyploidization changed alternative splicing sites of pre-mRNAs in Brassica hexaploid, which brought about alterations in the sequences of transcripts. Our study provided novel insights into the AS patterns of genes in allopolyploid plants, which may provide a reference for the study of polyploidy adaptability.
Collapse
Affiliation(s)
- Ruihua Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Helian Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhengyi Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jun Zou
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jinling Meng
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jianbo Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
34
|
Zhao Y, Hu F, Zhang X, Wei Q, Dong J, Bo C, Cheng B, Ma Q. Comparative transcriptome analysis reveals important roles of nonadditive genes in maize hybrid An'nong 591 under heat stress. BMC PLANT BIOLOGY 2019; 19:273. [PMID: 31234785 PMCID: PMC6591960 DOI: 10.1186/s12870-019-1878-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/09/2019] [Indexed: 05/22/2023]
Abstract
BACKGROUND Heterosis is the superior performance of F1 hybrids relative to their parental lines for a wide range of traits. In this study, expression profiling and heterosis associated genes were analyzed by RNA sequencing (RNA-Seq) in seedlings of the maize hybrid An'nong 591 and its parental lines under control and heat stress conditions. RESULTS Through performing nine pairwise comparisons, the maximum number of differentially expressed genes (DEGs) was detected between the two parental lines, and the minimum number was identified between the F1 hybrid and the paternal lines under both conditions, which suggested greater genetic contribution of the paternal line to heat stress tolerance. Gene Ontology (GO) enrichment analysis of the 4518 common DEGs indicated that GO terms associated with diverse stress responses and photosynthesis were highly overrepresented in the 76 significant terms of the biological process category. A total of 3970 and 7653 genes exhibited nonadditive expression under control and heat stress, respectively. Among these genes, 2253 (56.8%) genes overlapped, suggesting that nonadditive genes tend to be conserved in expression. In addition, 5400 nonadditive genes were found to be specific for heat stress condition, and further GO analysis indicated that terms associated with stress responses were significantly overrepresented, and 60 genes were assigned to the GO term response to heat. Pathway enrichment analysis indicated that 113 genes were involved in spliceosome metabolic pathways. Nineteen of the 33 overlapping genes assigned to the GO term response to heat showed significantly higher number of alternative splicing (AS) events under heat stress than under control conditions, suggesting that AS of these genes play an important role in response to heat stress. CONCLUSIONS This study reveals the transcriptomic divergence of the maize F1 hybrid and its parental lines under control and heat stress conditions, and provides insight into the underlying molecular mechanisms of heterosis and the response to heat stress in maize.
Collapse
Affiliation(s)
- Yang Zhao
- The National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
- Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Fangxiu Hu
- The National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
- Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Xingen Zhang
- The National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
- Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Qiye Wei
- The National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
- Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Jinlei Dong
- The National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
- Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Chen Bo
- The National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
- Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Beijiu Cheng
- The National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
- Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Qing Ma
- The National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
- Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, China
| |
Collapse
|
35
|
Freese NH, Estrada AR, Blakley IC, Duan J, Loraine AE. Many rice genes are differentially spliced between roots and shoots but cytokinin has minimal effect on splicing. PLANT DIRECT 2019; 3:e00136. [PMID: 31245776 PMCID: PMC6589529 DOI: 10.1002/pld3.136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 02/12/2019] [Accepted: 03/20/2019] [Indexed: 06/09/2023]
Abstract
Alternatively spliced genes produce multiple spliced isoforms, called transcript variants. In differential alternative splicing, transcript variant abundance differs across sample types. Differential alternative splicing is common in animal systems and influences cellular development in many processes, but its extent and significance is not as well known in plants. To investigate differential alternative splicing in plants, we examined RNA-Seq data from rice seedlings. The data included three biological replicates per sample type, approximately 30 million sequence alignments per replicate, and four sample types: roots and shoots treated with exogenous cytokinin delivered hydroponically or a mock treatment. Cytokinin treatment triggered expression changes in thousands of genes but had negligible effect on splicing patterns. However, many genes were differentially spliced between mock-treated roots and shoots, indicating that our methods were sufficiently sensitive to detect differential splicing between data sets. Quantitative fragment analysis of reverse transcriptase-PCR products made from newly prepared rice samples confirmed 9 of 10 differential splicing events between rice roots and shoots. Differential alternative splicing typically changed the relative abundance of splice variants that co-occurred in a data set. Analysis of a similar (but less deeply sequenced) RNA-Seq data set from Arabidopsis showed the same pattern. In both the Arabidopsis and rice RNA-Seq data sets, most genes annotated as alternatively spliced had small minor variant frequencies. Of splicing choices with abundant support for minor forms, most alternative splicing events were located within the protein-coding sequence and maintained the annotated reading frame. A tool for visualizing protein annotations in the context of genomic sequence (ProtAnnot) together with a genome browser (Integrated Genome Browser) were used to visualize and assess effects of differential splicing on gene function. In general, differentially spliced regions coincided with conserved protein domains, indicating that differential alternative splicing is likely to affect protein function between root and shoot tissue in rice.
Collapse
Affiliation(s)
- Nowlan H. Freese
- Department of Bioinformatics and GenomicsUniversity of North Carolina at CharlotteCharlotteNorth Carolina
| | - April R. Estrada
- Department of Bioinformatics and GenomicsUniversity of North Carolina at CharlotteCharlotteNorth Carolina
| | - Ivory C. Blakley
- Department of Bioinformatics and GenomicsUniversity of North Carolina at CharlotteCharlotteNorth Carolina
| | - Jinjie Duan
- Department of BiomedicineAarhus UniversityAarhus CDenmark
| | - Ann E. Loraine
- Department of Bioinformatics and GenomicsUniversity of North Carolina at CharlotteCharlotteNorth Carolina
| |
Collapse
|
36
|
Cytological and Proteomic Analysis of Wheat Pollen Abortion Induced by Chemical Hybridization Agent. Int J Mol Sci 2019; 20:ijms20071615. [PMID: 30939734 PMCID: PMC6480110 DOI: 10.3390/ijms20071615] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/24/2019] [Accepted: 03/27/2019] [Indexed: 12/13/2022] Open
Abstract
In plants, pollen grain transfers the haploid male genetic material from anther to stigma, both between flowers (cross-pollination) and within the same flower (self-pollination). In order to better understand chemical hybridizing agent (CHA) SQ-1-induced pollen abortion in wheat, comparative cytological and proteomic analyses were conducted. Results indicated that pollen grains underwent serious structural injury, including cell division abnormality, nutritional deficiencies, pollen wall defect and pollen grain malformations in the CHA-SQ-1-treated plants, resulting in pollen abortion and male sterility. A total of 61 proteins showed statistically significant differences in abundance, among which 18 proteins were highly abundant and 43 proteins were less abundant in CHA-SQ-1 treated plants. 60 proteins were successfully identified using MALDI-TOF/TOF mass spectrometry. These proteins were found to be involved in pollen maturation and showed a change in the abundance of a battery of proteins involved in multiple biological processes, including pollen development, carbohydrate and energy metabolism, stress response, protein metabolism. Interactions between these proteins were predicted using bioinformatics analysis. Gene ontology and pathway analyses revealed that the majority of the identified proteins were involved in carbohydrate and energy metabolism. Accordingly, a protein-protein interaction network involving in pollen abortion was proposed. These results provide information for the molecular events underlying CHA-SQ-1-induced pollen abortion and may serve as an additional guide for practical hybrid breeding.
Collapse
|
37
|
Wang Z, Zhang H, Gong W. Genome-wide identification and comparative analysis of alternative splicing across four legume species. PLANTA 2019; 249:1133-1142. [PMID: 30603789 DOI: 10.1007/s00425-018-03073-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/18/2018] [Indexed: 05/07/2023]
Abstract
MAIN CONCLUSION Alternative splicing EVENTS were genome-wide identified for four legume species, and nitrogen fixation-related gene families and evolutionary analysis was also performed. Alternative splicing (AS) is a key regulatory mechanism that contributes to transcriptome and proteome diversity. Investigation of the genome-wide conserved AS events across different species will help with the understanding of the evolution of the functional diversity in legumes, allowing for genetic improvement. Genome-wide identification and characterization of AS were performed using the publically available mRNA, EST, and RNA-Seq data for four important legume species. A total of 15,165 AS genes in Glycine max, 6077 in Cicer arietinum, 7240 in Medicago truncatula, and 7358 in Lotus japonicus were identified. Intron retention (IntronR) was the dominant AS type among the identified events, with IntronR occurring from 53.76% in M. truncatula to 43.91% in C. arietinum. We identified 1159 AS genes that were conserved among four species. Furthermore, nine nitrogen fixation-related gene families with 237 genes were identified, and 80 of them were AS, accounting for the 43.48% in G. max and 27.78% in C. arietinum. An evolutionary analysis showed that these AS genes tended to be located adjacent to each other in the evolutionary tree and are unbalanced in the distribution in the sub-family. This study provides a foundation for future studies on transcription complexity, evolution, and the role of AS on plant functional regulation.
Collapse
Affiliation(s)
- Zan Wang
- Institute of Animal Science, Chinese Academy of Agricultural Science, Beijing, 100193, China.
| | - Han Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Science, Beijing, 100193, China
| | - Wenlong Gong
- Institute of Animal Science, Chinese Academy of Agricultural Science, Beijing, 100193, China
| |
Collapse
|
38
|
Alternative splicing of ZmCCA1 mediates drought response in tropical maize. PLoS One 2019; 14:e0211623. [PMID: 30699185 PMCID: PMC6353190 DOI: 10.1371/journal.pone.0211623] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 01/17/2019] [Indexed: 11/19/2022] Open
Abstract
The circadian clock regulates numerous biological processes in plants, especially development and stress responses. CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1) is one of the core components of the day–night rhythm response and is reportedly associated with ambient temperature in Arabidopsis thaliana. However, it remains unknown if alternative splicing of ZmCCA1 is modulated by external stress in maize, such as drought stress and photoperiod. Here, we identified three ZmCCA1 splice variants in the tropical maize line CML288, which are predicted to encode three different protein isoforms, i.e., ZmCCA1.1, ZmCCA1.2, and ZmCCA1.3, which all retain the MYB domain. In maize, the expression levels of ZmCCA1 splice variants were influenced by photoperiod, tissue type, and drought stress. In transgenic A. thaliana, ZmCCA1.1 may be more effective than ZmCCA1.3 in increasing drought tolerance while ZmCCA1.2 may have only a small effect on tolerance to drought stress. Additionally, although CCA1 genes have been found in many plant species, alternative CCA1 splicing events are known to occur in species-specific ways. Our study provides new sight to explore the function of ZmCCA1 splice variants’ response to abiotic stress, and clarify the linkage between circadian clock and environmental stress in maize.
Collapse
|
39
|
Wang J, Wang J, Lu Y, Fang Y, Gao X, Wang Z, Zheng W, Xu S. The heat responsive wheat TaRAD23 rescues developmental and thermotolerant defects of the rad23b mutant in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 274:23-31. [PMID: 30080608 DOI: 10.1016/j.plantsci.2018.04.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 03/30/2018] [Accepted: 04/30/2018] [Indexed: 05/24/2023]
Abstract
High temperature severely damage the growth and development of crops with climate change. To effectively screen heat responsive proteins in wheat (Triticum aestivum L.), the isobaric tandem mass tag (TMT)-labeled quantitative proteomic analysis and quantitative real-time PCR (qRT-PCR) were performed. Here, we found that a wheat RADIATION SENSITIVE 23 protein, TaRAD23, was up-regulated at both protein and RNA levels by exposing to heat stress. Sequence homology analysis indicated that the TaRAD23 is a conserved protein, which is closely related to the Arabidopsis thaliana proteins AtRAD23B and AtRAD23A. Genetic knockout of AtRAD23B, but not AtRAD23A, shows multiple developmental defects, as well as sensitivity to heat stress. Meanwhile, we observed that constitutive overexpression of TaRAD23 in rad23b fully rescued developmental and thermotolerant defects of the mutant. Furthermore, qRT-PCR analysis of heat responsive genes in rad23b and its complementary lines suggested that suppression of the heat shock transcription factor AtHSFA2 and heat responsive genes (HSP70, HSP90, HSP17.6 and HSA32) may be the cause of the weaker thermotolerance in rad23b. Taken together, the data suggest that the heat responsive TaRAD23 is a functionally highly conserved protein that plays an important role in development, as well as the regulation in heat stress response network.
Collapse
Affiliation(s)
- Jun Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China.
| | - Junzhe Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China.
| | - Yunze Lu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China.
| | - Yan Fang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China.
| | - Xin Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China.
| | - Zhonghua Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China.
| | - Weijun Zheng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China.
| | - Shengbao Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China.
| |
Collapse
|
40
|
Rahmati Ishka M, Brown E, Weigand C, Tillett RL, Schlauch KA, Miller G, Harper JF. A comparison of heat-stress transcriptome changes between wild-type Arabidopsis pollen and a heat-sensitive mutant harboring a knockout of cyclic nucleotide-gated cation channel 16 (cngc16). BMC Genomics 2018; 19:549. [PMID: 30041596 PMCID: PMC6057101 DOI: 10.1186/s12864-018-4930-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 07/05/2018] [Indexed: 11/24/2022] Open
Abstract
Background In flowering plants, the male gametophyte (pollen) is one of the most vulnerable cells to temperature stress. In Arabidopsis thaliana, a pollen-specific CyclicNucleotide-Gated cationChannel 16 (cngc16), is required for plant reproduction under temperature-stress conditions. Plants harboring a cncg16 knockout are nearly sterile under conditions of hot days and cold nights. To understand the underlying cause, RNA-Seq was used to compare the pollen transcriptomes of wild type (WT) and cngc16 under normal and heat stress (HS) conditions. Results Here we show that a heat-stress response (HSR) in WT pollen resulted in 2102 statistically significant transcriptome changes (≥ 2-fold changes with adjusted p-value ≤0.01), representing approximately 15% of 14,226 quantified transcripts. Of these changes, 89 corresponded to transcription factors, with 27 showing a preferential expression in pollen over seedling tissues. In contrast to WT, cngc16 pollen showed 1.9-fold more HS-dependent changes (3936 total, with 2776 differences between WT and cngc16). In a quantitative direct comparison between WT and cngc16 transcriptomes, the number of statistically significant differences increased from 21 pre-existing differences under normal conditions to 192 differences under HS. Of the 20 HS-dependent changes in WT that were most different in cngc16, half corresponded to genes encoding proteins predicted to impact cell wall features or membrane dynamics. Conclusions Results here define an extensive HS-dependent reprogramming of approximately 15% of the WT pollen transcriptome, and identify at least 27 transcription factor changes that could provide unique contributions to a pollen HSR. The number of statistically significant transcriptome differences between WT and cngc16 increased by more than 9-fold under HS, with most of the largest magnitude changes having the potential to specifically impact cell walls or membrane dynamics, and thereby potentiate cngc16 pollen to be hypersensitive to HS. However, HS-hypersensitivity could also be caused by the extensive number of differences throughout the transcriptome having a cumulative effect on multiple cellular pathways required for tip growth and fertilization. Regardless, results here support a model in which a functional HS-dependent reprogramming of the pollen transcriptome requires a specific calcium-permeable Cyclic Nucleotide-Gated cation Channel, CNGC16. Electronic supplementary material The online version of this article (10.1186/s12864-018-4930-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maryam Rahmati Ishka
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, MS330, Howard Building, Reno, NV, 89557, USA
| | - Elizabeth Brown
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, MS330, Howard Building, Reno, NV, 89557, USA
| | - Chrystle Weigand
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, MS330, Howard Building, Reno, NV, 89557, USA
| | - Richard L Tillett
- Nevada INBRE Bioinformatics Core, University of Nevada, Reno, Reno, NV, 89557, USA
| | - Karen A Schlauch
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, MS330, Howard Building, Reno, NV, 89557, USA.,Nevada INBRE Bioinformatics Core, University of Nevada, Reno, Reno, NV, 89557, USA
| | - Gad Miller
- The Mina and Everard Goodman Faculty of Life Sciences Bar Ilan University, 52900, Ramat-Gan, Israel
| | - Jeffrey F Harper
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, MS330, Howard Building, Reno, NV, 89557, USA.
| |
Collapse
|
41
|
Unraveling Field Crops Sensitivity to Heat Stress:Mechanisms, Approaches, and Future Prospects. AGRONOMY-BASEL 2018. [DOI: 10.3390/agronomy8070128] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The astonishing increase in temperature presents an alarming threat to crop production worldwide. As evident by huge yield decline in various crops, the escalating drastic impacts of heat stress (HS) are putting global food production as well as nutritional security at high risk. HS is a major abiotic stress that influences plant morphology, physiology, reproduction, and productivity worldwide. The physiological and molecular responses to HS are dynamic research areas, and molecular techniques are being adopted for producing heat tolerant crop plants. In this article, we reviewed recent findings, impacts, adoption, and tolerance at the cellular, organellar, and whole plant level and reported several approaches that are used to improve HS tolerance in crop plants. Omics approaches unravel various mechanisms underlying thermotolerance, which is imperative to understand the processes of molecular responses toward HS. Our review about physiological and molecular mechanisms may enlighten ways to develop thermo-tolerant cultivars and to produce crop plants that are agriculturally important in adverse climatic conditions.
Collapse
|
42
|
Keller M, Simm S. The coupling of transcriptome and proteome adaptation during development and heat stress response of tomato pollen. BMC Genomics 2018; 19:447. [PMID: 29884134 PMCID: PMC5994098 DOI: 10.1186/s12864-018-4824-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/24/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Pollen development is central for plant reproduction and is assisted by changes of the transcriptome and proteome. At the same time, pollen development and viability is largely sensitive to stress, particularly to elevated temperatures. The transcriptomic and proteomic changes during pollen development and of different stages in response to elevated temperature was targeted to define the underlying molecular principles. RESULTS The analysis of the transcriptome and proteome of Solanum lycopersicum pollen at tetrad, post-meiotic and mature stage before and after heat stress yielded a decline of the transcriptome but an increase of the proteome size throughout pollen development. Comparison of the transcriptome and proteome led to the discovery of two modes defined as direct and delayed translation. Here, genes of distinct functional processes are under the control of direct and delayed translation. The response of pollen to elevated temperature occurs rather at proteome, but not as drastic at the transcriptome level. Heat shock proteins, proteasome subunits, ribosomal proteins and eukaryotic initiation factors are most affected. On the example of heat shock proteins we demonstrate a decoupling of transcript and protein levels as well as a distinct regulation between the developmental stages. CONCLUSIONS The transcriptome and proteome of developing pollen undergo drastic changes in composition and quantity. Changes at the proteome level are a result of two modes assigned as direct and delayed translation. The response of pollen to elevated temperature is mainly regulated at the proteome level, whereby proteins related to synthesis and degradation of proteins are most responsive and might play a central role in the heat stress response of pollen.
Collapse
Affiliation(s)
- Mario Keller
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, D-60438 Frankfurt am Main, Germany
| | - Stefan Simm
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, D-60438 Frankfurt am Main, Germany
- Frankfurt Institute of Advanced Studies, D-60438 Frankfurt am Main, Germany
| |
Collapse
|
43
|
Liu Z, Qin J, Tian X, Xu S, Wang Y, Li H, Wang X, Peng H, Yao Y, Hu Z, Ni Z, Xin M, Sun Q. Global profiling of alternative splicing landscape responsive to drought, heat and their combination in wheat (Triticum aestivum L.). PLANT BIOTECHNOLOGY JOURNAL 2018; 16:714-726. [PMID: 28834352 PMCID: PMC5814593 DOI: 10.1111/pbi.12822] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/17/2017] [Accepted: 08/10/2017] [Indexed: 05/13/2023]
Abstract
Plant can acquire tolerance to environmental stresses via transcriptome reprogramming at transcriptional and alternative splicing (AS) levels. However, how AS coordinates with transcriptional regulation to contribute to abiotic stresses responses is still ambiguous. In this study, we performed genome-wide analyses of AS responses to drought stress (DS), heat stress (HS) and their combination (HD) in wheat seedlings, and further compared them with transcriptional responses. In total, we found 200, 3576 and 4056 genes exhibiting significant AS pattern changes in response to DS, HS and HD, respectively, and combined drought and heat stress can induce specific AS compared with individual one. In addition, wheat homeologous genes exhibited differential AS responses under stress conditions that more AS events occurred on B subgenome than on A and D genomes. Comparison of genes regulated at AS and transcriptional levels showed that only 12% of DS-induced AS genes were subjected to transcriptional regulation, whereas the proportion increased to ~40% under HS and HD. Functional enrichment analysis revealed that abiotic stress-responsive pathways tended to be highly overrepresented among these overlapped genes under HS and HD. Thus, we proposed that transcriptional regulation may play a major role in response to DS, which coordinates with AS regulation to contribute to HS and HD tolerance in wheat.
Collapse
Affiliation(s)
- Zhenshan Liu
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| | - Jinxia Qin
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| | - Xuejun Tian
- State Key Laboratory for AgrobiotechnologyKey Laboratory of Crop Heterosis Utilization (MOE)Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Shengbao Xu
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| | - Yu Wang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| | - Hongxia Li
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| | - Xiaoming Wang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| | - Huiru Peng
- State Key Laboratory for AgrobiotechnologyKey Laboratory of Crop Heterosis Utilization (MOE)Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Yingyin Yao
- State Key Laboratory for AgrobiotechnologyKey Laboratory of Crop Heterosis Utilization (MOE)Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Zhaorong Hu
- State Key Laboratory for AgrobiotechnologyKey Laboratory of Crop Heterosis Utilization (MOE)Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Zhongfu Ni
- State Key Laboratory for AgrobiotechnologyKey Laboratory of Crop Heterosis Utilization (MOE)Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Mingming Xin
- State Key Laboratory for AgrobiotechnologyKey Laboratory of Crop Heterosis Utilization (MOE)Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Qixin Sun
- State Key Laboratory for AgrobiotechnologyKey Laboratory of Crop Heterosis Utilization (MOE)Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| |
Collapse
|
44
|
Song J, Liu H, Zhuang H, Zhao C, Xu Y, Wu S, Qi J, Li J, Hettenhausen C, Wu J. Transcriptomics and Alternative Splicing Analyses Reveal Large Differences between Maize Lines B73 and Mo17 in Response to Aphid Rhopalosiphum padi Infestation. FRONTIERS IN PLANT SCIENCE 2017; 8:1738. [PMID: 29067035 PMCID: PMC5641392 DOI: 10.3389/fpls.2017.01738] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 09/22/2017] [Indexed: 05/20/2023]
Abstract
Maize (Zea mays L.) is a staple crop worldwide with extensive genetic variations. Various insects attack maize plants causing large yield loss. Here, we investigated the responses of maize B73, a susceptible line, and Mo17, a resistant line, to the aphid Rhopalosiphum padi on metabolite and transcriptome levels. R. padi feeding had no effect on the levels of the defensive metabolites benzoxazinoids (Bxs) in either line, and Mo17 contained substantially greater levels of Bxs than did B73. Profiling of the differentially expressed genes revealed that B73 and Mo17 responded to R. padi infestation specifically, and importantly, these two lines showed large gene expression differences even without R. padi herbivory. Correlation analysis identified four transcription factors (TFs) that might account for the high Bx levels in Mo17. Similarly, genome-wide alternative splicing (AS) analyses indicated that both B73 and Mo17 had temporally specific responses to R. padi infestation, and these two lines also exhibited large differences of AS regulation under normal condition, and 340 genes, including 10 TFs, were constantly differentially spliced. This study provides large-scale resource datasets for further studies on the mechanisms underlying maize-aphid interactions, and highlights the phenotypic divergence in defense against aphids among maize varieties.
Collapse
Affiliation(s)
- Juan Song
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Hui Liu
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Huifu Zhuang
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Chunxia Zhao
- Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, China
| | - Yuxing Xu
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Shibo Wu
- Yunnan Academy of Science and Technology Development, Kunming, China
| | - Jinfeng Qi
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Jing Li
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Christian Hettenhausen
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- *Correspondence: Christian Hettenhausen
| | - Jianqiang Wu
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Jianqiang Wu
| |
Collapse
|