1
|
Agrawal G, Borody TJ, Aitken JM. Mapping Crohn's Disease Pathogenesis with Mycobacterium paratuberculosis: A Hijacking by a Stealth Pathogen. Dig Dis Sci 2024; 69:2289-2303. [PMID: 38896362 DOI: 10.1007/s10620-024-08508-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
Mycobacterium avium ssp. paratuberculosis (MAP) has been implicated in the development of Crohn's disease (CD) for over a century. Similarities have been noted between the (histo)pathological presentation of MAP in ruminants, termed Johne's disease (JD), and appearances in humans with CD. Analyses of disease presentation and pathology suggest a multi-step process occurs that consists of MAP infection, dysbiosis of the gut microbiome, and dietary influences. Each step has a role in the disease development and requires a better understanding to implementing combination therapies, such as antibiotics, vaccination, faecal microbiota transplants (FMT) and dietary plans. To optimise responses, each must be tailored directly to the activity of MAP, otherwise therapies are open to interpretation without microbiological evidence that the organism is present and has been influenced. Microscopy and histopathology enables studies of the mycobacterium in situ and how the associated disease processes manifest in the patient e.g., granulomas, fissuring, etc. The challenge for researchers has been to prove the relationship between MAP and CD with available laboratory tests and methodologies, such as polymerase chain reaction (PCR), MAP-associated DNA sequences and bacteriological culture investigations. These have, so far, been inconclusive in revealing the relationship of MAP in patients with CD. Improved and accurate methods of detection will add to evidence for an infectious aetiology of CD. Specifically, if the bacterial pathogen can be isolated, identified and cultivated, then causal relationships to disease can be confirmed, especially if it is present in human gut tissue. This review discusses how MAP may cause the inflammation seen in CD by relating its known pathogenesis in cattle, and from examples of other mycobacterial infections in humans, and how this would impact upon the difficulties with diagnostic tests for the organism.
Collapse
Affiliation(s)
- Gaurav Agrawal
- Division of Diabetes & Nutritional Sciences, King's College London, Franklin-Wilkins Building, London, SE1 9NH, UK.
- , Sydney, Australia.
| | | | | |
Collapse
|
2
|
Fong A, Rochus CM, Shandilya UK, Muniz MMM, Sharma A, Schenkel FS, Karrow NA, Baes CF. The role of interleukin-10 receptor alpha (IL10Rα) in Mycobacterium avium subsp. paratuberculosis infection of a mammary epithelial cell line. BMC Genom Data 2024; 25:58. [PMID: 38867147 PMCID: PMC11167801 DOI: 10.1186/s12863-024-01234-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/22/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Johne's disease is a chronic wasting disease caused by the bacterium Mycobacterium avium subspecies paratuberculosis (MAP). Johne's disease is highly contagious and MAP infection in dairy cattle can eventually lead to death. With no available treatment for Johne's disease, genetic selection and improvements in management practices could help reduce its prevalence. In a previous study, the gene coding interleukin-10 receptor subunit alpha (IL10Rα) was associated with Johne's disease in dairy cattle. Our objective was to determine how IL10Rα affects the pathogenesis of MAP by examining the effect of a live MAP challenge on a mammary epithelial cell line (MAC-T) that had IL10Rα knocked out using CRISPR/cas9. The wild type and the IL10Rα knockout MAC-T cell lines were exposed to live MAP bacteria for 72 h. Thereafter, mRNA was extracted from infected and uninfected cells. Differentially expressed genes were compared between the wild type and the IL10Rα knockout cell lines. Gene ontology was performed based on the differentially expressed genes to determine which biological pathways were involved. RESULTS Immune system processes pathways were targeted to determine the effect of IL10Rα on the response to MAP infection. There was a difference in immune response between the wild type and IL10Rα knockout MAC-T cell lines, and less difference in immune response between infected and not infected IL10Rα knockout MAC-T cells, indicating IL10Rα plays an important role in the progression of MAP infection. Additionally, these comparisons allowed us to identify other genes involved in inflammation-mediated chemokine and cytokine signalling, interleukin signalling and toll-like receptor pathways. CONCLUSIONS Identifying differentially expressed genes in wild type and ILR10α knockout MAC-T cells infected with live MAP bacteria provided further evidence that IL10Rα contributes to mounting an immune response to MAP infection and allowed us to identify additional potential candidate genes involved in this process. We found there was a complex immune response during MAP infection that is controlled by many genes.
Collapse
Affiliation(s)
- Aisha Fong
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Christina M Rochus
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, N1G 2W1, Canada.
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK.
| | - Umesh K Shandilya
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Maria M M Muniz
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Ankita Sharma
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Flavio S Schenkel
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Niel A Karrow
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Christine F Baes
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, N1G 2W1, Canada.
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, 3002, Switzerland.
| |
Collapse
|
3
|
Jung ES, Ellinghaus D, Degenhardt F, Meguro A, Khor SS, Mucha S, Wendorff M, Juzenas S, Mizuki N, Tokunaga K, Kim SW, Lee MG, Schreiber S, Kim WH, Franke A, Cheon JH. Genome-wide association analysis reveals the associations of NPHP4, TYW1-AUTS2 and SEMA6D for Behçet's disease and HLA-B*46:01 for its intestinal involvement. Dig Liver Dis 2024; 56:994-1001. [PMID: 37977914 DOI: 10.1016/j.dld.2023.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Intestinal involvement in Behçet's disease (BD) is associated with poor prognosis and is more prevalent in East Asian than in Mediterranean populations. Identifying the genetic causes of intestinal BD is important for understanding the pathogenesis and for appropriate treatment of BD patients. METHODS We performed genome-wide association studies (GWAS) and imputation/replication genotyping of human leukocyte antigen (HLA) alleles for 1,689 Korean and Turkish patients with BD (including 379 patients with intestinal BD) and 2,327 healthy controls, followed by replication using 593 Japanese patients with BD (101 patients with intestinal BD) and 737 healthy controls. Stratified cross-phenotype analyses were performed for 1) overall BD, 2) intestinal BD, and 3) intestinal BD without association of overall BD. RESULTS We identified three novel genome-wide significant susceptibility loci including NPHP4 (rs74566205; P=1.36 × 10-8), TYW1-AUTS2 (rs60021986; P=1.14 × 10-9), and SEMA6D (rs4143322; P=5.54 × 10-9) for overall BD, and a new association with HLA-B*46:01 for intestinal BD (P=1.67 × 10-8) but not for BD without intestinal involvement. HLA peptide binding analysis revealed that Mycobacterial peptides, have a stronger binding affinity to HLA-B*46:01 compared to the known risk allele HLA-B*51:01. CONCLUSIONS HLA-B*46:01 is associated with the development of intestinal BD; NPHP4, TYW1-AUTS2, and SEMA6D are susceptibility loci for overall BD.
Collapse
Affiliation(s)
- Eun Suk Jung
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea; Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - David Ellinghaus
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany.
| | - Frauke Degenhardt
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Akira Meguro
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Seik-Soon Khor
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| | - Sören Mucha
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Mareike Wendorff
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Simonas Juzenas
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany; Institute of Biotechnology, Life Science Centre, Vilnius University, Vilnius, Lithuania
| | - Nobuhisa Mizuki
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Katsushi Tokunaga
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| | - Seung Won Kim
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea
| | - Min Goo Lee
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Won Ho Kim
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Jae Hee Cheon
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
4
|
Zhai S, Mehrotra DV, Shen J. Applying polygenic risk score methods to pharmacogenomics GWAS: challenges and opportunities. Brief Bioinform 2023; 25:bbad470. [PMID: 38152980 PMCID: PMC10782924 DOI: 10.1093/bib/bbad470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 12/29/2023] Open
Abstract
Polygenic risk scores (PRSs) have emerged as promising tools for the prediction of human diseases and complex traits in disease genome-wide association studies (GWAS). Applying PRSs to pharmacogenomics (PGx) studies has begun to show great potential for improving patient stratification and drug response prediction. However, there are unique challenges that arise when applying PRSs to PGx GWAS beyond those typically encountered in disease GWAS (e.g. Eurocentric or trans-ethnic bias). These challenges include: (i) the lack of knowledge about whether PGx or disease GWAS/variants should be used in the base cohort (BC); (ii) the small sample sizes in PGx GWAS with corresponding low power and (iii) the more complex PRS statistical modeling required for handling both prognostic and predictive effects simultaneously. To gain insights in this landscape about the general trends, challenges and possible solutions, we first conduct a systematic review of both PRS applications and PRS method development in PGx GWAS. To further address the challenges, we propose (i) a novel PRS application strategy by leveraging both PGx and disease GWAS summary statistics in the BC for PRS construction and (ii) a new Bayesian method (PRS-PGx-Bayesx) to reduce Eurocentric or cross-population PRS prediction bias. Extensive simulations are conducted to demonstrate their advantages over existing PRS methods applied in PGx GWAS. Our systematic review and methodology research work not only highlights current gaps and key considerations while applying PRS methods to PGx GWAS, but also provides possible solutions for better PGx PRS applications and future research.
Collapse
Affiliation(s)
- Song Zhai
- Biostatistics and Research Decision Sciences, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Devan V Mehrotra
- Biostatistics and Research Decision Sciences, Merck & Co., Inc., North Wales, PA 19454, USA
| | - Judong Shen
- Biostatistics and Research Decision Sciences, Merck & Co., Inc., Rahway, NJ 07065, USA
| |
Collapse
|
5
|
Triantaphyllopoulos KA. Long Non-Coding RNAs and Their "Discrete" Contribution to IBD and Johne's Disease-What Stands out in the Current Picture? A Comprehensive Review. Int J Mol Sci 2023; 24:13566. [PMID: 37686376 PMCID: PMC10487966 DOI: 10.3390/ijms241713566] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/23/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
Non-coding RNAs (ncRNA) have paved the way to new perspectives on the regulation of gene expression, not only in biology and medicine, but also in associated fields and technologies, ensuring advances in diagnostic means and therapeutic modalities. Critical in this multistep approach are the associations of long non-coding RNA (lncRNA) with diseases and their causal genes in their networks of interactions, gene enrichment and expression analysis, associated pathways, the monitoring of the involved genes and their functional roles during disease progression from one stage to another. Studies have shown that Johne's Disease (JD), caused by Mycobacterium avium subspecies partuberculosis (MAP), shares common lncRNAs, clinical findings, and other molecular entities with Crohn's Disease (CD). This has been a subject of vigorous investigation owing to the zoonotic nature of this condition, although results are still inconclusive. In this review, on one hand, the current knowledge of lncRNAs in cells is presented, focusing on the pathogenesis of gastrointestinal-related pathologies and MAP-related infections and, on the other hand, we attempt to dissect the associated genes and pathways involved. Furthermore, the recently characterized and novel lncRNAs share common pathologies with IBD and JD, including the expression, molecular networks, and dataset analysis results. These are also presented in an attempt to identify potential biomarkers pertinent to cattle and human disease phenotypes.
Collapse
Affiliation(s)
- Kostas A Triantaphyllopoulos
- Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos St., 11855 Athens, Greece
| |
Collapse
|
6
|
Estevinho MM, Cabeda J, Santiago M, Machado E, Silva R, Duro M, Pita I, Morais R, Macedo G, Bull TJ, Magro F, Sarmento A. Viable Mycobacterium avium subsp. paratuberculosis Colonizes Peripheral Blood of Inflammatory Bowel Disease Patients. Microorganisms 2023; 11:1520. [PMID: 37375022 DOI: 10.3390/microorganisms11061520] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/31/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Pathobionts, particularly Mycobacterium avium subsp. paratuberculosis (MAP) and Escherichia coli isolates with adherence/invasive ability (AIEC) have been associated with inflammatory bowel disease (IBD), particularly Crohn's disease (CD). This study aimed to evaluate the frequency of viable MAP and AIEC in a cohort of IBD patients. As such, MAP and E. coli cultures were established from faecal and blood samples (with a total n = 62 for each) of patients with CD (n = 18), ulcerative colitis (UC, n = 15), or liver cirrhosis (n = 7), as well as from healthy controls (HC, n = 22). Presumptive positive cultures were tested by polymerase chain reaction (PCR), for a positive confirmation of MAP or E. coli identity. E. coli-confirmed isolates were then tested for AIEC identity using adherence and invasion assays in the epithelial cell line of Caco-2 and survival and replication assays in the macrophage cell line of J774. MAP sub-culture and genome sequencing were also performed. MAP was more frequently cultured from the blood and faecal samples of patients with CD and cirrhosis. E. coli presumptive colonies were isolated from the faecal samples of most individuals, in contrast to what was registered for the blood samples. Additionally, from the confirmed E. coli isolates, only three had an AIEC-like phenotype (i.e., one CD patient and two UC patients). This study confirmed the association between MAP and CD; however, it did not find a strong association between the presence of AIEC and CD. It may be hypothesized that the presence of viable MAP in the bloodstream of CD patients contributes to disease reactivation.
Collapse
Affiliation(s)
- Maria Manuela Estevinho
- Department of Gastroenterology, Vila Nova de Gaia/Espinho Hospital Center, 4434-502 Vila Nova de Gaia, Portugal
- Department of Biomedicine, Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, 4050-313 Porto, Portugal
| | - José Cabeda
- FP-I3ID, Universidade Fernando Pessoa, 4200-150 Porto, Portugal
- Escola Superior de Saúde Fernando Pessoa, 4200-253 Porto, Portugal
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR, CIMAR), 4450-208 Matosinhos, Portugal
| | - Mafalda Santiago
- Department of Biomedicine, Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, 4050-313 Porto, Portugal
| | - Elisabete Machado
- FP-I3ID, Universidade Fernando Pessoa, 4200-150 Porto, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, REQUIMTE, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, 4200-150 Porto, Portugal
| | - Ricardo Silva
- FP-I3ID, Universidade Fernando Pessoa, 4200-150 Porto, Portugal
- Escola Superior de Saúde Fernando Pessoa, 4200-253 Porto, Portugal
| | - Mary Duro
- FP-I3ID, Universidade Fernando Pessoa, 4200-150 Porto, Portugal
- Escola Superior de Saúde Fernando Pessoa, 4200-253 Porto, Portugal
- LAQV@REQUIMTE, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Inês Pita
- Department of Gastroenterology, Entre Douro e Vouga Hospital Center, 4520-211 Santa Maria da Feira, Portugal
| | - Rui Morais
- Department of Gastroenterology, São João University Hospital Center, 4200-319 Porto, Portugal
| | - Guilherme Macedo
- Department of Gastroenterology, São João University Hospital Center, 4200-319 Porto, Portugal
| | - Tim J Bull
- Institute of Infection and Immunity, St George's University of London, London SW17 ORE, UK
| | - Fernando Magro
- Department of Biomedicine, Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, 4050-313 Porto, Portugal
- Department of Gastroenterology, São João University Hospital Center, 4200-319 Porto, Portugal
| | - Amélia Sarmento
- FP-I3ID, Universidade Fernando Pessoa, 4200-150 Porto, Portugal
- Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, 4200-150 Porto, Portugal
- I3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-150 Porto, Portugal
| |
Collapse
|
7
|
Gao H, He Q, Xu C, Pang Z, Feng B, Chen T, Yang W, Zhou G, Wang Y, Li J, Su J, Miao Y, Zhao Y, Liao Z, Xu C, Liu Z. The Development and Validation of Anti-paratuberculosis-nocardia Polypeptide Antibody [Anti-pTNP] for the Diagnosis of Crohn's Disease. J Crohns Colitis 2022; 16:1110-1123. [PMID: 35029687 DOI: 10.1093/ecco-jcc/jjac008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 11/17/2021] [Accepted: 01/11/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS Non-invasive biomarkers in sera of patients with inflammatory bowel disease [IBD] are not currently available for rapidly and accurately diagnosing the disease. We aimed to investigate and validate the potential roles of anti-paratuberculosis-nocardia polypeptide antibodies [anti-pTNP] in the diagnosis of IBD. METHODS Serum samples were collected from 502 patients with diagnosed Crohn's disease [CD], 141 patients with ulcerative colitis [UC], and 109 healthy donors. The levels of anti-pTNPs and anti-Saccharomyces cerevisiae antibodies [ASCAs] were determined by enzyme-linked immunosorbent assay. The effects of each variable on the diagnosis were analysed by receiver operating characteristic [ROC] analysis. We also performed an estimate study by first developing a clinical prediction model, with external validation in CD patients from nine IBD medical centres in China. RESULTS The levels of anti-pTNPs in sera of CD patients were higher than those in UC patients and healthy donors. The positive rates of anti-pTNPs were significantly higher in ileal CD patients than in ileocolonic and colonic CD patients, and the levels of anti-pTNP IgG in perianal patients were significantly higher than those in non-perianal CD patients. Of note, anti-pTNPs and perianal diseases were important predictors for active stage of CD patients. Discriminative ability to predict active CD patients was 0.918 (95% confidence interval [CI]:0.886-0.949). CONCLUSIONS Anti-pTNP functions as a novel biological marker for diagnosing CD and can be used to assess disease severity, particularly in those with lesion locations in the terminal ileum and stricturing and perianal diseases. A validated prediction model reveals that anti-pTNPs are useful for estimating the likelihood of active CD.
Collapse
Affiliation(s)
- Han Gao
- Center for Inflammatory Bowel Disease Research, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qiong He
- Center for Inflammatory Bowel Disease Research, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chunjin Xu
- Department of Gastroenterology, First People's Hospital of Shangqiu City Affiliated to Xinxiang Medical University, Shangqiu, China
| | - Zhi Pang
- Department of Gastroenterology, Suzhou Municipal Hospital Affiliated to Nanjing Medical University, Suzhou, China
| | - Baisui Feng
- Department of Gastroenterology, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tingting Chen
- Laboratory of Experimental Analysis, Shanxi Ruihao Biotechnology, Taiyuan, China
| | - Wu Yang
- Laboratory of Experimental Analysis, Shanxi Ruihao Biotechnology, Taiyuan, China
| | - Guangxi Zhou
- Department of Gastroenterology, Affiliated Hospital of Jining Medical College, Jining, China
| | - Yufang Wang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Junxiang Li
- Department of Gastroenterology, Dongfang Hospital of Beijing University of Chinese Medicine, Beijing,China
| | - Jingling Su
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, China
| | - Yinglei Miao
- Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ye Zhao
- Department of Gastroenterology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhuan Liao
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Can Xu
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Zhanju Liu
- Center for Inflammatory Bowel Disease Research, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
8
|
Kleinwort KJH, Hobmaier BF, Mayer R, Hölzel C, Degroote RL, Märtlbauer E, Hauck SM, Deeg CA. Mycobacterium avium subsp. paratuberculosis Proteome Changes Profoundly in Milk. Metabolites 2021; 11:metabo11080549. [PMID: 34436489 PMCID: PMC8399727 DOI: 10.3390/metabo11080549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/10/2021] [Accepted: 08/18/2021] [Indexed: 11/16/2022] Open
Abstract
Mycobacterium avium subspecies paratuberculosis (MAP) are detectable viable in milk and other dairy products. The molecular mechanisms allowing the adaptation of MAP in these products are still poorly understood. To obtain information about respective adaptation of MAP in milk, we differentially analyzed the proteomes of MAP cultivated for 48 h in either milk at 37 °C or 4 °C or Middlebrook 7H9 broth as a control. From a total of 2197 MAP proteins identified, 242 proteins were at least fivefold higher in abundance in milk. MAP responded to the nutritional shortage in milk with upregulation of 32% of proteins with function in metabolism and 17% in fatty acid metabolism/synthesis. Additionally, MAP upregulated clusters of 19% proteins with roles in stress responses and immune evasion, 19% in transcription/translation, and 13% in bacterial cell wall synthesis. Dut, MmpL4_1, and RecA were only detected in MAP incubated in milk, pointing to very important roles of these proteins for MAP coping with a stressful environment. Dut is essential and plays an exclusive role for growth, MmpL4_1 for virulence through secretion of specific lipids, and RecA for SOS response of mycobacteria. Further, 35 candidates with stable expression in all conditions were detected, which could serve as targets for detection. Data are available via ProteomeXchange with identifier PXD027444.
Collapse
Affiliation(s)
- Kristina J. H. Kleinwort
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, D-82152 Martinsried, Germany; (K.J.H.K.); (B.F.H.); (R.L.D.)
| | - Bernhard F. Hobmaier
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, D-82152 Martinsried, Germany; (K.J.H.K.); (B.F.H.); (R.L.D.)
| | - Ricarda Mayer
- Chair of Hygiene and Technology of Milk, Department of Veterinary Sciences, LMU Munich, D-85764 Oberschleißheim, Germany; (R.M.); (C.H.); (E.M.)
| | - Christina Hölzel
- Chair of Hygiene and Technology of Milk, Department of Veterinary Sciences, LMU Munich, D-85764 Oberschleißheim, Germany; (R.M.); (C.H.); (E.M.)
- Institute of Animal Breeding and Husbandry, Faculty of Agricultural and Nutritional Sciences, CAU Kiel, D-24098 Kiel, Germany
| | - Roxane L. Degroote
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, D-82152 Martinsried, Germany; (K.J.H.K.); (B.F.H.); (R.L.D.)
| | - Erwin Märtlbauer
- Chair of Hygiene and Technology of Milk, Department of Veterinary Sciences, LMU Munich, D-85764 Oberschleißheim, Germany; (R.M.); (C.H.); (E.M.)
| | - Stefanie M. Hauck
- Research Unit Protein Science, Helmholtz Center Munich, German Research Center for Environmental Health, D-80939 Munich, Germany;
| | - Cornelia A. Deeg
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, D-82152 Martinsried, Germany; (K.J.H.K.); (B.F.H.); (R.L.D.)
- Correspondence:
| |
Collapse
|