1
|
Mandal M, Mamun MAA, Rakib A, Kumar S, Park F, Hwang DJ, Li W, Miller DD, Singh UP. Modulation of occludin, NF-κB, p-STAT3, and Th17 response by DJ-X-025 decreases inflammation and ameliorates experimental colitis. Biomed Pharmacother 2025; 185:117939. [PMID: 40036995 DOI: 10.1016/j.biopha.2025.117939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/01/2025] [Accepted: 02/24/2025] [Indexed: 03/06/2025] Open
Abstract
SCOPE Inflammatory bowel disease (IBD) involves a range of immune-mediated disorders marked by systemic and local intestinal inflammation. We synthesized a novel compound DJ-X-025 and uncovered its anti-inflammatory properties using lipopolysaccharide (LPS)-induced RAW 264.7 macrophages in vitro and a dextran sodium sulfate (DSS)-induced model of colitis. METHODS AND RESULTS We evaluated the alteration in cell morphology, cytoskeletal proteins, and inflammatory markers of DJ-X-025 treated LPS-stimulated RAW 264.7 macrophages. We administered DJ-X-025 by oral gavage in DSS-induced colitis, examined colon histology, and alterations of immune cells by flow cytometry, and performed molecular studies using RT-qPCR and western blot analysis. DJ-X-025 treatment markedly altered the morphology of LPS-treated RAW 264.7 macrophages from elongated to round shapes, modulated actin and tubulin, and reduced the level of inflammatory markers like TNF-α, IL-1β, IL-6, and iNOS. Further, we observed that DJ-X-025 steered to improve colon length, muscularis mucosa thickness, and colon inflammatory score compared to the DSS group alone. DJ-X-025 effectively inverted the increased population of activated T cells, Th17, and macrophages in lamina propria by DSS treatment, leading to a substantial reduction in the inflammatory response in the colon. Strikingly, DJ-X-025 treatment enhanced the expression of occludin and diminished the expression of NF-κB and phosphorylation of STAT3 in the colon of DSS-treated mice compared to DSS-alone. Additionally, DJ-X-025 induced the expression of Foxp3 in the colon and, reduced systemic inflammatory cytokine/chemokine levels further supporting its immunomodulatory effects. These results suggest that DJ-X-025 is linked to the induction of occludin expression and decreased expression of p-STAT3/NF-κB and Th17 response in the colon, which together suppresses systemic and colon inflammatory cytokines for effective amelioration of experimental colitis. CONCLUSION These findings suggest that DJ-X-025 might be a promising therapeutic agent for the treatment of IBD.
Collapse
Affiliation(s)
- Mousumi Mandal
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Md Abdullah Al Mamun
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Ahmed Rakib
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Santosh Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Frank Park
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Dong-Jin Hwang
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Duane D Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Udai P Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, United States.
| |
Collapse
|
2
|
Yang W, Cui M, Yang P, Liu C, Han X, Yao W, Li Z. Gut microbiota and blood biomarkers in IBD-Related arthritis: insights from mendelian randomization. Sci Rep 2025; 15:514. [PMID: 39747467 PMCID: PMC11696716 DOI: 10.1038/s41598-024-84116-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025] Open
Abstract
With the ongoing rise in the incidence of inflammatory bowel disease (IBD), its extraintestinal manifestations have garnered significant attention. IBD-related arthritis is notable for its insidious onset and unpredictability, presenting considerable challenges for clinical diagnosis and management. Factors such as gut microbiota, plasma proteins, inflammatory proteins, and biomarkers found in blood and urine may be closely associated with IBD-related arthritis. However, the mechanisms by which these factors influence this condition remain poorly understood and require urgent investigation. We employed the method of linkage disequilibrium and the two-sample Mendelian randomization (MR) approach, utilizing single nucleotide polymorphisms (SNPs) identified from large-scale genome-wide association studies as instrumental variables. In this scientifically rigorous manner, we explored the potential causal relationship between gut microbiota, plasma proteins, inflammatory proteins, and blood and urine biomarkers in relation to arthritis resulting from inflammatory bowel disease (IBD). This method aids in elucidating the potential roles of these biomarkers in the development of arthritis following IBD, while minimizing the confounding factors and reverse causality commonly encountered in observational studies. To further verify and strengthen our findings, we conducted subsequent sensitivity analyses. These analyses will evaluate the strength of the association between SNPs and the studied biomarkers, as well as post-IBD arthritis, while accounting for variations in SNP distribution among populations and other potential genetic influencing factors. Through these rigorous analytical steps, our objective is to enhance the robustness and credibility of the research findings and provide more reliable scientific evidence regarding the pathogenesis of post-IBD arthritis. MR analysis provides evidence for the association between genetically predicted gut microbiota, plasma proteins, inflammatory proteins, and blood and urine biomarkers with the risk of IBD-related arthritis. This analysis investigates the characteristics of the associations between specific gut microbiota, plasma proteins, inflammatory proteins, and blood and urine biomarkers in relation to IBD-related arthritis. Among the plasma proteins, pterin-4-alpha-carbinolamine dehydratase, aldo-keto reductase family 1 member C4, cathepsin L2, angiostatin, hepatocyte growth factor-like protein, hepatitis A virus cellular receptor 2, protein O-linked mannose beta-1,4-N-acetylglucosaminyltransferase 2, epididymal-specific alpha-mannosidase, and platelet-derived growth factor receptor-like protein are associated with Crohn's disease-related arthritis. In contrast, agrin, methylenetetrahydrofolate synthetase domain-containing protein, neurotrophin-3 (NT-3) growth factor receptor, and neuropilin-1 are associated with ulcerative colitis-related arthritis. Furthermore, regarding gut bacterial pathway abundance, adenosylcobalamin, N-acetylglucosamine, N-acetylmannosamine, and N-acetylneuraminic acid degradation, as well as glycolysis metabolism and degradation pathways, are associated with Crohn's disease-related arthritis. Meanwhile, gut bacterial pathway abundance (pentose phosphate pathway) and gut microbiota abundance (Bacteroidetes, Bacteroidia, Bacteroidales, Porphyromonadaceae, Faecalibacterium, Eubacterium eligens) are linked to ulcerative colitis-related arthritis. Notably, we did not identify any connections between inflammatory protein factors, blood and urine biomarkers, and IBD-related arthritis. Lastly, in the reverse MR study, the insufficient number of SNPs available for analysis precluded the detection of a reverse causal relationship. This study employs the MR method to elucidate the potential causal relationships among gut microbiota, plasma proteins, inflammatory proteins, and blood and urine biomarkers in relation to the occurrence and progression of IBD-related arthritis. This research offers a novel perspective for a deeper understanding of the pathogenesis of IBD-related arthritis and highlights future directions for the diagnosis and treatment strategies of this condition.
Collapse
Affiliation(s)
- Wei Yang
- Changchun University of Chinese Medicine, 1035 Boshuo Road, Jilin Province, Changchun, 130117, People's Republic of China
| | - Miao Cui
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Peng Yang
- South China Normal University, Guangdong, Guangzhou, 510006, China
| | - Chenlin Liu
- Changchun University of Chinese Medicine, 1035 Boshuo Road, Jilin Province, Changchun, 130117, People's Republic of China
| | - Xiuzhen Han
- Jiangsu Province Hospital of Traditional Chinese Medicine, Jiangsu, Nanjing, 210004, China
| | - Wenyi Yao
- The Seventh Affiliated Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, Chongqing, 200137, China
| | - Zhenhua Li
- Changchun University of Chinese Medicine, 1035 Boshuo Road, Jilin Province, Changchun, 130117, People's Republic of China.
| |
Collapse
|
3
|
Song H, Zhang F, Bai X, Liang H, Niu J, Miao Y. Comprehensive analysis of disulfidptosis-related genes reveals the effect of disulfidptosis in ulcerative colitis. Sci Rep 2024; 14:15705. [PMID: 38977802 PMCID: PMC11231342 DOI: 10.1038/s41598-024-66533-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 07/02/2024] [Indexed: 07/10/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory condition of the intestinal tract. Various programmed cell death pathways in the intestinal mucosa are crucial to the pathogenesis of UC. Disulfidptosis, a recently identified form of programmed cell death, has not been extensively reported in the context of UC. This study evaluated the expression of disulfidptosis-related genes (DRGs) in UC through public databases and assessed disulfide accumulation in the intestinal mucosal tissues of UC patients and dextran sulfate sodium (DSS)-induced colitis mice via targeted metabolomics. We utilized various bioinformatics techniques to identify UC-specific disulfidptosis signature genes, analyze their potential functions, and investigate their association with immune cell infiltration in UC. The mRNA and protein expression levels of these signature genes were confirmed in the intestinal mucosa of DSS-induced colitis mice and UC patients. A total of 24 DRGs showed differential expression in UC. Our findings underscore the role of disulfide stress in UC. Four UC-related disulfidptosis signature genes-SLC7A11, LRPPRC, NDUFS1, and CD2AP-were identified. Their relationships with immune infiltration in UC were analyzed using CIBERSORT, and their expression levels were validated by quantitative real-time PCR and western blotting. This study provides further insights into their potential functions and explores their links to immune infiltration in UC. In summary, disulfidptosis, as a type of programmed cell death, may significantly influence the pathogenesis of UC by modulating the homeostasis of the intestinal mucosal barrier.
Collapse
Affiliation(s)
- Huixian Song
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
- Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, 650032, Yunnan, China
| | - Fengrui Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
- Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, 650032, Yunnan, China
| | - Xinyu Bai
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
- Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, 650032, Yunnan, China
| | - Hao Liang
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
- Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, 650032, Yunnan, China
| | - Junkun Niu
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China.
- Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, 650032, Yunnan, China.
| | - Yinglei Miao
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China.
- Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, 650032, Yunnan, China.
| |
Collapse
|
4
|
Andretto V, Rosso A, Zilio S, Sidi-Boumedine J, Boschetti G, Sankar S, Buffier M, Miele AE, Denis M, Choffour PA, Briançon S, Nancey S, Kryza D, Lollo G. Peptide-Based Hydrogel for Nanosystems Encapsulation: the Next Generation of Localized Delivery Systems for the Treatment of Intestinal Inflammations. Adv Healthc Mater 2024; 13:e2303280. [PMID: 38445812 DOI: 10.1002/adhm.202303280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/10/2024] [Indexed: 03/07/2024]
Abstract
Conventional therapies for inflammatory bowel diseases are mainly based on systemic treatments which cause side effects and toxicity over long-term administration. Nanoparticles appear as a valid alternative to allow a preferential accumulation in inflamed tissues following oral administration while reducing systemic drug exposure. To increase their residence time in the inflamed intestine, the nanoparticles are here associated with a hydrogel matrix. A bioadhesive peptide-based hydrogel is mixed with nanoemulsions, creating a hybrid lipid-polymer nanocomposite. Mucopenetrating nanoemulsions of 100 nm are embedded in a scaffold constituted of the self-assembling peptide hydrogel product PuraStat. The nanocomposite is fully characterized to study the impact of lipid particles in the hydrogel structure. Rheological measurements and circular dichroism analyses are performed to investigate the system's microstructure and physical properties. Biodistribution studies demonstrate that the nanocomposite acts as a depot in the stomach and facilitates the slow release of the nanoemulsions in the intestine. Efficacy studies upon oral administration of the drug-loaded system show the improvement of the disease score in a mouse model of intestinal inflammation.
Collapse
Affiliation(s)
- Valentina Andretto
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, Villeurbanne, F-69622, France
| | - Annalisa Rosso
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, Villeurbanne, F-69622, France
| | - Serena Zilio
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, Villeurbanne, F-69622, France
- SATT, Ouest Valorisation, 14C Rue du Patis Tatelin, Renne, 35708, France
| | - Jacqueline Sidi-Boumedine
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, Villeurbanne, F-69622, France
| | - Gilles Boschetti
- Department of Gastroenterology, Lyon Sud Hospital, Hospices Civil de Lyon and CIRI, Lyon, 69495, France
| | - Sharanya Sankar
- 3-D Matrix Europe SAS, Medical Technology, Caluire-et-Cuire, 69300, France
| | - Marie Buffier
- 3-D Matrix Europe SAS, Medical Technology, Caluire-et-Cuire, 69300, France
| | - Adriana Erica Miele
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ISA UMR 5280, 5 rue de la Doua, Villeurbanne, F-69100, France
- Dept Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, Rome, I-00185, Italy
| | - Morgane Denis
- Univ Lyon, Université Claude Bernard Lyon, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69008, France
- Antineo, R&D Department, Lyon, 69008, France
| | | | - Stéphanie Briançon
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, Villeurbanne, F-69622, France
| | - Stéphane Nancey
- Department of Gastroenterology, Lyon Sud Hospital, Hospices Civil de Lyon and CIRI, Lyon, 69495, France
| | - David Kryza
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, Villeurbanne, F-69622, France
- Hospices Civils de Lyon, Lyon, 69437, France
| | - Giovanna Lollo
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, Villeurbanne, F-69622, France
| |
Collapse
|
5
|
Zhang B, Cheng Y, Jian Q, Xiang S, Xu Q, Wang C, Yang C, Lin J, Zheng C. Sishen Pill and its active phytochemicals in treating inflammatory bowel disease and colon cancer: an overview. Front Pharmacol 2024; 15:1375585. [PMID: 38650627 PMCID: PMC11033398 DOI: 10.3389/fphar.2024.1375585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/21/2024] [Indexed: 04/25/2024] Open
Abstract
The incidence of inflammatory bowel disease (IBD) and the associated risk of colon cancer are increasing globally. Traditional Chinese medicine (TCM) treatment has unique advantages. The Sishen Pill, a common Chinese patented drug used to treat abdominal pain and diarrhea, consists mainly of Psoraleae Fructus, Myristicae Semen, Euodiae Fructus, and Schisandra Chinensis. Modern research has confirmed that Sishen Pill and its active secondary metabolites, such as psoralen, myristicin, evodiamine, and schisandrin, can improve intestinal inflammation and exert antitumor pharmacological effects. Common mechanisms in treating IBD and colon cancer mainly include regulating inflammation-related signaling pathways such as nuclear factor-kappa B, mitogen-activated protein kinase, phosphatidylinositol 3-kinase, NOD-like receptor heat protein domain-related protein 3, and wingless-type MMTV integration site family; NF-E2-related factor 2 and hypoxia-inducible factor 1α to inhibit oxidative stress; mitochondrial autophagy and endoplasmic reticulum stress; intestinal immune cell differentiation and function through the Janus kinase/signal transducer and activator of transcription pathway; and improving the gut microbiota and intestinal barrier. Overall, existing evidence suggests the potential of the Sishen pill to improve IBD and suppress inflammation-to-cancer transformation. However, large-scale randomized controlled clinical studies and research on the safety of these clinical applications are urgently required.
Collapse
Affiliation(s)
- Boxun Zhang
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yingying Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qin Jian
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sirui Xiang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qi Xu
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuchu Wang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuan Yang
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Junzhi Lin
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuan Zheng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Sichuan Provincial Engineering Research Center of Innovative Re-development of Famous Classical Formulas, Tianfu TCM Innovation Harbour, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
6
|
Catalán-Serra I, Ricanek P, Grimstad T. "Out of the box" new therapeutic strategies for Crohn´s disease: moving beyond biologics. REVISTA ESPANOLA DE ENFERMEDADES DIGESTIVAS 2023; 115:614-634. [PMID: 35748460 DOI: 10.17235/reed.2022.9010/2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
New treatment options beyond immunosuppression have emerged in recent years for patients with Crohn´s disease (CD), a chronic systemic condition affecting primarily the gut with great impact in the quality of life. The cause of CD is largely unknown, and a curative treatment is not yet available. In addition, despite the growing therapeutic armamentarium in recent years almost half of the patients don´t achieve a sustained response over time. Thus, new therapeutic strategies are urgently needed. In this review, we discuss the current state of promising new "out of the box" possibilities to control chronic inflammation beyond current pharmacological treatments, including: exclusive enteral nutrition, specific diets, cell therapies using T regs, hyperbaric oxygen, fecal microbiota transplantation, phage therapy, helminths, cannabis and vagal nerve stimulation. The exploration of original and novel therapeutic modalities is key to address their potential as main or complementary treatments in selected CD populations in order to increase efficacy, minimize side effects and improve quality of life of patients.
Collapse
|
7
|
Duan S, Cao Y, Chen P, Yang Y, Zhang Y. Circulating and intestinal regulatory T cells in inflammatory bowel disease: A systemic review and meta-analysis. Int Rev Immunol 2023; 43:83-94. [PMID: 37615427 DOI: 10.1080/08830185.2023.2249525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/17/2023] [Indexed: 08/25/2023]
Abstract
Regulatory T cells (Tregs) play an important immunosuppressive role in inflammatory bowel disease (IBD). However, findings on the quantitative and functional changes of intestinal and circulating Tregs in patients with IBD are rather contradictory. We therefore conducted a meta-analysis on this issue. The pooled effect was assessed using the standardized mean difference (SMD) with a 95% confidence interval (CI), and subgroup analyses were performed to investigate heterogeneity. This analysis included 764 IBD (402 UC and 362 CD) patients and 341 healthy controls (HCs) pooled from 17 eligible studies. The percentage of circulating Tregs was significantly decreased in active IBD patients compared to HCs (SMD = -0.95, p < 0.001) and inactive IBD patients (SMD = -0.80, p < 0.001). There was no difference in the percentage of circulating Tregs between inactive IBD patients and HCs. The suppressive function of circulating Tregs was impaired in active IBD patients according to limited data (SMD = -0.75, p = 0.02). Besides, the percentage of intestinal Tregs was significantly higher in inflamed regions than in non-inflamed regions (SMD = 0.85, p < 0.001). Our study quantitatively summarized the quantitative and functional changes of Tregs and supported the therapeutic potential of Tregs in IBD. Moreover, additional research into the functions and characteristics of intestinal Tregs in IBD is needed.
Collapse
Affiliation(s)
- Shihao Duan
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Yubin Cao
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Pingrun Chen
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Yang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Zhang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Laukova M, Glatman Zaretsky A. Regulatory T cells as a therapeutic approach for inflammatory bowel disease. Eur J Immunol 2023; 53:e2250007. [PMID: 36562391 PMCID: PMC10107179 DOI: 10.1002/eji.202250007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/20/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022]
Abstract
Foxp3+ T regulatory (Treg) cells suppress inflammation and are essential for maintaining tissue homeostasis. A growing appreciation of tissue-specific Treg functions has built interest in leveraging the endogenous suppressive mechanisms of these cells into cellular therapeutics in organ-specific diseases. Notably, Treg cells play a critical role in maintaining the intestinal environment. As a barrier site, the gut requires Treg cells to mediate interactions with the microbiota, support barrier integrity, and regulate the immune system. Without fully functional Treg cells, intestinal inflammation and microbial dysbiosis ensue. Thus, there is a particular interest in developing Treg cellular therapies for intestinal inflammatory disease, such as inflammatory bowel disease (IBD). This article reviews some of the critical pathways that are dysregulated in IBD, Treg cell mechanisms of suppression, and the efforts and approaches in the field to develop these cells as a cellular therapy for IBD.
Collapse
|
9
|
Duclaux-Loras R, Boschetti G, Flourie B, Roblin X, Leluduec JB, Paul S, Almeras T, Ruel K, Buisson A, Bienvenu J, Josson C, Jasnowski R, Legastelois S, Foussat A, Meunier C, Viret C, Rozieres A, Faure M, Kaiserlian D, Nancey S. Relationships of circulating CD4+ T cell subsets and cytokines with the risk of relapse in patients with Crohn’s disease. Front Immunol 2022; 13:864353. [DOI: 10.3389/fimmu.2022.864353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 09/13/2022] [Indexed: 11/06/2022] Open
Abstract
Background and aimsWe aimed to analyze circulating CD4+ T cell subsets and cytokines during the course of Crohn’s disease (CD).Methods and resultsCD4+ T cell subsets, ultrasensitive C-reactive protein (usCRP), and various serum cytokines (IL-6, IL-8, IL-10, IL-13, IL-17A, IL-23, TNFα, IFNγ, and TGFβ) were prospectively monitored every 3 months for 1 year, using multicolor flow cytometry and an ultrasensitive Erenna method in CD patients in remission at inclusion. Relapse occurred in 35 out of the 113 consecutive patients (31%). For patients in remission within 4 months prior to relapse and at the time of relapse, there was no significant difference in Th1, Th17, Treg, and double-positive CD4+ T cell subsets co-expressing either IFNγ and FOXP3, IL-17A and FOXP3, or IFNγ and IL-17A. On the contrary, in patients who remained in remission, the mean frequency and number of double-positive IL-17A+FOXP3+ CD4+ T cells and the level of usCRP were significantly higher (p ≤ 0.01) 1 to 4 months prior to relapse. At the time of relapse, only the IL-6 and usCRP levels were significantly higher (p ≤ 0.001) compared with those patients in remission. On multivariate analysis, a high number of double-positive IL-17A+FOXP3+ CD4+ T cells (≥1.4 cells/mm3) and elevated serum usCRP (≥3.44 mg/L) were two independent factors associated with risk of relapse.ConclusionsDetection of circulating double-positive FOXP3+IL-17A+ CD4+ T cell subsets supports that T cell plasticity may reflect the inflammatory context of Crohn’s disease. Whether this subset contributes to the pathogenesis of CD relapse needs further studies.
Collapse
|
10
|
The ADP-Ribosylation Factor 4d Restricts Regulatory T-Cell Induction via Control of IL-2 Availability. Cells 2022; 11:cells11172639. [PMID: 36078047 PMCID: PMC9454872 DOI: 10.3390/cells11172639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/17/2022] [Accepted: 08/23/2022] [Indexed: 11/21/2022] Open
Abstract
Interleukin-2 is central to the induction and maintenance of both natural (nTreg) and induced Foxp3-expressing regulatory T cells (iTreg). Thus, signals that modulate IL-2 availability may, in turn, also influence Treg homeostasis. Using global knockout and cell-specific knockout mouse models, we evaluated the role of the small GTPase ADP-ribosylation factor 4d (Arl4d) in regulatory T-cell biology. We show that the expression of Arl4d in T cells restricts both IL-2 production and responsiveness to IL-2, as measured by the phosphorylation of STAT5. Arl4d-deficient CD4 T cells converted more efficiently into Foxp3+ iTreg in vitro in the presence of αCD3ε and TGFβ, which was associated with their enhanced IL-2 secretion. As such, Arl4d−/− CD4 T cells induced significantly less colonic inflammation and lymphocytic infiltration in a model of transfer colitis. Thus, our data reveal a negative regulatory role for Arl4d in CD4 T-cell biology, limiting iTreg conversion via the restriction of IL-2 production, leading to reduced induction of Treg from conventional CD4 T cells.
Collapse
|
11
|
Mickael ME, Bhaumik S, Chakraborti A, Umfress AA, van Groen T, Macaluso M, Totenhagen J, Sorace AG, Bibb JA, Standaert DG, Basu R. RORγt-Expressing Pathogenic CD4 + T Cells Cause Brain Inflammation during Chronic Colitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2054-2066. [PMID: 35379749 PMCID: PMC10103644 DOI: 10.4049/jimmunol.2100869] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 02/11/2022] [Indexed: 01/09/2023]
Abstract
Neurobehavioral disorders and brain abnormalities have been extensively reported in both Crohn's disease and ulcerative colitis patients. However, the mechanism causing neuropathological disorders in inflammatory bowel disease patients remains unknown. Studies have linked the Th17 subset of CD4+ T cells to brain diseases associated with neuroinflammation and cognitive impairment, including multiple sclerosis, ischemic brain injury, and Alzheimer's disease. To better understand how CD4+ T lymphocytes contribute to brain pathology in chronic intestinal inflammation, we investigated the development of brain inflammation in the T cell transfer model of chronic colitis. Our findings demonstrate that CD4+ T cells infiltrate the brain of colitic Rag1 -/- mice in proportional levels to colitis severity. Colitic mice developed hypothalamic astrogliosis that correlated with neurobehavioral disorders. Moreover, the brain-infiltrating CD4+ T cells expressed Th17 cell transcription factor retinoic acid-related orphan receptor γt (RORγt) and displayed a pathogenic Th17 cellular phenotype similar to colonic Th17 cells. Adoptive transfer of RORγt-deficient naive CD4+ T cells failed to cause brain inflammation and neurobehavioral disorders in Rag1 -/- recipients, with significantly less brain infiltration of CD4+ T cells. The finding is mirrored in chronic dextran sulfate sodium-induced colitis in Rorcfl/fl Cd4-Cre mice that showed lower frequency of brain-infiltrating CD4+ T cells and astrogliosis despite onset of significantly more severe colitis compared with wild-type mice. These findings suggest that pathogenic RORγt+CD4+ T cells that aggravate colitis migrate preferentially into the brain, contributing to brain inflammation and neurobehavioral disorders, thereby linking colitis severity to neuroinflammation.
Collapse
Affiliation(s)
| | - Suniti Bhaumik
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - Ayanabha Chakraborti
- Department of Surgery, Neuroscience, and Neurology, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| | - Alan A Umfress
- Department of Surgery, Neuroscience, and Neurology, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| | - Thomas van Groen
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL
| | - Matthew Macaluso
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL
| | - John Totenhagen
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL
| | - Anna G Sorace
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL.,Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL; and
| | - James A Bibb
- Department of Surgery, Neuroscience, and Neurology, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL.,Department of Neurology, University of Alabama at Birmingham, Birmingham, AL
| | - David G Standaert
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL
| | - Rajatava Basu
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL;
| |
Collapse
|
12
|
Zhang M, Wang Y, Zhao X, Liu C, Wang B, Zhou J. Mechanistic basis and preliminary practice of butyric acid and butyrate sodium to mitigate gut inflammatory diseases: a comprehensive review. Nutr Res 2021; 95:1-18. [PMID: 34757305 DOI: 10.1016/j.nutres.2021.08.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/19/2021] [Accepted: 08/26/2021] [Indexed: 01/02/2023]
Abstract
A key event featured in the early stage of chronic gut inflammatory diseases is the disordered recruitment and excess accumulation of immune cells in the gut lamina propria. This process is followed by the over-secretion of pro-inflammatory factors and the prolonged overactive inflammatory responses. Growing evidence has suggested that gut inflammatory diseases may be mitigated by butyric acid (BA) or butyrate sodium (NaB). Laboratory studies show that BA and NaB can enhance gut innate immune function through G-protein-mediated signaling pathways while mitigating the overactive inflammatory responses by inhibiting histone deacetylase. The regulatory effects may occur in both epithelial enterocytes and the immune cells in the lamina propria. Prior to further clinical trials, comprehensive literature reviews and rigid examination concerning the underlying mechanism are necessary. To this end, we collected and reviewed 197 published reports regarding the mechanisms, bioactivities, and clinical effects of BA and NaB to modulate gut inflammatory diseases. Our review found insufficient evidence to guarantee the safety of clinical practice of BA and NaB, either by anal enema or oral administration of capsule or tablet. The safety of clinical use of BA and NaB should be further evaluated. Alternatively, dietary patterns rich in "fruits, vegetables and beans" may be an effective and safe approach to prevent gut inflammatory disease, which elevates gut microbiota-dependent production of BA. Our review provides a comprehensive reference to future clinical trials of BA and NaB to treat gut inflammatory diseases.
Collapse
Affiliation(s)
- Mingbao Zhang
- Department of Gastroenterology and Hepatology, Second Hospital of Shandong University, Shandong University, 250012 China
| | - Yanan Wang
- Department of Gastroenterology and Hepatology, Second Hospital of Shandong University, Shandong University, 250012 China
| | - Xianqi Zhao
- School of Public Health, Cheeloo College of Medicine, Shandong University, 250012 China
| | - Chang Liu
- School of Public Health, Cheeloo College of Medicine, Shandong University, 250012 China
| | - Baozhen Wang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 250012 China.
| | - Jun Zhou
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 250012 China.
| |
Collapse
|
13
|
Smyth DJ, Ren B, White MPJ, McManus C, Webster H, Shek V, Evans C, Pandhal J, Fields F, Maizels RM, Mayfield S. Oral delivery of a functional algal-expressed TGF-β mimic halts colitis in a murine DSS model. J Biotechnol 2021; 340:1-12. [PMID: 34390759 PMCID: PMC8516079 DOI: 10.1016/j.jbiotec.2021.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/14/2022]
Abstract
Inflammatory bowel disease (IBD) is a set of immunological disorders which can generate chronic pain and fatigue associated with the inflammatory symptoms. The treatment of IBD remains a significant hurdle with current therapies being only partially effective or having significant side effects, suggesting that new therapies that elicit different modes of action and delivery strategies are required. TGM1 is a TGF-β mimic that was discovered from the intestinal helminth parasite Heligmosomoides polygyrus and is thought to be produced by the parasite to suppress the intestinal inflammation response to help evade host immunity, making it an ideal candidate to be developed as a novel anti-inflammatory bio-therapeutic. Here we utilized the expression system of the edible green algae Chlamydomonas reinhardtii in order to recombinantly produce active TGM1 in a form that could be ingested. C. reinhardtii robustly expressed TGM1, and the resultant recombinant protein is biologically active as measured by regulatory T cell induction. When delivered orally to mice, the algal expressed TGM1 is able to ameliorate weight loss, lymphadenopathy, and disease symptoms in a mouse model of DSS-induced colitis, demonstrating the potential of this biologic as a novel treatment of IBD.
Collapse
Affiliation(s)
- Danielle J Smyth
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, UK
| | - Bijie Ren
- California Center for Algae Biotechnology, Division of Biological Sciences, University of California, San Diego, USA
| | - Madeleine P J White
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, UK
| | - Caitlin McManus
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, UK
| | - Holly Webster
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, UK
| | - Vivien Shek
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, UK
| | - Caroline Evans
- Bioanalytical Facility, Dept Chemical and Biological Engineering, University of Sheffield, UK
| | - Jagroop Pandhal
- Bioanalytical Facility, Dept Chemical and Biological Engineering, University of Sheffield, UK
| | - Francis Fields
- California Center for Algae Biotechnology, Division of Biological Sciences, University of California, San Diego, USA
| | - Rick M Maizels
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, UK.
| | - Stephen Mayfield
- California Center for Algae Biotechnology, Division of Biological Sciences, University of California, San Diego, USA.
| |
Collapse
|
14
|
Negi S, Saini S, Tandel N, Sahu K, Mishra RP, Tyagi RK. Translating Treg Therapy for Inflammatory Bowel Disease in Humanized Mice. Cells 2021; 10:1847. [PMID: 34440615 PMCID: PMC8393385 DOI: 10.3390/cells10081847] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023] Open
Abstract
Crohn's disease and ulcerative colitis, two major forms of inflammatory bowel disease (IBD) in humans, afflicted in genetically predisposed individuals due to dysregulated immune response directed against constituents of gut flora. The defective immune responses mounted against the regulatory mechanisms amplify and maintain the IBD-induced mucosal inflammation. Therefore, restoring the balance between inflammatory and anti-inflammatory immunepathways in the gut may contribute to halting the IBD-associated tissue-damaging immune response. Phenotypic and functional characterization of various immune-suppressive T cells (regulatory T cells; Tregs) over the last decade has been used to optimize the procedures for in vitro expansion of these cells for developing therapeutic interventional strategies. In this paper, we review the mechanisms of action and functional importance of Tregs during the pathogenesis of IBD and modulating the disease induced inflammation as well as role of mouse models including humanized mice repopulated with the human immune system (HIS) to study the IBD. "Humanized" mouse models provide new tools to analyze human Treg ontogeny, immunobiology, and therapy and the role of Tregs in developing interventional strategies against IBD. Overall, humanized mouse models replicate the human conditions and prove a viable tool to study molecular functions of human Tregs to harness their therapeutic potential.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Colitis, Ulcerative/genetics
- Colitis, Ulcerative/immunology
- Colitis, Ulcerative/metabolism
- Colitis, Ulcerative/therapy
- Crohn Disease/genetics
- Crohn Disease/immunology
- Crohn Disease/metabolism
- Crohn Disease/therapy
- Disease Models, Animal
- Hematopoietic Stem Cell Transplantation
- Humans
- Mice, Transgenic
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/transplantation
- Transplantation, Heterologous
Collapse
Affiliation(s)
- Sushmita Negi
- Biomedical Parasitology and Nano-Immunology Lab, Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh 160036, India; (S.N.); (S.S.); (K.S.)
- BERPDC Department, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh 160036, India
| | - Sheetal Saini
- Biomedical Parasitology and Nano-Immunology Lab, Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh 160036, India; (S.N.); (S.S.); (K.S.)
| | - Nikunj Tandel
- Institute of Science, Nirma University, Ahmedabad, Gujarat 382481, India;
| | - Kiran Sahu
- Biomedical Parasitology and Nano-Immunology Lab, Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh 160036, India; (S.N.); (S.S.); (K.S.)
| | - Ravi P.N. Mishra
- BERPDC Department, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh 160036, India
| | - Rajeev K. Tyagi
- Biomedical Parasitology and Nano-Immunology Lab, Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh 160036, India; (S.N.); (S.S.); (K.S.)
| |
Collapse
|
15
|
White MPJ, Smyth DJ, Cook L, Ziegler SF, Levings MK, Maizels RM. The parasite cytokine mimic Hp-TGM potently replicates the regulatory effects of TGF-β on murine CD4 + T cells. Immunol Cell Biol 2021; 99:848-864. [PMID: 33988885 PMCID: PMC9214624 DOI: 10.1111/imcb.12479] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/01/2021] [Accepted: 05/12/2021] [Indexed: 12/13/2022]
Abstract
Transforming growth factor‐beta (TGF‐β) family proteins mediate many vital biological functions in growth, development and regulation of the immune system. TGF‐β itself controls immune homeostasis and inflammation, including conversion of naïve CD4+ T cells into Foxp3+ regulatory T cells (Tregs) in the presence of interleukin‐2 and T‐cell receptor ligands. The helminth parasite Heligmosomoides polygyrus exploits this pathway through a structurally novel TGF‐β mimic (Hp‐TGM), which binds to mammalian TGF‐β receptors and induces Tregs. Here, we performed detailed comparisons of Hp‐TGM with mammalian TGF‐β. Compared with TGF‐β, Hp‐TGM induced greater numbers of Foxp3+ Tregs (iTregs), with more intense Foxp3 expression. Both ligands upregulated Treg functional markers CD73, CD103 and programmed death‐ligand 1, but Hp‐TGM induced significantly higher CD39 expression than did TGF‐β. Interestingly, in contrast to canonical TGF‐β signaling through Smad2/3, Hp‐TGM stimulation was slower and more sustained. Gene expression profiles induced by TGF‐β and Hp‐TGM were remarkably similar, and both types of iTregs suppressed T‐cell responses in vitro and experimental autoimmune encephalomyelitis‐driven inflammation in vivo. In vitro, both types of iTregs were equally stable under inflammatory conditions, but Hp‐TGM‐induced iTregs were more stable in vivo during dextran sodium sulfate‐induced colitis, with greater retention of Foxp3 expression and lower conversion to a ROR‐γt+ phenotype. Altogether, results from this study suggest that the parasite cytokine mimic, Hp‐TGM, may deliver a qualitatively different signal to CD4+ T cells with downstream consequences for the long‐term stability of iTregs. These data highlight the potential of Hp‐TGM as a new modulator of T‐cell responses in vitro and in vivo.
Collapse
Affiliation(s)
- Madeleine P J White
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Danielle J Smyth
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Laura Cook
- Department of Medicine, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Steven F Ziegler
- Department of Translational Research, Benaroya Research Institute, Seattle, WA, USA
| | - Megan K Levings
- Department of Medicine, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Rick M Maizels
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| |
Collapse
|
16
|
Fernandez-Perez R, Lopez-Santalla M, Sánchez-Domínguez R, Alberquilla O, Gutiérrez-Cañas I, Juarranz Y, Bueren JA, Garin MI. Enhanced Susceptibility of Galectin-1 Deficient Mice to Experimental Colitis. Front Immunol 2021; 12:687443. [PMID: 34262567 PMCID: PMC8273429 DOI: 10.3389/fimmu.2021.687443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/07/2021] [Indexed: 12/17/2022] Open
Abstract
Galectin-1 is a β-galactoside-binding lectin, ubiquitously expressed in stromal, epithelial, and different subsets of immune cells. Galectin-1 is the prototype member of the galectin family which shares specificity with β-galactoside containing proteins and lipids. Immunomodulatory functions have been ascribed to endogenous galectin-1 due to its induction of T cell apoptosis, inhibitory effects of neutrophils and T cell trafficking. Several studies have demonstrated that administration of recombinant galectin-1 suppressed experimental colitis by modulating adaptive immune responses altering the fate and phenotype of T cells. However, the role of endogenous galectin-1 in intestinal inflammation is poorly defined. In the present study, the well-characterized acute dextran sulfate sodium (DSS)-induced model of ulcerative colitis was used to study the function of endogenous galectin-1 during the development of intestinal inflammation. We found that galectin-1 deficient mice (Lgals1-/- mice) displayed a more severe intestinal inflammation, characterized by significantly elevated clinical scores, than their wild type counterparts. The mechanisms underlying the enhanced inflammatory response in colitic Lgals1-/- mice involved an altered Th17/Th1 profile of effector CD4+ T cells. Furthermore, increased frequencies of Foxp3+CD4+ regulatory T cells in colon lamina propria in Lgals1-/- mice were found. Strikingly, the exacerbated intestinal inflammatory response observed in Lgals1-/- mice was alleviated by adoptive transfer of wild type Foxp3+CD4+ regulatory T cells at induction of colitis. Altogether, these data highlight the importance of endogenous galectin-1 as a novel determinant in regulating T cell reactivity during the development of intestinal inflammation.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD4-Positive T-Lymphocytes/transplantation
- Colitis, Ulcerative/chemically induced
- Colitis, Ulcerative/immunology
- Colitis, Ulcerative/metabolism
- Colitis, Ulcerative/pathology
- Colon/immunology
- Colon/metabolism
- Colon/pathology
- Dextran Sulfate
- Disease Models, Animal
- Galectin 1/deficiency
- Galectin 1/genetics
- Mice, Inbred C57BL
- Mice, Knockout
- Phenotype
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/transplantation
- Th1 Cells/immunology
- Th1 Cells/metabolism
- Th17 Cells/immunology
- Th17 Cells/metabolism
- Mice
Collapse
Affiliation(s)
- Raquel Fernandez-Perez
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), Madrid, Spain
- Advanced Therapy Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD/UAM), Madrid, Spain
| | - Mercedes Lopez-Santalla
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), Madrid, Spain
- Advanced Therapy Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD/UAM), Madrid, Spain
| | - Rebeca Sánchez-Domínguez
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), Madrid, Spain
- Advanced Therapy Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD/UAM), Madrid, Spain
| | - Omaira Alberquilla
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), Madrid, Spain
- Advanced Therapy Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD/UAM), Madrid, Spain
| | - Irene Gutiérrez-Cañas
- Departamento de Biología Celular, Facultad de Biología y Medicina, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Universidad Complutense de Madrid, Madrid, Spain
| | - Yasmina Juarranz
- Departamento de Biología Celular, Facultad de Biología y Medicina, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Universidad Complutense de Madrid, Madrid, Spain
| | - Juan A. Bueren
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), Madrid, Spain
- Advanced Therapy Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD/UAM), Madrid, Spain
| | - Marina I. Garin
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), Madrid, Spain
- Advanced Therapy Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD/UAM), Madrid, Spain
| |
Collapse
|
17
|
Yang ZJ, Wang BY, Wang TT, Wang FF, Guo YX, Hua RX, Shang HW, Lu X, Xu JD. Functions of Dendritic Cells and Its Association with Intestinal Diseases. Cells 2021; 10:cells10030583. [PMID: 33800865 PMCID: PMC7999753 DOI: 10.3390/cells10030583] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/25/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022] Open
Abstract
Dendritic cells (DCs), including conventional DCs (cDCs) and plasmacytoid DCs (pDCs), serve as the sentinel cells of the immune system and are responsible for presenting antigen information. Moreover, the role of DCs derived from monocytes (moDCs) in the development of inflammation has been emphasized. Several studies have shown that the function of DCs can be influenced by gut microbes including gut bacteria and viruses. Abnormal changes/reactions in intestinal DCs are potentially associated with diseases such as inflammatory bowel disease (IBD) and intestinal tumors, allowing DCs to be a new target for the treatment of these diseases. In this review, we summarized the physiological functions of DCs in the intestinal micro-environment, their regulatory relationship with intestinal microorganisms and their regulatory mechanism in intestinal diseases.
Collapse
Affiliation(s)
- Ze-Jun Yang
- Clinical Medicine of “5 + 3” Program, Capital Medical University, Beijing 100069, China; (Z.-J.Y.); (F.-F.W.); (R.-X.H.)
| | - Bo-Ya Wang
- Undergraduate Student of 2018 Eight Years Program of Clinical Medicine, Peking University Health Science Center, Beijing 100081, China;
| | - Tian-Tian Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China;
| | - Fei-Fei Wang
- Clinical Medicine of “5 + 3” Program, Capital Medical University, Beijing 100069, China; (Z.-J.Y.); (F.-F.W.); (R.-X.H.)
| | - Yue-Xin Guo
- Oral Medicine of “5 + 3” Program, Capital Medical University, Beijing 100069, China;
| | - Rong-Xuan Hua
- Clinical Medicine of “5 + 3” Program, Capital Medical University, Beijing 100069, China; (Z.-J.Y.); (F.-F.W.); (R.-X.H.)
| | - Hong-Wei Shang
- Morphological Experiment Center, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (H.-W.S.); (X.L.)
| | - Xin Lu
- Morphological Experiment Center, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (H.-W.S.); (X.L.)
| | - Jing-Dong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China;
- Correspondence:
| |
Collapse
|
18
|
Kang L, Schmalzl A, Leupold T, Gonzalez-Acera M, Atreya R, Neurath MF, Becker C, Wirtz S. CCR8 Signaling via CCL1 Regulates Responses of Intestinal IFN-γ Producing Innate Lymphoid CelIs and Protects From Experimental Colitis. Front Immunol 2021; 11:609400. [PMID: 33613532 PMCID: PMC7892458 DOI: 10.3389/fimmu.2020.609400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/21/2020] [Indexed: 12/17/2022] Open
Abstract
A diverse spectrum of immune cells populates the intestinal mucosa reflecting the continuous stimulation by luminal antigens. In lesions of patients with inflammatory bowel disease, an aberrant inflammatory process is characterized by a very prominent infiltrate of activated immune cells producing cytokines and chemokines. These mediators perpetuate intestinal inflammation or may contribute to mucosal protection depending on the cellular context. In order to further characterize this complex immune cell network in intestinal inflammation, we investigated the contribution of the chemokine receptor CCR8 to development of colitis using a mouse model of experimental inflammation. We found that CCR8-/- mice compared to wildtype controls developed strong weight loss accompanied by increased histological and endoscopic signs of mucosal damage. Further experiments revealed that this gut protective function of CCR8 seems to be selectively mediated by the chemotactic ligand CCL1, which was particularly produced by intestinal macrophages during colitis. Moreover, we newly identified CCR8 expression on a subgroup of intestinal innate lymphoid cells producing IFN-γ and linked a functional CCL1/CCR8 axis with their abundance in the gut. Our data therefore suggest that this pathway supports tissue-specific ILC functions important for intestinal homeostasis. Modulation of this regulatory circuit may represent a new strategy to treat inflammatory bowel disease in humans.
Collapse
Affiliation(s)
- Le Kang
- Medizinische Klinik 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Angelika Schmalzl
- Medizinische Klinik 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Tamara Leupold
- Medizinische Klinik 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Miguel Gonzalez-Acera
- Medizinische Klinik 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Raja Atreya
- Medizinische Klinik 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Markus F Neurath
- Medizinische Klinik 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Medical Immunology Campus Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Becker
- Medizinische Klinik 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Medical Immunology Campus Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Stefan Wirtz
- Medizinische Klinik 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Medical Immunology Campus Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
19
|
O'Connor R, van De Wouw M, Moloney GM, Ventura-Silva AP, O'Riordan K, Golubeva AV, Dinan TG, Schellekens H, Cryan JF. Strain differences in behaviour and immunity in aged mice: Relevance to Autism. Behav Brain Res 2020; 399:113020. [PMID: 33227245 DOI: 10.1016/j.bbr.2020.113020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 08/28/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022]
Abstract
The BTBR mouse model has been shown to be associated with deficits in social interaction and a pronounced engagement in repetitive behaviours. Autism spectrum disorder (ASD) is the most prevalent neurodevelopmental condition globally. Despite its ubiquity, most research into the disorder remains focused on childhood, with studies in adulthood and old age relatively rare. To this end, we explored the differences in behaviour and immune function in an aged BTBR T + Itpr3tf/J mouse model of the disease compared to a similarly aged C57bl/6 control. We show that while many of the alterations in behaviour that are observed in young animals are maintained (repetitive behaviours, antidepressant-sensitive behaviours, social deficits & cognition) there are more nuanced effects in terms of anxiety in older animals of the BTBR strain compared to C57bl/6 controls. Furthermore, BTBR animals also exhibit an activated T-cell system. As such, these results represent confirmation that ASD-associated behavioural deficits are maintained in ageing, and that that there may be need for differential interventional approaches to counter these impairments, potentially through targeting the immune system.
Collapse
Affiliation(s)
- Rory O'Connor
- APC Microbiome Ireland, University College Cork, Ireland
| | | | - Gerard M Moloney
- APC Microbiome Ireland, University College Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Ireland
| | | | - Ken O'Riordan
- APC Microbiome Ireland, University College Cork, Ireland
| | | | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Ireland
| | | | - John F Cryan
- APC Microbiome Ireland, University College Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Ireland.
| |
Collapse
|
20
|
Nasrallah R, Imianowski CJ, Bossini-Castillo L, Grant FM, Dogan M, Placek L, Kozhaya L, Kuo P, Sadiyah F, Whiteside SK, Mumbach MR, Glinos D, Vardaka P, Whyte CE, Lozano T, Fujita T, Fujii H, Liston A, Andrews S, Cozzani A, Yang J, Mitra S, Lugli E, Chang HY, Unutmaz D, Trynka G, Roychoudhuri R. A distal enhancer at risk locus 11q13.5 promotes suppression of colitis by T reg cells. Nature 2020; 583:447-452. [PMID: 32499651 PMCID: PMC7116706 DOI: 10.1038/s41586-020-2296-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 03/10/2020] [Indexed: 02/02/2023]
Abstract
Genetic variations underlying susceptibility to complex autoimmune and allergic diseases are concentrated within noncoding regulatory elements termed enhancers1. The functions of a large majority of disease-associated enhancers are unknown, in part owing to their distance from the genes they regulate, a lack of understanding of the cell types in which they operate, and our inability to recapitulate the biology of immune diseases in vitro. Here, using shared synteny to guide loss-of-function analysis of homologues of human enhancers in mice, we show that the prominent autoimmune and allergic disease risk locus at chromosome 11q13.52-7 contains a distal enhancer that is functional in CD4+ regulatory T (Treg) cells and required for Treg-mediated suppression of colitis. The enhancer recruits the transcription factors STAT5 and NF-κB to mediate signal-driven expression of Lrrc32, which encodes the protein glycoprotein A repetitions predominant (GARP). Whereas disruption of the Lrrc32 gene results in early lethality, mice lacking the enhancer are viable but lack GARP expression in Foxp3+ Treg cells, which are unable to control colitis in a cell-transfer model of the disease. In human Treg cells, the enhancer forms conformational interactions with the promoter of LRRC32 and enhancer risk variants are associated with reduced histone acetylation and GARP expression. Finally, functional fine-mapping of 11q13.5 using CRISPR-activation (CRISPRa) identifies a CRISPRa-responsive element in the vicinity of risk variant rs11236797 capable of driving GARP expression. These findings provide a mechanistic basis for association of the 11q13.5 risk locus with immune-mediated diseases and identify GARP as a potential target in their therapy.
Collapse
Affiliation(s)
- Rabab Nasrallah
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, UK
| | - Charlotte J Imianowski
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, UK.
- Department of Pathology, University of Cambridge, Cambridge, UK.
| | | | - Francis M Grant
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, UK
| | | | | | | | - Paula Kuo
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, UK
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Firas Sadiyah
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, UK
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Sarah K Whiteside
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, UK
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Maxwell R Mumbach
- Howard Hughes Medical Institute and Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
| | - Dafni Glinos
- Immune Genomics Group, Wellcome Sanger Institute, Cambridge, UK
| | - Panagiota Vardaka
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, UK
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Carly E Whyte
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, UK
| | - Teresa Lozano
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, UK
| | - Toshitsugu Fujita
- Chromatin Biochemistry Research Group, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Department of Biochemistry and Genome Biology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Hodaka Fujii
- Chromatin Biochemistry Research Group, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Department of Biochemistry and Genome Biology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Adrian Liston
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, UK
| | - Simon Andrews
- Bioinformatics Group, The Babraham Institute, Cambridge, UK
| | - Adeline Cozzani
- Inserm UMR1277/CNRS9020, Institut pour la Recherche sur le Cancer de Lille, Lille, France
| | - Jie Yang
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, UK
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Suman Mitra
- Inserm UMR1277/CNRS9020, Institut pour la Recherche sur le Cancer de Lille, Lille, France
| | - Enrico Lugli
- Humanitas Clinical and Research Center, Milan, Italy
| | - Howard Y Chang
- Howard Hughes Medical Institute and Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Gosia Trynka
- Immune Genomics Group, Wellcome Sanger Institute, Cambridge, UK.
- Open Targets, Wellcome Genome Campus, Cambridge, UK.
| | - Rahul Roychoudhuri
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, UK.
- Department of Pathology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
21
|
Ding Z, Du W, Lei Z, Zhang Y, Zhu J, Zeng Y, Wang S, Zheng Y, Liu Z, Huang JA. Neuropilin 1 modulates TGF‑β1‑induced epithelial‑mesenchymal transition in non‑small cell lung cancer. Int J Oncol 2019; 56:531-543. [PMID: 31894269 PMCID: PMC6959462 DOI: 10.3892/ijo.2019.4938] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/11/2019] [Indexed: 12/18/2022] Open
Abstract
Previously, the authors reported that neuropilin-1 (NRP1) was significantly increased and acted as a vital promoter in the metastasis of non-small cell lung cancer (NSCLC). However, the regulatory mechanism of NRP1 in NSCLC cell migration and invasion remained unclear. The present study aimed to explore the regulatory mechanism of NRP1 in the transforming growth factor-β (TGF-β) 1-induced migration and invasion of NSCLC cells. The expression level of NRP1 was determined by RT-qPCR analysis in human tissue samples with or without lymph node metastasis. Transwell assay and wound healing assay were conducted to determine the cell migration. Lentivirus-mediated stable knockdown and overexpression of NRP1 cell lines were constructed. Exogenous TGF-β1 stimulation, SIS3 treatment, western blot analysis and in vivo metastatic model were utilized to clarify the underlying regulatory mechanisms. The results demonstrated that the expression of NRP1 was increased in metastatic NSCLC tissues. NRP1 promoted NSCLC metastasis in vitro and in vivo. The Transwell assays, wound healing assays and western blot analysis revealed that the knockdown of NRP1 significantly inhibited TGF-β1-mediated EMT and migratory and invasive capabilities of NSCLC. Furthermore, the overexpression of NRP1 weakened the inhibitory effect of SIS3 on the NSCLC migration and invasion. Co-IP assay revealed that NRP1 interacted with TGFβRII to induce EMT. On the whole, the findings of this study demonstrated that NRP1 was overexpressed in metastatic NSCLC tissues. NRP1 could contributes to TGF-β1-induced EMT and metastasis in NSCLC by binding with TGFβRII.
Collapse
Affiliation(s)
- Zongli Ding
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Wenwen Du
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Zhe Lei
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Yang Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Jianjie Zhu
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Yuanyuan Zeng
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Shengjie Wang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Yulong Zheng
- Department of Respiratory Medicine, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu 223002, P.R. China
| | - Zeyi Liu
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Jian-An Huang
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
22
|
Chemotherapy-induced neuroinflammation is associated with disrupted colonic and bacterial homeostasis in female mice. Sci Rep 2019; 9:16490. [PMID: 31712703 PMCID: PMC6848141 DOI: 10.1038/s41598-019-52893-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/24/2019] [Indexed: 12/12/2022] Open
Abstract
Chemotherapy treatment negatively affects the nervous and immune systems and alters gastrointestinal function and microbial composition. Outside of the cancer field, alterations in commensal bacteria and immune function have been implicated in behavioral deficits; however, the extent to which intestinal changes are related to chemotherapy-associated behavioral comorbidities is not yet known. Thus, this study identified concurrent changes in behavior, central and peripheral immune activation, colon histology, and bacterial community structure in mice treated with paclitaxel chemotherapy. In paclitaxel-treated mice, increased fatigue and decreased cognitive performance occurred in parallel with reduced microglia immunoreactivity, increased circulating chemokine expression (CXCL1), as well as transient increases in pro-inflammatory cytokine/chemokine (Il-1β, Tnfα, Il-6, and Cxcl1) gene expression in the brain. Furthermore, mice treated with paclitaxel had altered colonic bacterial community composition and increased crypt depth. Relative abundances of multiple bacterial taxa were associated with paclitaxel-induced increases in colon mass, spleen mass, and microglia activation. Although microbial community composition was not directly related to available brain or behavioral measures, structural differences in colonic tissue were strongly related to microglia activation in the dentate gyrus and the prefrontal cortex. These data indicate that the chemotherapeutic paclitaxel concurrently affects the gut microbiome, colonic tissue integrity, microglia activation, and fatigue in female mice, thus identifying a novel relationship between colonic tissue integrity and behavioral responses that is not often assessed in studies of the brain-gut-microbiota axis.
Collapse
|
23
|
Berberis lycium fruit extract attenuates oxi-inflammatory stress and promotes mucosal healing by mitigating NF-κB/c-Jun/MAPKs signalling and augmenting splenic Treg proliferation in a murine model of dextran sulphate sodium-induced ulcerative colitis. Eur J Nutr 2019; 59:2663-2681. [DOI: 10.1007/s00394-019-02114-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/04/2019] [Indexed: 12/18/2022]
|
24
|
Thapa B, Pak S, Kwon HJ, Lee K. Decursinol Angelate Ameliorates Dextran Sodium Sulfate-Induced Colitis by Modulating Type 17 Helper T Cell Responses. Biomol Ther (Seoul) 2019; 27:466-473. [PMID: 30917627 PMCID: PMC6720537 DOI: 10.4062/biomolther.2019.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/12/2019] [Accepted: 02/20/2019] [Indexed: 12/12/2022] Open
Abstract
Angelica gigas has been used as a Korean traditional medicine for pain relief and gynecological health. Although the extracts are reported to have an anti-inflammatory property, the bioactive compounds of the herbal plant and the effect on T cell responses are unclear. In this study, we identified decursinol angelate (DA) as an immunomodulatory ingredient of A. gigas and demonstrated its suppressive effect on type 17 helper T (Th17) cell responses. Helper T cell culture experiments revealed that DA impeded the differentiation of Th17 cells and IL-17 production without affecting the survival and proliferation of CD4 T cells. By using a dextran sodium sulfate (DSS)-induced colitis model, we determined the therapeutic potential of DA for the treatment of ulcerative colitis. DA treatment attenuated the severity of colitis including a reduction in weight loss, colon shortening, and protection from colonic tissue damage induced by DSS administration. Intriguingly, Th17 cells concurrently with neutrophils in the colitis tissues were significantly decreased by the DA treatment. Overall, our experimental evidence reveals for the first time that DA is an anti-inflammatory compound to modulate inflammatory T cells, and suggests DA as a potential therapeutic agent to manage inflammatory conditions associated with Th17 cell responses.
Collapse
Affiliation(s)
| | - Seongwon Pak
- Department of Biomedical Science, Hallym University, Chuncheon 24252, Republic of Korea
| | - Hyun-Joo Kwon
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Keunwook Lee
- Institute of Bioscience and Biotechnology.,Department of Biomedical Science, Hallym University, Chuncheon 24252, Republic of Korea
| |
Collapse
|
25
|
Jia L, Lu J, Zhou Y, Tao Y, Xu H, Zheng W, Zhao J, Liang G, Xu L. Tolerogenic dendritic cells induced the enrichment of CD4 +Foxp3 + regulatory T cells via TGF-β in mesenteric lymph nodes of murine LPS-induced tolerance model. Clin Immunol 2018; 197:118-129. [PMID: 30248398 DOI: 10.1016/j.clim.2018.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 09/09/2018] [Accepted: 09/20/2018] [Indexed: 12/20/2022]
Abstract
Endotoxin tolerance is an important state for the prevention of lethal infection and inflammatory response, which is closely associated with the participation of innate immune cells. Moreover, mesenteric lymph nodes (MLNs)-resident immune cells, such as CD4+Foxp3+ regulatory T (Treg) cells and dendritic cells, play important roles in the maintenance of peripheral immune tolerance. However, the potential roles of these cells in MLNs in the development of endotoxin tolerance remain largely unknown. Recent research work showed that CD4+Foxp3+ Treg cells contributed to the development of endotoxin tolerance. Here, we further analyzed the possible change on CD4+Foxp3+Tregs population in MLNs in murine LPS-induced endotoxin tolerance model. Our data showed that the proportion and absolute number of CD4+Foxp3+Tregs, expressing altered levels of CTLA4 and GITR, significantly increased in MLNs of murine LPS-induced tolerance model. Moreover, the expression level of TGF-β in MLNs also increased obviously. Furthermore, TGF-β blockade could obviously reduce the proportion and absolute number of CD4+Foxp3+Tregs in MLNs and subsequently impair the protection effect against LPS rechallenge. Of note, we found that tolerogenic dendritic cell (Tol-DC), expressing lower levels of MHC-II and CD86 molecules, dominantly secreted TGF-β in MLNs in murine LPS-induced tolerance model. In all, our data provided an unknown phenomenon that the total cell number of CD4+Foxp3+Tregs significantly increased in MLNs in endotoxin tolerance, which was related to MLN-resident TGF-β secreting CD11c+DCs, providing a new fundamental basis for the understanding on the potential roles of MLN-resident immune cells in the development of endotoxin tolerance.
Collapse
Affiliation(s)
- Li Jia
- Department of Immunology, Zunyi Medical University, Guizhou Zunyi 563000, PR China
| | - Jia Lu
- Department of Immunology, Zunyi Medical University, Guizhou Zunyi 563000, PR China
| | - Ya Zhou
- Department of Medical physics, Zunyi Medical University, Guizhou Zunyi 56000, PR China
| | - Yijing Tao
- Department of Immunology, Zunyi Medical University, Guizhou Zunyi 563000, PR China
| | - Hualin Xu
- Department of Immunology, Zunyi Medical University, Guizhou Zunyi 563000, PR China
| | - Wen Zheng
- Department of Immunology, Zunyi Medical University, Guizhou Zunyi 563000, PR China
| | - Juanjuan Zhao
- Department of Immunology, Zunyi Medical University, Guizhou Zunyi 563000, PR China
| | - Guiyou Liang
- Department of Thoracic and Cardiovascular Surgery, Affiliated Hospital of Zunyi Medical University, Guizhou 563003, PR China.
| | - Lin Xu
- Department of Immunology, Zunyi Medical University, Guizhou Zunyi 563000, PR China.
| |
Collapse
|
26
|
Smids C, Horjus Talabur Horje CS, Drylewicz J, Roosenboom B, Groenen MJM, van Koolwijk E, van Lochem EG, Wahab PJ. Intestinal T Cell Profiling in Inflammatory Bowel Disease: Linking T Cell Subsets to Disease Activity and Disease Course. J Crohns Colitis 2018; 12:465-475. [PMID: 29211912 DOI: 10.1093/ecco-jcc/jjx160] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 11/23/2017] [Indexed: 12/20/2022]
Abstract
INTRODUCTION A dysregulated intestinal T cell response is presumed in patients with inflammatory bowel disease [IBD]. In this longitudinal study, we investigated the changes in intestinal T lymphocyte subsets in IBD at first presentation and over time during endoscopic active or inactive disease, and relate them to disease activity and outcome. METHODS We included 129 newly diagnosed patients (87 Crohn's disease [CD], 42 ulcerative colitis [UC]) and 19 healthy controls [HC]. Follow-up biopsy specimens were analysed from 70 IBD patients. Immunophenotyping of specimens was performed by flow cytometry identifying lymphocyte subpopulations. RESULTS IBD patients at diagnosis displayed higher percentages of CD4 T+ cells, Tregs, and central memory T cells [TCM] and with lower percentages of CD8 and CD103 T lymphocytes than HC. Follow-up specimens of patients with endoscopic inactive disease showed T cell subset recovery comparable to HC. Endoscopic active disease at follow-up coincided with T cell subsets similar to those at diagnosis. In UC, lower baseline percentages of CD3 cells was associated with milder disease course without the need of an immunomodulator, whereas in CD, higher baseline percentages of CD4 and Tregs were associated with complicated disease course. CONCLUSIONS The intestinal T cell infiltrate in IBD patients with active endoscopic disease is composed of increased percentages of CD4+ T cells, Tregs, and TCM, with lower percentages of CD8+ T cells and CD103+ T cells, compared with HC and endoscopic inactive IBD. Baseline percentages of CD3, CD4, and Tregs were associated with disease outcome. Further research is needed to demonstrate the predictive value of these lymphocyte subsets.
Collapse
Affiliation(s)
- Carolijn Smids
- Crohn and Colitis Centre Rijnstate, Rijnstate Hospital, Arnhem, The Netherlands
| | | | - Julia Drylewicz
- Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Britt Roosenboom
- Crohn and Colitis Centre Rijnstate, Rijnstate Hospital, Arnhem, The Netherlands
| | - Marcel J M Groenen
- Crohn and Colitis Centre Rijnstate, Rijnstate Hospital, Arnhem, The Netherlands
| | - Elly van Koolwijk
- Department of Microbiology and Immunology, Rijnstate Hospital, Arnhem, The Netherlands
| | - Ellen G van Lochem
- Department of Microbiology and Immunology, Rijnstate Hospital, Arnhem, The Netherlands
| | - Peter J Wahab
- Crohn and Colitis Centre Rijnstate, Rijnstate Hospital, Arnhem, The Netherlands
| |
Collapse
|
27
|
Smids C, Horjus Talabur Horje CS, van Wijk F, van Lochem EG. The Complexity of alpha E beta 7 Blockade in Inflammatory Bowel Diseases. J Crohns Colitis 2017; 11:500-508. [PMID: 27660340 DOI: 10.1093/ecco-jcc/jjw163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/21/2016] [Indexed: 02/08/2023]
Abstract
Monoclonal antibodies targeting integrins are emerging as new treatment option in inflammatory bowel diseases. Integrins are molecules involved in cell adhesion and signalling. After the successful introduction of anti-α4β7, currently anti-β7 is under evaluation in a phase three trial. Anti-β7 blocks both α4β7/MAdCAM-1 and αEβ7/E-cadherin interaction, targeting both the homing to and the retention in the gut of potential pathological T cells. Since the physiological and potential pathological roles of immune cells expressing αEβ7 are less distinct than of those expressing α4β7, an overview of the current state of knowledge on αEβ7 in mice and humans in both health and inflammatory bowel diseases is presented here, also addressing the potential consequences of anti-β7 treatment.
Collapse
Affiliation(s)
- Carolijn Smids
- Department of Gastroenterology and Hepatology, Rijnstate Hospital, Arnhem, The Netherlands
| | | | - Femke van Wijk
- Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Ellen G van Lochem
- Department of Microbiology and Immunology, Rijnstate Hospital, Arnhem, The Netherlands
| |
Collapse
|
28
|
Landrith TA, Sureshchandra S, Rivera A, Jang JC, Rais M, Nair MG, Messaoudi I, Wilson EH. CD103 + CD8 T Cells in the Toxoplasma-Infected Brain Exhibit a Tissue-Resident Memory Transcriptional Profile. Front Immunol 2017; 8:335. [PMID: 28424687 PMCID: PMC5372813 DOI: 10.3389/fimmu.2017.00335] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/08/2017] [Indexed: 12/20/2022] Open
Abstract
During chronic infection, memory T cells acquire a unique phenotype and become dependent on different survival signals than those needed for memory T cells generated during an acute infection. The distinction between the role of effector and memory T cells in an environment of persistent antigen remains unclear. Here, in the context of chronic Toxoplasma gondii infection, we demonstrate that a population of CD8 T cells exhibiting a tissue-resident memory (TRM) phenotype accumulates within the brain. We show that this population is distributed throughout the brain in both parenchymal and extraparenchymal spaces. Furthermore, this population is transcriptionally distinct and exhibits a transcriptional signature consistent with the TRM observed in acute viral infections. Finally, we establish that the CD103+ TRM population has an intrinsic capacity to produce both IFN-γ and TNF-α, cytokines critical for parasite control within the central nervous system (CNS). The contribution of this population to pro-inflammatory cytokine production suggests an important role for TRM in protective and ongoing immune responses in the infected CNS. Accession number: GSE95105
Collapse
Affiliation(s)
- Tyler A Landrith
- School of Medicine, University of California, Riverside, CA, USA
| | | | - Andrea Rivera
- School of Medicine, University of California, Riverside, CA, USA
| | - Jessica C Jang
- School of Medicine, University of California, Riverside, CA, USA
| | - Maham Rais
- School of Medicine, University of California, Riverside, CA, USA
| | - Meera G Nair
- School of Medicine, University of California, Riverside, CA, USA
| | - Ilhem Messaoudi
- School of Medicine, University of California, Riverside, CA, USA
| | - Emma H Wilson
- School of Medicine, University of California, Riverside, CA, USA
| |
Collapse
|
29
|
Chanab D, Boucard-Jourdin M, Paidassi H. Gut Inflammation in Mice Leads to Reduction in αvβ8 Integrin Expression on CD103+CD11b- Dendritic Cells. J Crohns Colitis 2017; 11:258-259. [PMID: 27473030 DOI: 10.1093/ecco-jcc/jjw140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 07/18/2016] [Indexed: 01/01/2023]
|