1
|
Mo D, Zeng Z, Lin M, Hu KL, Zhou P, Liu Y, Li R, Yang Y. Expression and Hormonal Regulation of Entpd3 at Various Estrous Cycle Stages in the Mouse Uterus. Reprod Sci 2025; 32:1033-1041. [PMID: 39567465 DOI: 10.1007/s43032-024-01750-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/09/2024] [Indexed: 11/22/2024]
Abstract
Ectonucleoside triphosphate diphosphohydrolase 3 (ENTPD3), a plasma membrane-bound metabolic enzyme, converts extracellular nucleotides into nucleosides. ENTPD3 is involved in various pathophysiological processes, including cellular adhesion, metabolism, activation, and migration. However, its specific function in the uterus remains unclear. This study aimed to investigate the expression pattern and localization of Entpd3 in the mouse uterus throughout the estrous cycle using immunohistochemistry (IHC), quantitative real-time PCR, and western blot analysis. The effect of sex steroid hormones on Entpd3 expression was also examined in ovariectomized (OVX) mice treated with 17β-estradiol (E2)/progesterone (P4) and estrogen receptor antagonist (Fulvestrant)/progesterone receptor antagonist (Mifepristone). Results demonstrated that elevated levels of Entpd3 mRNA and protein were noted during estrus and metestrus, with a decline in diestrus and proestrus. IHC revealed abundant ENTPD3 in the cytoplasm of glandular and luminal epithelial cells during estrus and metestrus. Additionally, treatment with E2 or P4 in OVX mice downregulated the expression of Entpd3 in the mouse uterus, which was rescued by Fulvestrant or Mifepristone. This study demonstrated that the expression of Entpd3 in the mouse uterus varied dynamically throughout the estrous cycle and was steroid-dependent, suggesting a potential role for Entpd3 in female mice's reproductive function.
Collapse
Affiliation(s)
- Dan Mo
- Guangxi Reproductive Medical Center, the First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Nanning, 530021, The People's Republic of China
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Huayuan North Road 49, Beijing, 100191, The People's Republic of China
| | - Zhonghong Zeng
- Guangxi Reproductive Medical Center, the First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Nanning, 530021, The People's Republic of China
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Huayuan North Road 49, Beijing, 100191, The People's Republic of China
| | - Mingmei Lin
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Huayuan North Road 49, Beijing, 100191, The People's Republic of China
| | - Kai-Lun Hu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Huayuan North Road 49, Beijing, 100191, The People's Republic of China
| | - Ping Zhou
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Huayuan North Road 49, Beijing, 100191, The People's Republic of China
| | - Yusong Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Huayuan North Road 49, Beijing, 100191, The People's Republic of China
| | - Rong Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Huayuan North Road 49, Beijing, 100191, The People's Republic of China.
| | - Yihua Yang
- Guangxi Reproductive Medical Center, the First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Nanning, 530021, The People's Republic of China.
| |
Collapse
|
2
|
Danielewski M, Walkowiak J, Wielgus K, Nowak JK. Stability of Blood DNA Methylation Across Two Timepoints in Three Cohorts. Biomedicines 2024; 12:2557. [PMID: 39595122 PMCID: PMC11592101 DOI: 10.3390/biomedicines12112557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/31/2024] [Accepted: 11/03/2024] [Indexed: 11/28/2024] Open
Abstract
Background: DNA methylation mediates the gene-environment interactions, with implications for health and disease. Studies with sampling at more than one timepoint revealed the considerable variability of the blood methylome, but comprehensive resources on genome-wide methylation stability are still lacking. We aimed to identify methylation sites that remain the most stable across two timepoints in human whole blood. Methods: Publicly available blood DNA methylation data from three cohorts were analysed, which included methylation profiles at two timepoints >1 year apart. The cohorts included pre-/post-pubertal children (Illumina 450k array), the elderly (Illumina 450k array), and middle-aged adults with obesity (Illumina EPIC array). Two metrics were used for the stability assessment: the mean absolute difference (MAD) of beta values between two measurements and the intraclass correlation coefficient (ICC). We searched for probes demonstrating high stability (low MAD and high ICC) across the three cohorts. Data from 51 children, 86 elderly adults, and 120 middle-aged participants were re-analysed. Results: The median interquartile range (IQR) of the maximum (from three datasets) MAD was 2.1% (1.5-2.9%), and the median of the minimum ICC agreement coefficient was 0.053 (-0.077-0.304). The Pearson's correlation coefficient for the ICC vs. maximum MAD was low (r = 0.34, p < 2.2 × 10-16). We found only 239 probes that were highly stable based on both the maximum MAD (<5th percentile, <0.01) and ICC criterion (>95th percentile, >0.74). Conclusions: The whole-blood DNA methylation profile, as measured using microarrays, is dynamic over >1 year, but contains a fraction of stable probes, most of which are related to genomic variation. A resource describing probe stability is made publicly available, with the intention to support biomarker studies and the investigation of early epigenetic programming. The absolute error and correlation are two complementary facets of probe stability that may be considered in further research, especially to determine the stability of probes in health and disease across different tissues and populations.
Collapse
Affiliation(s)
| | | | | | - Jan Krzysztof Nowak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, ul. Szpitalna 27/33, 60-572 Poznan, Poland; (M.D.); (J.W.); (K.W.)
| |
Collapse
|
3
|
Zhou P, Mo D, Huang H, Xu J, Liao B, Wang Y, Mao D, Zeng Z, Huang Z, Zhang C, Yang Y, Yu Y, Pan H, Li R. Integrated transcriptomic analysis reveals dysregulated immune infiltration and pro-inflammatory cytokines in the secretory endometrium of recurrent implantation failure patients. LIFE MEDICINE 2024; 3:lnae036. [PMID: 39872439 PMCID: PMC11749484 DOI: 10.1093/lifemedi/lnae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 10/19/2024] [Indexed: 01/30/2025]
Abstract
Recurrent implantation failure (RIF) is a leading impediment to assisted reproductive technology, yet the underlying pathogenesis of RIF remains elusive. Recent studies have sought to uncover novel biomarkers and etiological factors of RIF by profiling transcriptomes of endometrial samples. Nonetheless, the inherent heterogeneity among published studies and a scarcity of experimental validations hinder the identification of robust markers of RIF. Hence, we integrated six publicly accessible datasets with 209 samples, including microarray profiles of endometrial samples in the secretory phase. After removing batch effects, we identified 175 differentially expressed genes. Gene set enrichment analysis identified dysregulation of immunological pathways in RIF. We also observed altered immune infiltration and pro-inflammatory cytokines in RIF. Protein-protein interaction network analysis identified ten hub genes, representing two co-expression modules significantly related to RIF. Knockdown of ENTPD3, one of the hub genes, promoted the epithelial-mesenchymal transition process and resulted in elevated levels of pro-inflammatory cytokines. Collectively, our study reveals abnormal gene expressions involving the regulation of epithelial-mesenchymal transition and immune status in RIF, providing valuable insights into its pathogenesis.
Collapse
Affiliation(s)
- Ping Zhou
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Center for Reproductive Medicine, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Dan Mo
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Center for Reproductive Medicine, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Hanji Huang
- Department of Reproductive Medicine, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, China
| | - Jiaqi Xu
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Center for Reproductive Medicine, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Baoying Liao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Center for Reproductive Medicine, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Yinxue Wang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Center for Reproductive Medicine, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Di Mao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Center for Reproductive Medicine, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Zhonghong Zeng
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Center for Reproductive Medicine, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Ziying Huang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Center for Reproductive Medicine, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Chao Zhang
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Yihua Yang
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Yang Yu
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Center for Reproductive Medicine, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Heng Pan
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Center for Reproductive Medicine, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Rong Li
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Center for Reproductive Medicine, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| |
Collapse
|
4
|
Luo Y, Yang L, Wu H, Xu H, Peng J, Wang Y, Zhou F. Exploring the Molecular Mechanism of Comorbidity of Type 2 Diabetes Mellitus and Colorectal Cancer: Insights from Bulk Omics and Single-Cell Sequencing Validation. Biomolecules 2024; 14:693. [PMID: 38927096 PMCID: PMC11201668 DOI: 10.3390/biom14060693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
The relationship between type 2 diabetes mellitus (T2DM) and colorectal cancer (CRC) has long been extensively recognized, but their crosstalk mechanisms based on gene regulation remain elusive. In our study, for the first time, bulk RNA-seq and single-cell RNA-seq data were used to explore the shared molecular mechanisms between T2DM and CRC. Moreover, Connectivity Map and molecular docking were employed to determine potential drugs targeting the candidate targets. Eight genes (EVPL, TACSTD2, SOX4, ETV4, LY6E, MLXIPL, ENTPD3, UGP2) were identified as characteristic comorbidity genes for T2DM and CRC, with EVPL and ENTPD3 further identified as core comorbidity genes. Our results demonstrated that upregulation of EVPL and downregulation of ENTPD3 were intrinsic molecular features throughout T2DM and CRC and were significantly associated with immune responses, immune processes, and abnormal immune landscapes in both diseases. Single-cell analysis highlighted a cancer-associated fibroblast (CAF) subset that specifically expressed ENTPD3 in CRC, which exhibited high heterogeneity and unique tumor-suppressive features that were completely different from classical cancer-promoting CAFs. Furthermore, ENTPD3+ CAFs could notably predict immunotherapy response in CRC, holding promise to be an immunotherapy biomarker at the single-cell level. Finally, we identified that droperidol may be a novel drug simultaneously targeting EVPL and ENTPD3. In conclusion, previous studies have often focused solely on metabolic alterations common to T2DM and CRC. Our study establishes EVPL and ENTPD3 as characteristic molecules and immune biomarkers of comorbidity in T2DM and CRC patients, and emphasizes the importance of considering immunological mechanisms in the co-development of T2DM and CRC.
Collapse
Affiliation(s)
- Yongge Luo
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China
| | - Lei Yang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China
- Hubei Provincial Clinical Research Center for Cancer, Wuhan 430071, China
| | - Han Wu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China
- Hubei Provincial Clinical Research Center for Cancer, Wuhan 430071, China
| | - Hui Xu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China
- Hubei Provincial Clinical Research Center for Cancer, Wuhan 430071, China
| | - Jin Peng
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China
- Hubei Provincial Clinical Research Center for Cancer, Wuhan 430071, China
| | - You Wang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China
- Hubei Provincial Clinical Research Center for Cancer, Wuhan 430071, China
| | - Fuxiang Zhou
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China
- Hubei Provincial Clinical Research Center for Cancer, Wuhan 430071, China
| |
Collapse
|
5
|
Malik A, Sharma D, Aguirre-Gamboa R, McGrath S, Zabala S, Weber C, Jabri B. Epithelial IFNγ signalling and compartmentalized antigen presentation orchestrate gut immunity. Nature 2023; 623:1044-1052. [PMID: 37993709 PMCID: PMC11361632 DOI: 10.1038/s41586-023-06721-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/06/2023] [Indexed: 11/24/2023]
Abstract
All nucleated cells express major histocompatibility complex I and interferon-γ (IFNγ) receptor1, but an epithelial cell-specific function of IFNγ signalling or antigen presentation by means of major histocompatibility complex I has not been explored. We show here that on sensing IFNγ, colonic epithelial cells productively present pathogen and self-derived antigens to cognate intra-epithelial T cells, which are critically located at the epithelial barrier. Antigen presentation by the epithelial cells confers extracellular ATPase expression in cognate intra-epithelial T cells, which limits the accumulation of extracellular adenosine triphosphate and consequent activation of the NLRP3 inflammasome in tissue macrophages. By contrast, antigen presentation by the tissue macrophages alongside inflammasome-associated interleukin-1α and interleukin-1β production promotes a pathogenic transformation of CD4+ T cells into granulocyte-macrophage colony-stimulating-factor (GM-CSF)-producing T cells in vivo, which promotes colitis and colorectal cancer. Taken together, our study unravels critical checkpoints requiring IFNγ sensing and antigen presentation by epithelial cells that control the development of pathogenic CD4+ T cell responses in vivo.
Collapse
Affiliation(s)
- Ankit Malik
- Department of Medicine, Committee on Immunology, Department of Pediatrics, Department of Pathology, University of Chicago, Chicago, IL, USA.
| | - Deepika Sharma
- Department of Medicine, Committee on Immunology, Department of Pediatrics, Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Raúl Aguirre-Gamboa
- Department of Medicine, Committee on Immunology, Department of Pediatrics, Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Shaina McGrath
- Department of Medicine, Committee on Immunology, Department of Pediatrics, Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Sarah Zabala
- Department of Medicine, Committee on Immunology, Department of Pediatrics, Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Christopher Weber
- Department of Medicine, Committee on Immunology, Department of Pediatrics, Department of Pathology, University of Chicago, Chicago, IL, USA
- Department of Pathology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Bana Jabri
- Department of Medicine, Committee on Immunology, Department of Pediatrics, Department of Pathology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
6
|
Beaudin M, Kamali T, Tang W, Hagerman KA, Dunaway Young S, Ghiglieri L, Parker DM, Lehallier B, Tesi-Rocha C, Sampson JB, Duong T, Day JW. Cerebrospinal Fluid Proteomic Changes after Nusinersen in Patients with Spinal Muscular Atrophy. J Clin Med 2023; 12:6696. [PMID: 37892834 PMCID: PMC10607664 DOI: 10.3390/jcm12206696] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Disease-modifying treatments have transformed the natural history of spinal muscular atrophy (SMA), but the cellular pathways altered by SMN restoration remain undefined and biomarkers cannot yet precisely predict treatment response. We performed an exploratory cerebrospinal fluid (CSF) proteomic study in a diverse sample of SMA patients treated with nusinersen to elucidate therapeutic pathways and identify predictors of motor improvement. Proteomic analyses were performed on CSF samples collected before treatment (T0) and at 6 months (T6) using an Olink panel to quantify 1113 peptides. A supervised machine learning approach was used to identify proteins that discriminated patients who improved functionally from those who did not after 2 years of treatment. A total of 49 SMA patients were included (10 type 1, 18 type 2, and 21 type 3), ranging in age from 3 months to 65 years. Most proteins showed a decrease in CSF concentration at T6. The machine learning algorithm identified ARSB, ENTPD2, NEFL, and IFI30 as the proteins most predictive of improvement. The machine learning model was able to predict motor improvement at 2 years with 79.6% accuracy. The results highlight the potential application of CSF biomarkers to predict motor improvement following SMA treatment. Validation in larger datasets is needed.
Collapse
Affiliation(s)
- Marie Beaudin
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA 94304, USA (T.K.); (W.T.); (K.A.H.); (B.L.); (C.T.-R.)
- Department of Neurology, Stanford Health Care, Stanford, CA 94304, USA
| | - Tahereh Kamali
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA 94304, USA (T.K.); (W.T.); (K.A.H.); (B.L.); (C.T.-R.)
| | - Whitney Tang
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA 94304, USA (T.K.); (W.T.); (K.A.H.); (B.L.); (C.T.-R.)
| | - Katharine A. Hagerman
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA 94304, USA (T.K.); (W.T.); (K.A.H.); (B.L.); (C.T.-R.)
| | - Sally Dunaway Young
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA 94304, USA (T.K.); (W.T.); (K.A.H.); (B.L.); (C.T.-R.)
- Department of Neurology, Stanford Health Care, Stanford, CA 94304, USA
| | - Lisa Ghiglieri
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA 94304, USA (T.K.); (W.T.); (K.A.H.); (B.L.); (C.T.-R.)
| | - Dana M. Parker
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA 94304, USA (T.K.); (W.T.); (K.A.H.); (B.L.); (C.T.-R.)
| | - Benoit Lehallier
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA 94304, USA (T.K.); (W.T.); (K.A.H.); (B.L.); (C.T.-R.)
| | - Carolina Tesi-Rocha
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA 94304, USA (T.K.); (W.T.); (K.A.H.); (B.L.); (C.T.-R.)
- Department of Neurology, Stanford Health Care, Stanford, CA 94304, USA
| | - Jacinda B. Sampson
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA 94304, USA (T.K.); (W.T.); (K.A.H.); (B.L.); (C.T.-R.)
- Department of Neurology, Stanford Health Care, Stanford, CA 94304, USA
| | - Tina Duong
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA 94304, USA (T.K.); (W.T.); (K.A.H.); (B.L.); (C.T.-R.)
- Department of Neurology, Stanford Health Care, Stanford, CA 94304, USA
| | - John W. Day
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA 94304, USA (T.K.); (W.T.); (K.A.H.); (B.L.); (C.T.-R.)
- Department of Neurology, Stanford Health Care, Stanford, CA 94304, USA
| |
Collapse
|
7
|
Liu J, Jing W, Wang T, Hu Z, Lu H. Functional metabolomics revealed the dual-activation of cAMP-AMP axis is a novel therapeutic target of pancreatic cancer. Pharmacol Res 2023; 187:106554. [PMID: 36379357 DOI: 10.1016/j.phrs.2022.106554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/01/2022] [Accepted: 11/10/2022] [Indexed: 11/14/2022]
Abstract
Pancreatic cancer (PC) is one of the most malignant cancers, owing to extremely high aggressiveness and mortality. Yet, this condition currently incurs widely drug resistance and therapeutic deficiency. In this study, we proposed a novel functional metabolomics strategy as Spatial Temporal Operative Real Metabolomics (STORM) to identify the determinant functional metabolites in a dynamic and visualized pattern whose level changes are mechanistically associated with therapeutic efficiency of gemcitabine against PC. Integrating quantitative analysis and spatial-visualization characterization of functional metabolites in vivo, we identified that the AMP-cAMP axis was a novel therapeutic target of PC to intermediate therapeutic efficiency of gemcitabine. Gemcitabine could induce the dual accumulation of cyclic AMP (cAMP) and AMP in tumor tissues. Quantitative analysis of associated biosynthetic enzymes and genes revealed that two independent intracellular ATP derived biosynthetic pathways to promote the dual activation of AMP-cAMP axis in a lower-level energetic environment. Then, gemcitabine induced the dual accumulation of AMP and cAMP can separately activate signaling pathways of AMPK and PKA, leading to the inhibition of tumor growth by the upregulation of the downstream tumor suppressor GADD45A. Collectively, our new STORM strategy was the first time to identify novel target of PC from a metabolic perspective as the dual activation of AMP-cAMP axis induced by gemcitabine can efficiently suppress PC tumor growth. In addition, such discovery has the capability to lower drug resistance of gemcitabine by specifically interacting with novel target, contributing to the improvement of therapeutic efficiency.
Collapse
Affiliation(s)
- Jingjing Liu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China; Laboratory for Functional Metabolomics Science, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wanghui Jing
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China; School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Tianyu Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China; Laboratory for Functional Metabolomics Science, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhe Hu
- Luming Biotechnology Co., Ltd., Shanghai 201114, China
| | - Haitao Lu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China; Laboratory for Functional Metabolomics Science, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
8
|
Razaghi A, Szakos A, Alouda M, Bozóky B, Björnstedt M, Szekely L. Proteomic Analysis of Pleural Effusions from COVID-19 Deceased Patients: Enhanced Inflammatory Markers. Diagnostics (Basel) 2022; 12:diagnostics12112789. [PMID: 36428847 PMCID: PMC9689825 DOI: 10.3390/diagnostics12112789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/27/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Critically ill COVID-19 patients with pleural effusion experience longer hospitalization, multisystem inflammatory syndrome, and higher rates of mortality. Generally, pleural effusion can serve as a diagnostic value to differentiate cytokine levels. This study aimed to evaluate the pleural effusions of COVID-19 deceased patients for 182 protein markers. Olink® Inflammation and Organ Damage panels were used to determine the level of 184 protein markers, e.g., ADA, BTC, CA12, CAPG, CD40, CDCP1, CXCL9, ENTPD2, Flt3L, IL-6, IL-8, LRP1, OSM, PD-L1, PTN, STX8, and VEGFA, which were raised significantly in COVID-19 deceased patients, showing over-stimulation of the immune system and ravaging cytokine storm. The rises of DPP6 and EDIL3 also indicate damage caused to arterial and cardiovascular organs. Overall, this study confirms the elevated levels of CA12, CD40, IL-6, IL-8, PD-L1, and VEGFA, proposing their potential either as biomarkers for the severity and prognosis of the disease or as targets for therapy. Particularly, this study reports upregulated ADA, BTC, DPP6, EDIL3, LIF, ENTPD2, Flt3L, and LRP1 in severe COVID-19 patients for the first time. Pearson's correlation coefficient analysis indicates the involvement of JAK/STAT pathways as a core regulator of hyperinflammation in deceased COVID-19 patients, suggesting the application of JAK inhibitors as a potential efficient treatment.
Collapse
Affiliation(s)
- Ali Razaghi
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institute, SE-141 86 Stockholm, Sweden
- Correspondence: (A.R.); (L.S.)
| | - Attila Szakos
- Laboratory of Clinical Pathology and Cytology, Karolinska University Hospital, SE-141 86 Stockholm, Sweden
| | - Marwa Alouda
- Laboratory of Clinical Pathology and Cytology, Karolinska University Hospital, SE-141 86 Stockholm, Sweden
| | - Béla Bozóky
- Laboratory of Clinical Pathology and Cytology, Karolinska University Hospital, SE-141 86 Stockholm, Sweden
| | - Mikael Björnstedt
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institute, SE-141 86 Stockholm, Sweden
- Laboratory of Clinical Pathology and Cytology, Karolinska University Hospital, SE-141 86 Stockholm, Sweden
| | - Laszlo Szekely
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institute, SE-141 86 Stockholm, Sweden
- Laboratory of Clinical Pathology and Cytology, Karolinska University Hospital, SE-141 86 Stockholm, Sweden
- Correspondence: (A.R.); (L.S.)
| |
Collapse
|
9
|
Grubišić V, Bali V, Fried DE, Eltzschig HK, Robson SC, Mazei-Robison MS, Gulbransen BD. Enteric glial adenosine 2B receptor signaling mediates persistent epithelial barrier dysfunction following acute DSS colitis. Mucosal Immunol 2022; 15:964-976. [PMID: 35869148 PMCID: PMC9385475 DOI: 10.1038/s41385-022-00550-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/15/2022] [Accepted: 07/01/2022] [Indexed: 02/04/2023]
Abstract
Intestinal epithelial barrier function is compromised in inflammatory bowel disease and barrier dysfunction contributes to disease progression. Extracellular nucleotides/nucleosides generated in gut inflammation may regulate barrier function through actions on diverse cell types. Enteric glia modulate extracellular purinergic signaling and exert pathophysiological effects on mucosal permeability. These glia may regulate inflammation with paracrine responses, theoretically mediated via adenosine 2B receptor (A2BR) signaling. As the cell-specific roles of A2BRs in models of colitis and barrier dysfunction are unclear, we studied glial A2BRs in acute dextran sodium sulfate (DSS) colitis. We performed and validated conditional ablation of glial A2BRs in Sox10CreERT2+/-;Adora2bf/f mice. Overt intestinal disease activity indices in DSS-colitis were comparable between Sox10CreERT2+/-;Adora2bf/f mice and littermate controls. However, ablating glial A2BRs protected against barrier dysfunction following acute DSS-colitis. These benefits were associated with the normalization of tight junction protein expression and localization including claudin-1, claudin-8, and occludin. Glial A2BR signaling increased levels of proinflammatory mediators in the colon and cell-intrinsic regulation of genes including Csf3, Cxcl1, Cxcl10, and Il6. Our studies show that glial A2BR signaling exacerbates immune responses during DSS-colitis and that this adenosinergic cell-specific mechanism contributes to persistent gut epithelial barrier dysfunction.
Collapse
Affiliation(s)
- Vladimir Grubišić
- Department of Physiology and Neuroscience program, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biomedical Sciences and Center for Biomedical Innovation, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, 11568, USA
| | - Vedrana Bali
- Department of Physiology and Neuroscience program, Michigan State University, East Lansing, MI, 48824, USA
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - David E Fried
- Department of Physiology and Neuroscience program, Michigan State University, East Lansing, MI, 48824, USA
| | - Holger K Eltzschig
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Simon C Robson
- Division of Gastroenterology, Departments of Medicine and Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Michelle S Mazei-Robison
- Department of Physiology and Neuroscience program, Michigan State University, East Lansing, MI, 48824, USA
| | - Brian D Gulbransen
- Department of Physiology and Neuroscience program, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
10
|
Sanders KM, Mutafova-Yambolieva VN. Neurotransmitters responsible for purinergic motor neurotransmission and regulation of GI motility. Auton Neurosci 2021; 234:102829. [PMID: 34146957 DOI: 10.1016/j.autneu.2021.102829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 12/17/2022]
Abstract
Classical concepts of peripheral neurotransmission were insufficient to explain enteric inhibitory neurotransmission. Geoffrey Burnstock and colleagues developed the idea that ATP or a related purine satisfies the criteria for a neurotransmitter and serves as an enteric inhibitory neurotransmitter in GI muscles. Cloning of purinergic receptors and development of specific drugs and transgenic mice have shown that enteric inhibitory responses depend upon P2Y1 receptors in post-junctional cells. The post-junctional cells that transduce purinergic neurotransmitters in the GI tract are PDGFRα+ cells and not smooth muscle cells (SMCs). PDGFRα+ cells express P2Y1 receptors, are activated by enteric inhibitory nerve stimulation and generate Ca2+ oscillations, express small-conductance Ca2+-activated K+ channels (SK3), and generate outward currents when exposed to P2Y1 agonists. These properties are consistent with post-junctional purinergic responses, and similar responses and effectors are not functional in SMCs. Refinements in methodologies to measure purines in tissue superfusates, such as high-performance liquid chromatography (HPLC) coupled with etheno-derivatization of purines and fluorescence detection, revealed that multiple purines are released during stimulation of intrinsic nerves. β-NAD+ and other purines, better satisfy criteria for the purinergic neurotransmitter than ATP. HPLC has also allowed better detection of purine metabolites, and coupled with isolation of specific types of post-junctional cells, has provided new concepts about deactivation of purine neurotransmitters. In spite of steady progress, many unknowns about purinergic neurotransmission remain and require additional investigation to understand this important regulatory mechanism in GI motility.
Collapse
Affiliation(s)
- Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada, School of Medicine, 1664 North Virginia Street, Reno, NV 89557, USA.
| | - Violeta N Mutafova-Yambolieva
- Department of Physiology and Cell Biology, University of Nevada, School of Medicine, 1664 North Virginia Street, Reno, NV 89557, USA
| |
Collapse
|
11
|
Haas CB, Lovászi M, Braganhol E, Pacher P, Haskó G. Ectonucleotidases in Inflammation, Immunity, and Cancer. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:1983-1990. [PMID: 33879578 PMCID: PMC10037530 DOI: 10.4049/jimmunol.2001342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/02/2021] [Indexed: 12/15/2022]
Abstract
Nucleoside triphosphate diphosphohydrolases (NTPDases) are a family of enzymes that hydrolyze nucleotides such as ATP, UTP, ADP, and UDP to monophosphates derivates such as AMP and UMP. The NTPDase family consists of eight enzymes, of which NTPDases 1, 2, 3, and 8 are expressed on cell membranes thereby hydrolyzing extracellular nucleotides. Cell membrane NTPDases are expressed in all tissues, in which they regulate essential physiological tissue functions such as development, blood flow, hormone secretion, and neurotransmitter release. They do so by modulating nucleotide-mediated purinergic signaling through P2 purinergic receptors. NTPDases 1, 2, 3, and 8 also play a key role during infection, inflammation, injury, and cancer. Under these conditions, NTPDases can contribute and control the pathophysiology of infectious, inflammatory diseases and cancer. In this review, we discuss the role of NTPDases, focusing on the less understood NTPDases 2-8, in regulating inflammation and immunity during infectious, inflammatory diseases, and cancer.
Collapse
Affiliation(s)
| | | | - Elizandra Braganhol
- Departamento de Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil; and
| | - Pál Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/National Institute of Alcohol Abuse and Alcoholism, Bethesda, MD
| | - György Haskó
- Department of Anesthesiology, Columbia University, New York, NY;
| |
Collapse
|
12
|
Sandhu B, Perez-Matos MC, Tran S, Singhal G, Syed I, Feldbrügge L, Mitsuhashi S, Pelletier J, Huang J, Yalcin Y, Csizmadia E, Tiwari-Heckler S, Enjyoji K, Sévigny J, Maratos-Flier E, Robson SC, Jiang ZG. Global deletion of NTPDase3 protects against diet-induced obesity by increasing basal energy metabolism. Metabolism 2021; 118:154731. [PMID: 33631144 PMCID: PMC8052311 DOI: 10.1016/j.metabol.2021.154731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/02/2021] [Accepted: 02/11/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Ecto-nucleoside triphosphate diphosphohydrolase 3 (NTPDase3), also known as CD39L3, is the dominant ectonucleotidase expressed by beta cells in the islet of Langerhans and on nerves. NTPDase3 catalyzes the conversion of extracellular ATP and ADP to AMP and modulates purinergic signaling. Previous studies have shown that NTPDase3 decreases insulin release from beta-cells in vitro. This study aims to determine the impact of NTPDase3 in diet-induced obesity (DIO) and metabolism in vivo. METHODS We developed global NTPDase3 deficient (Entpd3-/-) and islet beta-cell-specific NTPDase-3 deficient mice (Entpd3flox/flox,InsCre) using Ins1-Cre targeted gene editing to compare metabolic phenotypes with wildtype (WT) mice on a high-fat diet (HFD). RESULTS Entpd3-/- mice exhibited similar growth rates compared to WT on chow diet. When fed HFD, Entpd3-/- mice demonstrated significant resistance to DIO. Entpd3-/- mice consumed more calories daily and exhibited less fecal calorie loss. Although Entpd3-/- mice had no increases in locomotor activity, the mice exhibited a significant increase in basal metabolic rate when on the HFD. This beneficial phenotype was associated with improved glucose tolerance, but not higher insulin secretion. In fact, Entpd3flox/flox,InsCre mice demonstrated similar metabolic phenotypes and insulin secretion compared to matched controls, suggesting that the expression of NTPDase3 in beta-cells was not the primary protective factor. Instead, we observed a higher expression of uncoupling protein 1 (UCP-1) in brown adipose tissue and an augmented browning in inguinal white adipose tissue with upregulation of UCP-1 and related genes involved in thermogenesis in Entpd3-/- mice. CONCLUSIONS Global NTPDase3 deletion in mice is associated with resistance to DIO and obesity-associated glucose intolerance. This outcome is not driven by the expression of NTPDase3 in pancreatic beta-cells, but rather likely mediated through metabolic changes in adipocytes.
Collapse
Affiliation(s)
- Bynvant Sandhu
- Division of Gastroenterology & Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Maria C Perez-Matos
- Division of Gastroenterology & Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Stephanie Tran
- Division of Gastroenterology & Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Garima Singhal
- Division of Endocrinology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ismail Syed
- Division of Endocrinology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Linda Feldbrügge
- Department of Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Shuji Mitsuhashi
- Division of Gastroenterology & Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Julie Pelletier
- Centre de recherche du CHU de Québec - Université Laval, Québec City, QC G1V 4G2, Canada
| | - Jinhe Huang
- Division of Gastroenterology & Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Yusuf Yalcin
- Division of Gastroenterology & Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Eva Csizmadia
- Division of Gastroenterology & Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Shilpa Tiwari-Heckler
- Division of Gastroenterology & Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Keiichi Enjyoji
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jean Sévigny
- Centre de recherche du CHU de Québec - Université Laval, Québec City, QC G1V 4G2, Canada; Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Eleftheria Maratos-Flier
- Division of Endocrinology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Simon C Robson
- Division of Gastroenterology & Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Anesthesiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Z Gordon Jiang
- Division of Gastroenterology & Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
13
|
Longhi MS, Feng L, Robson SC. Targeting ectonucleotidases to treat inflammation and halt cancer development in the gut. Biochem Pharmacol 2021; 187:114417. [PMID: 33460629 DOI: 10.1016/j.bcp.2021.114417] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/30/2020] [Accepted: 01/11/2021] [Indexed: 01/28/2023]
Abstract
CD39 and CD73 control cell immunity by hydrolyzing proinflammatory ATP and ADP (CD39) into AMP, subsequently converted into anti-inflammatory adenosine (CD73). By regulating the balance between effector and regulatory cells, these ectonucleotidases promote immune homeostasis in acute and chronic inflammation; while also appearing to limit antitumor effector immunity in gut cancer. This manuscript focuses on the pivotal role of CD39 and CD73 ectonucleotidase function in shaping immune responses in the gut. We focus on those mechanisms deployed by these critical and pivotal ectoenzymes and the regulation in the setting of gastrointestinal tract infections, inflammatory bowel disease and tumors of the gastrointestinal tract. We will highlight translational and clinical implications of the latest and most innovative basic research discoveries of these important players of the purinergic signaling. Immunotherapeutic strategies that have been developed to either boost or control ectonucleotidase expression and activity in important disease settings are also reviewed and the in vivo effects discussed.
Collapse
Affiliation(s)
- Maria Serena Longhi
- Center for Inflammation Research, Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, 02215 Boston, USA.
| | - Lili Feng
- Center for Inflammation Research, Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, 02215 Boston, USA; Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Simon C Robson
- Center for Inflammation Research, Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, 02215 Boston, USA; Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, 02215 Boston, USA.
| |
Collapse
|
14
|
Zimmermann H. History of ectonucleotidases and their role in purinergic signaling. Biochem Pharmacol 2020; 187:114322. [PMID: 33161020 DOI: 10.1016/j.bcp.2020.114322] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 12/15/2022]
Abstract
Ectonucleotidases are key for purinergic signaling. They control the duration of activity of purinergic receptor agonists. At the same time, they produce hydrolysis products as additional ligands of purinergic receptors. Due to the considerable diversity of enzymes, purinergic receptor ligands and purinergic receptors, deciphering the impact of extracellular purinergic receptor control has become a challenge. The first group of enzymes described were the alkaline phosphatases - at the time not as nucleotide-metabolizing but as nonspecific phosphatases. Enzymes now referred to as nucleoside triphosphate diphosphohydrolases and ecto-5'-nucleotidase were the first and only nucleotide-specific ectonucleotidases identified. And they were the first group of enzymes related to purinergic signaling. Additional research brought to light a surprising number of ectoenzymes with broad substrate specificity, which can also hydrolyze nucleotides. This short overview traces the development of the field and briefly highlights important results and benefits for therapies of human diseases achieved within nearly a century of investigations.
Collapse
Affiliation(s)
- Herbert Zimmermann
- Goethe University, Institute of Cell Biology and Neuroscience, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
15
|
Sun YL, Zhang Y, Guo YC, Yang ZH, Xu YC. A Prognostic Model Based on Six Metabolism-Related Genes in Colorectal Cancer. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5974350. [PMID: 32953885 PMCID: PMC7482003 DOI: 10.1155/2020/5974350] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/22/2020] [Accepted: 08/04/2020] [Indexed: 12/22/2022]
Abstract
An increasing number of studies have shown that abnormal metabolism processes are closely correlated with the genesis and progression of colorectal cancer (CRC). In this study, we systematically explored the prognostic value of metabolism-related genes (MRGs) for CRC patients. A total of 289 differentially expressed MRGs were screened based on The Cancer Genome Atlas (TCGA) and the Molecular Signatures Database (MSigDB), and 72 differentially expressed transcription factors (TFs) were obtained from TCGA and the Cistrome Project database. The clinical samples obtained from TCGA were randomly divided at a ratio of 7 : 3 to obtain the training group (n = 306) and the test group (n = 128). After univariate and multivariate Cox regression analyses, we constructed a prognostic model based on 6 MRGs (AOC2, ENPP2, ADA, GPD1L, ACADL, and CPT2). Kaplan-Meier survival analysis of the training group, validation group, and overall samples proved that the model had statistical significance in predicting the outcomes of patients. Independent prognosis analysis suggested that this risk score might serve as an independent prognosis factor for CRC patients. Moreover, we combined the prognostic model and the clinical characteristics in a nomogram to predict the overall survival of CRC patients. Furthermore, gene set enrichment analysis (GSEA) was conducted to identify the enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in the high- and low-risk groups, which might provide novel therapeutic targets for CRC patients. We discovered through the protein-protein interaction (PPI) network and TF-MRG regulatory network that 7 hub genes were retrieved from the PPI network and 4 kinds of differentially expressed TFs (NR3C1, MYH11, MAF, and CBX7) positively regulated 4 prognosis-associated MRGs (GSTM5, PTGIS, ENPP2, and P4HA3).
Collapse
Affiliation(s)
- Yuan-Lin Sun
- Department of Gastrointestinal Surgery, The First Hospital, Jilin University, Changchun, 130021 Jilin Province, China
| | - Yang Zhang
- Department of Gastrointestinal Surgery, The First Hospital, Jilin University, Changchun, 130021 Jilin Province, China
| | - Yu-Chen Guo
- Department of Gastrointestinal Surgery, The First Hospital, Jilin University, Changchun, 130021 Jilin Province, China
| | - Zi-Hao Yang
- Department of Gastrointestinal Surgery, The First Hospital, Jilin University, Changchun, 130021 Jilin Province, China
| | - Yue-Chao Xu
- Department of Gastrointestinal Surgery, The First Hospital, Jilin University, Changchun, 130021 Jilin Province, China
| |
Collapse
|
16
|
Ecto-Nucleotide Triphosphate Diphosphohydrolase-2 (NTPDase2) Deletion Increases Acetaminophen-Induced Hepatotoxicity. Int J Mol Sci 2020; 21:ijms21175998. [PMID: 32825435 PMCID: PMC7504458 DOI: 10.3390/ijms21175998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/05/2020] [Accepted: 08/13/2020] [Indexed: 12/19/2022] Open
Abstract
Ecto-nucleotidase triphosphate diphosphohydrolase-2 (NTPDase2) is an ecto-enzyme that is expressed on portal fibroblasts in the liver that modulates P2 receptor signaling by regulating local concentrations of extracellular ATP and ADP. NTPDase2 has protective properties in liver fibrosis and may impact bile duct epithelial turnover. Here, we study the role of NTPDase2 in acute liver injury using an experimental model of acetaminophen (APAP) intoxication in mice with global deletion of NTPDase2. Acute liver toxicity was caused by administration of acetaminophen in wild type (WT) and NTPDase2-deficient (Entpd2 null) mice. The extent of liver injury was compared by histology and serum alanine transaminase (ALT). Markers of inflammation, regeneration and fibrosis were determined by qPCR). We found that Entpd2 expression is significantly upregulated after acetaminophen-induced hepatotoxicity. Entpd2 null mice showed significantly more necrosis and higher serum ALT compared to WT. Hepatic expression of IL-6 and PDGF-B are higher in Entpd2 null mice. Our data suggest inducible and protective roles of portal fibroblast-expressed NTPDase2 in acute necrotizing liver injury. Further studies should investigate the relevance of these purinergic pathways in hepatic periportal and sinusoidal biology as such advances in understanding might provide possible therapeutic targets.
Collapse
|
17
|
Grubišić V, Perez-Medina AL, Fried DE, Sévigny J, Robson SC, Galligan JJ, Gulbransen BD. NTPDase1 and -2 are expressed by distinct cellular compartments in the mouse colon and differentially impact colonic physiology and function after DSS colitis. Am J Physiol Gastrointest Liver Physiol 2019; 317:G314-G332. [PMID: 31188623 PMCID: PMC6774087 DOI: 10.1152/ajpgi.00104.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
ATP is both an important mediator of physiological gut functions such as motility and epithelial function, and a key danger signal that mediates cell death and tissue damage. The actions of extracellular ATP are regulated through the catalytic functions extracellular nucleoside triphosphate diphosphohydrolase-1 (NTPDase1), -2, -3, and -8, which ultimately generate nucleosides. Ectonucleotidases have distinct cellular associations, but the specific locations and functional roles of individual NTPDases in the intestine are still poorly understood. Here, we tested the hypothesis that differential and cell-selective regulation of purine hydrolysis by NTPDase1 and -2 plays important roles in gut physiology and disease. We studied Entpd1 and Entpd2 null mice in health and following colitis driven by 2% dextran sulfate sodium (DSS) administration using functional readouts of gut motility, epithelial barrier function, and neuromuscular communication. NTPDase1 is expressed by immune cells, and the ablation of Entpd1 altered glial numbers in the myenteric plexus. NTPDase2 is expressed by enteric glia, and the ablation of Entpd2 altered myenteric neuron numbers. Mice lacking either NTPDase1 or -2 exhibited decreased inhibitory neuromuscular transmission and altered components of inhibitory junction potentials. Ablation of Entpd2 increased gut permeability following inflammation. In conclusion, the location- and context-dependent extracellular nucleotide phosphohydrolysis by NTPDase1 and -2 substantially impacts gut function in health and disease.NEW & NOTEWORTHY Purines are important mediators of gastrointestinal physiology and pathophysiology. Nucleoside triphosphate diphosphohydrolases (NTPDases) regulate extracellular purines, but the roles of specific NTPDases in gut functions are poorly understood. Here, we used Entpd1- and Entpd2-deficient mice to show that the differential and cell-selective regulation of purine hydrolysis by NTPDase1 and -2 plays important roles in barrier function, gut motility, and neuromuscular communication in health and disease.
Collapse
Affiliation(s)
- Vladimir Grubišić
- 1Department of Physiology and Neuroscience Program, Michigan State University, East Lansing, Michigan
| | - Alberto L. Perez-Medina
- 2Department of Pharmacology and Toxicology and Neuroscience Program, Michigan State University, East Lansing, Michigan
| | - David E. Fried
- 1Department of Physiology and Neuroscience Program, Michigan State University, East Lansing, Michigan
| | - Jean Sévigny
- 3Centre de recherche du CHU de Québec–Université Laval, Québec City, Quebec, Canada,4Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec City, Quebec, Canada
| | - Simon C. Robson
- 5Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - James J. Galligan
- 2Department of Pharmacology and Toxicology and Neuroscience Program, Michigan State University, East Lansing, Michigan
| | - Brian D. Gulbransen
- 1Department of Physiology and Neuroscience Program, Michigan State University, East Lansing, Michigan
| |
Collapse
|
18
|
Vuerich M, Robson SC, Longhi MS. Ectonucleotidases in Intestinal and Hepatic Inflammation. Front Immunol 2019; 10:507. [PMID: 30941139 PMCID: PMC6433995 DOI: 10.3389/fimmu.2019.00507] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 02/25/2019] [Indexed: 12/21/2022] Open
Abstract
Purinergic signaling modulates systemic and local inflammatory responses. Extracellular nucleotides, including eATP, promote inflammation, at least in part via the inflammasome upon engagement of P2 purinergic receptors. In contrast, adenosine generated during eATP phosphohydrolysis by ectonucleotidases, triggers immunosuppressive/anti-inflammatory pathways. Mounting evidence supports the role of ectonucleotidases, especially ENTPD1/CD39 and CD73, in the control of several inflammatory conditions, ranging from infectious disease, organ fibrosis to oncogenesis. Our experimental data generated over the years have indicated both CD39 and CD73 serve as pivotal regulators of intestinal and hepatic inflammation. In this context, immune cell responses are regulated by the balance between eATP and adenosine, potentially impacting disease outcomes as in gastrointestinal infection, inflammatory bowel disease, ischemia reperfusion injury of the bowel and liver, autoimmune or viral hepatitis and other inflammatory conditions, such as cancer. In this review, we report the most recent discoveries on the role of ENTPD1/CD39, CD73, and other ectonucleotidases in the regulation of intestinal and hepatic inflammation. We discuss the present knowledge, highlight the most intriguing and promising experimental data and comment on important aspects that still need to be addressed to develop purinergic-based therapies for these important illnesses.
Collapse
Affiliation(s)
- Marta Vuerich
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Simon C Robson
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.,Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Maria Serena Longhi
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.,Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
19
|
Li M, Qi Y, Chen M, Wang Z, Zeng D, Xiao Y, Li S, Lin H, Wei X, Zhang G. GATA Binding Protein 3 Boosts Extracellular ATP Hydrolysis and Inhibits Metastasis of Breast Cancer by Up-regulating Ectonucleoside Triphosphate Diphosphohydrolase 3. Int J Biol Sci 2019; 15:2522-2537. [PMID: 31754326 PMCID: PMC6854379 DOI: 10.7150/ijbs.35563] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/10/2019] [Indexed: 02/05/2023] Open
Abstract
Despite remarkable advancements in our understanding of breast cancer, it remains the leading cause of cancer deaths in women. Distant recurrence and metastasis is the main reason for death due to breast cancer. It is well recognized that the GATA binding protein 3 (GATA3), a transcription factor, is a tumor suppressor in breast cancer. To date, the mechanistic molecular details of GATA3 remain elusive, because, as a transcription factor, it is not a direct executor in physiological and pathological processes. Here, we demonstrate that GATA3 reduces the ATP level in the breast cancer microenvironment and inhibits breast cancer metastasis by up-regulating ectonucleoside triphosphate diphosphohydrolase 3 (ENTPD3). The extracellular ATP concentration is significantly higher in tumor tissues than in normal tissues and promotes the migration of cancer cells from the primary site. ENTPD3 hydrolyzes ATP in tumor microenvironment and suppresses breast cancer metastasis. Furthermore, ENTPD3 inhibits epithelial-to-mesenchymal transition, a key program responsible for the development of metastatic disease. These findings provide novel insights into the tumor suppressor activity of GATA3.
Collapse
Affiliation(s)
- Meifang Li
- ChangJiang Scholar's Laboratory of Shantou University Medical College, 22 Xinling Road, Shantou, China
- The Breast Center, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, China
| | - Yuzhu Qi
- ChangJiang Scholar's Laboratory of Shantou University Medical College, 22 Xinling Road, Shantou, China
- The Breast Center, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, China
| | - Min Chen
- The Cancer Center and the Department of Breast and Thyroid Surgery, Xiang'an Hospital of Xiamen University, 2000 East Xiang'an Rd, Xiang'an, Xiamen, China
| | - Zun Wang
- ChangJiang Scholar's Laboratory of Shantou University Medical College, 22 Xinling Road, Shantou, China
- The Breast Center, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, China
| | - De Zeng
- Department of Medical Oncology, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, China
| | - Yingsheng Xiao
- Department of Thyroid Surgery, Central Hospital of Shantou, 114 Waima Road, Shantou, China
| | - Shaozhong Li
- ChangJiang Scholar's Laboratory of Shantou University Medical College, 22 Xinling Road, Shantou, China
- The Breast Center, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, China
| | - Haoyu Lin
- Department of Breast and Thyroid Surgery, the First Affiliated Hospital of Shantou University Medical College, 57 Changping Road, Shantou, China
| | - Xiaolong Wei
- Department of Pathology, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, China
| | - Guojun Zhang
- ChangJiang Scholar's Laboratory of Shantou University Medical College, 22 Xinling Road, Shantou, China
- The Cancer Center and the Department of Breast and Thyroid Surgery, Xiang'an Hospital of Xiamen University, 2000 East Xiang'an Rd, Xiang'an, Xiamen, China
- ✉ Corresponding author: GuoJun Zhang, MD, Ph. D. The Cancer Center and the Department of Breast and Thyroid Surgery, Xiang'an Hospital of Xiamen University, 2000 East Xiang'an Rd, Xiang'an, Xiamen, China. Tel: +86-592-2184298; E-mail:
| |
Collapse
|
20
|
Crittenden S, Cheyne A, Adams A, Forster T, Robb CT, Felton J, Ho G, Ruckerl D, Rossi AG, Anderton SM, Ghazal P, Satsangi J, Howie SE, Yao C. Purine metabolism controls innate lymphoid cell function and protects against intestinal injury. Immunol Cell Biol 2018; 96:1049-1059. [PMID: 29758102 PMCID: PMC6248310 DOI: 10.1111/imcb.12167] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 05/04/2018] [Accepted: 05/07/2018] [Indexed: 12/31/2022]
Abstract
Inflammatory bowel disease (IBD) is a condition of chronic inflammatory intestinal disorder with increasing prevalence but limited effective therapies. The purine metabolic pathway is involved in various inflammatory processes including IBD. However, the mechanisms through which purine metabolism modulates IBD remain to be established. Here, we found that mucosal expression of genes involved in the purine metabolic pathway is altered in patients with active ulcerative colitis (UC), which is associated with elevated gene expression signatures of the group 3 innate lymphoid cell (ILC3)-interleukin (IL)-22 pathway. In mice, blockade of ectonucleotidases (NTPDases), critical enzymes for purine metabolism by hydrolysis of extracellular adenosine 5'-triphosphate (eATP) into adenosine, exacerbates dextran-sulfate sodium-induced intestinal injury. This exacerbation of colitis is associated with reduction of colonic IL-22-producing ILC3s, which afford essential protection against intestinal inflammation, and is rescued by exogenous IL-22. Mechanistically, activation of ILC3s for IL-22 production is reciprocally mediated by eATP and adenosine. These findings reveal that the NTPDase-mediated balance between eATP and adenosine regulates ILC3 cell function to provide protection against intestinal injury and suggest potential therapeutic strategies for treating IBD by targeting the purine-ILC3 axis.
Collapse
Affiliation(s)
- Siobhan Crittenden
- Medical Research Council (MRC) Centre for Inflammation ResearchQueen's Medical Research InstituteThe University of EdinburghEdinburghEH16 4TJUK
| | - Ashleigh Cheyne
- Medical Research Council (MRC) Centre for Inflammation ResearchQueen's Medical Research InstituteThe University of EdinburghEdinburghEH16 4TJUK
| | - Alexander Adams
- Gastrointestinal UnitInstitute of Genetics and Molecular MedicineWestern General HospitalThe University of EdinburghEdinburghEH4 2XUUK
| | - Thorsten Forster
- Division of Pathway MedicineEdinburgh Infectious DiseasesThe University of EdinburghEdinburghEH16 4SBUK
| | - Calum T Robb
- Medical Research Council (MRC) Centre for Inflammation ResearchQueen's Medical Research InstituteThe University of EdinburghEdinburghEH16 4TJUK
| | - Jennifer Felton
- Medical Research Council (MRC) Centre for Inflammation ResearchQueen's Medical Research InstituteThe University of EdinburghEdinburghEH16 4TJUK
| | - Gwo‐Tzer Ho
- Medical Research Council (MRC) Centre for Inflammation ResearchQueen's Medical Research InstituteThe University of EdinburghEdinburghEH16 4TJUK
| | - Dominik Ruckerl
- Faculty of Biology, Medicine and HealthSchool of Biological SciencesThe University of ManchesterManchesterM13 9PTUK
| | - Adriano G Rossi
- Medical Research Council (MRC) Centre for Inflammation ResearchQueen's Medical Research InstituteThe University of EdinburghEdinburghEH16 4TJUK
| | - Stephen M Anderton
- Medical Research Council (MRC) Centre for Inflammation ResearchQueen's Medical Research InstituteThe University of EdinburghEdinburghEH16 4TJUK
| | - Peter Ghazal
- Division of Pathway MedicineEdinburgh Infectious DiseasesThe University of EdinburghEdinburghEH16 4SBUK
- Centre for Synthetic and Systems Biology (SynthSys)The University of EdinburghEdinburghEH9 3JDUK
| | - Jack Satsangi
- Gastrointestinal UnitInstitute of Genetics and Molecular MedicineWestern General HospitalThe University of EdinburghEdinburghEH4 2XUUK
| | - Sarah E Howie
- Medical Research Council (MRC) Centre for Inflammation ResearchQueen's Medical Research InstituteThe University of EdinburghEdinburghEH16 4TJUK
| | - Chengcan Yao
- Medical Research Council (MRC) Centre for Inflammation ResearchQueen's Medical Research InstituteThe University of EdinburghEdinburghEH16 4TJUK
| |
Collapse
|