1
|
Cambronero-Heinrichs JC, Biedermann PHW, Besana L, Battisti A, Rassati D. Bacterial communities associated with ambrosia beetles: current knowledge and existing gaps. Front Microbiol 2025; 16:1569105. [PMID: 40270818 PMCID: PMC12014639 DOI: 10.3389/fmicb.2025.1569105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/24/2025] [Indexed: 04/25/2025] Open
Abstract
Ambrosia beetles (Curculionidae: Scolytinae and Platypodinae) are wood-boring insects studied as examples of fungus-insect symbiosis and for their success as invasive species. While most research on their microbiota has focused on fungal associates, their bacterial communities remain largely understudied. In this review, we synthesize current knowledge on the bacterial microbiota of ambrosia beetles, identify critical gaps in the field, and provide recommendations for future research. To date, eight metabarcoding studies have explored bacterial communities in ambrosia beetles, analyzing a total of 13 species, mostly within the tribe Xyleborini (Scolytinae). These studies have examined the presence of bacteria in ambrosia beetle mycetangia, organs specialized for transporting fungal symbionts, as well as bacterial diversity in fungal gardens and whole beetles, across different life stages, and under varying environmental conditions. In general, bacterial communities appear to be highly specific to the beetle species, and differ between the beetles and their fungal gardens. Most studies employed 16S rRNA gene metabarcoding, and the optimal primer combination for characterizing bacterial communities in environmental samples is 515F/806RB (V4). Various methods for collecting beetles have been used, such as ethanol-baited traps, direct collection from galleries, logs kept in emergence cages, and rearing, but which of them to select when planning a study depends on the specific aim. A significant knowledge gap remains regarding the functional roles of dominant bacterial taxa, as metabarcoding studies often assume that these roles are similar to those played in other beetle species, such as bark beetles. More studies should be conducted to test hypotheses regarding the various factors influencing microbial composition and function, and advanced molecular techniques, including (meta-) genome and transcriptome sequencing, which have been employed in only a limited number of studies, could offer great potential to help bridging this knowledge gap.
Collapse
Affiliation(s)
- Juan Carlos Cambronero-Heinrichs
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, Italy
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José, Costa Rica
| | | | - Laura Besana
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, Italy
| | - Andrea Battisti
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, Italy
| | - Davide Rassati
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, Italy
| |
Collapse
|
2
|
Joseph RA, Bansal K, Nguyen J, Bielanski M, Tirmizi E, Masoudi A, Keyhani NO. Fungi That Live Within Animals: Application of Cell Cytometry to Examine Fungal Colonization of Ambrosia Beetle ( Xyleborus sp.) Mycangia. J Fungi (Basel) 2025; 11:184. [PMID: 40137222 PMCID: PMC11942908 DOI: 10.3390/jof11030184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/13/2025] [Accepted: 02/24/2025] [Indexed: 03/27/2025] Open
Abstract
Ambrosia beetles bore into trees, excavating galleries where they farm fungi as their sole source of nutrition. These mutualistic fungi typically do not cause significant damage to host trees; however, since their invasion into the U.S., the beetle Xyleborus glabratus has vectored its fungal partner, Harringtonia lauricola, which has acted as a devastating plant pathogen resulting in the deaths of over 500 million trees. Here, we show differences in the mycangial colonization of the indigenous X. affinis ambrosia beetle by H. lauricola, and the native fungal species, H. aguacate and Raffaelea arxii. While X. affinis was a good host for H. lauricola, the related ambrosia beetle, X. ferrugineus, was only marginally colonized by H. lauricola. X. affinis beetles neither fed on, nor were colonized by, the distantly related fungus, Magnaporthe oryzae. Mycangial colonization was affected by the nutritional state of the fungus. A novel method for direct quantification of mycangial contents based on image cell cytometry was developed and validated. The method was used to confirm mycangial colonization and demonstrate alternating fungal partner switching, which showed significant variation and dynamic turnover. X. affinis pre-oral mycangial pouches were visualized using fluorescent and light microscopy, revealing that newly emerged pupae displayed uncolonized mycangia prior to feeding, whereas beetles fed H. lauricola contained single-celled fungi within 6 h post-feeding. Mixed populations of fungal cells were seen in the mycangia of beetles following alternating colonization. Nuclear counter-staining revealed insect cells surrounding the mycangia. These data highlight variation and specificity in ambrosia beetle-fungal pairings and provide a facile method for direct quantification of mycangial contents.
Collapse
Affiliation(s)
- Ross A. Joseph
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA; (E.T.); (A.M.)
| | - Kamaldeep Bansal
- USDA-ARS-Subtropical Horticulture Research Station, Miami, FL 33158, USA;
| | - Jane Nguyen
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA; (J.N.); (M.B.)
| | - Michael Bielanski
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA; (J.N.); (M.B.)
| | - Esther Tirmizi
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA; (E.T.); (A.M.)
| | - Abolfazl Masoudi
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA; (E.T.); (A.M.)
| | - Nemat O. Keyhani
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA; (E.T.); (A.M.)
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA; (J.N.); (M.B.)
| |
Collapse
|
3
|
Maurin A, Durand AA, Guertin C, Constant P. How many do we need? Meeting the challenges of studying the microbiome of a cryptic insect in an orchard. Front Microbiol 2025; 15:1490681. [PMID: 39834370 PMCID: PMC11743375 DOI: 10.3389/fmicb.2024.1490681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025] Open
Abstract
The minimal sampling effort required to report the microbiome composition of insect surveyed in natural environment is often based on empirical or logistical constraints. This question was addressed with the white pine cone beetle, Conophthorus coniperda (Schwarz), a devastating insect pest of seed orchards. It attacks and stop the growth of the cones within which it will spend its life, on the ground. To survive, the bark beetle probably interacts with microorganisms involved in alimentation, cold adaptation, and dormancy stage. Deciphering the drivers and benefits of these microorganisms in an orchard first requires methodological development addressing variability of the white pine cone beetle microbiome. The number of insect guts integrated in composite samples prior to DNA extraction and the number of surveyed trees are two features expected to induce variability in recovered microbiome profiles. These two levels of heterogeneity were examined in an orchard experimental area where 12 white pine trees were sampled and 15 cones from each tree were grouped together. For each tree, 2, 3 and 4 insects were selected, their intestinal tract dissected, and the microbiome sequenced. The number of insects caused no significant incidence on the coverage of bacterial and fungal communities' composition and diversity (p > 0.8). There was more variability among the different trees. A sampling effort including up to 33 trees in an area of 1.1 ha is expected to capture 98% of the microbial diversity in the experimental area. Spatial variability has important implications for future investigations of cryptic insect microbiome.
Collapse
Affiliation(s)
| | | | | | - Philippe Constant
- Centre Armand Frappier Sante Biotechnologie, Institut National de la Recherche Scientifique, Laval, QC, Canada
| |
Collapse
|
4
|
Calleros-González P, Ibarra-Juarez A, Lamelas A, Suárez-Moo P. How host species and body part determine the microbial communities of five ambrosia beetle species. Int Microbiol 2024; 27:1641-1654. [PMID: 38489098 DOI: 10.1007/s10123-024-00502-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/23/2024] [Accepted: 03/07/2024] [Indexed: 03/17/2024]
Abstract
The ambrosia beetles are farming insects that feed mainly on their cultivated fungi, which in some occasions are pathogens from forest and fruit trees. We used a culture-independent approach based on 16S and 18S rRNA gene metabarcoding analysis to investigate the diversity and composition of the bacterial and fungal communities associated with five ambrosia beetle species: four species native to America (Monarthrum dimidiatum, Dryocoetoides capucinus, Euwallacea discretus, Corthylus consimilis) and an introduced species (Xylosandrus morigerus). For the bacterial community, the beetle species hosted a broad diversity with 1,579 amplicon sequence variants (ASVs) and 66 genera, while for the fungal community they hosted 288 ASVs and 39 genera. Some microbial groups dominated the community within a host species or a body part (Wolbachia in the head-thorax of E. discretus; Ambrosiella in the head-thorax and abdomen of X. morigerus). The taxonomic composition and structure of the microbial communities appeared to differ between beetle species; this was supported by beta-diversity analysis, which indicated that bacterial and fungal communities were clustered mainly by host species. This study characterizes for the first time the microbial communities associated with unexplored ambrosia beetle species, as well as the factors that affect the composition and taxonomic diversity per se, contributing to the knowledge of the ambrosia beetle system.
Collapse
Affiliation(s)
| | - Arturo Ibarra-Juarez
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C., Xalapa, C.P. 91070, México
- Investigador Por México - CONAHCyT. Instituto de Ecología, A. C., Carretera Antigua a Coatepec 351, Xalapa, C.P. 91070, México
| | - Araceli Lamelas
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C., Xalapa, C.P. 91070, México.
| | - Pablo Suárez-Moo
- Facultad de Química, Unidad de Química-Sisal, Universidad Nacional Autónoma de México, Sisal, Yucatán, 97356, México.
| |
Collapse
|
5
|
Leonardi GR, Aiello D, Di Pietro C, Gugliuzzo A, Tropea Garzia G, Polizzi G, Voglmayr H. Thyridiumlauri sp. nov. (Thyridiaceae, Thyridiales): a new pathogenic fungal species of bay laurel from Italy. MycoKeys 2024; 110:211-236. [PMID: 39584031 PMCID: PMC11584904 DOI: 10.3897/mycokeys.110.129228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/01/2024] [Indexed: 11/26/2024] Open
Abstract
Laurusnobilis is an important Mediterranean tree and shrub native to Italy that is also commercially grown as spice and ornamental plant. Field surveys conducted since 2021 in Sicily (Italy) revealed that bay laurel plants in urban and private gardens and nurseries were severely affected by symptoms of stem blight and internal necrosis, which were associated with ambrosia beetle entry holes in the bark and internal wood galleries. The occurring ambrosia beetle was identified as Xylosandruscompactus, an invasive wood-boring pest previously reported from Sicily. Investigation of fungi from symptomatic tissues primarily resulted in the isolation of Thyridium-like colonies. The main symbiont of X.compactus, Ambrosiellaxylebori, was also isolated from infested plants. Phylogenetic analyses of a combined matrix of ITS, LSU, act1, rpb2, tef1, and tub2 gene regions revealed that the isolated Thyridium-like colonies represent a new fungal species within the genus Thyridium. Based on both phylogeny and morphology, the new isolated fungus is described as Thyridiumlauri sp. nov. Moreover, two recently described species, Phialemoniopsishipposidericola and Phialemoniopsisxishuangbannaensis, are transferred to the genus Thyridium due to the confirmed synonymy of both genera, as supported by molecular phylogenies. Pathogenicity test conducted on potted plants demonstrated that T.lauri is pathogenic to bay laurel, causing internal necrosis and stem blight. The new species was consistently re-isolated from the symptomatic tissue beyond the inoculation point, thereby fulfilling Koch's postulates. This study represents the first report of a new pathogenic fungus, T.lauri, causing stem blight and internal necrosis of bay laurel plants and associated with infestation of the invasive ambrosia beetle X.compactus.
Collapse
Affiliation(s)
- Giuseppa Rosaria Leonardi
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 100, 95123 Catania, ItalyUniversity of CataniaCataniaItaly
| | - Dalia Aiello
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 100, 95123 Catania, ItalyUniversity of CataniaCataniaItaly
| | - Chiara Di Pietro
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 100, 95123 Catania, ItalyUniversity of CataniaCataniaItaly
| | - Antonio Gugliuzzo
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 100, 95123 Catania, ItalyUniversity of CataniaCataniaItaly
| | - Giovanna Tropea Garzia
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 100, 95123 Catania, ItalyUniversity of CataniaCataniaItaly
| | - Giancarlo Polizzi
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 100, 95123 Catania, ItalyUniversity of CataniaCataniaItaly
| | - Hermann Voglmayr
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Vienna, AustriaUniversity of ViennaViennaAustria
| |
Collapse
|
6
|
González-Román P, Hernández-Oaxaca D, Bustamante-Brito R, Rogel MA, Martínez-Romero E. On the Origins of Symbiotic Fungi in Carmine Cochineals and Their Function in the Digestion of Plant Polysaccharides. INSECTS 2024; 15:783. [PMID: 39452359 PMCID: PMC11508352 DOI: 10.3390/insects15100783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024]
Abstract
The cochineal insect Dactylopius coccus Costa (Hemiptera) has cultural and economic value because it produces carminic acid that is used commercially. In this study, distinct fungi were cultured from dissected tissue and identified as Penicillium, Coniochaeta, Arthrinium, Cladosporium, Microascus, Aspergillus, and Periconia. Fungi were microscopically observed inside cochineals in the gut, fat body, and ovaries. Since cochineals spend their lives attached to cactus leaves and use the sap as feed, they can obtain fungi from cacti plants. Indeed, we obtained Penicillium, Aspergillus, and Cladosporium fungi from cacti that were identical to those inside cochineals, supporting their plant origin. Fungi could be responsible for the degrading activities in the insect guts, since cellulase, pectinase, and amylase enzymatic activities in insect guts decreased in fungicide-treated cochineals. Our findings set the basis for the further study of the interactions between insects, fungi, and their host plants.
Collapse
Affiliation(s)
| | | | | | | | - Esperanza Martínez-Romero
- Center for Genomic Sciences, Universidad Nacional Autónoma de México, UNAM Universidad SN, Cuernavaca 62210, Morelos, Mexico
| |
Collapse
|
7
|
Bashiri S, Abdollahzadeh J. Taxonomy and pathogenicity of fungi associated with oak decline in northern and central Zagros forests of Iran with emphasis on coelomycetous species. FRONTIERS IN PLANT SCIENCE 2024; 15:1377441. [PMID: 38708399 PMCID: PMC11067508 DOI: 10.3389/fpls.2024.1377441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/18/2024] [Indexed: 05/07/2024]
Abstract
Oak decline is a complex disorder that seriously threatens the survival of Zagros forests. In an extensive study on taxonomy and pathology of fungi associated with oak decline in the central and northern part of Zagros forests, 462 fungal isolates were obtained from oak trees showing canker, gummosis, dieback, defoliation, and partial or total death symptoms. Based on inter-simple sequence repeat (ISSR) fingerprinting patterns, morphological characteristics, and sequences of ribosomal DNA (28S rDNA and ITS) and protein coding loci (acl1, act1, caM, tef-1α, rpb1, rpb2, and tub2), 24 fungal species corresponding to 19 genera were characterized. Forty percent of the isolates were placed in eight coelomycetous species from seven genera, namely, Alloeutypa, Botryosphaeria, Cytospora, Didymella, Gnomoniopsis, Kalmusia, and Neoscytalidium. Of these, four species are new to science, which are introduced here as taxonomic novelties: Alloeutypa iranensis sp. nov., Cytospora hedjaroudei sp. nov., Cytospora zagrosensis sp. nov., and Gnomoniopsis quercicola sp. nov. According to pathogenicity trials on leaves and stems of 2-year-old Persian oak (Quercus brantii) seedlings, Alternaria spp. (A. alternata, A. atra, and A. contlous), Chaetomium globosum, and Parachaetomium perlucidum were recognized as nonpathogenic. All coelomycetous species were determined as pathogenic in both pathogenicity trials on leaves and seedling stems, of which Gnomoniopsis quercicola sp. nov., Botryosphaeria dothidea, and Neoscytalidium dimidiatum were recognized as the most virulent species followed by Biscogniauxia rosacearum.
Collapse
Affiliation(s)
| | - Jafar Abdollahzadeh
- Department of Plant Protection, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| |
Collapse
|
8
|
Pineda-Mendoza RM, Gutiérrez-Ávila JL, Salazar KF, Rivera-Orduña FN, Davis TS, Zúñiga G. Comparative metabarcoding and biodiversity of gut-associated fungal assemblages of Dendroctonus species (Curculionidae: Scolytinae). Front Microbiol 2024; 15:1360488. [PMID: 38525076 PMCID: PMC10959539 DOI: 10.3389/fmicb.2024.1360488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/15/2024] [Indexed: 03/26/2024] Open
Abstract
The genus Dendroctonus is a Holarctic taxon composed of 21 nominal species; some of these species are well known in the world as disturbance agents of forest ecosystems. Under the bark of the host tree, these insects are involved in complex and dynamic associations with phoretic ectosymbiotic and endosymbiotic communities. Unlike filamentous fungi and bacteria, the ecological role of yeasts in the bark beetle holobiont is poorly understood, though yeasts were the first group to be recorded as microbial symbionts of these beetles. Our aim was characterize and compare the gut fungal assemblages associated to 14 species of Dendroctonus using the internal transcribed spacer 2 (ITS2) region. A total of 615,542 sequences were recovered yielding 248 fungal amplicon sequence variants (ASVs). The fungal diversity was represented by 4 phyla, 16 classes, 34 orders, 54 families, and 71 genera with different relative abundances among Dendroctonus species. The α-diversity consisted of 32 genera of yeasts and 39 genera of filamentous fungi. An analysis of β-diversity indicated differences in the composition of the gut fungal assemblages among bark beetle species, with differences in species and phylogenetic diversity. A common core mycobiome was recognized at the genus level, integrated mainly by Candida present in all bark beetles, Nakazawaea, Cladosporium, Ogataea, and Yamadazyma. The bipartite networks confirmed that these fungal genera showed a strong association between beetle species and dominant fungi, which are key to maintaining the structure and stability of the fungal community. The functional variation in the trophic structure was identified among libraries and species, with pathotroph-saprotroph-symbiotroph represented at the highest frequency, followed by saprotroph-symbiotroph, and saprotroph only. The overall network suggested that yeast and fungal ASVs in the gut of these beetles showed positive and negative associations among them. This study outlines a mycobiome associated with Dendroctonus nutrition and provides a starting point for future in vitro and omics approaches addressing potential ecological functions and interactions among fungal assemblages and beetle hosts.
Collapse
Affiliation(s)
- Rosa María Pineda-Mendoza
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Jorge Luis Gutiérrez-Ávila
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Kevin F. Salazar
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Flor N. Rivera-Orduña
- Laboratorio de Ecología Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Thomas S. Davis
- Department of Forest and Rangeland Stewardship, Warner College of Natural Resources, Colorado State University, Fort Collins, CO, United States
| | - Gerardo Zúñiga
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
9
|
Nicoletti R, Russo E, Becchimanzi A. Cladosporium-Insect Relationships. J Fungi (Basel) 2024; 10:78. [PMID: 38276024 PMCID: PMC10820778 DOI: 10.3390/jof10010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
The range of interactions between Cladosporium, a ubiquitous fungal genus, and insects, a class including about 60% of the animal species, is extremely diverse. The broad case history of antagonism and mutualism connecting Cladosporium and insects is reviewed in this paper based on the examination of the available literature. Certain strains establish direct interactions with pests or beneficial insects or indirectly influence them through their endophytic development in plants. Entomopathogenicity is often connected to the production of toxic secondary metabolites, although there is a case where these compounds have been reported to favor pollinator attraction, suggesting an important role in angiosperm reproduction. Other relationships include mycophagy, which, on the other hand, may reflect an ecological advantage for these extremely adaptable fungi using insects as carriers for spreading in the environment. Several Cladosporium species colonize insect structures, such as galleries of ambrosia beetles, leaf rolls of attelabid weevils and galls formed by cecidomyid midges, playing a still uncertain symbiotic role. Finally, the occurrence of Cladosporium in the gut of several insect species has intriguing implications for pest management, also considering that some strains have proven to be able to degrade insecticides. These interactions especially deserve further investigation to understand the impact of these fungi on pest control measures and strategies to preserve beneficial insects.
Collapse
Affiliation(s)
- Rosario Nicoletti
- Council for Agricultural Research and Economics, Research Center for Olive, Fruit and Citrus Crops, 81100 Caserta, Italy
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (E.R.); (A.B.)
| | - Elia Russo
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (E.R.); (A.B.)
| | - Andrea Becchimanzi
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (E.R.); (A.B.)
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Portici, Italy
| |
Collapse
|
10
|
Pyszko P, Šigutová H, Kolařík M, Kostovčík M, Ševčík J, Šigut M, Višňovská D, Drozd P. Mycobiomes of two distinct clades of ambrosia gall midges (Diptera: Cecidomyiidae) are species-specific in larvae but similar in nutritive mycelia. Microbiol Spectr 2024; 12:e0283023. [PMID: 38095510 PMCID: PMC10782975 DOI: 10.1128/spectrum.02830-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/24/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE Ambrosia gall midges are endophagous insect herbivores whose larvae live enclosed within a single gall for their entire development period. They may exhibit phytomycetophagy, a remarkable feeding mode that involves the consumption of plant biomass and mycelia of their cultivated gall symbionts. Thus, AGMs are ideal model organisms for studying the role of microorganisms in the evolution of host specificity in insects. However, compared to other fungus-farming insects, insect-fungus mutualism in AGMs has been neglected. Our study is the first to use DNA metabarcoding to characterize the complete mycobiome of the entire system of the gall-forming insects as we profiled gall surfaces, nutritive mycelia, and larvae. Interestingly, larval mycobiomes were significantly different from their nutritive mycelia, although Botryosphaeria dothidea dominated the nutritive mycelia, regardless of the evolutionary separation of the tribes studied. Therefore, we confirmed a long-time hypothesized paradigm for the important evolutionary association of this fungus with AGMs.
Collapse
Affiliation(s)
- Petr Pyszko
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Hana Šigutová
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Department of Zoology, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Miroslav Kolařík
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Martin Kostovčík
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jan Ševčík
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Martin Šigut
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Denisa Višňovská
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Pavel Drozd
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| |
Collapse
|
11
|
EFSA Panel on Plant Health (PLH), Bragard C, Baptista P, Chatzivassiliou E, Di Serio F, Gonthier P, Jaques Miret JA, Justesen AF, MacLeod A, Magnusson CS, Milonas P, Navas‐Cortes JA, Parnell S, Potting R, Stefani E, Thulke H, Van der Werf W, Vicent Civera A, Yuen J, Zappalà L, Migheli Q, Vloutoglou I, Gobbi A, Maiorano A, Pautasso M, Reignault PL. Pest categorisation of Pestalotiopsis microspora. EFSA J 2023; 21:e8493. [PMID: 38130321 PMCID: PMC10733803 DOI: 10.2903/j.efsa.2023.8493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Following an EFSA commodity risk assessment of bonsai plants (Pinus parviflora grafted on Pinus thunbergii) imported from China, the EFSA Plant Health Panel performed a pest categorisation of Pestalotiopsis microspora, a clearly defined plant pathogenic fungus of the family Pestalotiopsidaceae. The pathogen was reported on a wide range of monocotyledonous, dicotyledonous and gymnosperms, either cultivated or wild plant species, causing various symptoms such as leaf spot, leaf blight, scabby canker, fruit spot, pre- and post-harvest fruit rot and root rot. In addition, the fungus was reported as an endophyte on a wide range of asymptomatic plant species. This pest categorisation focuses on the hosts that are relevant for the EU and for which there is robust evidence that the pathogen was formally identified by a combination of morphology, pathogenicity and multilocus sequencing analyses. Pestalotiopsis microspora was reported in Africa, North, Central and South America, Asia and Oceania. In the EU, it was reported in the Netherlands. There is a key uncertainty on the geographical distribution of P. microspora worldwide and in the EU, because of the endophytic nature of the fungus, the lack of surveys, and because in the past, when molecular tools were not fully developed, the pathogen might have been misidentified as other Pestalotiopsis species or other members of the Pestalodiopsidaceae family based on morphology and pathogenicity tests. Pestalotiopsis microspora is not included in Commission Implementing Regulation (EU) 2019/2072. Plants for planting, fresh fruits, bark and wood of host plants as well as soil and other growing media associated with plant debris are the main pathways for the entry of the pathogen into the EU. Host availability and climate suitability in parts of the EU are favourable for the establishment and spread of the pathogen. The introduction and spread of the pathogen into the EU are expected to have an economic and environmental impact where susceptible hosts are grown. Phytosanitary measures are available to prevent the introduction and spread of the pathogen into the EU. Unless the restricted distribution in the EU is disproven, Pestalotiopsis microspora satisfies all the criteria that are within the remit of EFSA to assess for this species to be regarded as potential Union quarantine pest.
Collapse
|
12
|
Castello I, Polizzi G, Vitale A. Major Pathogens Affecting Carob in the Mediterranean Basin: Current Knowledge and Outlook in Italy. Pathogens 2023; 12:1357. [PMID: 38003821 PMCID: PMC10674831 DOI: 10.3390/pathogens12111357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
The main pathogens affecting the carob (Ceratonia siliqua) tree in the Mediterranean basin are described in this overview. The most widespread diseases periodically occurring in carob orchards are powdery mildew (Pseudoidium ceratoniae) and cercospora leaf spot (Pseudocercospora ceratoniae). The causal agents of "black leaf spots" (e.g., Pestalotiopsis, Phyllosticta and Septoria spp.) are responsible for symptoms similar to those previously mentioned for foliar diseases, but are reported in carob orchards at a negligible frequency. Likewise, canker and branch diebacks caused by fungal species belonging to Botryosphaeriaceae are almost never recorded. Among the rots of wood tissues that may compromise old carob specimens, "brown cubical rot" caused by Laetiporus sulphureus is the most widespread and recurrent issue; this pathogen is also well-known for producing edible fruit bodies that are appreciated for pharmaceutical and industrial purposes. On the other hand, "white rots" caused by Fomes and Ganoderma species are less common and reported for the first time in this review. Gall-like protuberances on twigs of uncertain aetiology or tumors on branches associated with Rhizobium radiobacter are described, although these symptoms are seldom detected, as they are also observed for necrotic leaf spots caused by Pseudomonas syringae pv. ciccaronei. A worldwide list of pathogens not yet recorded but at high risk of potential introduction in Italian carob-producing areas is also provided. Finally, concerns related to new phytopathogenic fungi vectored by the invasive Xylosandrus compactus ambrosia beetle are addressed. All the described pathogens could become limiting factors for carob production in the near future, because they could be favored by high-density orchards, the increasing global network of trade exchanges, and the high frequency at which extreme events related to climate change occur globally. Thus, symptoms and signs, causal agents, epidemiology, and, whenever applicable, recommendations for disease prevention and management are provided in this review.
Collapse
Affiliation(s)
| | | | - Alessandro Vitale
- Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), University of Catania, Via S. Sofia 100, 95123 Catania, Italy; (I.C.); (G.P.)
| |
Collapse
|
13
|
Cambronero-Heinrichs JC, Battisti A, Biedermann PHW, Cavaletto G, Castro-Gutierrez V, Favaro L, Santoiemma G, Rassati D. Erwiniaceae bacteria play defensive and nutritional roles in two widespread ambrosia beetles. FEMS Microbiol Ecol 2023; 99:fiad144. [PMID: 37951293 PMCID: PMC10664977 DOI: 10.1093/femsec/fiad144] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/29/2023] [Accepted: 11/08/2023] [Indexed: 11/13/2023] Open
Abstract
Ambrosia beetles are fungal-growing insects excavating galleries deep inside the wood. Their success as invaders increased scientific interest towards them. However, most studies on their microbiota targeted their fungal associates whereas the role of bacterial associates is understudied. To explore the role of abundant microbial associates, we isolated bacteria from active galleries of two widespread ambrosia beetles, Xylosandrus crassiusculus and X. germanus. These isolates were classified within the Erwiniaceae family and through a phylogenetic analysis including isolates from other insects we showed that they clustered with isolates obtained from ambrosia and bark beetles, including Erwinia typographi. The whole genome analysis of the isolate from active galleries of X. crassiusculus suggested that this bacterium plays both a nutritional role, by providing essential amino acids and enzymes for the hydrolysis of plant biomass, and a defensive role, by producing antibiotics. This defensive role was also tested in vitro against fungi, including mutualists, common associates, and parasites. The bacteria inhibited the growth of some of the common associates and parasites but did not affect mutualists. Our study supported the hypothesis of a mutualist role of Erwiniaceae bacteria in ambrosia beetles and highlighed the importance of bacteria in maintaining the symbiosis of their host with nutritional fungi.
Collapse
Affiliation(s)
- Juan Carlos Cambronero-Heinrichs
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Legnaro (PD) 35020, Italy
| | - Andrea Battisti
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Legnaro (PD) 35020, Italy
| | - Peter H W Biedermann
- Chair for Forest Entomology and Protection, University of Freiburg, Stegen-Wittental 79252, Germany
| | - Giacomo Cavaletto
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Legnaro (PD) 35020, Italy
| | - Víctor Castro-Gutierrez
- Center for Research on Environmental Pollution (CICA), University of Costa Rica, Montes de Oca 11501, Costa Rica
| | - Lorenzo Favaro
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Legnaro (PD) 35020, Italy
| | - Giacomo Santoiemma
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Legnaro (PD) 35020, Italy
| | - Davide Rassati
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Legnaro (PD) 35020, Italy
| |
Collapse
|
14
|
Joseph R, Bansal K, Keyhani NO. Host switching by an ambrosia beetle fungal mutualist: Mycangial colonization of indigenous beetles by the invasive laurel wilt fungal pathogen. Environ Microbiol 2023; 25:1894-1908. [PMID: 37190943 DOI: 10.1111/1462-2920.16401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/05/2023] [Indexed: 05/17/2023]
Abstract
Ambrosia beetles require their fungal symbiotic partner as their cultivated (farmed) food source in tree galleries. While most fungal-beetle partners do not kill the host trees they inhabit, since their introduction (invasion) into the United states around ~2002, the invasive beetle Xyleborus glabratus has vectored its mutualist partner (but plant pathogenic) fungus, Harringtonia lauricola, resulting in the deaths of over 300 million trees. Concerningly, indigenous beetles have been caught bearing H. lauricola. Here, we show colonization of the mycangia of the indigenous X. affinis ambrosia beetle by H. lauricola. Mycangial colonization occurred within 1 h of feeding, with similar levels seen for H. lauricola as found for the native X. affinis-R. arxii fungal partner. Fungal mycangial occupancy was stable over time and after removal of the fungal source, but showed rapid turnover when additional fungal cells were available. Microscopic visualization revealed two pre-oral mycangial pouches of ~100-200 × 25-50 μm/each, with narrow entry channels of 25-50 × 3-10 μm. Fungi within the mycangia underwent a dimorphic transition from filamentous/blastospore growth to yeast-like budding with alterations to membrane structures. These data identify the characteristics of ambrosia beetle mycangial colonization, implicating turnover as a mechanism for host switching of H. lauricola to other ambrosia beetle species.
Collapse
Affiliation(s)
- Ross Joseph
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Kamaldeep Bansal
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Nemat O Keyhani
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
15
|
Carreras-Villaseñor N, Martínez-Rodríguez LA, Ibarra-Laclette E, Monribot-Villanueva JL, Rodríguez-Haas B, Guerrero-Analco JA, Sánchez-Rangel D. The biological relevance of the FspTF transcription factor, homologous of Bqt4, in Fusarium sp. associated with the ambrosia beetle Xylosandrus morigerus. Front Microbiol 2023; 14:1224096. [PMID: 37520351 PMCID: PMC10375492 DOI: 10.3389/fmicb.2023.1224096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/22/2023] [Indexed: 08/01/2023] Open
Abstract
Transcription factors in phytopathogenic fungi are key players due to their gene expression regulation leading to fungal growth and pathogenicity. The KilA-N family encompasses transcription factors unique to fungi, and the Bqt4 subfamily is included in it and is poorly understood in filamentous fungi. In this study, we evaluated the role in growth and pathogenesis of the homologous of Bqt4, FspTF, in Fusarium sp. isolated from the ambrosia beetle Xylosandrus morigerus through the characterization of a CRISPR/Cas9 edited strain in Fsptf. The phenotypic analysis revealed that TF65-6, the edited strain, modified its mycelia growth and conidia production, exhibited affectation in mycelia and culture pigmentation, and in the response to certain stress conditions. In addition, the plant infection process was compromised. Untargeted metabolomic and transcriptomic analysis, clearly showed that FspTF may regulate secondary metabolism, transmembrane transport, virulence, and diverse metabolic pathways such as lipid metabolism, and signal transduction. These data highlight for the first time the biological relevance of an orthologue of Bqt4 in Fusarium sp. associated with an ambrosia beetle.
Collapse
Affiliation(s)
- Nohemí Carreras-Villaseñor
- Laboratorios de Biología Molecular y Fitopatología, Instituto de Ecología A.C. (INECOL), Red de Estudios Moleculares Avanzados (REMAv), Xalapa, Mexico
| | - Luis A. Martínez-Rodríguez
- Laboratorios de Biología Molecular y Fitopatología, Instituto de Ecología A.C. (INECOL), Red de Estudios Moleculares Avanzados (REMAv), Xalapa, Mexico
| | - Enrique Ibarra-Laclette
- Laboratorio de Genómica y Transcriptómica, Instituto de Ecología A.C. (INECOL), Red de Estudios Moleculares Avanzados (REMAv), Xalapa, Mexico
| | - Juan L. Monribot-Villanueva
- Laboratorio de Química de Productos Naturales, Instituto de Ecología A.C. (INECOL), Red de Estudios Moleculares Avanzados (REMAv), Xalapa, Mexico
| | - Benjamín Rodríguez-Haas
- Laboratorios de Biología Molecular y Fitopatología, Instituto de Ecología A.C. (INECOL), Red de Estudios Moleculares Avanzados (REMAv), Xalapa, Mexico
| | - José A. Guerrero-Analco
- Laboratorio de Química de Productos Naturales, Instituto de Ecología A.C. (INECOL), Red de Estudios Moleculares Avanzados (REMAv), Xalapa, Mexico
| | - Diana Sánchez-Rangel
- Laboratorios de Biología Molecular y Fitopatología, Instituto de Ecología A.C. (INECOL), Red de Estudios Moleculares Avanzados (REMAv), Xalapa, Mexico
- Investigadora Por Mexico-CONAHCyT, Xalapa, Mexico
| |
Collapse
|
16
|
Gugliuzzo A, Giuliano G, Rizzo R, Tropea Garzia G, Biondi A. Lethal and sublethal effects of synthetic and bioinsecticides toward the invasive ambrosia beetle Xylosandrus compactus. PEST MANAGEMENT SCIENCE 2023; 79:1840-1850. [PMID: 36654525 DOI: 10.1002/ps.7365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/05/2023] [Accepted: 01/19/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Exotic ambrosia beetles are emerging widespread pests of several wild and managed trees and shrubs. Xylosandrus compactus (Eichhoff) is one of the most invasive species causing damage to a broad range of host plants. Little information is available on its control, including the impact of insecticides. Bioassays were conducted to evaluate the potential of four bioinsecticides and seven synthetic insecticides in controlling X. compactus. Beetle mortality and sublethal effects on tunneling, cultivation of the mutualist fungus and reproduction were assessed. RESULTS Concentration-mortality curves were determined for all tested insecticides. Lambda-cyhalothrin was the most toxic insecticide, showing the lowest estimated 90% and 50% lethal concentrations (LC90 and LC50 ), followed by deltamethrin and thiamethoxam. Acetamiprid caused the highest levels of mortality and brood size reduction under extended laboratory conditions. Moreover, acetamiprid, thiamethoxam and lambda-cyhalothrin caused the greatest mortality and, together with deltamethrin, strongly affected progeny occurrence inside infested galleries and beetle brood size. Among the bioinsecticides, pyrethrins significantly affected beetle survival under laboratory conditions, but not brood size in extended laboratory bioassays. Some of the tested insecticides had significant lethal and sublethal effects only when beetles were exposed to fresher residues, highlighting differences in toxicity persistence. CONCLUSION This study provides first baseline toxicity data for synthetic insecticides and bioinsecticides with different modes of action and origin toward X. compactus, and the first evidence that several insecticides can cause multiple sublethal effects on this pest. These findings can help in building suitable integrated pest management packages against this pest. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Antonio Gugliuzzo
- Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
| | - Gaetano Giuliano
- Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
- Department of Agriculture, Mediterranean University of Reggio Calabria, Reggio Calabria, Italy
| | - Roberto Rizzo
- CREA Research Centre for Plant Protection and Certification, Bagheria, Italy
| | | | - Antonio Biondi
- Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
| |
Collapse
|
17
|
Šigutová H, Šigut M, Pyszko P, Kostovčík M, Kolařík M, Drozd P. Seasonal Shifts in Bacterial and Fungal Microbiomes of Leaves and Associated Leaf-Mining Larvae Reveal Persistence of Core Taxa Regardless of Diet. Microbiol Spectr 2023; 11:e0316022. [PMID: 36629441 PMCID: PMC9927363 DOI: 10.1128/spectrum.03160-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
Microorganisms are key mediators of interactions between insect herbivores and their host plants. Despite a substantial interest in studying various aspects of these interactions, temporal variations in microbiomes of woody plants and their consumers remain understudied. In this study, we investigated shifts in the microbiomes of leaf-mining larvae (Insecta: Lepidoptera) and their host trees over one growing season in a deciduous temperate forest. We used 16S and ITS2 rRNA gene metabarcoding to profile the bacterial and fungal microbiomes of leaves and larvae. We found pronounced shifts in the leaf and larval microbiota composition and richness as the season progressed, and bacteria and fungi showed consistent patterns. The quantitative similarity between leaf and larval microbiota was very low for bacteria (~9%) and decreased throughout the season, whereas fungal similarity increased and was relatively high (~27%). In both leaves and larvae, seasonality, along with host taxonomy, was the most important factor shaping microbial communities. We identified frequently occurring microbial taxa with significant seasonal trends, including those more prevalent in larvae (Streptococcus, Candida sake, Debaryomyces prosopidis, and Neoascochyta europaea), more prevalent in leaves (Erwinia, Seimatosporium quercinum, Curvibasidium cygneicollum, Curtobacterium, Ceramothyrium carniolicum, and Mycosphaerelloides madeirae), and frequent in both leaves and larvae (bacterial strain P3OB-42, Methylobacterium/Methylorubrum, Bacillus, Acinetobacter, Cutibacterium, and Botrytis cinerea). Our results highlight the importance of considering seasonality when studying the interactions between plants, herbivorous insects, and their respective microbiomes, and illustrate a range of microbial taxa persistent in larvae, regardless of their occurrence in the diet. IMPORTANCE Leaf miners are endophagous insect herbivores that feed on plant tissues and develop and live enclosed between the epidermis layers of a single leaf for their entire life cycle. Such close association is a precondition for the evolution of more intimate host-microbe relationships than those found in free-feeding herbivores. Simultaneous comparison of bacterial and fungal microbiomes of leaves and their tightly linked consumers over time represents an interesting study system that could fundamentally contribute to the ongoing debate on the microbial residence of insect gut. Furthermore, leaf miners are ideal model organisms for interpreting the ecological and evolutionary roles of microbiota in host plant specialization. In this study, the larvae harbored specific microbial communities consisting of core microbiome members. Observed patterns suggest that microbes, especially bacteria, may play more important roles in the caterpillar holobiont than generally presumed.
Collapse
Affiliation(s)
- Hana Šigutová
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Martin Šigut
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Petr Pyszko
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Martin Kostovčík
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Miroslav Kolařík
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Pavel Drozd
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| |
Collapse
|
18
|
Gugliuzzo A, Kreuzwieser J, Ranger CM, Tropea Garzia G, Biondi A, Biedermann PHW. Volatiles of fungal cultivars act as cues for host-selection in the fungus-farming ambrosia beetle Xylosandrus germanus. Front Microbiol 2023; 14:1151078. [PMID: 37125205 PMCID: PMC10140376 DOI: 10.3389/fmicb.2023.1151078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 02/28/2023] [Indexed: 05/02/2023] Open
Abstract
Many wood-boring insects use aggregation pheromones during mass colonization of host trees. Bark beetles (Curculionidae: Scolytinae) are a model system, but much less is known about the role of semiochemicals during host selection by ambrosia beetles. As an ecological clade within the bark beetles, ambrosia beetles are obligately dependent on fungal mutualists for their sole source of nutrition. Mass colonization of trees growing in horticultural settings by exotic ambrosia beetles can occur, but aggregation cues have remained enigmatic. To elucidate this mechanism, we first characterized the fungal associates of the exotic, mass-aggregating ambrosia beetle Xylosandrus germanus in Southern Germany. Still-air olfactometer bioassays documented the attraction of X. germanus to its primary nutritional mutualist Ambrosiella grosmanniae and to a lesser extent another common fungal isolate (Acremonium sp.). During two-choice bioassays, X. germanus was preferentially attracted to branch sections (i.e., bolts) that were either pre-colonized by conspecifics or pre-inoculated with A. grosmanniae. Subsequent analyses identified microbial volatile organic compounds (MVOCs) that could potentially function as aggregation pheromones for X. germanus. To our knowledge, this is the first evidence for fungal volatiles as attractive cues during host selection by X. germanus. Adaptive benefits of responding to fungal cues associated with an infestation of conspecifics could be a function of locating a suitable substrate for cultivating fungal symbionts and/or increasing the likelihood of mating opportunities with the flightless males. However, this requires solutions for evolutionary conflict arising due to potential mixing of vertically transmitted and horizontally acquired symbiont strains, which are discussed.
Collapse
Affiliation(s)
- Antonio Gugliuzzo
- Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
- *Correspondence: Antonio Gugliuzzo,
| | | | - Christopher M. Ranger
- Horticultural Insects Research Laboratory, USDA-Agricultural Research Service, Wooster, OH, United States
| | | | - Antonio Biondi
- Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
| | - Peter H. W. Biedermann
- Chair for Forest Entomology and Protection, University of Freiburg, Stegen, Germany
- Peter H. W. Biedermann,
| |
Collapse
|
19
|
Menocal O, Cruz LF, Kendra PE, Berto M, Carrillo D. Flexibility in the ambrosia symbiosis of Xyleborus bispinatus. Front Microbiol 2023; 14:1110474. [PMID: 36937297 PMCID: PMC10018145 DOI: 10.3389/fmicb.2023.1110474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/06/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction Ambrosia beetles maintain strict associations with specific lineages of fungi. However, anthropogenic introductions of ambrosia beetles into new ecosystems can result in the lateral transfer of their symbionts to other ambrosia beetles. The ability of a Florida endemic ambrosia beetle, Xyleborus bispinatus, to feed and establish persistent associations with two of its known symbionts (Raffaelea subfusca and Raffaelea arxii) and two other fungi (Harringtonia lauricola and Fusarium sp. nov.), which are primary symbionts of invasive ambrosia beetles, was investigated. Methods The stability of these mutualisms and their effect on the beetle's fitness were monitored over five consecutive generations. Surface-disinfested pupae with non-developed mycangia were reared separately on one of the four fungal symbionts. Non-treated beetles (i.e., lab colony) with previously colonized mycangia were used as a control group. Results Xyleborus bispinatus could exchange its fungal symbionts, survive, and reproduce on different fungal diets, including known fungal associates and phylogenetically distant fungi, which are plant pathogens and primary symbionts of other invasive ambrosia beetles. These changes in fungal diets resulted in persistent mutualisms, and some symbionts even increased the beetle's reproduction. Females that developed on Fusarium sp. nov. had a significantly greater number of female offspring than non-treated beetles. Females that fed solely on Harringtonia or Raffaelea symbionts produced fewer female offspring. Discussion Even though some ambrosia beetles like X. bispinatus can partner with different ambrosia fungi, their symbiosis under natural conditions is modulated by their mycangium and possibly other environmental factors. However, exposure to symbionts of invasive beetles can result in stable partnerships with these fungi and affect the population dynamics of ambrosia beetles and their symbionts.
Collapse
Affiliation(s)
- Octavio Menocal
- Tropical Research and Education Center, University of Florida, Homestead, FL, United States
- *Correspondence: Octavio Menocal,
| | - Luisa F. Cruz
- Tropical Research and Education Center, University of Florida, Homestead, FL, United States
| | - Paul E. Kendra
- United States Department of Agriculture, Agricultural Research Service, Subtropical Horticulture Research Station, Miami, FL, United States
| | - Marielle Berto
- Tropical Research and Education Center, University of Florida, Homestead, FL, United States
| | - Daniel Carrillo
- Tropical Research and Education Center, University of Florida, Homestead, FL, United States
- Daniel Carrillo,
| |
Collapse
|
20
|
Fungi are more transient than bacteria in caterpillar gut microbiomes. Sci Rep 2022; 12:15552. [PMID: 36114345 PMCID: PMC9481635 DOI: 10.1038/s41598-022-19855-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 09/06/2022] [Indexed: 11/24/2022] Open
Abstract
Despite an increasing number of studies on caterpillar (Insecta: Lepidoptera) gut microbiota, bacteria have been emphasized more than fungi. Therefore, we lack data on whether fungal microbiota is resident or transient and shaped by factors similar to those of bacteria. We sampled nine polyphagous caterpillar species from several tree species at multiple sites to determine the factors shaping leaf and gut bacterial and fungal microbiota as well as the extent to which caterpillars acquire microbiota from their diet. We performed 16S and ITS2 DNA metabarcoding of the leaves and guts to determine the composition and richness of the respective microbiota. While spatial variables shaped the bacterial and fungal microbiota of the leaves, they only affected fungi in the guts, whereas the bacteria were shaped primarily by caterpillar species, with some species harboring more specific bacterial consortia. Leaf and gut microbiota significantly differed; in bacteria, this difference was more pronounced. The quantitative similarity between leaves and guts significantly differed among caterpillar species in bacteria but not fungi, suggesting that some species have more transient bacterial microbiota. Our results suggest the complexity of the factors shaping the gut microbiota, while highlighting interspecific differences in microbiota residency within the same insect functional group.
Collapse
|
21
|
Different Airway Inflammatory Phenotypes Correlate with Specific Fungal and Bacterial Microbiota in Asthma and Chronic Obstructive Pulmonary Disease. J Immunol Res 2022; 2022:2177884. [PMID: 35310604 PMCID: PMC8933093 DOI: 10.1155/2022/2177884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/22/2022] [Accepted: 02/16/2022] [Indexed: 12/18/2022] Open
Abstract
Background Studies of chronic airway inflammatory diseases have increasingly focused on airway microbiota. However, the microbiota characteristics of asthma and chronic obstructive pulmonary disease (COPD) patients with different airway inflammatory phenotypes remain unclear. Objective We aimed to reveal the differences of fungal and bacterial microbiota between eosinophilic asthma (EA) and noneosinophilic asthma (NEA) patients and between eosinophilic COPD (EC) and noneosinophilic COPD (NEC) patients. Further, explore whether similarities exist in the airway microbiota of patients with the same phenotype. Methods Induced sputum samples were collected from 45 asthma subjects and 39 COPD subjects. The airway microbiota of the subjects was profiled by nearly full-length 16S rRNA and internal transcribed space (ITS) sequencing. Results Subjects with eosinophilic phenotype (EA and EC) showed significant differences in both fungal and bacterial microbiota compared to the corresponding subjects with noneosinophilic phenotype (NEA and NEC). In addition, no differences were observed between the fungal microbiota of subjects with the same phenotype (EA vs. EC, NEA vs. NEC). In bacterial microbiota, the greater relative abundance of Streptococcus thermophilus was observed in EA and EC subjects, while Ochrobactrum was enriched in NEA and NEC subjects. In fungal microbiota, the EA and EC subjects showed higher relative abundances of Aspergillus and Bjerkandera, while the NEA and NEC subjects were enriched in Rhodotorula and Papiliotrema. Conclusions Different airway inflammatory phenotypes were related to specific fungal and bacterial microbiota in both asthma and COPD, while the same airway inflammatory phenotype revealed a degree of similarity in airway microbiota, particularly in fungal microbiota.
Collapse
|
22
|
TaqMan probe assays on different biological samples for the identification of three ambrosia beetle species, Xylosandrus compactus (Eichoff) , X. crassiusculus (Motschulsky) and X. germanus (Blandford) (Coleoptera Curculionidae Scolytinae). 3 Biotech 2021; 11:259. [PMID: 33996371 PMCID: PMC8110672 DOI: 10.1007/s13205-021-02786-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/08/2021] [Indexed: 12/03/2022] Open
Abstract
Molecular assays based on qPCR TaqMan Probes were developed to identify three species of the genus Xylosandrus, X. compactus, X. crassiusculus and X. germanus (Coleoptera Curculionidae Scolytinae). These ambrosia beetles are xylophagous species alien to Europe, causing damages to many ornamental and fruiting trees as well as shrubs. DNA extraction was carried out from adults, larvae and biological samples derived from insect damages on infested plants. For X. compactus, segments of galleries in thin infested twigs were cut and processed; in the case of X. crassiusculus, raw frass extruded from exit holes was used, while DNA of X. germanus was extracted from small wood chips removed around insect exit holes. The assays were inclusive for the target species and exclusive for all the non-target species tested. The LoD was 3.2 pg/µL for the frass of X. crassiusculus and 0.016 ng/µL for the woody matrices of the other two species. Both repeatability and reproducibility were estimated on adults and woody samples, showing very low values ranging between 0.00 and 4.11. Thus, the proposed diagnostic assays resulted to be very efficient also on the woody matrices used for DNA extraction, demonstrating the applicability of the protocol in the absence of dead specimens or living stages.
Collapse
|
23
|
Fungal mutualisms and pathosystems: life and death in the ambrosia beetle mycangia. Appl Microbiol Biotechnol 2021; 105:3393-3410. [PMID: 33837831 DOI: 10.1007/s00253-021-11268-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/26/2021] [Accepted: 04/04/2021] [Indexed: 02/06/2023]
Abstract
Ambrosia beetles and their microbial communities, housed in specialized structures termed mycangia, represent one of the oldest and most diverse systems of mutualism and parasitism described thus far. Comprised of core filamentous fungal members, but also including bacteria and yeasts, the mycangia represent a unique adaptation that allows beetles to store and transport their source of nutrition. Although perhaps the most ancient of "farmers," the nature of these interactions remains largely understudied, with the exception of a handful of emerging pathosystems, where the fungal partner acts as a potentially devastating tree pathogen. Such virulence is often seen during "invasions," where (invasive) beetles carrying the fungal symbiont/plant pathogen expand into new territories and presumably "naïve" trees. Here, we summarize recent findings on the phylogenetic relationships between beetles and their symbionts and advances in the developmental and genetic characterization of the mechanisms that underlie insect-fungal-plant interactions. Results on genomic, transcriptomic, and metabolomic aspects of these relationships are described. Although many members of the fungal Raffaelea-beetle symbiont genera are relatively harmless to host trees, specialized pathosystems including wilt diseases of laurel and oak, caused by specific subspecies (R. lauricola and R. quercus, in the USA and East Asia, respectively), have emerged as potent plant pathogens capable of killing healthy trees. With the development of genetic tools, coupled to biochemical and microscopic techniques, the ambrosia beetle-fungal symbiont is establishing itself as a unique model system to study the molecular determinants and mechanisms that underlie the convergences of symbioses, mutualism, parasitism, and virulence. KEY POINTS: • Fungal-beetle symbioses are diverse and ancient examples of microbial farming. • The mycangium is a specialized structure on insects that houses microbial symbionts. • Some beetle symbiotic fungi are potent plant pathogens vectored by the insect.
Collapse
|
24
|
Višňovská D, Pyszko P, Šigut M, Kostovčík M, Kolařík M, Kotásková N, Drozd P. Caterpillar gut and host plant phylloplane mycobiomes differ: a new perspective on fungal involvement in insect guts. FEMS Microbiol Ecol 2021; 96:5855491. [PMID: 32520323 DOI: 10.1093/femsec/fiaa116] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022] Open
Abstract
Compared with the highly diverse microbiota of leaves, herbivorous insects exhibit impoverished gut microbial communities. Research to date has focused on the bacterial component of these gut microbiomes, neglecting the fungal component. As caterpillar gut bacterial microbiomes are derived strongly from their diet, we hypothesized that their mycobiomes would reflect the host leaf mycobiomes. Using the ITS2 rDNA and V5-V6 16S rRNA gene regions for DNA metabarcoding of caterpillar gut and host leaf sample pairs we compared their mycobiome genus diversity and compositions and identified genera associated with caterpillar guts. Leaves and caterpillar guts harbored different mycobiomes with quite low qualitative similarity (Jaccard index = 38.03%). The fungal genera most significantly associated with the caterpillar gut included Penicillium, Mucor and unidentified Saccharomycetales, whereas leaf-associated genera included Holtermanniella, Gibberella (teleomorph of Fusarium) and Seimatosporium. Although caterpillar gut and leaf mycobiomes had similar genus richness overall, this indicator was not correlated for individual duplets. Moreover, as more samples entered the analysis, mycobiome richness increased more rapidly in caterpillar guts than in leaves. The results suggest that the mycobiota of the caterpillar gut differs from that of their feeding substrate; further, the mycobiomes appear to be richer than the well-studied bacterial microbiotas.
Collapse
Affiliation(s)
- Denisa Višňovská
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Petr Pyszko
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic
| | - Martin Šigut
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Martin Kostovčík
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague 4, Czech Republic
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague, Czech Republic
- BIOCEV, Institute of Microbiology, Academy of Sciences of the Czech Republic, Průmyslová 595, 252 42 Vestec, Czech Republic
| | - Miroslav Kolařík
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Nela Kotásková
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic
| | - Pavel Drozd
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic
| |
Collapse
|
25
|
Li Y, Skelton J, Adams S, Hattori Y, Smith ME, Hulcr J. The Ambrosia Beetle Sueus niisimai (Scolytinae: Hyorrhynchini) is Associated with the Canker Disease Fungus Diatrypella japonica (Xylariales). PLANT DISEASE 2020; 104:3143-3150. [PMID: 33136520 DOI: 10.1094/pdis-03-20-0482-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ambrosia beetles in the subtribe Hyorrhynchini are one example of an entire ambrosia beetle lineage whose fungi have never been studied. Here, we identify one dominant fungus associated with a widespread Asian hyorrhynchine beetle Sueus niisimai. This fungus was consistently isolated from beetle galleries from multiple collections. Phylogenetic analyses of combined ITS rDNA and β-tubulin sequences identified the primary fungal symbiont as Diatrypella japonica Higuchi, Nikaido & Hattori (Diatrypaceae, Xylariales, Sordariomycetes), which was recently described as a pathogen of sycamore (Platanus spp.) in Japan. To assess the invasion potential of this beetle-fungus interaction into the U.S., we have investigated the pathogenicity of two D. japonica strains on four species of healthy landscape trees native to the southeastern United States. Only Shumard oak (Quercus shumardii) responded with lesions significantly greater than the control inoculations, but there was no observable dieback or tree mortality. Although disease symptoms were not as prominent as in previous studies of the same fungus in Japan, routine reisolation from the inoculation point suggests that this species is capable of colonizing healthy sapwood of several tree species. Our study shows that the geographical area of its distribution is broader in Asia and potentially includes many hosts of its polyphagous vector. We conclude that the Sueus-Diatrypella symbiosis has high invasion potential but low damage potential, at least on young trees during the growing season.
Collapse
Affiliation(s)
- You Li
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL 32611, U.S.A
| | - James Skelton
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL 32611, U.S.A
| | - Sawyer Adams
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL 32611, U.S.A
| | - Yukako Hattori
- Graduate School of Bioresources, Mie University, Tsu, Mie 514-8507, Japan
| | - Matthew E Smith
- Department of Plant Pathology, University of Florida, Gainesville, FL 32603, U.S.A
| | - Jiri Hulcr
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL 32611, U.S.A
| |
Collapse
|
26
|
Morales-Rodríguez C, Sferrazza I, Aleandri MP, Dalla Valle M, Speranza S, Contarini M, Vannini A. The fungal community associated with the ambrosia beetle Xylosandrus compactus invading the mediterranean maquis in central Italy reveals high biodiversity and suggests environmental acquisitions. Fungal Biol 2020; 125:12-24. [PMID: 33317772 DOI: 10.1016/j.funbio.2020.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 11/29/2022]
Abstract
In summer 2016 a severe infestation of the alien ambrosia beetle Xylosandrus compactus was recorded from the Mediterranean maquis in the Circeo National Park in Central Italy. Trees and shrubs were infested and displayed wilting and necrosis of terminal branches caused by the combined impact of the insect and associated pathogenic fungi. A preliminary screening carried out on captured adults resulted in the isolation of a discrete number of fungal taxa with different life strategies, ranging from true mutualist (e.g. Ambrosiella xylebori) to plant pathogens (Fusarium spp.). In the present study, high-throughput sequencing was applied to determine the total diversity and functionality of the fungal community associated with X. compactus adults collected in the galleries of three Mediterranean woody hosts, Quercus ilex, Laurus nobilis, and Ceratonia siliqua. The effect of season and host in determining the composition of the associated fungal community was investigated. A total of 206 OTUs composed the fungal community associated with X. compactus. Eighteen OTUs were shared among the three hosts, including A. xylebori and members of the Fusarium solani complex. All but two were previously associated with beetles. Sixty-nine out of 206 OTUs were resolved to species level, identifying 60 different fungal species, 22 of which already reported in the literature as associated with beetles or other insects. Functional guild assigned most of the fungal species to saprotrophs and plant pathogens. Effects of seasonality and host on fungal community assemblage were highlighted suggesting the acquisition by the insect of new fungal taxa during the invasion process. The consequences of enriched fungal community on the risk of the insurgence of novel threatful insect-fungus association are discussed considering direct and indirect effects on the invaded habitat.
Collapse
Affiliation(s)
- Carmen Morales-Rodríguez
- Department for Innovation in Biological, Agro-food and Forestry Systems (DIBAF) - University of Tuscia, Via S. Camillo de Lellis, 01100, Viterbo, Italy
| | - Ivano Sferrazza
- Department for Innovation in Biological, Agro-food and Forestry Systems (DIBAF) - University of Tuscia, Via S. Camillo de Lellis, 01100, Viterbo, Italy
| | - Maria Pia Aleandri
- Department for Innovation in Biological, Agro-food and Forestry Systems (DIBAF) - University of Tuscia, Via S. Camillo de Lellis, 01100, Viterbo, Italy
| | - Matteo Dalla Valle
- Department for Innovation in Biological, Agro-food and Forestry Systems (DIBAF) - University of Tuscia, Via S. Camillo de Lellis, 01100, Viterbo, Italy
| | - Stefano Speranza
- Department of Agriculture and Forest Science (DAFNE) - University of Tuscia, Via S. Camillo de Lellis, 01100, Viterbo, Italy
| | - Mario Contarini
- Department of Agriculture and Forest Science (DAFNE) - University of Tuscia, Via S. Camillo de Lellis, 01100, Viterbo, Italy
| | - Andrea Vannini
- Department for Innovation in Biological, Agro-food and Forestry Systems (DIBAF) - University of Tuscia, Via S. Camillo de Lellis, 01100, Viterbo, Italy.
| |
Collapse
|
27
|
Ibarra-Juarez LA, Burton MAJ, Biedermann PHW, Cruz L, Desgarennes D, Ibarra-Laclette E, Latorre A, Alonso-Sánchez A, Villafan E, Hanako-Rosas G, López L, Vázquez-Rosas-Landa M, Carrion G, Carrillo D, Moya A, Lamelas A. Evidence for Succession and Putative Metabolic Roles of Fungi and Bacteria in the Farming Mutualism of the Ambrosia Beetle Xyleborus affinis. mSystems 2020; 5:e00541-20. [PMID: 32934115 PMCID: PMC7498683 DOI: 10.1128/msystems.00541-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023] Open
Abstract
The bacterial and fungal community involved in ambrosia beetle fungiculture remains poorly studied compared to the famous fungus-farming ants and termites. Here we studied microbial community dynamics of laboratory nests, adults, and brood during the life cycle of the sugarcane shot hole borer, Xyleborus affinis We identified a total of 40 fungal and 428 bacterial operational taxonomic units (OTUs), from which only five fungi (a Raffaelea fungus and four ascomycete yeasts) and four bacterial genera (Stenotrophomonas, Enterobacter, Burkholderia, and Ochrobactrum) can be considered the core community playing the most relevant symbiotic role. Both the fungal and bacterial populations varied significantly during the beetle's life cycle. While the ascomycete yeasts were the main colonizers of the gallery early on, the Raffaelea and other filamentous fungi appeared after day 10, at the time when larval hatching happened. Regarding bacteria, Stenotrophomonas and Enterobacter dominated overall but decreased in foundresses and brood with age. Finally, inferred analyses of the putative metabolic capabilities of the bacterial microbiome revealed that they are involved in (i) degradation of fungal and plant polymers, (ii) fixation of atmospheric nitrogen, and (iii) essential amino acid, cofactor, and vitamin provisioning. Overall, our results suggest that yeasts and bacteria are more strongly involved in supporting the beetle-fungus farming symbiosis than previously thought.IMPORTANCE Ambrosia beetles farm their own food fungi within tunnel systems in wood and are among the three insect lineages performing agriculture (the others are fungus-farming ants and termites). In ambrosia beetles, primary ambrosia fungus cultivars have been regarded essential, whereas other microbes have been more or less ignored. Our KEGG analyses suggest so far unknown roles of yeasts and bacterial symbionts, by preparing the tunnel walls for the primary ambrosia fungi. This preparation includes enzymatic degradation of wood, essential amino acid production, and nitrogen fixation. The latter is especially exciting because if it turns out to be present in vivo in ambrosia beetles, all farming animals (including humans) are dependent on atmospheric nitrogen fertilization of their crops. As previous internal transcribed spacer (ITS) metabarcoding approaches failed on covering the primary ambrosia fungi, our 18S metabarcoding approach can also serve as a template for future studies on the ambrosia beetle-fungus symbiosis.
Collapse
Affiliation(s)
- L A Ibarra-Juarez
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C., Xalapa, México
| | - M A J Burton
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C., Xalapa, México
| | - P H W Biedermann
- Chair of Forest Entomology and Protection, University of Freiburg, Freiburg, Germany
| | - L Cruz
- Tropical Research and Education Center, University of Florida, Homestead, Florida, USA
| | - D Desgarennes
- Red de Biodiversidad y Sistemática, Instituto de Ecología A. C., Xalapa, México
| | - E Ibarra-Laclette
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C., Xalapa, México
| | - A Latorre
- Institute for Integrative Systems Biology (Universitat de València and CSIC), València, Spain
- Foundation for the Promotion of Sanitary and Biomedical Research in the Valencian Community (FISABIO), València, Spain
| | - A Alonso-Sánchez
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C., Xalapa, México
| | - E Villafan
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C., Xalapa, México
| | - G Hanako-Rosas
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C., Xalapa, México
| | - L López
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C., Xalapa, México
| | | | - G Carrion
- Red de Biodiversidad y Sistemática, Instituto de Ecología A. C., Xalapa, México
| | - D Carrillo
- Red de Biodiversidad y Sistemática, Instituto de Ecología A. C., Xalapa, México
| | - A Moya
- Institute for Integrative Systems Biology (Universitat de València and CSIC), València, Spain
- Foundation for the Promotion of Sanitary and Biomedical Research in the Valencian Community (FISABIO), València, Spain
| | - A Lamelas
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C., Xalapa, México
| |
Collapse
|
28
|
Gugliuzzo A, Criscione G, Biondi A, Aiello D, Vitale A, Polizzi G, Tropea Garzia G. Seasonal changes in population structure of the ambrosia beetle Xylosandrus compactus and its associated fungi in a southern Mediterranean environment. PLoS One 2020; 15:e0239011. [PMID: 32915885 PMCID: PMC7485756 DOI: 10.1371/journal.pone.0239011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 08/27/2020] [Indexed: 11/18/2022] Open
Abstract
Exotic ambrosia beetles are increasing in Europe due to global trade and global warming. Among these xylomycetophagous insects, Xylosandrus compactus (Eichhoff) (Coleoptera: Curculionidae) is a serious threat for several Mediterranean host plants. Carob trees growing in Sicily (Italy) have been extensively attacked by beetles leading to rapid tree decline. Although X. compactus has been found in Europe for several years, most aspects of its ecology are still unknown. We thus studied the population structure and dynamics of X. compactus, together with its twig size preference during a sampling of infested carob trees in south east Sicily. In addition, fungi associated with insects or galleries were isolated and characterized. The results showed that, in this newly-colonized environment and host plant, adult X. compactus overwinters inside twigs and starts to fly and reproduce in mid spring, completing five generations before overwintering in late fall. The mean diameter of carob twigs infested by the beetle varied significantly over the seasons, with the insect tending to infest larger twigs as season progresses. The mean number of adults/gallery was 19.21, ranging from 6 to 28. The minimum temperature significantly affected the overwintering adult mortality. Ambrosiella xylebori and Fusarium solani were the main symbionts associated with the pest in this study. Acremonium sp. was instead recorded for the first time in Europe inside X. compactus galleries. Several other fungi species were also found for the first time in association with X. compactus. Our findings provide useful insights into the sustainable management of this noxious pest.
Collapse
Affiliation(s)
- Antonio Gugliuzzo
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Catania, Italy
| | - Giulio Criscione
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Catania, Italy
| | - Antonio Biondi
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Catania, Italy
| | - Dalia Aiello
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Catania, Italy
| | - Alessandro Vitale
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Catania, Italy
| | - Giancarlo Polizzi
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Catania, Italy
| | - Giovanna Tropea Garzia
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Catania, Italy
| |
Collapse
|
29
|
Mayers CG, Harrington TC, Mcnew DL, Roeper RA, Biedermann PHW, Masuya H, Bateman CC. Four mycangium types and four genera of ambrosia fungi suggest a complex history of fungus farming in the ambrosia beetle tribe Xyloterini. Mycologia 2020; 112:1104-1137. [PMID: 32552515 DOI: 10.1080/00275514.2020.1755209] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Ambrosia beetles farm fungal cultivars (ambrosia fungi) and carry propagules of the fungal mutualists in storage organs called mycangia, which occur in various body parts and vary greatly in size and complexity. The evolution of ambrosia fungi is closely tied to the evolution and development of the mycangia that carry them. The understudied ambrosia beetle tribe Xyloterini included lineages with uncharacterized ambrosia fungi and mycangia, which presented an opportunity to test whether developments of different mycangium types in a single ambrosia beetle lineage correspond with concomitant diversity in their fungal mutualists. We collected representatives of all three Xyloterini genera (Trypodendron, Indocryphalus, and Xyloterinus politus) and characterized their ambrosia fungi in pure culture and by DNA sequencing. The prothoracic mycangia of seven Trypodendron species all yielded Phialophoropsis (Microascales) ambrosia fungi, including three new species, although these relationships were not all species specific. Indocryphalus mycangia are characterized for the first time in the Asian I. pubipennis. They comprise triangular prothoracic cavities substantially smaller than those of Trypodendron and unexpectedly carry an undescribed species of Toshionella (Microascales), which are otherwise ambrosia fungi of Asian Scolytoplatypus (Scolytoplatypodini). Xyloterinus politus has two different mycangia, each with a different ambrosia fungus: Raffaelea cf. canadensis RNC5 (Ophiostomatales) in oral mycangia of both sexes and Kaarikia abrahamsonii (Sordariomycetes, genus incertae sedis with affinity for Distoseptisporaceae), a new genus and species unrelated to other known ambrosia fungi, in shallow prothoracic mycangia of females. In addition to their highly adapted mycangial mutualists, Trypodendron and X. politus harbor a surprising diversity of facultative symbionts in their galleries, including Raffaelea. A diversity of ambrosia fungi and mycangia suggest multiple ancestral cultivar captures or switches in the history of tribe Xyloterini, each associated with unique adaptations in mycangium anatomy. This further supports the theory that developments of novel mycangium types are critical events in the evolution of ambrosia beetles and their coadapted fungal mutualists.
Collapse
Affiliation(s)
- Chase G Mayers
- Department of Plant Pathology and Microbiology, Iowa State University, 2213 Pammel Drive, 1344 Advanced Teaching and Research Building , Ames, Iowa 50011
| | - Thomas C Harrington
- Department of Plant Pathology and Microbiology, Iowa State University, 2213 Pammel Drive, 1344 Advanced Teaching and Research Building , Ames, Iowa 50011
| | - Douglas L Mcnew
- Department of Plant Pathology and Microbiology, Iowa State University, 2213 Pammel Drive, 1344 Advanced Teaching and Research Building , Ames, Iowa 50011
| | | | - Peter H W Biedermann
- Department of Animal Ecology and Tropical Biology, Research Group Insect-Fungus Symbioses, University of Würzburg , Am Hubland, 97074 Würzburg, Germany
| | - Hayato Masuya
- Department of Forest Microbiology, Forestry and Forest Products Research Institute , 1 Matsunosato, Tsukuba, Ibaraki 305-8687, Japan
| | - Craig C Bateman
- Florida Museum of Natural History, University of Florida , Gainesville, Florida 32611
| |
Collapse
|
30
|
Rassati D, Marini L, Malacrinò A. Acquisition of fungi from the environment modifies ambrosia beetle mycobiome during invasion. PeerJ 2019; 7:e8103. [PMID: 31763076 PMCID: PMC6870512 DOI: 10.7717/peerj.8103] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 10/25/2019] [Indexed: 01/05/2023] Open
Abstract
Microbial symbionts can play critical roles when their host attempts to colonize a new habitat. The lack of symbiont adaptation can in fact hinder the invasion process of their host. This scenario could change if the exotic species are able to acquire microorganisms from the invaded environment. Understanding the ecological factors that influence the take-up of new microorganisms is thus essential to clarify the mechanisms behind biological invasions. In this study, we tested whether different forest habitats influence the structure of the fungal communities associated with ambrosia beetles. We collected individuals of the most widespread exotic (Xylosandrus germanus) and native (Xyleborinus saxesenii) ambrosia beetle species in Europe in several old-growth and restored forests. We characterized the fungal communities associated with both species via metabarcoding. We showed that forest habitat shaped the community of fungi associated with both species, but the effect was stronger for the exotic X. germanus. Our results support the hypothesis that the direct contact with the mycobiome of the invaded environment might lead an exotic species to acquire native fungi. This process is likely favored by the occurrence of a bottleneck effect at the mycobiome level and/or the disruption of the mechanisms sustaining co-evolved insect-fungi symbiosis. Our study contributes to the understanding of the factors affecting insect-microbes interactions, helping to clarify the mechanisms behind biological invasions.
Collapse
Affiliation(s)
- Davide Rassati
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Padova, Italy
| | - Lorenzo Marini
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Padova, Italy
| | - Antonino Malacrinò
- Department of Evolution, Ecology and Organismal Biology, Ohio State University, Columbus, OH, United States of America
| |
Collapse
|
31
|
Skelton J, Jusino MA, Carlson PS, Smith K, Banik MT, Lindner DL, Palmer JM, Hulcr J. Relationships among wood‐boring beetles, fungi, and the decomposition of forest biomass. Mol Ecol 2019; 28:4971-4986. [DOI: 10.1111/mec.15263] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/20/2019] [Indexed: 01/29/2023]
Affiliation(s)
- James Skelton
- School of Forest Resources and Conservation University of Florida Gainesville FL USA
| | - Michelle A. Jusino
- Department of Plant Pathology University of Florida Gainesville FL USA
- United States Department of Agriculture, Forest Service Northern Research Station Center for Forest Mycology Research Madison WI USA
| | - Paige S. Carlson
- School of Forest Resources and Conservation University of Florida Gainesville FL USA
| | - Katherine Smith
- School of Forest Resources and Conservation University of Florida Gainesville FL USA
- United States Department of Agriculture, Forest Service Southern Research Station Southern Institute of Forest Genetics Saucier MS USA
| | - Mark T. Banik
- United States Department of Agriculture, Forest Service Northern Research Station Center for Forest Mycology Research Madison WI USA
| | - Daniel L. Lindner
- United States Department of Agriculture, Forest Service Northern Research Station Center for Forest Mycology Research Madison WI USA
| | - Jonathan M. Palmer
- United States Department of Agriculture, Forest Service Northern Research Station Center for Forest Mycology Research Madison WI USA
| | - Jiri Hulcr
- School of Forest Resources and Conservation University of Florida Gainesville FL USA
| |
Collapse
|
32
|
Li Y, Ruan YY, Stanley EL, Skelton J, Hulcr J. Plasticity of mycangia in Xylosandrus ambrosia beetles. INSECT SCIENCE 2019; 26:732-742. [PMID: 29571219 DOI: 10.1111/1744-7917.12590] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 02/27/2018] [Accepted: 03/08/2018] [Indexed: 06/08/2023]
Abstract
Insects that depend on microbial mutualists evolved a variety of organs to transport the microsymbionts while dispersing. The ontogeny and variability of such organs is rarely studied, and the microsymbiont's effects on the animal tissue development remain unknown in most cases. Ambrosia beetles (Coleoptera: Curculionidae: Scolytinae or Platypodinae) and their mutualistic fungi are an ideal system to study the animal-fungus interactions. While the interspecific diversity of their fungus transport organ-mycangia-is well-known, their developmental plasticity has been poorly described. To determine the ontogeny of the mycangium and the influence of the symbiotic fungus on the tissue development, we dissected by hand or scanned with micro-CT the mycangia in various developmental stages in five Xylosandrus ambrosia beetle species that possess a large, mesonotal mycangium: Xylosandrus amputatus, Xylosandrus compactus, Xylosandrus crassiusculus, Xylosandrus discolor, and Xylosandrus germanus. We processed 181 beetle samples from the United States and China. All five species displayed three stages of the mycangium development: (1) young teneral adults had an empty, deflated and cryptic mycangium without fungal mass; (2) in fully mature adults during dispersal, the pro-mesonotal membrane was inflated, and most individuals developed a mycangium mostly filled with the symbiont, though size and symmetry varied; and (3) after successful establishment of their new galleries, most females discharged the bulk of the fungal inoculum and deflated the mycangium. Experimental aposymbiotic individuals demonstrated that the pronotal membrane invaginated independently of the presence of the fungus, but the fungus was required for inflation. Mycangia are more dynamic than previously thought, and their morphological changes correspond to the phases of the symbiosis. Importantly, studies of the fungal symbionts or plant pathogen transmission in ambrosia beetles need to consider which developmental stage to sample. We provide illustrations of the different stages, including microphotography of dissections and micro-CT scans.
Collapse
Affiliation(s)
- You Li
- School of Forest Resources and Conservation, University of Florida, Gainesville, Florida, USA
| | - Yong-Ying Ruan
- School of Applied Chemistry and Biological Technology, Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen, Guangdong, China
| | - Edward L Stanley
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA
| | - James Skelton
- School of Forest Resources and Conservation, University of Florida, Gainesville, Florida, USA
| | - Jiri Hulcr
- School of Forest Resources and Conservation, University of Florida, Gainesville, Florida, USA
- Entomology and Nematology Department, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
33
|
Skelton J, Johnson AJ, Jusino MA, Bateman CC, Li Y, Hulcr J. A selective fungal transport organ (mycangium) maintains coarse phylogenetic congruence between fungus-farming ambrosia beetles and their symbionts. Proc Biol Sci 2019; 286:20182127. [PMID: 30963860 PMCID: PMC6367168 DOI: 10.1098/rspb.2018.2127] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/07/2018] [Indexed: 11/12/2022] Open
Abstract
Thousands of species of ambrosia beetles excavate tunnels in wood to farm fungi. They maintain associations with particular lineages of fungi, but the phylogenetic extent and mechanisms of fidelity are unknown. We test the hypothesis that selectivity of their mycangium enforces fidelity at coarse phylogenetic scales, while permitting promiscuity among closely related fungal mutualists. We confirm a single evolutionary origin of the Xylosandrus complex-a group of several xyleborine genera that farm fungi in the genus Ambrosiella. Multi-level co-phylogenetic analysis revealed frequent symbiont switching within major Ambrosiella clades, but not between clades. The loss of the mycangium in Diuncus, a genus of evolutionary cheaters, was commensurate with the loss of fidelity to fungal clades, supporting the hypothesis that the mycangium reinforces fidelity. Finally, in vivo experiments tracked symbiotic compatibility throughout the symbiotic life cycle of Xylosandrus compactus and demonstrated that closely related Ambrosiella symbionts are interchangeable, but the probability of fungal uptake in the mycangium was significantly lower in more phylogenetically distant species of symbionts. Symbiont loads in experimental subjects were similar to wild-caught beetles. We conclude that partner choice in ambrosia beetles is achieved in the mycangium, and co-phylogenetic inferences can be used to predict the likelihood of specific symbiont switches.
Collapse
Affiliation(s)
- James Skelton
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL 32603, USA
| | - Andrew J. Johnson
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL 32603, USA
| | - Michelle A. Jusino
- Center for Forest Mycology Research, United States Forest Service, Northern Research Station, One Gifford Pinchot Drive, Madison, WI 53726, USA
- Department of Plant Pathology, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Craig C. Bateman
- Department of Entomology and Nematology, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - You Li
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL 32603, USA
| | - Jiri Hulcr
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL 32603, USA
- Department of Entomology and Nematology, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| |
Collapse
|
34
|
Saucedo-Carabez JR, Ploetz RC, Konkol JL, Carrillo D, Gazis R. Partnerships Between Ambrosia Beetles and Fungi: Lineage-Specific Promiscuity Among Vectors of the Laurel Wilt Pathogen, Raffaelea lauricola. MICROBIAL ECOLOGY 2018; 76:925-940. [PMID: 29675704 DOI: 10.1007/s00248-018-1188-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/10/2018] [Indexed: 05/25/2023]
Abstract
Nutritional mutualisms that ambrosia beetles have with fungi are poorly understood. Although these interactions were initially thought to be specific associations with a primary symbiont, there is increasing evidence that some of these fungi are associated with, and move among, multiple beetle partners. We examined culturable fungi recovered from mycangia of ambrosia beetles associated with trees of Persea humilis (silk bay, one site) and P. americana (avocado, six commercial orchards) that were affected by laurel wilt, an invasive disease caused by a symbiont, Raffaelea lauricola, of an Asian ambrosia beetle, Xyleborus glabratus. Fungi were isolated from 20 adult females of X. glabratus from silk bay and 70 each of Xyleborus affinis, Xyleborus bispinatus, Xyleborus volvulus, Xyleborinus saxesenii, and Xylosandrus crassiusculus from avocado. With partial sequences of ribosomal (LSU and SSU) and nuclear (β-tubulin) genes, one to several operational taxonomic units (OTUs) of fungi were identified in assayed individuals. Distinct populations of fungi were recovered from each of the examined beetle species. Raffaelea lauricola was present in all beetles except X. saxesenii and X. crassiusculus, and Raffaelea spp. predominated in Xyleborus spp. Raffaelea arxii, R. subalba, and R. subfusca were present in more than a single species of Xyleborus, and R. arxii was the most abundant symbiont in both X. affinis and X. volvulus. Raffaelea aguacate was detected for the first time in an ambrosia beetle (X. bispinatus). Yeasts (Ascomycota, Saccharomycotina) were found consistently in the mycangia of the examined beetles, and distinct, putatively co-adapted populations of these fungi were associated with each beetle species. Greater understandings are needed for how mycangia in ambrosia beetles interact with fungi, including yeasts which play currently underresearched roles in these insects.
Collapse
Affiliation(s)
- J R Saucedo-Carabez
- Tropical Research & Education Center, University of Florida, Homestead, FL, 33031-3314, USA
| | - Randy C Ploetz
- Tropical Research & Education Center, University of Florida, Homestead, FL, 33031-3314, USA.
| | - J L Konkol
- Tropical Research & Education Center, University of Florida, Homestead, FL, 33031-3314, USA
| | - D Carrillo
- Tropical Research & Education Center, University of Florida, Homestead, FL, 33031-3314, USA
| | - R Gazis
- Tropical Research & Education Center, University of Florida, Homestead, FL, 33031-3314, USA
| |
Collapse
|
35
|
Skelton J, Jusino MA, Li Y, Bateman C, Thai PH, Wu C, Lindner DL, Hulcr J. Detecting Symbioses in Complex Communities: the Fungal Symbionts of Bark and Ambrosia Beetles Within Asian Pines. MICROBIAL ECOLOGY 2018; 76:839-850. [PMID: 29476344 DOI: 10.1007/s00248-018-1154-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 01/31/2018] [Indexed: 06/08/2023]
Abstract
Separating symbioses from incidental associations is a major obstacle in symbiosis research. In this survey of fungi associated with Asian bark and ambrosia beetles, we used quantitative culture and DNA barcode identification to characterize fungal communities associated with co-infesting beetle species in pines (Pinus) of China and Vietnam. To quantitatively discern likely symbioses from coincidental associations, we used multivariate analysis and multilevel pattern analysis (a type of indicator species analysis). Nearly half of the variation in fungal community composition in beetle galleries and on beetle bodies was explained by beetle species. We inferred a spectrum of ecological strategies among beetle-associated fungi: from generalist multispecies associates to highly specialized single-host symbionts that were consistently dominant within the mycangia of their hosts. Statistically significant fungal associates of ambrosia beetles were typically only found with one beetle species. In contrast, bark beetle-associated fungi were often associated with multiple beetle species. Ambrosia beetles and their galleries were frequently colonized by low-prevalence ambrosia fungi, suggesting that facultative ambrosial associations are commonplace, and ecological mechanisms such as specialization and competition may be important in these dynamic associations. The approach used here could effectively delimit symbiotic interactions in any system where symbioses are obscured by frequent incidental associations. It has multiple advantages including (1) powerful statistical tests for non-random associations among potential symbionts, (2) simultaneous evaluation of multiple co-occurring host and symbiont associations, and (3) identifying symbionts that are significantly associated with multiple host species.
Collapse
Affiliation(s)
- James Skelton
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL, 32603, USA
| | - Michelle A Jusino
- United States Forest Service, Northern Research Station, Center for Forest Mycology Research, One Gifford Pinchot Drive, Madison, WI, 53726, USA
| | - You Li
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL, 32603, USA
| | - Craig Bateman
- Department of Entomology and Nematology, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Pham Hong Thai
- Vietnam National Museum of Nature, Vietnam Academy of Science and Technology, Cau Giay, Hanoi, Vietnam
| | - Chengxu Wu
- Key Laboratory of Forest Protection of State Forest Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| | - Daniel L Lindner
- United States Forest Service, Northern Research Station, Center for Forest Mycology Research, One Gifford Pinchot Drive, Madison, WI, 53726, USA
| | - Jiri Hulcr
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL, 32603, USA.
- Department of Entomology and Nematology, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
36
|
Li Y, Huang YT, Kasson MT, Macias AM, Skelton J, Carlson PS, Yin M, Hulcr J. Specific and promiscuous ophiostomatalean fungi associated with Platypodinae ambrosia beetles in the southeastern United States. FUNGAL ECOL 2018. [DOI: 10.1016/j.funeco.2018.06.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
37
|
Guarnaccia V, Sandoval-Denis M, Aiello D, Polizzi G, Crous PW. Neocosmospora perseae sp. nov., causing trunk cankers on avocado in Italy. Fungal Syst Evol 2018; 1:131-140. [PMID: 32490364 PMCID: PMC7259237 DOI: 10.3114/fuse.2018.01.06] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Trunk and branch cankers are among the most important diseases compromising avocado production worldwide. A novel species, Neocosmospora perseae sp. nov. is described isolated from trunk lesions on Persea americana in the main avocado producing area of Sicily, Italy. The new species is characterised using a polyphasic approach including morphological characters and a multilocus molecular phylogenetic analysis based on partial sequences of the translation elongation factor-1α, the internal transcribed spacer regions plus the large subunit of the rDNA cistron, and the RNA polymerase II second largest subunit. Pathogenicity tests and the fulfilment of Koch's postulates confirm N. perseae as a novel canker pathogen of Persea americana.
Collapse
Affiliation(s)
- V Guarnaccia
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - M Sandoval-Denis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands.,Faculty of Natural and Agricultural Sciences, Department of Plant Sciences, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
| | - D Aiello
- Dipartimento di Agricoltura, Alimentazione e Ambiente, Università degli Studi di Catania, Via S. Sofia 100, 95123 Catania, Italy
| | - G Polizzi
- Dipartimento di Agricoltura, Alimentazione e Ambiente, Università degli Studi di Catania, Via S. Sofia 100, 95123 Catania, Italy
| | - P W Crous
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| |
Collapse
|
38
|
Huang YT, Kolařík M, Kasson MT, Hulcr J. Two new Geosmithia species in G. pallida species complex from bark beetles in eastern USA. Mycologia 2018; 109:790-803. [PMID: 29388883 DOI: 10.1080/00275514.2017.1410422] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Species of Geosmithia are cosmopolitan but understudied fungi, and most are associated with phloem-feeding bark beetles on various woody hosts. We surveyed 207 bark and ambrosia beetles from 37 species in the eastern USA for associated fungi. The community is dominated by species in the G. pallida species complex (GPSC) and included several Geosmithia isolates that appear to be new to science. The new Geosmithia isolates exhibited the characteristic brownish-colored colonies typical for the G. pallida species complex and were phylogenetically resolved as two genealogically exclusive lineages based on a concatenated multilocus data set based on the internal transcribed spacers (ITS) of the nuc rDNA (ITS1-5.8S-ITS2 = ITS), and the translation elongation factor 1-α (TEF1-α), β-tubulin (TUB2), and RNA polymerase II second largest subunit (RPB2) genes. Two new Geosmithia species, G. brunnea and G. proliferans, are proposed, and their morphological traits and phylogenetic placements are presented.
Collapse
Affiliation(s)
- Y-T Huang
- a School of Forest Resources and Conservation , University of Florida , Gainesville , Florida 32611
| | - M Kolařík
- b Institute of Microbiology, Czech Academy of Sciences , Vídeňská 1083, 142 20 Prague 4, Czechia
| | - M T Kasson
- c Division of Plant and Soil Sciences , West Virginia University , Morgantown , West Virginia 26506
| | - J Hulcr
- a School of Forest Resources and Conservation , University of Florida , Gainesville , Florida 32611.,d Entomology and Nematology Department , University of Florida , Gainesville , Florida 32611
| |
Collapse
|
39
|
Ito M, Kajimura H. Landscape-scale genetic differentiation of a mycangial fungus associated with the ambrosia beetle, Xylosandrus germanus (Blandford) (Curculionidae:Scolytinae) in Japan. Ecol Evol 2017; 7:9203-9221. [PMID: 29187962 PMCID: PMC5696423 DOI: 10.1002/ece3.3437] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 07/03/2017] [Accepted: 08/03/2017] [Indexed: 11/29/2022] Open
Abstract
In this study, we examined the genetic structures of the ambrosia fungus isolated from mycangia of the scolytine beetle, Xylosandrus germanus to understand their co‐evolutionary relationships. We analyzed datasets of three ambrosia fungus loci (18S rDNA, 28S rDNA, and the β‐tubulin gene) and a X. germanus locus dataset (cytochrome c oxidase subunit 1 (COI) mitochondrial DNA). The ambrosia fungi were separated into three cultural morphptypes, and their haplotypes were distinguished by phylogenetic analysis on the basis of the three loci. The COI phylogenetic analysis revealed three distinct genetic lineages (clades A, B, and C) within X. germanus, each of which corresponded to specific ambrosia fungus cultural morphptypes. The fungal symbiont phylogeny was not concordant with that of the beetle. Our results suggest that X. germanus may be unable to exchange its mycangial fungi, but extraordinary horizontal transmission of symbiotic fungi between the beetle's lineages occurred at least once during the evolutionary history of this symbiosis.
Collapse
Affiliation(s)
- Masaaki Ito
- Graduate School of Bioagricultural Sciences Nagoya University Nagoya Japan
| | - Hisashi Kajimura
- Graduate School of Bioagricultural Sciences Nagoya University Nagoya Japan
| |
Collapse
|
40
|
Nutritional symbionts of a putative vector, Xyleborus bispinatus, of the laurel wilt pathogen of avocado, Raffaelea lauricola. Symbiosis 2017. [DOI: 10.1007/s13199-017-0514-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
41
|
Sydowia polyspora Dominates Fungal Communities Carried by Two Tomicus Species in Pine Plantations Threatened by Fusarium circinatum. FORESTS 2017. [DOI: 10.3390/f8040127] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
42
|
Vannini A, Contarini M, Faccoli M, Valle MD, Rodriguez CM, Mazzetto T, Guarneri D, Vettraino AM, Speranza S. First report of the ambrosia beetle
Xylosandrus compactus
and associated fungi in the Mediterranean maquis in Italy, and new host–pest associations. ACTA ACUST UNITED AC 2017. [DOI: 10.1111/epp.12358] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- A. Vannini
- DIBAF, University of Tuscia Via S. Camillo de Lellis 01100 Viterbo (Italy)
| | - M. Contarini
- DAFNE, Universiy of Tuscia Via S. Camillo de Lellis 01100 Viterbo (Italy)
| | - M. Faccoli
- DAFNAE, University of Padua Viale dell'Università 16 35020 Legnaro (Italy)
| | - M. Dalla Valle
- DIBAF, University of Tuscia Via S. Camillo de Lellis 01100 Viterbo (Italy)
| | - C. M. Rodriguez
- DIBAF, University of Tuscia Via S. Camillo de Lellis 01100 Viterbo (Italy)
| | - T. Mazzetto
- DIBAF, University of Tuscia Via S. Camillo de Lellis 01100 Viterbo (Italy)
| | - D. Guarneri
- Biodiversity and Ecological Network Services, Circeo National Park Via Carlo Alberto 188 04016 Sabaudia (Italy)
| | - A. M. Vettraino
- DIBAF, University of Tuscia Via S. Camillo de Lellis 01100 Viterbo (Italy)
| | - S. Speranza
- DAFNE, Universiy of Tuscia Via S. Camillo de Lellis 01100 Viterbo (Italy)
| |
Collapse
|