1
|
Gillette K, Winkler B, Kurath-Koller S, Scherr D, Vigmond EJ, Bär M, Plank G. A computational study on the influence of antegrade accessory pathway location on the 12-lead electrocardiogram in Wolff-Parkinson-White syndrome. Europace 2025; 27:euae223. [PMID: 39259657 PMCID: PMC11879338 DOI: 10.1093/europace/euae223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/31/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024] Open
Abstract
AIMS Wolff-Parkinson-White (WPW) syndrome is a cardiovascular disease characterized by abnormal atrioventricular conduction facilitated by accessory pathways (APs). Invasive catheter ablation of the AP represents the primary treatment modality. Accurate localization of APs is crucial for successful ablation outcomes, but current diagnostic algorithms based on the 12-lead electrocardiogram (ECG) often struggle with precise determination of AP locations. In order to gain insight into the mechanisms underlying localization failures observed in current diagnostic algorithms, we employ a virtual cardiac model to elucidate the relationship between AP location and ECG morphology. METHODS AND RESULTS We first introduce a cardiac model of electrophysiology that was specifically tailored to represent antegrade APs in the form of a short atrioventricular bypass tract. Locations of antegrade APs were then automatically swept across both ventricles in the virtual model to generate a synthetic ECG database consisting of 9271 signals. Regional grouping of antegrade APs revealed overarching morphological patterns originating from diverse cardiac regions. We then applied variance-based sensitivity analysis relying on polynomial chaos expansion on the ECG database to mathematically quantify how variation in AP location and timing relates to morphological variation in the 12-lead ECG. We utilized our mechanistic virtual model to showcase the limitations of AP localization using standard ECG-based algorithms and provide mechanistic explanations through exemplary simulations. CONCLUSION Our findings highlight the potential of virtual models of cardiac electrophysiology not only to deepen our understanding of the underlying mechanisms of WPW syndrome but also to potentially enhance the diagnostic accuracy of ECG-based algorithms and facilitate personalized treatment planning.
Collapse
Affiliation(s)
- Karli Gillette
- Division of Biophysics and Medical Physics, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Benjamin Winkler
- Physikalisch-Technische Bundesanstalt, National Metrology Institute, Berlin, Germany
| | - Stefan Kurath-Koller
- Division of Pediatric Cardiology, Department of Pediatrics, Medical University of Graz, Graz, Austria
| | - Daniel Scherr
- Department of Cardiology, Medical University of Graz, Graz, Austria
| | - Edward J Vigmond
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation University Bordeaux, Pessac-Bordeaux, France
- Institute of Mathematics of Bordeaux, UMR 5251, University Bordeaux, Talence, France
| | - Markus Bär
- Physikalisch-Technische Bundesanstalt, National Metrology Institute, Berlin, Germany
| | - Gernot Plank
- Division of Biophysics and Medical Physics, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| |
Collapse
|
2
|
Suinesiaputra A, Gilbert K, Mauger C, Bluemke DA, Wu CO, Aung N, Neubauer S, Piechnik SK, Petersen SE, Lima JAC, Ambale Venkatesh B, Young A. Relationship between left ventricular shape and cardiovascular risk factors: comparison between the Multi-Ethnic Study of Atherosclerosis and UK Biobank. Heart 2025:heartjnl-2024-324658. [PMID: 39819617 DOI: 10.1136/heartjnl-2024-324658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 12/19/2024] [Indexed: 01/19/2025] Open
Abstract
BACKGROUND Statistical shape atlases have been used in large-cohort studies to investigate relationships between heart shape and risk factors. The generalisability of these relationships between cohorts is unknown. The aims of this study were to compare left ventricular (LV) shapes in patients with differing cardiovascular risk factor profiles from two cohorts and to investigate whether LV shape scores generated with respect to a reference cohort can be directly used to study shape differences in another cohort. METHODS Two cardiac MRI cohorts were included: 2106 participants (median age: 65 years, 54% women) from the Multi-Ethnic Study of Atherosclerosis (MESA) and 2960 participants (median age: 64 years, 52% women) from the UK Biobank (UKB) study. LV shape atlases were constructed from 3D LV models derived from expert-drawn contours from separate core labs. Atlases were considered generalisable for a risk factor if the area under the receiver operating characteristic curves (AUC) were not significantly different (p>0.05) between internal (within-cohort) and external (cross-cohort) cases. RESULTS LV mass and volume indices were differed significantly between cohorts, even in age-matched and sex-matched cases without risk factors, partly reflecting different core lab analysis protocols. For the UKB atlas, internal and external discriminative performance were not significantly different for hypertension (AUC: 0.77 vs 0.76, p=0.37), diabetes (AUC: 0.79 vs 0.77, p=0.48), hypercholesterolaemia (AUC: 0.76 vs 0.79, p=0.38) and smoking (AUC: 0.69 vs 0.67, p=0.18). For the MESA atlas, diabetes (AUC: 0.79 vs 0.74, p=0.09) and hypercholesterolaemia (AUC: 0.75 vs 0.70, p=0.10) were not significantly different. Both atlases showed significant differences for obesity. CONCLUSIONS The MESA and UKB atlases demonstrated good generalisability for diabetes and hypercholesterolaemia, without requiring corrections for differences in mass and volume. Significant differences in obesity may be due to different relationships between obesity and heart shapes between cohorts.
Collapse
Affiliation(s)
- Avan Suinesiaputra
- Biomedical Engineering & Imaging Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
- Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Kathleen Gilbert
- Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- Mackie Research and Consulting, Auckland, New Zealand
| | - Charlene Mauger
- Biomedical Engineering & Imaging Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
- Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - David A Bluemke
- Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Colin O Wu
- Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Nay Aung
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, London, UK
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
| | - Stefan Neubauer
- Oxford NIHR Biomedical Research Centre, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Stefan K Piechnik
- Oxford NIHR Biomedical Research Centre, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Steffen E Petersen
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Joao A C Lima
- Cardiology Division of the Departments of Medicine, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | | | - Alistair Young
- Biomedical Engineering & Imaging Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
- Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
3
|
Mahmod M, Chan K, Fernandes JF, Ariga R, Raman B, Zacur E, Law HFR, Rigolli M, Francis JM, Dass S, O’Gallagher K, Myerson SG, Karamitsos TD, Neubauer S, Lamata P. Differentiating Left Ventricular Remodeling in Aortic Stenosis From Systemic Hypertension. Circ Cardiovasc Imaging 2024; 17:e016489. [PMID: 39163368 PMCID: PMC11338041 DOI: 10.1161/circimaging.123.016489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/26/2024] [Indexed: 08/22/2024]
Abstract
BACKGROUND Left ventricular (LV) hypertrophy occurs in both aortic stenosis (AS) and systemic hypertension (HTN) in response to wall stress. However, differentiation of hypertrophy due to these 2 etiologies is lacking. The aim was to study the 3-dimensional geometric remodeling pattern in severe AS pre- and postsurgical aortic valve replacement and to compare with HTN and healthy controls. METHODS Ninety-one subjects (36 severe AS, 19 HTN, and 36 healthy controls) underwent cine cardiac magnetic resonance. Cardiac magnetic resonance was repeated 8 months post-aortic valve replacement (n=18). Principal component analysis was performed on the 3-dimensional meshes reconstructed from 109 cardiac magnetic resonance scans of 91 subjects at end-diastole. Principal component analysis modes were compared across experimental groups together with conventional metrics of shape, strain, and scar. RESULTS A unique AS signature was identified by wall thickness linked to a LV left-right axis shift and a decrease in short-axis eccentricity. HTN was uniquely linked to increased septal thickness. Combining these 3 features had good discriminative ability between AS and HTN (area under the curve, 0.792). The LV left-right axis shift was not reversible post-aortic valve replacement, did not associate with strain, age, or sex, and was predictive of postoperative LV mass regression (R2=0.339, P=0.014). CONCLUSIONS Unique remodeling signatures might differentiate the etiology of LV hypertrophy. Preliminary findings suggest that LV axis shift is characteristic in AS, is not reversible post-aortic valve replacement, predicts mass regression, and may be interpreted to be an adaptive mechanism.
Collapse
Affiliation(s)
- Masliza Mahmod
- University of Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, Radcliffe Department of Medicine (M.M., K.C., R.A., B.R., M.R., J.M.F., S.D., S.G.M., S.N.), University of Oxford, United Kingdom
| | - Kenneth Chan
- University of Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, Radcliffe Department of Medicine (M.M., K.C., R.A., B.R., M.R., J.M.F., S.D., S.G.M., S.N.), University of Oxford, United Kingdom
| | - Joao F. Fernandes
- Department of Biomedical Engineering (J.F.F., H.-F.R.L., P.L.), King’s College of London, United Kingdom
| | - Rina Ariga
- University of Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, Radcliffe Department of Medicine (M.M., K.C., R.A., B.R., M.R., J.M.F., S.D., S.G.M., S.N.), University of Oxford, United Kingdom
| | - Betty Raman
- University of Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, Radcliffe Department of Medicine (M.M., K.C., R.A., B.R., M.R., J.M.F., S.D., S.G.M., S.N.), University of Oxford, United Kingdom
| | - Ernesto Zacur
- Department of Biomedical Engineering (E.Z.), University of Oxford, United Kingdom
| | - Ho-fon Royce Law
- Department of Biomedical Engineering (J.F.F., H.-F.R.L., P.L.), King’s College of London, United Kingdom
| | - Marzia Rigolli
- University of Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, Radcliffe Department of Medicine (M.M., K.C., R.A., B.R., M.R., J.M.F., S.D., S.G.M., S.N.), University of Oxford, United Kingdom
- Department of Biomedical Engineering (E.Z.), University of Oxford, United Kingdom
- Department of Biomedical Engineering (J.F.F., H.-F.R.L., P.L.), King’s College of London, United Kingdom
- Department Cardiovascular Medicine (K.O.G.), King’s College of London, United Kingdom
- 1st Department of Cardiology, Aristotle University, Thessaloniki, Greece (T.D.K.)
| | - Jane M. Francis
- University of Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, Radcliffe Department of Medicine (M.M., K.C., R.A., B.R., M.R., J.M.F., S.D., S.G.M., S.N.), University of Oxford, United Kingdom
| | - Sairia Dass
- University of Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, Radcliffe Department of Medicine (M.M., K.C., R.A., B.R., M.R., J.M.F., S.D., S.G.M., S.N.), University of Oxford, United Kingdom
| | - Kevin O’Gallagher
- Department Cardiovascular Medicine (K.O.G.), King’s College of London, United Kingdom
| | - Saul G. Myerson
- University of Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, Radcliffe Department of Medicine (M.M., K.C., R.A., B.R., M.R., J.M.F., S.D., S.G.M., S.N.), University of Oxford, United Kingdom
| | | | - Stefan Neubauer
- University of Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, Radcliffe Department of Medicine (M.M., K.C., R.A., B.R., M.R., J.M.F., S.D., S.G.M., S.N.), University of Oxford, United Kingdom
| | - Pablo Lamata
- Department of Biomedical Engineering (J.F.F., H.-F.R.L., P.L.), King’s College of London, United Kingdom
| |
Collapse
|
4
|
Burden SJ, Alshehri R, Lamata P, Poston L, Taylor PD. Maternal obesity and offspring cardiovascular remodelling - the effect of preconception and antenatal lifestyle interventions: a systematic review. Int J Obes (Lond) 2024; 48:1045-1064. [PMID: 38898228 PMCID: PMC11281905 DOI: 10.1038/s41366-024-01536-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/02/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Preconception or antenatal lifestyle interventions in women with obesity may prevent adverse cardiovascular outcomes in the child, including cardiac remodelling. We undertook a systematic review of the existing data to examine the impact of randomised controlled trials of lifestyle interventions in pregnant women with obesity on offspring cardiac remodelling and related parameters of cardiovascular health. METHODS This review was registered with PROSPERO (CRD42023454762) and aligns with PRISMA guidelines. PubMed, Embase, and previous reviews were systematically searched. Follow-up studies from randomised trials of lifestyle interventions in pregnant women with obesity, which included offspring cardiac remodelling or related cardiovascular parameters as outcome measures, were included based on pre-defined inclusion criteria. RESULTS Eight studies from five randomised controlled trials were included after screening 3252 articles. Interventions included antenatal exercise (n = 2), diet and physical activity (n = 2), and preconception diet and physical activity (n = 1). Children were <2-months to 3-7-years-old, with sample sizes ranging between n = 18-404. Reduced cardiac remodelling, with reduced interventricular septal wall thickness, was consistently reported. Some studies identified improved systolic and diastolic function and a reduced resting heart rate. Risk of bias analyses rated all studies as 'fair' (some risk of bias). A high loss-to-follow-up was a common limitation. CONCLUSION Although there is some evidence to suggest that lifestyle interventions in women with obesity may limit offspring cardiac remodelling, further high-quality longitudinal studies with larger sample sizes are required to confirm these observations and to determine whether these changes persist to adulthood. Child offspring cardiovascular health benefits of preconception and antenatal lifestyle interventions in women with obesity.
Collapse
Affiliation(s)
- Samuel J Burden
- Department of Women and Children's Health, School of Life Course & Population Sciences, King's College London, London, UK.
| | - Rahaf Alshehri
- Cardiovascular Medicine and Science Research, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, UK
| | - Pablo Lamata
- Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Lucilla Poston
- Department of Women and Children's Health, School of Life Course & Population Sciences, King's College London, London, UK
| | - Paul D Taylor
- Department of Women and Children's Health, School of Life Course & Population Sciences, King's College London, London, UK
| |
Collapse
|
5
|
Hall M, de Marvao A, Schweitzer R, Cromb D, Colford K, Jandu P, O’Regan DP, Ho A, Price A, Chappell LC, Rutherford MA, Story L, Lamata P, Hutter J. Preeclampsia Associated Differences in the Placenta, Fetal Brain, and Maternal Heart Can Be Demonstrated Antenatally: An Observational Cohort Study Using MRI. Hypertension 2024; 81:836-847. [PMID: 38314606 PMCID: PMC7615760 DOI: 10.1161/hypertensionaha.123.22442] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/02/2024] [Indexed: 02/06/2024]
Abstract
BACKGROUND Preeclampsia is a multiorgan disease of pregnancy that has short- and long-term implications for the woman and fetus, whose immediate impact is poorly understood. We present a novel multiorgan approach to magnetic resonance imaging (MRI) investigation of preeclampsia, with the acquisition of maternal cardiac, placental, and fetal brain anatomic and functional imaging. METHODS An observational study was performed recruiting 3 groups of pregnant women: those with preeclampsia, chronic hypertension, or no medical complications. All women underwent a cardiac MRI, and pregnant women underwent a placental-fetal MRI. Cardiac analysis for structural, morphological, and flow data were undertaken; placenta and fetal brain volumetric and T2* (which describes relative tissue oxygenation) data were obtained. All results were corrected for gestational age. A nonpregnant cohort was identified for inclusion in the statistical shape analysis. RESULTS Seventy-eight MRIs were obtained during pregnancy. Cardiac MRI analysis demonstrated higher left ventricular mass in preeclampsia with 3-dimensional modeling revealing additional specific characteristics of eccentricity and outflow track remodeling. Pregnancies affected by preeclampsia demonstrated lower placental and fetal brain T2*. Within the preeclampsia group, 23% placental T2* results were consistent with controls, these were the only cases with normal placental histopathology. Fetal brain T2* results were consistent with normal controls in 31% of cases. CONCLUSIONS We present the first holistic assessment of the immediate implications of preeclampsia on maternal heart, placenta, and fetal brain. As well as having potential clinical implications for the risk stratification and management of women with preeclampsia, this gives an insight into the disease mechanism.
Collapse
Affiliation(s)
- Megan Hall
- Department of Women and Children’s Health (M.H., A.d.M., A.H., L.C.C., L.S.), King’s College London, United Kingdom
- Centre for the Developing Brain (M.H., D.C., K.C., A.H., A.P., M.A.R., L.S., J.H.), King’s College London, United Kingdom
| | - Antonio de Marvao
- Department of Women and Children’s Health (M.H., A.d.M., A.H., L.C.C., L.S.), King’s College London, United Kingdom
- School of Cardiovascular Medicine (A.d.M., R.S.), King’s College London, United Kingdom
- MRC London Institute of Medical Sciences, Imperial College London, United Kingdom (A.d.M., R.S., D.P.O.)
| | - Ronny Schweitzer
- School of Cardiovascular Medicine (A.d.M., R.S.), King’s College London, United Kingdom
- MRC London Institute of Medical Sciences, Imperial College London, United Kingdom (A.d.M., R.S., D.P.O.)
| | - Daniel Cromb
- Centre for the Developing Brain (M.H., D.C., K.C., A.H., A.P., M.A.R., L.S., J.H.), King’s College London, United Kingdom
| | - Kathleen Colford
- Centre for the Developing Brain (M.H., D.C., K.C., A.H., A.P., M.A.R., L.S., J.H.), King’s College London, United Kingdom
| | - Priya Jandu
- GKT School of Medical Education (P.J.), King’s College London, United Kingdom
| | - Declan P O’Regan
- MRC London Institute of Medical Sciences, Imperial College London, United Kingdom (A.d.M., R.S., D.P.O.)
| | - Alison Ho
- Department of Women and Children’s Health (M.H., A.d.M., A.H., L.C.C., L.S.), King’s College London, United Kingdom
- Centre for the Developing Brain (M.H., D.C., K.C., A.H., A.P., M.A.R., L.S., J.H.), King’s College London, United Kingdom
| | - Anthony Price
- Centre for the Developing Brain (M.H., D.C., K.C., A.H., A.P., M.A.R., L.S., J.H.), King’s College London, United Kingdom
- Centre for Medical Engineering (A.P., P.L.), King’s College London, United Kingdom
| | - Lucy C. Chappell
- Department of Women and Children’s Health (M.H., A.d.M., A.H., L.C.C., L.S.), King’s College London, United Kingdom
| | - Mary A. Rutherford
- Centre for the Developing Brain (M.H., D.C., K.C., A.H., A.P., M.A.R., L.S., J.H.), King’s College London, United Kingdom
| | - Lisa Story
- Department of Women and Children’s Health (M.H., A.d.M., A.H., L.C.C., L.S.), King’s College London, United Kingdom
- Centre for the Developing Brain (M.H., D.C., K.C., A.H., A.P., M.A.R., L.S., J.H.), King’s College London, United Kingdom
| | - Pablo Lamata
- Centre for Medical Engineering (A.P., P.L.), King’s College London, United Kingdom
| | - Jana Hutter
- Centre for the Developing Brain (M.H., D.C., K.C., A.H., A.P., M.A.R., L.S., J.H.), King’s College London, United Kingdom
- Smart Imaging Lab, Radiological Institute, University Hospital Erlangen, Germany (J.H.)
| |
Collapse
|
6
|
Petersen SE, Muraru D, Westwood M, Dweck MR, Di Salvo G, Delgado V, Cosyns B. The year 2022 in the European Heart Journal-Cardiovascular Imaging: Part I. Eur Heart J Cardiovasc Imaging 2023; 24:1593-1604. [PMID: 37738411 DOI: 10.1093/ehjci/jead237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 09/13/2023] [Indexed: 09/24/2023] Open
Abstract
The European Heart Journal-Cardiovascular Imaging with its over 10 years existence is an established leading multi-modality cardiovascular imaging journal. Pertinent publications including original research, how-to papers, reviews, consensus documents, and in our journal from 2022 have been highlighted in two reports. Part I focuses on cardiomyopathies, heart failure, valvular heart disease, and congenital heart disease and related emerging techniques and technologies.
Collapse
Affiliation(s)
- Steffen E Petersen
- William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
- Barts Heart Centre, Barts Health NHS Trust, London, UK
| | - Denisa Muraru
- Department of cardiology, Istituto Auxologico Italiano, IRCCS, Milan, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Mark Westwood
- William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
- Barts Heart Centre, Barts Health NHS Trust, London, UK
| | - Marc R Dweck
- BHF Centre for Cardiovascular Science, University of Edinburgh, Little France Crescent, Edinburgh EH16 4SB, UK
| | - Giovanni Di Salvo
- Pediatric Cardiology and Congenital Heart Disease Unit, Department of Women's and Children's Health, University Hospital Padua, Padua, Italy
| | - Victoria Delgado
- Cardiovascular Imaging, Department of Cardiology, Hospital University Germans Trias i Pujol, Badalona, Spain
- Centre de Medicina Comparativa i Bioimatge (CMCIB), Badalona, Spain
| | - Bernard Cosyns
- Department of Cardiology, CHVZ (Centrum voor Hart en Vaatziekten), ICMI (In Vivo Cellular and Molecular Imaging) Laboratory, Universitair Ziekenhuis Brussel, 101 Laarbeeklaan, Brussels 1090, Belgium
| |
Collapse
|
7
|
Napoli G, Pergola V, Basile P, De Feo D, Bertrandino F, Baggiano A, Mushtaq S, Fusini L, Fazzari F, Carrabba N, Rabbat MG, Motta R, Ciccone MM, Pontone G, Guaricci AI. Epicardial and Pericoronary Adipose Tissue, Coronary Inflammation, and Acute Coronary Syndromes. J Clin Med 2023; 12:7212. [PMID: 38068263 PMCID: PMC10707039 DOI: 10.3390/jcm12237212] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/22/2023] [Accepted: 11/16/2023] [Indexed: 01/22/2025] Open
Abstract
Vascular inflammation is recognized as the primary trigger of acute coronary syndrome (ACS). However, current noninvasive methods are not capable of accurately detecting coronary inflammation. Epicardial adipose tissue (EAT) and pericoronary adipose tissue (PCAT), in addition to their role as an energy reserve system, have been found to contribute to the development and progression of coronary artery calcification, inflammation, and plaque vulnerability. They also participate in the vascular response during ischemia, sympathetic stimuli, and arrhythmia. As a result, the evaluation of EAT and PCAT using imaging techniques such as computed tomography (CT), cardiac magnetic resonance (CMR), and nuclear imaging has gained significant attention. PCAT-CT attenuation, which measures the average CT attenuation in Hounsfield units (HU) of the adipose tissue, reflects adipocyte differentiation/size and leukocyte infiltration. It is emerging as a marker of tissue inflammation and has shown prognostic value in coronary artery disease (CAD), being associated with plaque development, vulnerability, and rupture. In patients with acute myocardial infarction (AMI), an inflammatory pericoronary microenvironment promoted by dysfunctional EAT/PCAT has been demonstrated, and more recently, it has been associated with plaque rupture in non-ST-segment elevation myocardial infarction (NSTEMI). Endothelial dysfunction, known for its detrimental effects on coronary vessels and its association with plaque progression, is bidirectionally linked to PCAT. PCAT modulates the secretory profile of endothelial cells in response to inflammation and also plays a crucial role in regulating vascular tone in the coronary district. Consequently, dysregulated PCAT has been hypothesized to contribute to type 2 myocardial infarction with non-obstructive coronary arteries (MINOCA) and coronary vasculitis. Recently, quantitative measures of EAT derived from coronary CT angiography (CCTA) have been included in artificial intelligence (AI) models for cardiovascular risk stratification. These models have shown incremental utility in predicting major adverse cardiovascular events (MACEs) compared to plaque characteristics alone. Therefore, the analysis of PCAT and EAT, particularly through PCAT-CT attenuation, appears to be a safe, valuable, and sufficiently specific noninvasive method for accurately identifying coronary inflammation and subsequent high-risk plaque. These findings are supported by biopsy and in vivo evidence. Although speculative, these pieces of evidence open the door for a fascinating new strategy in cardiovascular risk stratification. The incorporation of PCAT and EAT analysis, mainly through PCAT-CT attenuation, could potentially lead to improved risk stratification and guide early targeted primary prevention and intensive secondary prevention in patients at higher risk of cardiac events.
Collapse
Affiliation(s)
- Gianluigi Napoli
- University Cardiologic Unit, Interdisciplinary Department of Medicine, Polyclinic University Hospital, 70124 Bari, Italy; (G.N.); (P.B.); (D.D.F.); (F.B.); (M.M.C.)
| | - Valeria Pergola
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padua, 35122 Padua, Italy;
| | - Paolo Basile
- University Cardiologic Unit, Interdisciplinary Department of Medicine, Polyclinic University Hospital, 70124 Bari, Italy; (G.N.); (P.B.); (D.D.F.); (F.B.); (M.M.C.)
| | - Daniele De Feo
- University Cardiologic Unit, Interdisciplinary Department of Medicine, Polyclinic University Hospital, 70124 Bari, Italy; (G.N.); (P.B.); (D.D.F.); (F.B.); (M.M.C.)
| | - Fulvio Bertrandino
- University Cardiologic Unit, Interdisciplinary Department of Medicine, Polyclinic University Hospital, 70124 Bari, Italy; (G.N.); (P.B.); (D.D.F.); (F.B.); (M.M.C.)
| | - Andrea Baggiano
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy; (A.B.); (S.M.); (L.F.); (F.F.); (G.P.)
| | - Saima Mushtaq
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy; (A.B.); (S.M.); (L.F.); (F.F.); (G.P.)
| | - Laura Fusini
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy; (A.B.); (S.M.); (L.F.); (F.F.); (G.P.)
| | - Fabio Fazzari
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy; (A.B.); (S.M.); (L.F.); (F.F.); (G.P.)
| | - Nazario Carrabba
- Department of Cardiothoracovascular Medicine, Azienda Ospedaliero Universitaria Careggi, 50134 Florence, Italy;
| | - Mark G. Rabbat
- Division of Cardiology, Loyola University of Chicago, Chicago, IL 60611, USA;
- Edward Hines Jr. VA Hospital, Hines, IL 60141, USA
| | - Raffaella Motta
- Radiology Unit, University Hospital of Padova, 35128 Padua, Italy;
| | - Marco Matteo Ciccone
- University Cardiologic Unit, Interdisciplinary Department of Medicine, Polyclinic University Hospital, 70124 Bari, Italy; (G.N.); (P.B.); (D.D.F.); (F.B.); (M.M.C.)
| | - Gianluca Pontone
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy; (A.B.); (S.M.); (L.F.); (F.F.); (G.P.)
| | - Andrea Igoren Guaricci
- University Cardiologic Unit, Interdisciplinary Department of Medicine, Polyclinic University Hospital, 70124 Bari, Italy; (G.N.); (P.B.); (D.D.F.); (F.B.); (M.M.C.)
| |
Collapse
|
8
|
Rodero C, Baptiste TMG, Barrows RK, Lewalle A, Niederer SA, Strocchi M. Advancing clinical translation of cardiac biomechanics models: a comprehensive review, applications and future pathways. FRONTIERS IN PHYSICS 2023; 11:1306210. [PMID: 38500690 PMCID: PMC7615748 DOI: 10.3389/fphy.2023.1306210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Cardiac mechanics models are developed to represent a high level of detail, including refined anatomies, accurate cell mechanics models, and platforms to link microscale physiology to whole-organ function. However, cardiac biomechanics models still have limited clinical translation. In this review, we provide a picture of cardiac mechanics models, focusing on their clinical translation. We review the main experimental and clinical data used in cardiac models, as well as the steps followed in the literature to generate anatomical meshes ready for simulations. We describe the main models in active and passive mechanics and the different lumped parameter models to represent the circulatory system. Lastly, we provide a summary of the state-of-the-art in terms of ventricular, atrial, and four-chamber cardiac biomechanics models. We discuss the steps that may facilitate clinical translation of the biomechanics models we describe. A well-established software to simulate cardiac biomechanics is lacking, with all available platforms involving different levels of documentation, learning curves, accessibility, and cost. Furthermore, there is no regulatory framework that clearly outlines the verification and validation requirements a model has to satisfy in order to be reliably used in applications. Finally, better integration with increasingly rich clinical and/or experimental datasets as well as machine learning techniques to reduce computational costs might increase model reliability at feasible resources. Cardiac biomechanics models provide excellent opportunities to be integrated into clinical workflows, but more refinement and careful validation against clinical data are needed to improve their credibility. In addition, in each context of use, model complexity must be balanced with the associated high computational cost of running these models.
Collapse
Affiliation(s)
- Cristobal Rodero
- Cardiac Electro-Mechanics Research Group (CEMRG), National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Tiffany M. G. Baptiste
- Cardiac Electro-Mechanics Research Group (CEMRG), National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Rosie K. Barrows
- Cardiac Electro-Mechanics Research Group (CEMRG), National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Alexandre Lewalle
- Cardiac Electro-Mechanics Research Group (CEMRG), National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Steven A. Niederer
- Cardiac Electro-Mechanics Research Group (CEMRG), National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
- Turing Research and Innovation Cluster in Digital Twins (TRIC: DT), The Alan Turing Institute, London, United Kingdom
| | - Marina Strocchi
- Cardiac Electro-Mechanics Research Group (CEMRG), National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
9
|
Hauser JA, Burden SJ, Karunakaran A, Muthurangu V, Taylor AM, Jones A. Whole-Body Magnetic Resonance Imaging Assessment of the Contributions of Adipose and Nonadipose Tissues to Cardiovascular Remodeling in Adolescents. J Am Heart Assoc 2023; 12:e030221. [PMID: 37489750 PMCID: PMC10492986 DOI: 10.1161/jaha.123.030221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/27/2023] [Indexed: 07/26/2023]
Abstract
Background Greater body mass index is associated with cardiovascular remodeling in adolescents. However, body mass index cannot differentiate between adipose and nonadipose tissues. We examined how visceral and subcutaneous adipose tissue are linked with markers of early cardiovascular remodeling, independently from nonadipose tissue. Methods and Results Whole-body magnetic resonance imaging was done in 82 adolescents (39 overweight/obese; 36 female; median age, 16.3 [interquartile range, 14.4-18.1] years) to measure body composition and cardiovascular remodeling markers. Left ventricular diastolic function was assessed by echocardiography. Waist, waist:height ratio, and body mass index z scores were calculated. Residualized nonadipose tissue, subcutaneous adipose tissue, and visceral adipose tissue variables, uncorrelated with each other, were constructed using partial regression modeling to allow comparison of their individual contributions in a 3-compartment body composition model. Cardiovascular variables mostly related to nonadipose rather than adipose tissue. Nonadipose tissue was correlated positively with left ventricular mass (r=0.81), end-diastolic volume (r=0.70), stroke volume (r=0.64), left ventricular mass:end-diastolic volume (r=0.37), and systolic blood pressure (r=0.35), and negatively with heart rate (r=-0.33) (all P<0.01). Subcutaneous adipose tissue was associated with worse left ventricular diastolic function (r=-0.42 to -0.48, P=0.0007-0.02) and higher heart rates (r=0.34, P=0.007) but linked with better systemic vascular resistance (r=-0.35, P=0.006). There were no significant relationships with visceral adipose tissue and no associations of any compartment with pulse wave velocity. Conclusions Simple anthropometry does not reflect independent effects of nonadipose tissue and subcutaneous adipose tissue on the adolescent cardiovascular system. This could result in normal cardiovascular adaptations to growth being misinterpreted as pathological sequelae of excess adiposity in studies reliant on such measures.
Collapse
Affiliation(s)
- Jakob A. Hauser
- Centre for Translational Cardiovascular ImagingUniversity College LondonLondonUnited Kingdom
| | - Samuel J. Burden
- Department of PaediatricsUniversity of Oxford, John Radcliffe HospitalOxfordUnited Kingdom
- Department of Women and Children’s HealthKing’s College London, St Thomas’ HospitalLondonUnited Kingdom
| | - Ajanthiha Karunakaran
- Centre for Translational Cardiovascular ImagingUniversity College LondonLondonUnited Kingdom
| | - Vivek Muthurangu
- Centre for Translational Cardiovascular ImagingUniversity College LondonLondonUnited Kingdom
| | - Andrew M. Taylor
- Centre for Translational Cardiovascular ImagingUniversity College LondonLondonUnited Kingdom
- Great Ormond Street Hospital for Children NHS Foundation TrustLondonUnited Kingdom
| | - Alexander Jones
- Centre for Translational Cardiovascular ImagingUniversity College LondonLondonUnited Kingdom
- Department of PaediatricsUniversity of Oxford, John Radcliffe HospitalOxfordUnited Kingdom
| |
Collapse
|
10
|
Hall M, de Marvao A, Schweitzer R, Cromb D, Colford K, Jandu P, O'Regan DP, Ho A, Price A, Chappell LC, Rutherford MA, Story L, Lamata P, Hutter J. Characterisation of placental, fetal brain and maternal cardiac structure and function in pre-eclampsia using MRI. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.24.23289069. [PMID: 37163073 PMCID: PMC10168502 DOI: 10.1101/2023.04.24.23289069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Background Pre-eclampsia is a multiorgan disease of pregnancy that has short- and long-term implications for the woman and fetus, whose immediate impact is poorly understood. We present a novel multi-system approach to MRI investigation of pre-eclampsia, with acquisition of maternal cardiac, placental, and fetal brain anatomical and functional imaging. Methods A prospective study was carried out recruiting pregnant women with pre-eclampsia, chronic hypertension, or no medical complications, and a non-pregnant female cohort. All women underwent a cardiac MRI, and pregnant women underwent a fetal-placental MRI. Cardiac analysis for structural, morphological and flow data was undertaken; placenta and fetal brain volumetric and T2* data were obtained. All results were corrected for gestational age. Results Seventy-eight MRIs were obtained during pregnancy. Pregnancies affected by pre-eclampsia demonstrated lower placental and fetal brain T2*. Within the pre-eclampsia group, three placental T2* results were within the normal range, these were the only cases with normal placental histopathology. Similarly, three fetal brain T2* results were within the normal range; these cases had no evidence of cerebral redistribution on fetal Dopplers. Cardiac MRI analysis demonstrated higher left ventricular mass in pre-eclampsia with 3D modelling revealing additional specific characteristics of eccentricity and outflow track remodelling. Conclusions We present the first holistic assessment of the immediate implications of pre-eclampsia on the placenta, maternal heart, and fetal brain. As well as having potential clinical implications for the risk-stratification and management of women with pre-eclampsia, this gives an insight into disease mechanism.
Collapse
Affiliation(s)
- Megan Hall
- Department of Women and Children’s Health, King’s College London, UK
- Centre for the Developing Brain, King’s College London, UK
| | - Antonio de Marvao
- Department of Women and Children’s Health, King’s College London, UK
- School of Cardiovascular Medicine, King’s College London, UK
- MRC London Institute of Medical Sciences, Imperial College London, UK
| | - Ronny Schweitzer
- School of Cardiovascular Medicine, King’s College London, UK
- MRC London Institute of Medical Sciences, Imperial College London, UK
| | - Daniel Cromb
- Centre for the Developing Brain, King’s College London, UK
| | | | - Priya Jandu
- GKT School of Medical Education, King’s College London, UK
| | - Declan P O'Regan
- MRC London Institute of Medical Sciences, Imperial College London, UK
| | - Alison Ho
- Department of Women and Children’s Health, King’s College London, UK
- Centre for the Developing Brain, King’s College London, UK
| | - Anthony Price
- Centre for the Developing Brain, King’s College London, UK
- Centre for Medical Engineering, King’s College London, UK
| | - Lucy C. Chappell
- Department of Women and Children’s Health, King’s College London, UK
| | | | - Lisa Story
- Department of Women and Children’s Health, King’s College London, UK
- Centre for the Developing Brain, King’s College London, UK
| | - Pablo Lamata
- Centre for Medical Engineering, King’s College London, UK
| | - Jana Hutter
- Centre for the Developing Brain, King’s College London, UK
- Centre for Medical Engineering, King’s College London, UK
| |
Collapse
|
11
|
Bernardino G, Sepúlveda-Martínez Á, Rodríguez-López M, Prat-González S, Pajuelo C, Perea RJ, Caralt MT, Crovetto F, González Ballester MA, Sitges M, Bijnens B, Crispi F. Association of central obesity with unique cardiac remodelling in young adults born small for gestational age. Eur Heart J Cardiovasc Imaging 2023:6986711. [PMID: 36644919 DOI: 10.1093/ehjci/jeac262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 12/05/2022] [Indexed: 01/17/2023] Open
Abstract
AIMS Being born small for gestational age (SGA, 10% of all births) is associated with increased risk of cardiovascular mortality in adulthood together with lower exercise tolerance, but mechanistic pathways are unclear. Central obesity is known to worsen cardiovascular outcomes, but it is uncertain how it affects the heart in adults born SGA. We aimed to assess whether central obesity makes young adults born SGA more susceptible to cardiac remodelling and dysfunction. METHODS AND RESULTS A perinatal cohort from a tertiary university hospital in Spain of young adults (30-40 years) randomly selected, 80 born SGA (birth weight below 10th centile) and 75 with normal birth weight (controls) was recruited. We studied the associations between SGA and central obesity (measured via the hip-to-waist ratio and used as a continuous variable) and cardiac regional structure and function, assessed by cardiac magnetic resonance using statistical shape analysis. Both SGA and waist-to-hip were highly associated to cardiac shape (F = 3.94, P < 0.001; F = 5.18, P < 0.001 respectively) with a statistically significant interaction (F = 2.29, P = 0.02). While controls tend to increase left ventricular end-diastolic volumes, mass and stroke volume with increasing waist-to-hip ratio, young adults born SGA showed a unique response with inability to increase cardiac dimensions or mass resulting in reduced stroke volume and exercise capacity. CONCLUSION SGA young adults show a unique cardiac adaptation to central obesity. These results support considering SGA as a risk factor that may benefit from preventive strategies to reduce cardiometabolic risk.
Collapse
Affiliation(s)
- Gabriel Bernardino
- CREATIS, UMR 5220, U1294, University Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, Inserm, 21 Av. Jean Capelle O, Villeurbanne 69621, France
| | - Álvaro Sepúlveda-Martínez
- BCNatal-Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), Institut Clínic de Ginecologia Obstetricia i Neonatologia, Centre for Biomedical Research on Rare Diseases (CIBER-ER), Universitat de Barcelona, 1 Sabino Arana, Barcelona 08028, Spain.,Fetal Medicine Unit, Department of Obstetrics and Gynecology, Hospital Clínico de la Universidad de Chile, 999 Dr. Carlos Lorca Tobar, Independencia, Región Metropolitana, Santiago de Chile 13108, Chile
| | - Mérida Rodríguez-López
- BCNatal-Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), Institut Clínic de Ginecologia Obstetricia i Neonatologia, Centre for Biomedical Research on Rare Diseases (CIBER-ER), Universitat de Barcelona, 1 Sabino Arana, Barcelona 08028, Spain.,Public Health and Epidemiology Department & Clinical Specialties Department, Pontificia Universidad Javeriana Seccional Cali, Cl. 18 #118-250, Barrio Pance, Cali, Valle del Cauca 760031, Colombia
| | - Susanna Prat-González
- Institut Clínic Cardiovascular, Hospital Clínic, Centre for Biomedical Research on CardioVascular Diseases (CIBERCV), Universitat de Barcelona, 170 Villarroel, Barcelona 08036, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer, 149 Roselló, Barcelona 08036, Spain
| | - Carolina Pajuelo
- Centre de Diagnòstic per la Imatge, Hospital Clínic, Universitat de Barcelona, 170 Villarroel, Barcelona 08036, Spain
| | - Rosario J Perea
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, 149 Roselló, Barcelona 08036, Spain.,Centre de Diagnòstic per la Imatge, Hospital Clínic, Universitat de Barcelona, 170 Villarroel, Barcelona 08036, Spain
| | - Maria T Caralt
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, 149 Roselló, Barcelona 08036, Spain
| | - Francesca Crovetto
- BCNatal-Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), Institut Clínic de Ginecologia Obstetricia i Neonatologia, Centre for Biomedical Research on Rare Diseases (CIBER-ER), Universitat de Barcelona, 1 Sabino Arana, Barcelona 08028, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer, 149 Roselló, Barcelona 08036, Spain.,Public Health and Epidemiology Department & Clinical Specialties Department, Pontificia Universidad Javeriana Seccional Cali, Cl. 18 #118-250, Barrio Pance, Cali, Valle del Cauca 760031, Colombia
| | - Miguel A González Ballester
- BCN Medtech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 122 Tànger, Barcelona 08018, Spain.,ICREA, 23 Passeig de Lluís Companys, Barcelona 08010, Spain
| | - Marta Sitges
- Institut Clínic Cardiovascular, Hospital Clínic, Centre for Biomedical Research on CardioVascular Diseases (CIBERCV), Universitat de Barcelona, 170 Villarroel, Barcelona 08036, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer, 149 Roselló, Barcelona 08036, Spain
| | - Bart Bijnens
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, 149 Roselló, Barcelona 08036, Spain.,ICREA, 23 Passeig de Lluís Companys, Barcelona 08010, Spain
| | - Fàtima Crispi
- BCNatal-Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), Institut Clínic de Ginecologia Obstetricia i Neonatologia, Centre for Biomedical Research on Rare Diseases (CIBER-ER), Universitat de Barcelona, 1 Sabino Arana, Barcelona 08028, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer, 149 Roselló, Barcelona 08036, Spain
| |
Collapse
|
12
|
A preconception lifestyle intervention in women with obesity and cardiovascular health in their children. Pediatr Res 2023:10.1038/s41390-022-02443-8. [PMID: 36624285 DOI: 10.1038/s41390-022-02443-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/05/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Maternal obesity during pregnancy is associated with poorer cardiovascular health (CVH) in children. A strategy to improve CVH in children could be to address preconception maternal obesity by means of a lifestyle intervention. We determined if a preconception lifestyle intervention in women with obesity improved offspring's CVH, assessed by magnetic resonance imaging (MRI). METHODS We invited children born to women who participated in a randomised controlled trial assessing the effect of a preconception lifestyle intervention in women with obesity. We assessed cardiac structure, function and geometric shape, pulse wave velocity and abdominal fat tissue by MRI. RESULTS We included 49 of 243 (20.2%) eligible children, 24 girls (49%) girls, mean age 7.1 (0.8) years. Left ventricular ejection fraction was higher in children in the intervention group as compared to children in the control group (63.0% SD 6.18 vs. 58.8% SD 5.77, p = 0.02). Shape analysis showed that intervention was associated with less regional thickening of the interventricular septum and less sphericity. There were no differences in the other outcomes of interest. CONCLUSION A preconception lifestyle intervention in women with obesity led to a higher ejection fraction and an altered cardiac shape in their offspring, which might suggest a better CVH. IMPACT A preconception lifestyle intervention in women with obesity results in a higher ejection fraction and an altered cardiac shape that may signify better cardiovascular health (CVH) in their children. This is the first experimental human evidence suggesting an effect of a preconception lifestyle intervention in women with obesity on MRI-derived indicators of CVH in their children. Improving maternal preconception health might prevent some of the detrimental consequences of maternal obesity on CVH in their children.
Collapse
|
13
|
Sinha MD, Azukaitis K, Sladowska-Kozłowska J, Bårdsen T, Merkevicius K, Karlsen Sletten IS, Obrycki Ł, Pac M, Fernández-Aranda F, Bjelakovic B, Jankauskiene A, Litwin M. Prevalence of left ventricular hypertrophy in children and young people with primary hypertension: Meta-analysis and meta-regression. Front Cardiovasc Med 2022; 9:993513. [PMID: 36386367 PMCID: PMC9659762 DOI: 10.3389/fcvm.2022.993513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/05/2022] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Left ventricular hypertrophy (LVH) is the main marker of HMOD in children and young people (CYP). We aimed to assess the prevalence of LVH and its determinants in CYP with primary hypertension (PH). METHODS A meta-analysis of prevalence was performed. A literature search of articles reporting LVH in CYP with PH was conducted in Medline, Embase, and Cochrane databases. Studies with a primary focus on CYP (up to 21 years) with PH were included. Meta-regression was used to analyze factors explaining observed heterogeneity. RESULTS The search yielded a total of 2,200 articles, 153 of those underwent full-text review, and 47 reports were included. The reports evaluated 51 study cohorts including 5,622 individuals, 73% male subjects, and a mean age of 13.6 years. LVH was defined as left ventricle mass index (LVMI) ≥ 95th percentile in 22 (47%), fixed cut-off ≥38.6 g/m2.7 in eight (17%), sex-specific fixed cut-off values in six (13%), and miscellaneously in others. The overall prevalence of LVH was 30.5% (95% CI 27.2-33.9), while heterogeneity was high (I 2 = 84%). Subgroup analysis including 1,393 individuals (76% male subjects, mean age 14.7 years) from pediatric hypertension specialty clinics and LVH defined as LVMI ≥95th percentile only (19 study cohorts from 18 studies), reported prevalence of LVH at 29.9% (95% CI 23.9 to 36.3), and high heterogeneity (I 2 = 84%). Two studies involving patients identified through community screening (n = 1,234) reported lower LVH prevalence (21.5%). In the meta-regression, only body mass index (BMI) z-score was significantly associated with LVH prevalence (estimate 0.23, 95% CI 0.08-0.39, p = 0.004) and accounted for 41% of observed heterogeneity, but not age, male percentage, BMI, or waist circumference z-score. The predominant LVH phenotype was eccentric LVH in patients from specialty clinics (prevalence of 22% in seven studies with 779 participants) and one community screening study reported the predominance of concentric LVH (12%). CONCLUSION Left ventricular hypertrophy is evident in at least one-fifth of children and young adults with PH and in nearly a third of those referred to specialty clinics with a predominant eccentric LVH pattern in the latter. Increased BMI is the most significant risk association for LVH in hypertensive youth.
Collapse
Affiliation(s)
- Manish D. Sinha
- Department of Paediatric Nephrology, Evelina London Children's Hospital, Guys and St Thomas' NHS Foundation Trust, London, United Kingdom
- Kings College London, London, United Kingdom
| | - Karolis Azukaitis
- Clinic of Pediatrics, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | | | - Tonje Bårdsen
- Department of Paediatric and Adolescent Medicine, Haukeland University Hospital, Bergen, Norway
| | - Kajus Merkevicius
- Clinic of Pediatrics, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | | | - Łukasz Obrycki
- Department of Nephrology, Kidney Transplantation and Hypertension, The Children's Memorial Health Institute, Warsaw, Poland
| | - Michał Pac
- Department of Nephrology, Kidney Transplantation and Hypertension, The Children's Memorial Health Institute, Warsaw, Poland
| | - Fernando Fernández-Aranda
- University Hospital of Bellvitge-IDIBELL, Barcelona, Spain
- Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Bojko Bjelakovic
- Clinic of Pediatrics, Clinical Center, Nis, Serbia
- Medical Faculty, University of Nis, Nis, Serbia
| | - Augustina Jankauskiene
- Clinic of Pediatrics, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Mieczysław Litwin
- Department of Nephrology, Kidney Transplantation and Hypertension, The Children's Memorial Health Institute, Warsaw, Poland
| |
Collapse
|
14
|
Edvardsen T, Donal E, Muraru D, Gimelli A, Fontes-Carvalho R, Maurer G, Petersen SE, Cosyns B. The year 2021 in the European Heart Journal—Cardiovascular Imaging: Part I. Eur Heart J Cardiovasc Imaging 2022; 23:1576-1583. [DOI: 10.1093/ehjci/jeac210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
The European Heart Journal—Cardiovascular Imaging was introduced in 2012 and has during these 10 years become one of the leading multimodality cardiovascular imaging journals. The journal is currently ranked as Number 19 among all cardiovascular journals. It has an impressive impact factor of 9.130 and our journal is well established as one of the top cardiovascular journals. The most important studies published in our Journal in 2021 will be highlighted in two reports. Part I of the review will focus on studies about myocardial function and risk prediction, myocardial ischaemia, and emerging techniques in cardiovascular imaging, while Part II will focus on valvular heart disease, heart failure, cardiomyopathies, and congenital heart disease.
Collapse
Affiliation(s)
- Thor Edvardsen
- Department of Cardiology, Oslo University Hospital, Rikshospitalet , Sognsvannsveien 20, Postbox 4950 Nydalen, NO-0424 Oslo , Norway
- Institute for Clinical Medicine, University of Oslo , Sognsvannsveien 20, NO-0424 Oslo , Norway
| | - Erwan Donal
- Department of Cardiology and CIC-IT1414, CHU Rennes, Inserm, LTSI-UMR 1099, University Rennes-1, Rennes F-35000 , France
| | - Denisa Muraru
- Department of Cardiology, Istituto Auxologico Italiano, IRCCS , Piazzale Brescia 20, 20149 Milan , Italy
- Department of Medicine and Surgery, University of Milano-Bicocca , Via Cadore 48, 20900 Monza , Italy
| | - Alessia Gimelli
- Imaging Department, Fondazione Toscana G. Monasterio , Via Giuseppe Moruzzi, 1, 56124 Pisa PI , Italy
| | - Ricardo Fontes-Carvalho
- Cardiology Department, Centro Hospitalar de Vila Nova de Gaia/Espinho, R. Dr. Francisco Sá Carneiro 4400-129 , 4430-999 Vila Nova de Gaia , Portugal
- Cardiovascular R&D Centre - UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto , Alameda Prof. Hernâni Monteiro 4200-319 Porto , Portugal
| | - Gerald Maurer
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna , Wahringer Gurtel 18-20, 1090 Vienna , Austria
| | - Steffen E Petersen
- Barts Heart Centre, Barts Health NHS Trust , West Smithfield, London EC1A 7BE , UK
- William Harvey Research Institute, Queen Mary University of London , Charterhouse Square, London EC1M 6BQ , UK
| | - Bernard Cosyns
- Department of Cardiology, CHVZ (Centrum voor Hart en Vaatziekten), ICMI (In Vivo Cellular and Molecular Imaging) Laboratory, Universitair ziekenhuis Brussel , 1090 Jette, Brussels , Belgium
| |
Collapse
|
15
|
Goubergrits L, Vellguth K, Obermeier L, Schlief A, Tautz L, Bruening J, Lamecker H, Szengel A, Nemchyna O, Knosalla C, Kuehne T, Solowjowa N. CT-Based Analysis of Left Ventricular Hemodynamics Using Statistical Shape Modeling and Computational Fluid Dynamics. Front Cardiovasc Med 2022; 9:901902. [PMID: 35865389 PMCID: PMC9294248 DOI: 10.3389/fcvm.2022.901902] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022] Open
Abstract
Background Cardiac computed tomography (CCT) based computational fluid dynamics (CFD) allows to assess intracardiac flow features, which are hypothesized as an early predictor for heart diseases and may support treatment decisions. However, the understanding of intracardiac flow is challenging due to high variability in heart shapes and contractility. Using statistical shape modeling (SSM) in combination with CFD facilitates an intracardiac flow analysis. The aim of this study is to prove the usability of a new approach to describe various cohorts. Materials and Methods CCT data of 125 patients (mean age: 60.6 ± 10.0 years, 16.8% woman) were used to generate SSMs representing aneurysmatic and non-aneurysmatic left ventricles (LVs). Using SSMs, seven group-averaged LV shapes and contraction fields were generated: four representing patients with and without aneurysms and with mild or severe mitral regurgitation (MR), and three distinguishing aneurysmatic patients with true, intermediate aneurysms, and globally hypokinetic LVs. End-diastolic LV volumes of the groups varied between 258 and 347 ml, whereas ejection fractions varied between 21 and 26%. MR degrees varied from 1.0 to 2.5. Prescribed motion CFD was used to simulate intracardiac flow, which was analyzed regarding large-scale flow features, kinetic energy, washout, and pressure gradients. Results SSMs of aneurysmatic and non-aneurysmatic LVs were generated. Differences in shapes and contractility were found in the first three shape modes. Ninety percent of the cumulative shape variance is described with approximately 30 modes. A comparison of hemodynamics between all groups found shape-, contractility- and MR-dependent differences. Disturbed blood washout in the apex region was found in the aneurysmatic cases. With increasing MR, the diastolic jet becomes less coherent, whereas energy dissipation increases by decreasing kinetic energy. The poorest blood washout was found for the globally hypokinetic group, whereas the weakest blood washout in the apex region was found for the true aneurysm group. Conclusion The proposed CCT-based analysis of hemodynamics combining CFD with SSM seems promising to facilitate the analysis of intracardiac flow, thus increasing the value of CCT for diagnostic and treatment decisions. With further enhancement of the computational approach, the methodology has the potential to be embedded in clinical routine workflows and support clinicians.
Collapse
Affiliation(s)
- Leonid Goubergrits
- Institute of Computer-Assisted Cardiovascular Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Einstein Center Digital Future, Berlin, Germany
| | - Katharina Vellguth
- Institute of Computer-Assisted Cardiovascular Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Lukas Obermeier
- Institute of Computer-Assisted Cardiovascular Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Adriano Schlief
- Institute of Computer-Assisted Cardiovascular Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Lennart Tautz
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
| | - Jan Bruening
- Institute of Computer-Assisted Cardiovascular Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | - Olena Nemchyna
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany
| | - Christoph Knosalla
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Titus Kuehne
- Institute of Computer-Assisted Cardiovascular Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Natalia Solowjowa
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany
| |
Collapse
|