1
|
Beltrami M, Bonacchi G, Pieroni M. PLN-related obstructive hypertrophic cardiomyopathy responsive to mavacamten. Eur Heart J 2025:ehaf240. [PMID: 40326331 DOI: 10.1093/eurheartj/ehaf240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/07/2025] Open
Affiliation(s)
- Matteo Beltrami
- Arrhythmia and Electrophysiology Unit, Careggi University Hospital, Largo Brambilla 3, 50135 Florence, Italy
| | - Giacomo Bonacchi
- Cardiomyopathy Unit, Careggi University Hospital, Largo Brambilla 3, 50135 Florence, Italy
| | - Maurizio Pieroni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
2
|
Verstraelen TE, van Lint FHM, de Brouwer R, Proost VM, van Drie E, Bosman LP, Weverink L, Taha K, Bueren T, Zwinderman AH, Dickhoff C, Oomen T, Schoonderwoerd BA, Germans T, Houweling AC, Gimeno-Blanes JR, Asselbergs FW, van der Zwaag PA, Te Riele ASJM, de Boer RA, van den Berg MP, van Tintelen JP, Wilde AAM. Age-related penetrance of phospholamban p.Arg14del cardiomyopathy. Eur J Heart Fail 2025. [PMID: 40264254 DOI: 10.1002/ejhf.3672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 03/17/2025] [Accepted: 04/01/2025] [Indexed: 04/24/2025] Open
Abstract
AIMS Previous studies have shown that carriers of the pathogenic p.Arg14del variant in phospholamban (PLN) have an increased risk of mortality, heart failure and malignant ventricular arrhythmias. However, there are sparse data on the penetrance of cardiac features in these mutation carriers, and the optimal starting age and intervals of clinical follow-up remain to be defined. METHODS AND RESULTS We collected clinical data from PLN p.(Arg14del) carriers. Cardiac penetrance was defined as the presence of a major event or risk factor. A major event consisted of malignant ventricular arrhythmias or symptomatic heart failure. Risk factors were low-voltage electrocardiogram, repolarization abnormalities, frequent premature complexes, left ventricular ejection fraction <45% or cardiac fibrosis on magnetic resonance imaging. Kaplan-Meier analysis with and without left truncation was used to assess penetrance. We identified 868 p.(Arg14del) carriers, with a median age of 43 (interquartile range [IQR] 29-55) years at first cardiac evaluation. Median follow-up was 5.3 (IQR 2.2-8.5) years and 207 (23.8%) carriers had a major event, at a mean age of 51 (± 15) years. Penetrance was age-related, with new cardiac phenotypes emerging from adolescence to senior age. At age 70, penetrance of a major event was 43% to 70%, penetrance of a risk factor was 84% to 100% depending on which Kaplan-Meier method was used. CONCLUSION Penetrance of a major cardiac event is high in PLN p.(Arg14del) carriers, with a penetrance up to 70% at age 70. Penetrance of a cardiac risk factor is nearly complete at older age. Furthermore, cardiac phenotypes can emerge from adolescence to senior age. Life-long cardiac follow-up is needed, starting from adolescence.
Collapse
Affiliation(s)
- Tom E Verstraelen
- Department of Cardiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam UMC, Amsterdam, The Netherlands
| | - Freyja H M van Lint
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Remco de Brouwer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Virginnio M Proost
- Department of Cardiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam UMC, Amsterdam, The Netherlands
| | - Esmee van Drie
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Laurens P Bosman
- University Medical Center Utrecht, Division Heart and Lungs, Department of Cardiology, University of Utrecht, Utrecht, The Netherlands
| | - Lotte Weverink
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Karim Taha
- University Medical Center Utrecht, Division Heart and Lungs, Department of Cardiology, University of Utrecht, Utrecht, The Netherlands
| | - Thais Bueren
- Department of Cardiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam UMC, Amsterdam, The Netherlands
| | - Aeilko H Zwinderman
- Department of Clinical Epidemiology and Biostatistics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Cathelijne Dickhoff
- Department of Cardiology, Dijklander Ziekenhuis Hoorn, Hoorn, The Netherlands
| | - Toon Oomen
- Department of Cardiology, Antonius Ziekenhuis Sneek, Sneek, The Netherlands
| | - Bas A Schoonderwoerd
- Department of Cardiology, Medical Center Leeuwarden, Leeuwarden, The Netherlands
| | - Tjeerd Germans
- Department of Cardiology, Noordwest Ziekenhuisgroep, Alkmaar, The Netherlands
| | - Arjan C Houweling
- Department of Human Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Juan R Gimeno-Blanes
- Virgen de Arrixaca Hospital, Ctra, Murcia, Spain
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-Heart)
| | - Folkert W Asselbergs
- Department of Cardiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam UMC, Amsterdam, The Netherlands
| | - Paul A van der Zwaag
- University Medical Center Groningen, Department of Clinical Genetics, University of Groningen, Groningen, The Netherlands
| | - Anneline S J M Te Riele
- University Medical Center Utrecht, Division Heart and Lungs, Department of Cardiology, University of Utrecht, Utrecht, The Netherlands
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-Heart)
| | - Rudolf A de Boer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-Heart)
| | - Maarten P van den Berg
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - J Peter van Tintelen
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-Heart)
| | - Arthur A M Wilde
- Department of Cardiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam UMC, Amsterdam, The Netherlands
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-Heart)
| |
Collapse
|
3
|
Laredo M, Charpentier E, Soulez S, Nguyen V, Martino A, Calò L, Ader F, Hermida A, Fressart V, Charron P, Kachenoura N, Gandjbakhch E, Redheuil A. Imaging features of desmoplakin arrhythmogenic cardiomyopathy: A comparative cardiovascular magnetic resonance study. J Cardiovasc Magn Reson 2025; 27:101867. [PMID: 40021092 DOI: 10.1016/j.jocmr.2025.101867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 02/10/2025] [Accepted: 02/21/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND Arrhythmogenic cardiomyopathy (ACM) related to Desmoplakin (DSP) mutations is a distinct condition associated with particularly severe outcomes, more frequent left ventricular (LV) involvement, including fibrosis, dysfunction, and inflammatory episodes. Whether DSP-ACM is associated with specific imaging features remains elusive. This study aims to provide a comprehensive description of cardiovascular magnetic resonance (CMR) findings in patients with DSP-ACM and to compare them to RV-dominant ACM with LV involvement (LV+ right-dominant-ACM). METHODS Patients with DSP-ACM matched with patients with ACM related to a non-DSP desmosomal mutation and ≥1 feature of LV involvement underwent CMR in two institutions. Biventricular metrics and segmental wall motion abnormalities (WMA) were assessed. LV late gadolinium enhancement (LGE) was assessed both qualitatively and quantitatively after semi-automated segmentation. RESULTS Overall, 70 ACM patients were analyzed; 37 with DSP-ACM and 33 in the LV+ right-dominant-ACM group. LVEF was significantly lower in the DSP-ACM group (46 ± 12%) than in the LV+ right-dominant-ACM group (56 ± 10%, P = 0.001). Conversely, RVEF was significantly higher in the DSP-ACM group (45 ± 11% vs. 40 ± 12%, P = 0.04) and both RV end-diastolic (100 ± 24 vs 130 ± 44 mL/m², P = 0.002) and end-systolic (56 ± 21 vs 81 ± 45 mL/m², P = 0.007) indexed volumes were significantly smaller in DSP-ACM as compared to the LV+ right-dominant-ACM group. The LV to RV end-systolic volume ratio (0.96 [interquartile range (IQR)0.70-1.27] vs. 0.59 [IQR 0.48-0.69]) was significantly higher in the DSP-ACM group (P < 0.0001), and had a good performance in differentiating both groups (area under the ROC curve 0.86, optimal threshold 0.8). Patients in the DSP-ACM group had significantly more LV and less RV WMA than those in the LV+ right-dominant-ACM group. The amount of LGE was significantly higher in the DSP group (14% ± 16 vs. 2%±3, P < 0.0001) and present in the majority of LV segments, particularly in the lateral and inferior walls, as compared to LV+ right-dominant-ACM patients. Transmural LGE and the presence of a ring-like pattern corresponding to circumferential subepicardial LGE involving ≥3 contiguous LV basal segments were highly specific of DSP-ACM. CONCLUSION The presence of LV to RV end-systolic volume ratio>0.8, global LGE>5%, transmural and/or a ring-like LGE pattern are highly suggestive of DSP-ACM and should prompt careful diagnostic assessment considering the severe associated outcome.
Collapse
Affiliation(s)
- Mikael Laredo
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, LIB, Paris, France; Sorbonne Université, Département de Cardiologie, AP-HP, Hôpital Universitaire Pitié-Salpêtrière, Paris, France; Institute of Cardiometabolism and Nutrition (IHU ICAN), Paris, France.
| | - Etienne Charpentier
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, LIB, Paris, France; Institute of Cardiometabolism and Nutrition (IHU ICAN), Paris, France; Sorbonne Université, Imagerie Cardiovasculaire et Thoracique (ICT), AP-HP, Hôpital Universitaire Pitié-Salpêtrière, Paris, France
| | - Shannon Soulez
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, LIB, Paris, France
| | - Vincent Nguyen
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, LIB, Paris, France
| | | | - Leonardo Calò
- Division of Cardiology, Policlinico Casilino, Rome, Italy
| | - Flavie Ader
- Sorbonne Université, Département de Génétique, Centre de Références des Maladies Cardiaques Héréditaires ou rares, AP-HP, Inserm UMR_1166, IHU ICAN, Hôpital Universitaire Pitié-Salpêtrière, Paris, France
| | - Alexis Hermida
- Sorbonne Université, Département de Cardiologie, AP-HP, Hôpital Universitaire Pitié-Salpêtrière, Paris, France; Institute of Cardiometabolism and Nutrition (IHU ICAN), Paris, France; Sorbonne Université, Département de Génétique, Centre de Références des Maladies Cardiaques Héréditaires ou rares, AP-HP, Inserm UMR_1166, IHU ICAN, Hôpital Universitaire Pitié-Salpêtrière, Paris, France
| | - Véronique Fressart
- Sorbonne Université, Département de Génétique, Centre de Références des Maladies Cardiaques Héréditaires ou rares, AP-HP, Inserm UMR_1166, IHU ICAN, Hôpital Universitaire Pitié-Salpêtrière, Paris, France
| | - Philippe Charron
- Sorbonne Université, Département de Cardiologie, AP-HP, Hôpital Universitaire Pitié-Salpêtrière, Paris, France; Institute of Cardiometabolism and Nutrition (IHU ICAN), Paris, France; Sorbonne Université, Département de Génétique, Centre de Références des Maladies Cardiaques Héréditaires ou rares, AP-HP, Inserm UMR_1166, IHU ICAN, Hôpital Universitaire Pitié-Salpêtrière, Paris, France
| | - Nadjia Kachenoura
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, LIB, Paris, France; Institute of Cardiometabolism and Nutrition (IHU ICAN), Paris, France
| | - Estelle Gandjbakhch
- Sorbonne Université, Département de Cardiologie, AP-HP, Hôpital Universitaire Pitié-Salpêtrière, Paris, France; Institute of Cardiometabolism and Nutrition (IHU ICAN), Paris, France; Sorbonne Université, Département de Génétique, Centre de Références des Maladies Cardiaques Héréditaires ou rares, AP-HP, Inserm UMR_1166, IHU ICAN, Hôpital Universitaire Pitié-Salpêtrière, Paris, France
| | - Alban Redheuil
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, LIB, Paris, France; Institute of Cardiometabolism and Nutrition (IHU ICAN), Paris, France; Sorbonne Université, Imagerie Cardiovasculaire et Thoracique (ICT), AP-HP, Hôpital Universitaire Pitié-Salpêtrière, Paris, France
| |
Collapse
|
4
|
Verelst FR, Van Assche L, Huybrechts W, Gevaert AB, Van Craenenbroeck EM. Cardiac contractility modulation as bailout in a patient with phospholamban p.Arg14del related cardiomyopathy intolerant to medication: a case report. Eur Heart J Case Rep 2025; 9:ytae687. [PMID: 40007991 PMCID: PMC11852272 DOI: 10.1093/ehjcr/ytae687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/04/2024] [Accepted: 12/19/2024] [Indexed: 02/27/2025]
Abstract
Background Cardiac contractility modulation (CCM) is a novel device-based therapeutic option in patients with heart failure with reduced ejection fraction who are not eligible for cardiac resynchronization therapy. Cardiac contractility modulation enhances cardiac contractility by delivering high-voltage non-excitatory electrical impulses during the absolute refractory period. Cardiac contractility modulation is known to improve left ventricular ejection fraction (LVEF), quality of life, and exercise capacity in heart failure (HF) patients. Case summary We present a case of a 77-years-old woman with a cardiomyopathy associated with a pathogenic PLN variant [p.(Arg14del), Dutch founder mutation]. Due to progressive deterioration of LVEF (25%) despite maximally tolerated guideline-directed medical therapy (GDMT), a CCM device was implanted. After implantation, the patient experienced a sharp thoracic and interscapular pain after stimulation of one of the two leads. This lead was turned-off and the output on the other lead was increased to maximal output of 7,5 V. After 3 months, there were less signs and symptoms of HF. New York Heart Association class improved from class III to II and the patient was free of thoracic pain. Echocardiography demonstrated further improvement of LVEF to 44% and a decrease in end-diastolic pressures. Discussion We describe a case of CCM therapy in a patient with HF related to a genetic cardiomyopathy due to a pathogenic variant in phospholamban (PLN), persistent symptoms despite maximally tolerated GDMT. Although it was necessary to deactivate one of the both leads due to thoracic pain, LVEF and HF symptoms significantly improved. Further research is needed to elaborate on the potential role of CCM therapy in genetic cardiomyopathies.
Collapse
Affiliation(s)
- Faro R Verelst
- Department of Cardiology, University Hospital Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium
- Department of Medicine, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| | - Lauranne Van Assche
- Department of Cardiology, University Hospital Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium
| | - Wim Huybrechts
- Department of Cardiology, University Hospital Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium
- Research Group Cardiovascular Diseases, GENCOR Department, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| | - Andreas B Gevaert
- Department of Cardiology, University Hospital Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium
- Research Group Cardiovascular Diseases, GENCOR Department, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| | - Emeline M Van Craenenbroeck
- Department of Cardiology, University Hospital Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium
- Research Group Cardiovascular Diseases, GENCOR Department, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| |
Collapse
|
5
|
Stege NM, de Boer RA, Makarewich CA, van der Meer P, Silljé HHW. Reassessing the Mechanisms of PLN-R14del Cardiomyopathy: From Calcium Dysregulation to S/ER Malformation. JACC Basic Transl Sci 2024; 9:1041-1052. [PMID: 39297138 PMCID: PMC11405888 DOI: 10.1016/j.jacbts.2024.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 09/21/2024]
Abstract
The phospholamban (PLN) pathogenic gene variant, p.Arg14del (PLN-R14del), can lead to dilated and arrhythmogenic cardiomyopathy, resulting in heart failure. PLN-R14del cardiomyopathy has been conceptualized as a disease caused by sarco/endoplasmic reticulum calcium adenosine triphosphatase 2a (SERCA2a) superinhibition. However, recent studies raised controversy regarding the effect of PLN-R14del on SERCA activity and revealed a prominent role for abnormal PLN protein distribution and sarco/endoplasmic reticulum disorganization as underlying disease mechanism. Strategies targeting sarco/endoplasmic reticulum malformation may, therefore, prove more effective than SERCA activity modulation. This review reassesses the disease mechanisms of PLN-R14del cardiomyopathy and emphasizes the importance of dissecting the underlying molecular mechanisms to uncover targets for innovative treatments.
Collapse
Affiliation(s)
- Nienke M Stege
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Rudolf A de Boer
- Erasmus Medical Center, Cardiovascular Institute, Thorax Center, Department of Cardiology, Rotterdam, the Netherlands
| | - Catherine A Makarewich
- Division of Molecular Cardiovascular Biology of the Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Peter van der Meer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Herman H W Silljé
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
6
|
Antonopoulos AS, Xintarakou A, Protonotarios A, Lazaros G, Miliou A, Tsioufis K, Vlachopoulos C. Imagenetics for Precision Medicine in Dilated Cardiomyopathy. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2024; 17:e004301. [PMID: 38415367 DOI: 10.1161/circgen.123.004301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Dilated cardiomyopathy (DCM) is a common heart muscle disorder of nonischemic etiology associated with heart failure development and the risk of malignant ventricular arrhythmias and sudden cardiac death. A tailored approach to risk stratification and prevention of sudden cardiac death is required in genetic DCM given its variable presentation and phenotypic severity. Currently, advances in cardiogenetics have shed light on disease mechanisms, the complex genetic architecture of DCM, polygenic contributors to disease susceptibility and the role of environmental triggers. Parallel advances in imaging have also enhanced disease recognition and the identification of the wide spectrum of phenotypes falling under the DCM umbrella. Genotype-phenotype associations have been also established for specific subtypes of DCM, such as DSP (desmoplakin) or FLNC (filamin-C) cardiomyopathy but overall, they remain elusive and not readily identifiable. Also, despite the accumulated knowledge on disease mechanisms, certain aspects remain still unclear, such as which patients with DCM are at risk for disease progression or remission after treatment. Imagenetics, that is, the combination of imaging and genetics, is expected to further advance research in the field and contribute to precision medicine in DCM management and treatment. In the present article, we review the existing literature in the field, summarize the established knowledge and emerging data on the value of genetics and imaging in establishing genotype-phenotype associations in DCM and in clinical decision making for DCM patients.
Collapse
Affiliation(s)
- Alexios S Antonopoulos
- 1st Cardiology Department, Hippokration Hospital, National and Kapodistrian University of Athens, Greece (A.S.A., A.X., G.L., A.M., K.T., C.V.)
| | - Anastasia Xintarakou
- 1st Cardiology Department, Hippokration Hospital, National and Kapodistrian University of Athens, Greece (A.S.A., A.X., G.L., A.M., K.T., C.V.)
| | - Alexandros Protonotarios
- Institute of Cardiovascular Science, University College London, United Kingdom (A.P.)
- Inherited Cardiovascular Disease Unit, St Bartholomew's Hospital, London, United Kingdom (A.P.)
| | - George Lazaros
- 1st Cardiology Department, Hippokration Hospital, National and Kapodistrian University of Athens, Greece (A.S.A., A.X., G.L., A.M., K.T., C.V.)
| | - Antigoni Miliou
- 1st Cardiology Department, Hippokration Hospital, National and Kapodistrian University of Athens, Greece (A.S.A., A.X., G.L., A.M., K.T., C.V.)
| | - Konstantinos Tsioufis
- 1st Cardiology Department, Hippokration Hospital, National and Kapodistrian University of Athens, Greece (A.S.A., A.X., G.L., A.M., K.T., C.V.)
| | - Charalambos Vlachopoulos
- 1st Cardiology Department, Hippokration Hospital, National and Kapodistrian University of Athens, Greece (A.S.A., A.X., G.L., A.M., K.T., C.V.)
| |
Collapse
|
7
|
Mauriello A, Roma AS, Ascrizzi A, Molinari R, Loffredo FS, D’Andrea A, Russo V. Arrhythmogenic Left Ventricular Cardiomyopathy: From Diagnosis to Risk Management. J Clin Med 2024; 13:1835. [PMID: 38610600 PMCID: PMC11012337 DOI: 10.3390/jcm13071835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/13/2024] [Accepted: 03/16/2024] [Indexed: 04/14/2024] Open
Abstract
PURPOSE OF REVIEW Left ventricular arrhythmogenic cardiomyopathy (ALVC) is a rare and poorly characterized cardiomyopathy that has recently been reclassified in the group of non-dilated left ventricular cardiomyopathies. This review aims to summarize the background, diagnosis, and sudden cardiac death risk in patients presenting this cardiomyopathy. RECENT FINDINGS Although there is currently a lack of data on this condition, arrhythmogenic left ventricular dysplasia can be considered a specific disease of the left ventricle (LV). We have collected the latest evidence about the management and the risks associated with this cardiomyopathy. SUMMARY Left ventricular arrhythmogenic cardiomyopathy is still poorly characterized. ALVC is characterized by fibrofatty replacement in the left ventricular myocardium, with variable phenotypic expression. Diagnosis is based on a multiparametric approach, including cardiac magnetic resonance (CMR) and genetic testing, and is important for sudden cardiac death (SCD) risk stratification and management. Recent guidelines have improved the management of left ventricular arrhythmogenic cardiomyopathy. Further studies are necessary to improve knowledge of this cardiomyopathy.
Collapse
Affiliation(s)
- Alfredo Mauriello
- Cardiology Unit, Department of Medical Translational Science, University of Campania “Luigi Vanvitelli”—“V. Monaldi” Hospital, 80126 Naples, Italy; (A.S.R.); (A.A.); (R.M.); (F.S.L.); (A.D.); (V.R.)
- Unit of Cardiology, “Umberto I” Hospital, 84014 Nocera Inferiore, Italy
| | - Anna Selvaggia Roma
- Cardiology Unit, Department of Medical Translational Science, University of Campania “Luigi Vanvitelli”—“V. Monaldi” Hospital, 80126 Naples, Italy; (A.S.R.); (A.A.); (R.M.); (F.S.L.); (A.D.); (V.R.)
| | - Antonia Ascrizzi
- Cardiology Unit, Department of Medical Translational Science, University of Campania “Luigi Vanvitelli”—“V. Monaldi” Hospital, 80126 Naples, Italy; (A.S.R.); (A.A.); (R.M.); (F.S.L.); (A.D.); (V.R.)
| | - Riccardo Molinari
- Cardiology Unit, Department of Medical Translational Science, University of Campania “Luigi Vanvitelli”—“V. Monaldi” Hospital, 80126 Naples, Italy; (A.S.R.); (A.A.); (R.M.); (F.S.L.); (A.D.); (V.R.)
| | - Francesco S. Loffredo
- Cardiology Unit, Department of Medical Translational Science, University of Campania “Luigi Vanvitelli”—“V. Monaldi” Hospital, 80126 Naples, Italy; (A.S.R.); (A.A.); (R.M.); (F.S.L.); (A.D.); (V.R.)
| | - Antonello D’Andrea
- Cardiology Unit, Department of Medical Translational Science, University of Campania “Luigi Vanvitelli”—“V. Monaldi” Hospital, 80126 Naples, Italy; (A.S.R.); (A.A.); (R.M.); (F.S.L.); (A.D.); (V.R.)
- Unit of Cardiology, “Umberto I” Hospital, 84014 Nocera Inferiore, Italy
| | - Vincenzo Russo
- Cardiology Unit, Department of Medical Translational Science, University of Campania “Luigi Vanvitelli”—“V. Monaldi” Hospital, 80126 Naples, Italy; (A.S.R.); (A.A.); (R.M.); (F.S.L.); (A.D.); (V.R.)
| |
Collapse
|
8
|
Corrado D, Anastasakis A, Basso C, Bauce B, Blomström-Lundqvist C, Bucciarelli-Ducci C, Cipriani A, De Asmundis C, Gandjbakhch E, Jiménez-Jáimez J, Kharlap M, McKenna WJ, Monserrat L, Moon J, Pantazis A, Pelliccia A, Perazzolo Marra M, Pillichou K, Schulz-Menger J, Jurcut R, Seferovic P, Sharma S, Tfelt-Hansen J, Thiene G, Wichter T, Wilde A, Zorzi A. Proposed diagnostic criteria for arrhythmogenic cardiomyopathy: European Task Force consensus report. Int J Cardiol 2024; 395:131447. [PMID: 37844667 DOI: 10.1016/j.ijcard.2023.131447] [Citation(s) in RCA: 57] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
Arrhythmogenic cardiomyopathy (ACM) is a heart muscle disease characterized by prominent "non-ischemic" myocardial scarring predisposing to ventricular electrical instability. Diagnostic criteria for the original phenotype, arrhythmogenic right ventricular cardiomyopathy (ARVC), were first proposed in 1994 and revised in 2010 by an international Task Force (TF). A 2019 International Expert report appraised these previous criteria, finding good accuracy for diagnosis of ARVC but a lack of sensitivity for identification of the expanding phenotypic disease spectrum, which includes left-sided variants, i.e., biventricular (ABVC) and arrhythmogenic left ventricular cardiomyopathy (ALVC). The ARVC phenotype together with these left-sided variants are now more appropriately named ACM. The lack of diagnostic criteria for the left ventricular (LV) phenotype has resulted in clinical under-recognition of ACM patients over the 4 decades since the disease discovery. In 2020, the "Padua criteria" were proposed for both right- and left-sided ACM phenotypes. The presently proposed criteria represent a refinement of the 2020 Padua criteria and have been developed by an expert European TF to improve the diagnosis of ACM with upgraded and internationally recognized criteria. The growing recognition of the diagnostic role of CMR has led to the incorporation of myocardial tissue characterization findings for detection of myocardial scar using the late‑gadolinium enhancement (LGE) technique to more fully characterize right, biventricular and left disease variants, whether genetic or acquired (phenocopies), and to exclude other "non-scarring" myocardial disease. The "ring-like' pattern of myocardial LGE/scar is now a recognized diagnostic hallmark of ALVC. Additional diagnostic criteria regarding LV depolarization and repolarization ECG abnormalities and ventricular arrhythmias of LV origin are also provided. These proposed upgrading of diagnostic criteria represents a working framework to improve management of ACM patients.
Collapse
Affiliation(s)
- Domenico Corrado
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua Medical School, Italy.
| | - Aris Anastasakis
- Unit of Inherited and Rare Cardiovascular Diseases, Onassis Cardiac Surgery Center, Athens, Greece
| | - Cristina Basso
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua Medical School, Italy
| | - Barbara Bauce
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua Medical School, Italy
| | - Carina Blomström-Lundqvist
- Department of Cardiology, School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | | | - Alberto Cipriani
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua Medical School, Italy
| | - Carlo De Asmundis
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis, Brussel - Vrije Universiteit Brussel, Belgium
| | - Estelle Gandjbakhch
- Sorbonne Universitè, APHP, Centre de Référence des Maladies Cardiaques héréditaires Groupe Hospitalier Pitié Salpêtrière-Charles Foix, Paris, France
| | | | - Maria Kharlap
- Department of cardiac arrhythmias, National Centre for Therapy and Preventive Medicine, Moscow, Petroverigsky, Russia
| | - William J McKenna
- Institute of Cardiovascular Science, University College London, United Kingdom
| | - Lorenzo Monserrat
- Cardiovascular Genetics, Medical Department, Dilemma Solutions SL, A Coruña, Spain
| | - James Moon
- CMR Service, Barts Heart Centre, University College London, United Kingdom
| | - Antonis Pantazis
- Inherited Cardiovascular Conditions services, The Royal Brompton and Harefield Hospitals, London, United Kingdom
| | | | - Martina Perazzolo Marra
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua Medical School, Italy
| | - Kalliopi Pillichou
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua Medical School, Italy
| | - Jeanette Schulz-Menger
- Charité, Universitätsmedizin Berlin, Campus Buch - ECRC and Helios Clinics, DZHK Partnersite Berlin, Germany
| | - Ruxandra Jurcut
- Expert Center for Rare Genetic Cardiovascular Diseases, Institute for Cardiovascular Diseases "Prof.dr.C.C.Iliescu", UMF "Carol Davila", Bucharest, Romania
| | - Petar Seferovic
- University of Belgrade, Faculty of Medicine and Heart Failure Center, Belgrade University Medical Center, Belgrade
| | - Sanjay Sharma
- Cardiology Clinical Academic Group, St. George's, University of London, United Kingdom
| | - Jacob Tfelt-Hansen
- Section of Genetics, Department of Forensic Medicine, Faculty of Medical Sciences, University of Copenhagen, Denmark; Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Gaetano Thiene
- University of Padua Medical School, ARCA Associazione Ricerche Cardiopatie Aritmiche ETS, Padova, Italy
| | - Thomas Wichter
- Dept. of Internal Medicine / Cardiology, Heart Center Osnabrück - Bad Rothenfelde, Niels-Stensen-Kliniken, Marienhospital Osnabrück, Osnabrück, Germany
| | - Arthur Wilde
- Amsterdam UMC location University of Amsterdam, Department of Cardiology, Amsterdam, the Netherlands
| | - Alessandro Zorzi
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua Medical School, Italy
| |
Collapse
|
9
|
Stege NM, Eijgenraam TR, Oliveira Nunes Teixeira V, Feringa AM, Schouten EM, Kuster DW, van der Velden J, Wolters AH, Giepmans BN, Makarewich CA, Bassel-Duby R, Olson EN, de Boer RA, Silljé HH. DWORF Extends Life Span in a PLN-R14del Cardiomyopathy Mouse Model by Reducing Abnormal Sarcoplasmic Reticulum Clusters. Circ Res 2023; 133:1006-1021. [PMID: 37955153 PMCID: PMC10699510 DOI: 10.1161/circresaha.123.323304] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/18/2023] [Accepted: 11/01/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND The p.Arg14del variant of the PLN (phospholamban) gene causes cardiomyopathy, leading to severe heart failure. Calcium handling defects and perinuclear PLN aggregation have both been suggested as pathological drivers of this disease. Dwarf open reading frame (DWORF) has been shown to counteract PLN regulatory calcium handling function in the sarco/endoplasmic reticulum (S/ER). Here, we investigated the potential disease-modulating action of DWORF in this cardiomyopathy and its effects on calcium handling and PLN aggregation. METHODS We studied a PLN-R14del mouse model, which develops cardiomyopathy with similar characteristics as human patients, and explored whether cardiac DWORF overexpression could delay cardiac deterioration. To this end, R14Δ/Δ (homozygous PLN-R14del) mice carrying the DWORF transgene (R14Δ/ΔDWORFTg [R14Δ/Δ mice carrying the DWORF transgene]) were used. RESULTS DWORF expression was suppressed in hearts of R14Δ/Δ mice with severe heart failure. Restoration of DWORF expression in R14Δ/Δ mice delayed cardiac fibrosis and heart failure and increased life span >2-fold (from 8 to 18 weeks). DWORF accelerated sarcoplasmic reticulum calcium reuptake and relaxation in isolated cardiomyocytes with wild-type PLN, but in R14Δ/Δ cardiomyocytes, sarcoplasmic reticulum calcium reuptake and relaxation were already enhanced, and no differences were detected between R14Δ/Δ and R14Δ/ΔDWORFTg. Rather, DWORF overexpression delayed the appearance and formation of large pathogenic perinuclear PLN clusters. Careful examination revealed colocalization of sarcoplasmic reticulum markers with these PLN clusters in both R14Δ/Δ mice and human p.Arg14del PLN heart tissue, and hence these previously termed aggregates are comprised of abnormal organized S/ER. This abnormal S/ER organization in PLN-R14del cardiomyopathy contributes to cardiomyocyte cell loss and replacement fibrosis, consequently resulting in cardiac dysfunction. CONCLUSIONS Disorganized S/ER is a major characteristic of PLN-R14del cardiomyopathy in humans and mice and results in cardiomyocyte death. DWORF overexpression delayed PLN-R14del cardiomyopathy progression and extended life span in R14Δ/Δ mice, by reducing abnormal S/ER clusters.
Collapse
Affiliation(s)
- Nienke M. Stege
- Department of Cardiology, University Medical Center Groningen, University of Groningen, the Netherlands (N.M.S., T.R.E., V.O.N.T., A.M.F., E.M.S., R.A.d.B., H.H.W.S.)
| | - Tim R. Eijgenraam
- Department of Cardiology, University Medical Center Groningen, University of Groningen, the Netherlands (N.M.S., T.R.E., V.O.N.T., A.M.F., E.M.S., R.A.d.B., H.H.W.S.)
| | - Vivian Oliveira Nunes Teixeira
- Department of Cardiology, University Medical Center Groningen, University of Groningen, the Netherlands (N.M.S., T.R.E., V.O.N.T., A.M.F., E.M.S., R.A.d.B., H.H.W.S.)
| | - Anna M. Feringa
- Department of Cardiology, University Medical Center Groningen, University of Groningen, the Netherlands (N.M.S., T.R.E., V.O.N.T., A.M.F., E.M.S., R.A.d.B., H.H.W.S.)
| | - Elisabeth M. Schouten
- Department of Cardiology, University Medical Center Groningen, University of Groningen, the Netherlands (N.M.S., T.R.E., V.O.N.T., A.M.F., E.M.S., R.A.d.B., H.H.W.S.)
| | - Diederik W.D. Kuster
- Department of Physiology (D.W.D.K., J.v.d.V.), Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias (D.W.D.K., J.v.d.V.), Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| | - Jolanda van der Velden
- Department of Physiology (D.W.D.K., J.v.d.V.), Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias (D.W.D.K., J.v.d.V.), Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| | - Anouk H.G. Wolters
- Biomedical Sciences of Cells and Systems, UMC Groningen, University of Groningen, the Netherlands (A.H.G.W., B.N.G.G.)
| | - Ben N.G. Giepmans
- Biomedical Sciences of Cells and Systems, UMC Groningen, University of Groningen, the Netherlands (A.H.G.W., B.N.G.G.)
| | - Catherine A. Makarewich
- Division of Molecular Cardiovascular Biology of the Heart Institute, Cincinnati Children’s Hospital Medical Center, OH (C.A.M.)
- Department of Pediatrics, University of Cincinnati College of Medicine, OH (C.A.M.)
| | - Rhonda Bassel-Duby
- Department of Cardiology, University Medical Center Groningen, University of Groningen, the Netherlands (N.M.S., T.R.E., V.O.N.T., A.M.F., E.M.S., R.A.d.B., H.H.W.S.)
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas (R.B.-D., E.N.O.)
| | - Eric N. Olson
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas (R.B.-D., E.N.O.)
| | - Rudolf A. de Boer
- Department of Cardiology, Erasmus University Medical Center, Rotterdam, the Netherlands (R.A.d.B.)
| | - Herman H.W. Silljé
- Department of Cardiology, University Medical Center Groningen, University of Groningen, the Netherlands (N.M.S., T.R.E., V.O.N.T., A.M.F., E.M.S., R.A.d.B., H.H.W.S.)
| |
Collapse
|
10
|
Zeppenfeld K, Kimura Y, Ebert M. Mapping and Ablation of Ventricular Tachycardia in Inherited Left Ventricular Cardiomyopathies. JACC Clin Electrophysiol 2023:S2405-500X(23)00816-2. [PMID: 38127011 DOI: 10.1016/j.jacep.2023.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/12/2023] [Accepted: 10/23/2023] [Indexed: 12/23/2023]
Abstract
Advances in the field of human genetics have led to an accumulating understanding of the genetic basis of distinct nonischemic cardiomyopathies associated with ventricular tachycardias (VTs) and sudden cardiac death. To date, there is an increasing proportion of patients with inherited cardiomyopathies requiring catheter ablation for VTs. This review provides an overview of disease-causing gene mutations frequently encountered and relevant for clinical electrophysiologists. Available data on VT ablation in patients with an inherited etiology and a phenotype of a nondilated left ventricular cardiomyopathy, dilated cardiomyopathy, or hypertrophic cardiomyopathy are summarized. VTs amenable to catheter ablation are related to nonischemic fibrosis. Recent insights into genotype-phenotype relations of subtype and location of fibrosis have important implications for treatment planning. Current strategies to delineate nonischemic fibrosis and related arrhythmogenic substrates using multimodal imaging, image integration, and electroanatomical mapping are provided. The ablation approach depends on substrate location and extension. Related procedural aspects including patient-tailored (enhanced) ablation strategies and outcomes are outlined. Challenging substrates for VT and the underlying inherited etiologies with a high risk for rapid progressive heart failure contribute to poor outcomes after catheter ablation. Electroanatomical data obtained during ablation may allow the identification of patients at particular risk who need to be considered for early work-up for left ventricular assist device implantation or heart transplantation.
Collapse
Affiliation(s)
- Katja Zeppenfeld
- Department of Cardiology, Heart-Lung-Center, Leiden University Medical Center, Leiden, the Netherlands; Willem Einthoven Center of Arrhythmia Research and Management, Leiden, the Netherlands, and Aarhus, Denmark.
| | - Yoshitaka Kimura
- Department of Cardiology, Heart-Lung-Center, Leiden University Medical Center, Leiden, the Netherlands; Willem Einthoven Center of Arrhythmia Research and Management, Leiden, the Netherlands, and Aarhus, Denmark
| | - Micaela Ebert
- Department of Cardiology, Heart-Lung-Center, Leiden University Medical Center, Leiden, the Netherlands; Division of Electrophysiology, Department of Internal Medicine and Cardiology, Heart Center Dresden, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
11
|
Ota S, Izumiya Y, Kitada R, Nishi T, Taruya A, Wada T, Takahata M, Ozaki Y, Kashiwagi M, Shiono Y, Kuroi A, Takemoto K, Tanimoto T, Kitabata H, Fukuda D, Tanaka A. Diagnostic significance of paradoxical left ventricular hypertrophy in detecting cardiac amyloidosis. IJC HEART & VASCULATURE 2023; 49:101279. [PMID: 37859641 PMCID: PMC10582063 DOI: 10.1016/j.ijcha.2023.101279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023]
Abstract
Background Cardiac amyloidosis (CA) progresses rapidly with a poor prognosis. Therefore, methods for early diagnosis that are easily accessible in any hospital, are required. We hypothesized that based on the pathology of CA, morphological left ventricular hypertrophy (LVH) without electrical augmentation, namely paradoxical LVH, could be used to diagnose CA. This study aimed to investigate whether paradoxical LVH has diagnostic significance in identifying CA in patients with LVH. Methods Patients who presented with left ventricular (LV) wall thickness ≥ 12 mm on cardiac magnetic resonance (CMR) were enrolled from a multicentre CMR registry. Paradoxical LVH was defined as a LV wall thickness ≥ 12 mm on CMR, SV1 + RV5 < 3.5 mV, and a lack of secondary ST-T abnormalities. The diagnostic significance of paradoxical LVH in identifying CA was assessed. Results Of the 110 patients enrolled, 30 (27 %) were diagnosed with CA and 80 (73 %) with a non-CA aetiology. The CA group demonstrated paradoxical LVH more frequently than the non-CA group (80 % vs. 16 %, P < 0.001). It was an independent predictor for detecting CA in patients with LVH (odds ratio: 33.44, 95 % confidence interval: 8.325-134.3, P < 0.001). The sensitivity, specificity, positive predict value, negative predict value and accuracy of paradoxical LVH for CA detection were 80 %, 84 %, 65 %, 92 % and 83 %, respectively. Conclusions Paradoxical LVH can be used for identifying CA in patients with LVH. Our findings could contribute to the early diagnosis of CA, even in non-specialized hospitals.
Collapse
Affiliation(s)
- Shingo Ota
- Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama, Japan
| | - Yasuhiro Izumiya
- Department of Cardiovascular Medicine, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Ryoko Kitada
- Department of Cardiovascular Medicine, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Takahiro Nishi
- Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama, Japan
| | - Akira Taruya
- Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama, Japan
| | - Teruaki Wada
- Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama, Japan
| | - Masahiro Takahata
- Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama, Japan
| | - Yuichi Ozaki
- Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama, Japan
| | - Manabu Kashiwagi
- Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama, Japan
| | - Yasutsugu Shiono
- Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama, Japan
| | - Akio Kuroi
- Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama, Japan
| | - Kazushi Takemoto
- Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama, Japan
| | - Takashi Tanimoto
- Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama, Japan
| | - Hironori Kitabata
- Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama, Japan
| | - Daiju Fukuda
- Department of Cardiovascular Medicine, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Atsushi Tanaka
- Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
12
|
Jacobs J, Van Aelst L, Breckpot J, Corveleyn A, Kuiperi C, Dupont M, Heggermont W, De Vadder K, Willems R, Van Cleemput J, Bogaert JG, Robyns T. Tools to differentiate between Filamin C and Titin truncating variant carriers: value of MRI. Eur J Hum Genet 2023; 31:1323-1332. [PMID: 37032351 PMCID: PMC10620392 DOI: 10.1038/s41431-023-01357-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/01/2023] [Accepted: 03/22/2023] [Indexed: 04/11/2023] Open
Abstract
Whereas truncating variants of the giant protein Titin (TTNtv) are the main cause of familial dilated cardiomyopathy (DCM), recently Filamin C truncating variants (FLNCtv) were identified as a cause of arrhythmogenic cardiomyopathy (ACM). Our aim was to characterize and compare clinical and MRI features of TTNtv and FLNCtv in the Belgian population. In index patients referred for genetic testing of ACM/DCM, FLNCtv and TTNtv were found in 17 (3.6%) and 33 (12.3%) subjects, respectively. Further family cascade screening yielded 24 and 19 additional truncating variant carriers in FLNC and TTN, respectively. The main phenotype was ACM in FLNCtv carriers whereas TTNtv carriers showed either an ACM or DCM phenotype. Non-sustained Ventricular Tachycardia was frequent in both populations. MRI data, available in 28/40 FLNCtv and 32/52 TTNtv patients, showed lower Left Ventricular (LV) ejection fraction and lower LV strain in TTNtv patients (p < 0.01). Conversely, both the frequency (68% vs 22%) and extent of non-ischemic myocardial late gadolinium enhancement (LGE) was significantly higher in FLNCtv patients (p < 0.01). Hereby, ring-like LGE was found in 16/19 (84%) FLNCtv versus 1/7 (14%) of TTNtv patients (p < 0.01). In conclusion, a large number of FLNCtv and TTNtv patients present with an ACM phenotype but can be separated by cardiac MRI. Whereas FLNCtv patients often have extensive myocardial fibrosis, typically following a ring-like pattern, LV dysfunction without or limited replacement fibrosis is the common TTNtv phenotype.
Collapse
Affiliation(s)
- Johanna Jacobs
- Department of Cardiovascular Sciences, KU Leuven, 3000, Leuven, Belgium.
- Department of Cardiovascular Diseases, University Hospitals Leuven, 3000, Leuven, Belgium.
| | - Lucas Van Aelst
- Department of Cardiovascular Sciences, KU Leuven, 3000, Leuven, Belgium
- Department of Cardiovascular Diseases, University Hospitals Leuven, 3000, Leuven, Belgium
| | | | | | - Cuno Kuiperi
- Center for Human Genetics, UZ Leuven, 3000, Leuven, Belgium
| | - Matthias Dupont
- Department of Cardiology, Ziekenhuis Oost-Limburg (ZOL), 3600, Genk, Belgium
| | - Ward Heggermont
- Department of Cardiovascular Sciences, KU Leuven, 3000, Leuven, Belgium
- Department of Cardiology, Onze-Lieve-Vrouwziekenhuis Aalst, 9300, Aalst, Belgium
| | | | - Rik Willems
- Department of Cardiovascular Sciences, KU Leuven, 3000, Leuven, Belgium
- Department of Cardiovascular Diseases, University Hospitals Leuven, 3000, Leuven, Belgium
| | - Johan Van Cleemput
- Department of Cardiovascular Sciences, KU Leuven, 3000, Leuven, Belgium
- Department of Cardiovascular Diseases, University Hospitals Leuven, 3000, Leuven, Belgium
| | - Jan G Bogaert
- Department of Radiology, UZ Leuven, 3000, Leuven, Belgium
- Department of Imaging and Pathology, KU Leuven, 3000, Leuven, Belgium
| | - Tomas Robyns
- Department of Cardiovascular Sciences, KU Leuven, 3000, Leuven, Belgium
- Department of Cardiovascular Diseases, University Hospitals Leuven, 3000, Leuven, Belgium
| |
Collapse
|
13
|
Silvetti E, Lanza O, Romeo F, Martino A, Fedele E, Lanzillo C, Crescenzi C, Fanisio F, Calò L. The pivotal role of ECG in cardiomyopathies. Front Cardiovasc Med 2023; 10:1178163. [PMID: 37404739 PMCID: PMC10315483 DOI: 10.3389/fcvm.2023.1178163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/15/2023] [Indexed: 07/06/2023] Open
Abstract
Cardiomyopathies are a heterogeneous group of pathologies characterized by structural and functional alterations of the heart. Recent technological advances in cardiovascular imaging offer an opportunity for deep phenotypic and etiological definition. Electrocardiogram (ECG) is the first-line diagnostic tool in the evaluation of both asymptomatic and symptomatic individuals. Some electrocardiographic signs are pathognomonic or fall within validated diagnostic criteria of individual cardiomyopathy such as the inverted T waves in right precordial leads (V1-V3) or beyond in individuals with complete pubertal development in the absence of complete right bundle branch block for the diagnosis of arrhythmogenic cardiomyopathy of the right ventricle (ARVC) or the presence of low voltages typically seen in more than 60% of patients with amyloidosis. Most other electrocardiographic findings such as the presence of depolarization changes including QRS fragmentation, the presence of epsilon wave, the presence of reduced or increased voltages as well as alterations in the repolarization phase including the negative T waves in the lateral leads, or the profound inversion of the T waves or downsloping of the ST tract are more non-specific signs which can however raise the clinical suspicion of cardiomyopathy in order to initiate a diagnostic procedure especially using imaging techniques for diagnostic confirmation. Such electrocardiographic alterations not only have a counterpart in imaging investigations such as evidence of late gadolinium enhancement on magnetic resonance imaging, but may also have an important prognostic value once a definite diagnosis has been made. In addition, the presence of electrical stimulus conduction disturbances or advanced atrioventricular blocks that can be seen especially in conditions such as cardiac amyloidosis or sarcoidosis, or the presence of left bundle branch block or posterior fascicular block in dilated or arrhythmogenic left ventricular cardiomyopathies are recognized as a possible expression of advanced pathology. Similarly, the presence of ventricular arrhythmias with typical patterns such as non-sustained or sustained ventricular tachycardia of LBBB morphology in ARVC or non-sustained or sustained ventricular tachycardia with an RBBB morphology (excluding the "fascicular pattern") in arrhythmogenic left ventricle cardiomyopathy could have a significant impact on the course of each disease. It is therefore clear that a learned and careful interpretation of ECG features can raise suspicion of the presence of a cardiomyopathy, identify diagnostic "red flags" useful for orienting the diagnosis toward specific forms, and provide useful tools for risk stratification. The purpose of this review is to emphasize the important role of the ECG in the diagnostic workup, describing the main ECG findings of different cardiomyopathies.
Collapse
|
14
|
Crescenzi C, Silvetti E, Romeo F, Martino A, Bressi E, Panattoni G, Stefanini M, Stazi A, Danza ML, Rebecchi M, Canestrelli S, Fedele E, Lanza O, Lanzillo C, Fusco A, Golia P, De Ruvo E, Calò L. The electrocardiogram in non-ischaemic-dilated cardiomyopathy. Eur Heart J Suppl 2023; 25:C179-C184. [PMID: 37125290 PMCID: PMC10132560 DOI: 10.1093/eurheartjsupp/suad043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
This article summarizes the main electrocardiogram (ECG) findings in dilated cardiomyopathy (DCM) patients. Recent reports are described in the great 'pot' of DCM peculiar ECG patterns that are typical of specific forms of DCM. Patients with late gadolinium enhancement on CMR, who are at greatest arrhythmic risk, have also distinctive ECG features. Future studies in large DCM populations should evaluate the diagnostic and prognostic value of the ECG.
Collapse
Affiliation(s)
- Cinzia Crescenzi
- Division of Cardiology, Policlinico Casilino, Via Casilina 1049, 00169 Roma, Italy
| | - Elisa Silvetti
- Division of Cardiology, Policlinico Casilino, Via Casilina 1049, 00169 Roma, Italy
| | - Fabiana Romeo
- Division of Cardiology, Policlinico Casilino, Via Casilina 1049, 00169 Roma, Italy
| | - Annamaria Martino
- Division of Cardiology, Policlinico Casilino, Via Casilina 1049, 00169 Roma, Italy
| | - Edoardo Bressi
- Division of Cardiology, Policlinico Casilino, Via Casilina 1049, 00169 Roma, Italy
| | - Germana Panattoni
- Division of Cardiology, Policlinico Casilino, Via Casilina 1049, 00169 Roma, Italy
| | - Matteo Stefanini
- Division of Radiology, Policlinico Casilino, Via Casilina 1049, 00169 Roma, Italy
| | - Alessandra Stazi
- Division of Cardiology, Policlinico Casilino, Via Casilina 1049, 00169 Roma, Italy
| | - Maria Ludovica Danza
- Division of Cardiology, Policlinico Casilino, Via Casilina 1049, 00169 Roma, Italy
| | - Marco Rebecchi
- Division of Cardiology, Policlinico Casilino, Via Casilina 1049, 00169 Roma, Italy
| | - Stefano Canestrelli
- Division of Cardiology, Policlinico Casilino, Via Casilina 1049, 00169 Roma, Italy
| | - Elisa Fedele
- Division of Cardiology, Policlinico Casilino, Via Casilina 1049, 00169 Roma, Italy
| | - Oreste Lanza
- Division of Cardiology, Policlinico Casilino, Via Casilina 1049, 00169 Roma, Italy
| | - Chiara Lanzillo
- Division of Cardiology, Policlinico Casilino, Via Casilina 1049, 00169 Roma, Italy
| | - Armando Fusco
- Division of Radiology, Policlinico Casilino, Via Casilina 1049, 00169 Roma, Italy
| | - Paolo Golia
- Division of Cardiology, Policlinico Casilino, Via Casilina 1049, 00169 Roma, Italy
| | - Ermenegildo De Ruvo
- Division of Cardiology, Policlinico Casilino, Via Casilina 1049, 00169 Roma, Italy
| | - Leonardo Calò
- Division of Cardiology, Policlinico Casilino, Via Casilina 1049, 00169 Roma, Italy
| |
Collapse
|
15
|
van der Voorn SM, Bourfiss M, Muller SA, Çimen T, Saguner AM, Duru F, te Riele ASJM, Remme CA, van Veen TAB. Circulating Biomarkers of Fibrosis Formation in Patients with Arrhythmogenic Cardiomyopathy. Biomedicines 2023; 11:biomedicines11030813. [PMID: 36979791 PMCID: PMC10045011 DOI: 10.3390/biomedicines11030813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is a progressive inheritable disease which is characterized by a gradual fibro-(fatty) replacement of the myocardium. Visualization of diffuse and patchy fibrosis patterns is challenging using clinically applied cardiac imaging modalities (e.g., late gadolinium enhancement, LGE). During collagen synthesis and breakdown, carboxy–peptides are released into the bloodstream, specifically procollagen type-I carboxy-terminal propeptides (PICP) and collagen type-I carboxy-terminal telopeptides (ICTP). We collected the serum and EDTA blood samples and clinical data of 45 ACM patients (age 50.11 ± 15.53 years, 44% female), divided into 35 diagnosed ACM patients with a 2010 ARVC Task Force Criteria score (TFC) ≥ 4, and 10 preclinical variant carriers with a TFC < 4. PICP levels were measured using an enzyme-linked immune sorbent assay and ICTP levels with a radio immunoassay. Increased PICP/ICTP ratios suggest a higher collagen deposition. We found significantly higher PICP and PICP/ICTP levels in diagnosed patients compared to preclinical variant carriers (p < 0.036 and p < 0.027). A moderate negative correlation existed between right ventricular ejection fractions (RVEF) and the PICP/ICTP ratio (r = −0.46, p = 0.06). In addition, significant correlations with left ventricular function (LVEF r = −0.53, p = 0.03 and end-systolic volume r = 0.63, p = 0.02) were found. These findings indicate impaired contractile performance due to pro-fibrotic remodeling. Follow-up studies including a larger number of patients should be performed to substantiate our findings and the validity of those levels as potential promising biomarkers in ACM.
Collapse
Affiliation(s)
- Stephanie M. van der Voorn
- Department of Medical Physiology, Division Heart & Lungs, University Medical Center Utrecht, 3584 CM Utrecht, The Netherlands
| | - Mimount Bourfiss
- Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands
| | - Steven A. Muller
- Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands
| | - Tolga Çimen
- Department of Cardiology, University Heart Center Zurich, University Hospital Zurich, CH-8091 Zurich, Switzerland
| | - Ardan M. Saguner
- Department of Cardiology, University Heart Center Zurich, University Hospital Zurich, CH-8091 Zurich, Switzerland
| | - Firat Duru
- Department of Cardiology, University Heart Center Zurich, University Hospital Zurich, CH-8091 Zurich, Switzerland
- Center for Integrative Human Physiology (ZIHP), University of Zurich, CH-8091 Zurich, Switzerland
| | - Anneline S. J. M. te Riele
- Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands
| | - Carol Ann Remme
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Toon A. B. van Veen
- Department of Medical Physiology, Division Heart & Lungs, University Medical Center Utrecht, 3584 CM Utrecht, The Netherlands
- Correspondence: ; Tel.: +31-(0)88-75-589-08
| |
Collapse
|
16
|
Kumar M, Haghighi K, Koch S, Rubinstein J, Stillitano F, Hajjar RJ, Kranias EG, Sadayappan S. Myofilament Alterations Associated with Human R14del-Phospholamban Cardiomyopathy. Int J Mol Sci 2023; 24:2675. [PMID: 36768995 PMCID: PMC9917359 DOI: 10.3390/ijms24032675] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023] Open
Abstract
Phospholamban (PLN) is a major regulator of cardiac contractility, and human mutations in this gene give rise to inherited cardiomyopathies. The deletion of Arginine 14 is the most-prevalent cardiomyopathy-related mutation, and it has been linked to arrhythmogenesis and early death. Studies in PLN-humanized mutant mice indicated an increased propensity to arrhythmias, but the underlying cellular mechanisms associated with R14del-PLN cardiac dysfunction in the absence of any apparent structural remodeling remain unclear. The present study addressed the specific role of myofilaments in the setting of R14del-PLN and the long-term effects of R14del-PLN in the heart. Maximal force was depressed in skinned cardiomyocytes from both left and right ventricles, but this effect was more pronounced in the right ventricle of R14del-PLN mice. In addition, the Ca2+ sensitivity of myofilaments was increased in both ventricles of mutant mice. However, the depressive effects of R14del-PLN on contractile parameters could be reversed with the positive inotropic drug omecamtiv mecarbil, a myosin activator. At 12 months of age, corresponding to the mean symptomatic age of R14del-PLN patients, contractile parameters and Ca2+ transients were significantly depressed in the right ventricular R14del-PLN cardiomyocytes. Echocardiography did not reveal any alterations in cardiac function or remodeling, although histological and electron microscopy analyses indicated subtle alterations in mutant hearts. These findings suggest that both aberrant myocyte calcium cycling and aberrant contractility remain specific to the right ventricle in the long term. In addition, altered myofilament activity is an early characteristic of R14del-PLN mutant hearts and the positive inotropic drug omecamtiv mecarbil may be beneficial in treating R14del-PLN cardiomyopathy.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Kobra Haghighi
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Sheryl Koch
- Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Jack Rubinstein
- Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Francesca Stillitano
- Division Heart and Lung, Department of Cardiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Roger J. Hajjar
- Phospholamban Heart Foundation, Postbus 66, 1775 ZH Middenmeer, The Netherlands
| | - Evangelia G. Kranias
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Sakthivel Sadayappan
- Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
17
|
Vafiadaki E, Glijnis PC, Doevendans PA, Kranias EG, Sanoudou D. Phospholamban R14del disease: The past, the present and the future. Front Cardiovasc Med 2023; 10:1162205. [PMID: 37144056 PMCID: PMC10151546 DOI: 10.3389/fcvm.2023.1162205] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/03/2023] [Indexed: 05/06/2023] Open
Abstract
Arrhythmogenic cardiomyopathy affects significant number of patients worldwide and is characterized by life-threatening ventricular arrhythmias and sudden cardiac death. Mutations in multiple genes with diverse functions have been reported to date including phospholamban (PLN), a key regulator of sarcoplasmic reticulum (SR) Ca2+ homeostasis and cardiac contractility. The PLN-R14del variant in specific is recognized as the cause in an increasing number of patients worldwide, and extensive investigations have enabled rapid advances towards the delineation of PLN-R14del disease pathogenesis and discovery of an effective treatment. We provide a critical overview of current knowledge on PLN-R14del disease pathophysiology, including clinical, animal model, cellular and biochemical studies, as well as diverse therapeutic approaches that are being pursued. The milestones achieved in <20 years, since the discovery of the PLN R14del mutation (2006), serve as a paradigm of international scientific collaboration and patient involvement towards finding a cure.
Collapse
Affiliation(s)
- Elizabeth Vafiadaki
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Correspondence: Elizabeth Vafiadaki Despina Sanoudou
| | - Pieter C. Glijnis
- Stichting Genetische Hartspierziekte PLN, Phospholamban Foundation, Wieringerwerf, Netherlands
| | - Pieter A. Doevendans
- Netherlands Heart Institute, Utrecht, Netherlands
- Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Evangelia G. Kranias
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Despina Sanoudou
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Clinical Genomics and Pharmacogenomics Unit, 4th Department of Internal Medicine, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Correspondence: Elizabeth Vafiadaki Despina Sanoudou
| |
Collapse
|
18
|
Dave J, Raad N, Mittal N, Zhang L, Fargnoli A, Oh JG, Savoia ME, Hansen J, Fava M, Yin X, Theofilatos K, Ceholski D, Kohlbrenner E, Jeong D, Wills L, Nonnenmacher M, Haghighi K, Costa KD, Turnbull IC, Mayr M, Cai CL, Kranias EG, Akar FG, Hajjar RJ, Stillitano F. Gene editing reverses arrhythmia susceptibility in humanized PLN-R14del mice: modelling a European cardiomyopathy with global impact. Cardiovasc Res 2022; 118:3140-3150. [PMID: 35191471 PMCID: PMC9732517 DOI: 10.1093/cvr/cvac021] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 02/18/2022] [Indexed: 12/16/2022] Open
Abstract
AIMS A mutation in the phospholamban (PLN) gene, leading to deletion of Arg14 (R14del), has been associated with malignant arrhythmias and ventricular dilation. Identifying pre-symptomatic carriers with vulnerable myocardium is crucial because arrhythmia can result in sudden cardiac death, especially in young adults with PLN-R14del mutation. This study aimed at assessing the efficiency and efficacy of in vivo genome editing, using CRISPR/Cas9 and a cardiotropic adeno-associated virus-9 (AAV9), in improving cardiac function in young adult mice expressing the human PLN-R14del. METHODS AND RESULTS Humanized mice were generated expressing human wild-type (hPLN-WT) or mutant (hPLN-R14del) PLN in the heterozygous state, mimicking human carriers. Cardiac magnetic resonance imaging at 12 weeks of age showed bi-ventricular dilation and increased stroke volume in mutant vs. WT mice, with no deficit in ejection fraction or cardiac output. Challenge of ex vivo hearts with isoproterenol and rapid pacing unmasked higher propensity for sustained ventricular tachycardia (VT) in hPLN-R14del relative to hPLN-WT. Specifically, the VT threshold was significantly reduced (20.3 ± 1.2 Hz in hPLN-R14del vs. 25.7 ± 1.3 Hz in WT, P < 0.01) reflecting higher arrhythmia burden. To inactivate the R14del allele, mice were tail-vein-injected with AAV9.CRISPR/Cas9/gRNA or AAV9 empty capsid (controls). CRISPR-Cas9 efficiency was evaluated by droplet digital polymerase chain reaction and NGS-based amplicon sequencing. In vivo gene editing significantly reduced end-diastolic and stroke volumes in hPLN-R14del CRISPR-treated mice compared to controls. Susceptibility to VT was also reduced, as the VT threshold was significantly increased relative to controls (30.9 ± 2.3 Hz vs. 21.3 ± 1.5 Hz; P < 0.01). CONCLUSIONS This study is the first to show that disruption of hPLN-R14del allele by AAV9-CRISPR/Cas9 improves cardiac function and reduces VT susceptibility in humanized PLN-R14del mice, offering preclinical evidence for translatable approaches to therapeutically suppress the arrhythmogenic phenotype in human patients with PLN-R14del disease.
Collapse
Affiliation(s)
- Jaydev Dave
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nour Raad
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nishka Mittal
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lu Zhang
- Department of Pediatrics, Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Anthony Fargnoli
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jae Gyun Oh
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Jens Hansen
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marika Fava
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xiaoke Yin
- King’s British Heart Foundation Centre, King’s College London, London, UK
| | | | - Delaine Ceholski
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Erik Kohlbrenner
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dongtak Jeong
- Department of Molecular & Life Science, College of Science and Convergence Technology, Hanyang University-ERICA, Ansan-si, South Korea
| | - Lauren Wills
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mathieu Nonnenmacher
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kobra Haghighi
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kevin D Costa
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Irene C Turnbull
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Manuel Mayr
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- King’s British Heart Foundation Centre, King’s College London, London, UK
| | - Chen-Leng Cai
- Department of Pediatrics, Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Evangelia G Kranias
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Fadi G Akar
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Francesca Stillitano
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
19
|
Parisi V, Chiti C, Graziosi M, Pasquale F, Ditaranto R, Minnucci M, Biffi M, Potena L, Girolami F, Baldovini C, Leone O, Galiè N, Biagini E. Phospholamban Cardiomyopathy: Unveiling a Distinct Phenotype Through Heart Failure Stages Progression. Circ Cardiovasc Imaging 2022; 15:e014232. [PMID: 36052674 DOI: 10.1161/circimaging.122.014232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Vanda Parisi
- Cardiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy (V.P., C.C., M.G., F.P., R.D., M.M., M.B., L.P., N.G., E.B.).,Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Italy (V.P., C.C., R.D., M.M., N.G.)
| | - Chiara Chiti
- Cardiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy (V.P., C.C., M.G., F.P., R.D., M.M., M.B., L.P., N.G., E.B.).,Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Italy (V.P., C.C., R.D., M.M., N.G.)
| | - Maddalena Graziosi
- Cardiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy (V.P., C.C., M.G., F.P., R.D., M.M., M.B., L.P., N.G., E.B.).,European Reference Network for Rare, Low Prevalence, and Complex Diseases of the Heart (ERN GUARD-Heart), Italy (M.G., F.P., M.B., L.P., E.B.)
| | - Ferdinando Pasquale
- Cardiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy (V.P., C.C., M.G., F.P., R.D., M.M., M.B., L.P., N.G., E.B.).,European Reference Network for Rare, Low Prevalence, and Complex Diseases of the Heart (ERN GUARD-Heart), Italy (M.G., F.P., M.B., L.P., E.B.)
| | - Raffaello Ditaranto
- Cardiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy (V.P., C.C., M.G., F.P., R.D., M.M., M.B., L.P., N.G., E.B.).,Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Italy (V.P., C.C., R.D., M.M., N.G.)
| | - Matteo Minnucci
- Cardiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy (V.P., C.C., M.G., F.P., R.D., M.M., M.B., L.P., N.G., E.B.).,Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Italy (V.P., C.C., R.D., M.M., N.G.)
| | - Mauro Biffi
- Cardiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy (V.P., C.C., M.G., F.P., R.D., M.M., M.B., L.P., N.G., E.B.).,European Reference Network for Rare, Low Prevalence, and Complex Diseases of the Heart (ERN GUARD-Heart), Italy (M.G., F.P., M.B., L.P., E.B.)
| | - Luciano Potena
- Cardiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy (V.P., C.C., M.G., F.P., R.D., M.M., M.B., L.P., N.G., E.B.).,European Reference Network for Rare, Low Prevalence, and Complex Diseases of the Heart (ERN GUARD-Heart), Italy (M.G., F.P., M.B., L.P., E.B.)
| | | | - Chiara Baldovini
- Cardiovascular Pathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy (C.B., O.L.)
| | - Ornella Leone
- Cardiovascular Pathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy (C.B., O.L.)
| | - Nazzareno Galiè
- Cardiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy (V.P., C.C., M.G., F.P., R.D., M.M., M.B., L.P., N.G., E.B.).,Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Italy (V.P., C.C., R.D., M.M., N.G.)
| | - Elena Biagini
- Cardiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy (V.P., C.C., M.G., F.P., R.D., M.M., M.B., L.P., N.G., E.B.).,European Reference Network for Rare, Low Prevalence, and Complex Diseases of the Heart (ERN GUARD-Heart), Italy (M.G., F.P., M.B., L.P., E.B.)
| |
Collapse
|
20
|
Lukas Laws J, Lancaster MC, Ben Shoemaker M, Stevenson WG, Hung RR, Wells Q, Marshall Brinkley D, Hughes S, Anderson K, Roden D, Stevenson LW. Arrhythmias as Presentation of Genetic Cardiomyopathy. Circ Res 2022; 130:1698-1722. [PMID: 35617362 PMCID: PMC9205615 DOI: 10.1161/circresaha.122.319835] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
There is increasing evidence regarding the prevalence of genetic cardiomyopathies, for which arrhythmias may be the first presentation. Ventricular and atrial arrhythmias presenting in the absence of known myocardial disease are often labelled as idiopathic, or lone. While ventricular arrhythmias are well-recognized as presentation for arrhythmogenic cardiomyopathy in the right ventricle, the scope of arrhythmogenic cardiomyopathy has broadened to include those with dominant left ventricular involvement, usually with a phenotype of dilated cardiomyopathy. In addition, careful evaluation for genetic cardiomyopathy is also warranted for patients presenting with frequent premature ventricular contractions, conduction system disease, and early onset atrial fibrillation, in which most detected genes are in the cardiomyopathy panels. Sudden death can occur early in the course of these genetic cardiomyopathies, for which risk is not adequately tracked by left ventricular ejection fraction. Only a few of the cardiomyopathy genotypes implicated in early sudden death are recognized in current indications for implantable cardioverter defibrillators which otherwise rely upon a left ventricular ejection fraction ≤0.35 in dilated cardiomyopathy. The genetic diagnoses impact other aspects of clinical management such as exercise prescription and pharmacological therapy of arrhythmias, and new therapies are coming into clinical investigation for specific genetic cardiomyopathies. The expansion of available genetic information and implications raises new challenges for genetic counseling, particularly with the family member who has no evidence of a cardiomyopathy phenotype and may face a potentially negative impact of a genetic diagnosis. Discussions of risk for both probands and relatives need to be tailored to their numeric literacy during shared decision-making. For patients presenting with arrhythmias or cardiomyopathy, extension of genetic testing and its implications will enable cascade screening, intervention to change the trajectory for specific genotype-phenotype profiles, and enable further development and evaluation of emerging targeted therapies.
Collapse
Affiliation(s)
- J Lukas Laws
- Division of Cardiovascular Medicine, Vanderbilt Heart and Vascular Institute, Vanderbilt University Medical Center, Nashville, TN
| | - Megan C Lancaster
- Division of Cardiovascular Medicine, Vanderbilt Heart and Vascular Institute, Vanderbilt University Medical Center, Nashville, TN
| | - M Ben Shoemaker
- Division of Cardiovascular Medicine, Vanderbilt Heart and Vascular Institute, Vanderbilt University Medical Center, Nashville, TN
| | - William G Stevenson
- Division of Cardiovascular Medicine, Vanderbilt Heart and Vascular Institute, Vanderbilt University Medical Center, Nashville, TN
| | - Rebecca R Hung
- Division of Cardiovascular Medicine, Vanderbilt Heart and Vascular Institute, Vanderbilt University Medical Center, Nashville, TN
| | - Quinn Wells
- Division of Cardiovascular Medicine, Vanderbilt Heart and Vascular Institute, Vanderbilt University Medical Center, Nashville, TN
| | - D Marshall Brinkley
- Division of Cardiovascular Medicine, Vanderbilt Heart and Vascular Institute, Vanderbilt University Medical Center, Nashville, TN
| | - Sean Hughes
- Division of Cardiovascular Medicine, Vanderbilt Heart and Vascular Institute, Vanderbilt University Medical Center, Nashville, TN
| | - Katherine Anderson
- Division of Cardiovascular Medicine, Vanderbilt Heart and Vascular Institute, Vanderbilt University Medical Center, Nashville, TN
| | - Dan Roden
- Division of Cardiovascular Medicine, Vanderbilt Heart and Vascular Institute, Vanderbilt University Medical Center, Nashville, TN
| | - Lynne W Stevenson
- Division of Cardiovascular Medicine, Vanderbilt Heart and Vascular Institute, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
21
|
Aufiero S, Bleijendaal H, Robyns T, Vandenberk B, Krijger C, Bezzina C, Zwinderman AH, Wilde AAM, Pinto YM. A deep learning approach identifies new ECG features in congenital long QT syndrome. BMC Med 2022; 20:162. [PMID: 35501785 PMCID: PMC9063181 DOI: 10.1186/s12916-022-02350-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/24/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Congenital long QT syndrome (LQTS) is a rare heart disease caused by various underlying mutations. Most general cardiologists do not routinely see patients with congenital LQTS and may not always recognize the accompanying ECG features. In addition, a proportion of disease carriers do not display obvious abnormalities on their ECG. Combined, this can cause underdiagnosing of this potentially life-threatening disease. METHODS This study presents 1D convolutional neural network models trained to identify genotype positive LQTS patients from electrocardiogram as input. The deep learning (DL) models were trained with a large 10-s 12-lead ECGs dataset provided by Amsterdam UMC and externally validated with a dataset provided by University Hospital Leuven. The Amsterdam dataset included ECGs from 10000 controls, 172 LQTS1, 214 LQTS2, and 72 LQTS3 patients. The Leuven dataset included ECGs from 2200 controls, 32 LQTS1, and 80 LQTS2 patients. The performance of the DL models was compared with conventional QTc measurement and with that of an international expert in congenital LQTS (A.A.M.W). Lastly, an explainable artificial intelligence (AI) technique was used to better understand the prediction models. RESULTS Overall, the best performing DL models, across 5-fold cross-validation, achieved on average a sensitivity of 84 ± 2%, 90 ± 2% and 87 ± 6%, specificity of 96 ± 2%, 95 ± 1%, and 92 ± 4%, and AUC of 0.90 ± 0.01, 0.92 ± 0.02, and 0.89 ± 0.03, for LQTS 1, 2, and 3 respectively. The DL models were also shown to perform better than conventional QTc measurements in detecting LQTS patients. Furthermore, the performances held up when the DL models were validated on a novel external cohort and outperformed the expert cardiologist in terms of specificity, while in terms of sensitivity, the DL models and the expert cardiologist in LQTS performed the same. Finally, the explainable AI technique identified the onset of the QRS complex as the most informative region to classify LQTS from non-LQTS patients, a feature previously not associated with this disease. CONCLUSIONS This study suggests that DL models can potentially be used to aid cardiologists in diagnosing LQTS. Furthermore, explainable DL models can be used to possibly identify new features for LQTS on the ECG, thus increasing our understanding of this syndrome.
Collapse
Affiliation(s)
- Simona Aufiero
- Department of Experimental Cardiology, Amsterdam UMC, Amsterdam, The Netherlands. .,Department of Clinical Epidemiology Biostatistics and Bioinformatics, Amsterdam UMC, Amsterdam, The Netherlands.
| | - Hidde Bleijendaal
- Department of Experimental Cardiology, Amsterdam UMC, Amsterdam, The Netherlands.,Department of Clinical Epidemiology Biostatistics and Bioinformatics, Amsterdam UMC, Amsterdam, The Netherlands
| | - Tomas Robyns
- Department of Cardiovascular Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Bert Vandenberk
- Department of Cardiovascular Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Christian Krijger
- Department of Experimental Cardiology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Connie Bezzina
- Department of Experimental Cardiology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Aeilko H Zwinderman
- Department of Clinical Epidemiology Biostatistics and Bioinformatics, Amsterdam UMC, Amsterdam, The Netherlands
| | - Arthur A M Wilde
- Department of Experimental Cardiology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Yigal M Pinto
- Department of Experimental Cardiology, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
22
|
Clinical and Molecular Characteristics of Patients with PLN R14del Cardiomyopathy: State-of-the-Art Review. CARDIOGENETICS 2022. [DOI: 10.3390/cardiogenetics12010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The deletion of the arginine 14 codon (R14del) in the phospholamban (PLN) gene is a rare cause of arrhythmogenic cardiomyopathy (ACM) and is associated with prevalent ventricular arrhythmias, heart failure, and sudden cardiac death. The pathophysiological mechanism which culminates in the ACM phenotype is multifactorial and mainly based on the alteration of the endoplasmic reticulum proteostasis, mitochondrial dysfunction and compromised Ca2+ cytosolic homeostasis. The symptoms of this condition are usually non-specific and consist of arrhythmia-related or heart failure-related manifestation; however, some peculiar diagnostic clues were detected, such as the T-wave inversion in the lateral leads, low QRS complexes voltages, mid-wall or epicardial fibrosis of the inferolateral wall of the left ventricle, and their presence should raise the suspicion of this condition. The risk stratification for sudden cardiac death is mandatory and several predictors were identified in recent years. However, the management of affected patients is often challenging due to the absence of specific prediction tools and therapies. This review aims to provide the current state of the art of PLN R14del cardiomyopathy, focusing on its pathophysiology, clinical manifestation, risk stratification for sudden cardiac death, and management.
Collapse
|
23
|
van der Voorn SM, Bourfiss M, te Riele ASJM, Taha K, Vos MA, de Brouwer R, Verstraelen TE, de Boer RA, Remme CA, van Veen TAB. Exploring the Correlation Between Fibrosis Biomarkers and Clinical Disease Severity in PLN p.Arg14del Patients. Front Cardiovasc Med 2022; 8:802998. [PMID: 35097021 PMCID: PMC8793805 DOI: 10.3389/fcvm.2021.802998] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Pathogenic variants in phospholamban (PLN, like p. Arg14del), are found in patients diagnosed with arrhythmogenic (ACM) and dilated cardiomyopathy (DCM). Fibrosis formation in the heart is one of the hallmarks in PLN p.Arg14del carriers. During collagen synthesis and breakdown, propeptides are released into the circulation, such as procollagen type I carboxy-terminal propeptide (PICP) and C-terminal telopeptide collagen type I (ICTP).Aim: To investigate if PICP/ICTP levels in blood are correlative biomarkers for clinical disease severity and outcome in PLN p.Arg14del variant carriers.Methods: Serum and EDTA blood samples were collected from 72 PLN p.Arg14del carriers (age 50.5 years, 63% female) diagnosed with ACM (n = 12), DCM (n = 14), and preclinical variant carriers (n = 46). PICP levels were measured with an enzyme-linked immune sorbent assay and ICTP with a radio immuno-assay. Increased PICP/ICTP ratios suggest a higher collagen deposition. Clinical data including electrocardiographic, and imaging results were adjudicated from medical records.Results: No correlation between PICP/ICTP ratios and late gadolinium enhancement (LGE) was found. Moderate correlations were found between the PICP/ICTP ratio and end-diastolic/systolic volume (both rs = 0.40, n = 23, p = 0.06). PICP/ICTP ratio was significantly higher in patients with T wave inversion (TWI), especially in leads V4–V6, II, III, and aVF (p < 0.022) and in patients with premature ventricular contractions (PVCs) during an exercise tolerance test (p = 0.007).Conclusion: High PICP/ICTP ratios correlated with clinical parameters, such as TWI and PVCs. Given the limited size and heterogeneity of the patient group, additional studies are required to substantiate the incremental prognostic value of these fibrosis biomarkers in PLN p.Arg14del patients.
Collapse
Affiliation(s)
- Stephanie M. van der Voorn
- Division Heart and Lungs, Department of Medical Physiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Mimount Bourfiss
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Anneline S. J. M. te Riele
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Karim Taha
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Marc A. Vos
- Division Heart and Lungs, Department of Medical Physiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Remco de Brouwer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Tom E. Verstraelen
- Heart Center, Department of Cardiology, Amsterdam University Medical Center, Location Academic Medical Center, Amsterdam, Netherlands
| | - Rudolf A. de Boer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Carol Ann Remme
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam Univeristy Medical Center, Location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Toon A. B. van Veen
- Division Heart and Lungs, Department of Medical Physiology, University Medical Center Utrecht, Utrecht, Netherlands
- *Correspondence: Toon A. B. van Veen
| |
Collapse
|
24
|
van Woerden G, van Veldhuisen DJ, Manintveld OC, van Empel VPM, Willems TP, de Boer RA, Rienstra M, Westenbrink BD, Gorter TM. Epicardial Adipose Tissue and Outcome in Heart Failure With Mid-Range and Preserved Ejection Fraction. Circ Heart Fail 2021; 15:e009238. [PMID: 34935412 PMCID: PMC8920003 DOI: 10.1161/circheartfailure.121.009238] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Supplemental Digital Content is available in the text. Epicardial adipose tissue (EAT) accumulation is thought to play a role in the pathophysiology of heart failure (HF) with mid-range and preserved ejection fraction, but its effect on outcome is unknown. We evaluated the prognostic value of EAT volume measured with cardiac magnetic resonance in patients with HF with mid-range ejection fraction and HF with preserved ejection fraction.
Collapse
Affiliation(s)
- Gijs van Woerden
- Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands. (G.v.W., D.J.v.V., R.A.d.B., M.R., B.D.W., T.M.G.)
| | - Dirk J van Veldhuisen
- Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands. (G.v.W., D.J.v.V., R.A.d.B., M.R., B.D.W., T.M.G.)
| | - Olivier C Manintveld
- Department of Cardiology, University of Rotterdam, Erasmus Medical Center Rotterdam, the Netherlands (O.C.M.)
| | - Vanessa P M van Empel
- Department of Cardiology, University of Maastricht, Medical University Center Maastricht, the Netherlands (V.P.M.v.E.)
| | - Tineke P Willems
- Department of Radiology, University of Groningen, University Medical Center Groningen, the Netherlands. (T.P.W.)
| | - Rudolf A de Boer
- Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands. (G.v.W., D.J.v.V., R.A.d.B., M.R., B.D.W., T.M.G.)
| | - Michiel Rienstra
- Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands. (G.v.W., D.J.v.V., R.A.d.B., M.R., B.D.W., T.M.G.)
| | - B Daan Westenbrink
- Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands. (G.v.W., D.J.v.V., R.A.d.B., M.R., B.D.W., T.M.G.)
| | - Thomas M Gorter
- Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands. (G.v.W., D.J.v.V., R.A.d.B., M.R., B.D.W., T.M.G.)
| |
Collapse
|
25
|
Asher C, Puyol-Antón E, Rizvi M, Ruijsink B, Chiribiri A, Razavi R, Carr-White G. The Role of AI in Characterizing the DCM Phenotype. Front Cardiovasc Med 2021; 8:787614. [PMID: 34993240 PMCID: PMC8724536 DOI: 10.3389/fcvm.2021.787614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/02/2021] [Indexed: 12/13/2022] Open
Abstract
Dilated Cardiomyopathy is conventionally defined by left ventricular dilatation and dysfunction in the absence of coronary disease. Emerging evidence suggests many patients remain vulnerable to major adverse outcomes despite clear therapeutic success of modern evidence-based heart failure therapy. In this era of personalized medical care, the conventional assessment of left ventricular ejection fraction falls short in fully predicting evolution and risk of outcomes in this heterogenous group of heart muscle disease, as such, a more refined means of phenotyping this disease appears essential. Cardiac MRI (CMR) is well-placed in this respect, not only for its diagnostic utility, but the wealth of information captured in global and regional function assessment with the addition of unique tissue characterization across different disease states and patient cohorts. Advanced tools are needed to leverage these sensitive metrics and integrate with clinical, genetic and biochemical information for personalized, and more clinically useful characterization of the dilated cardiomyopathy phenotype. Recent advances in artificial intelligence offers the unique opportunity to impact clinical decision making through enhanced precision image-analysis tasks, multi-source extraction of relevant features and seamless integration to enhance understanding, improve diagnosis, and subsequently clinical outcomes. Focusing particularly on deep learning, a subfield of artificial intelligence, that has garnered significant interest in the imaging community, this paper reviews the main developments that could offer more robust disease characterization and risk stratification in the Dilated Cardiomyopathy phenotype. Given its promising utility in the non-invasive assessment of cardiac diseases, we firstly highlight the key applications in CMR, set to enable comprehensive quantitative measures of function beyond the standard of care assessment. Concurrently, we revisit the added value of tissue characterization techniques for risk stratification, showcasing the deep learning platforms that overcome limitations in current clinical workflows and discuss how they could be utilized to better differentiate at-risk subgroups of this phenotype. The final section of this paper is dedicated to the allied clinical applications to imaging, that incorporate artificial intelligence and have harnessed the comprehensive abundance of data from genetics and relevant clinical variables to facilitate better classification and enable enhanced risk prediction for relevant outcomes.
Collapse
Affiliation(s)
- Clint Asher
- Department of Cardiovascular Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Department of Cardiology, Guys and St Thomas' NHS Trust, London, United Kingdom
| | - Esther Puyol-Antón
- Department of Cardiovascular Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Maleeha Rizvi
- Department of Cardiovascular Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Department of Cardiology, Guys and St Thomas' NHS Trust, London, United Kingdom
| | - Bram Ruijsink
- Department of Cardiovascular Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Department of Cardiology, Guys and St Thomas' NHS Trust, London, United Kingdom
- Division of Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Amedeo Chiribiri
- Department of Cardiovascular Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Department of Cardiology, Guys and St Thomas' NHS Trust, London, United Kingdom
| | - Reza Razavi
- Department of Cardiovascular Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Department of Cardiology, Guys and St Thomas' NHS Trust, London, United Kingdom
| | - Gerry Carr-White
- Department of Cardiovascular Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Department of Cardiology, Guys and St Thomas' NHS Trust, London, United Kingdom
| |
Collapse
|
26
|
Eijgenraam TR, Boogerd CJ, Stege NM, Oliveira Nunes Teixeira V, Dokter MM, Schmidt LE, Yin X, Theofilatos K, Mayr M, van der Meer P, van Rooij E, van der Velden J, Silljé HHW, de Boer RA. Protein Aggregation Is an Early Manifestation of Phospholamban p.(Arg14del)-Related Cardiomyopathy: Development of PLN-R14del-Related Cardiomyopathy. Circ Heart Fail 2021; 14:e008532. [PMID: 34587756 PMCID: PMC8589082 DOI: 10.1161/circheartfailure.121.008532] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND The p.(Arg14del) pathogenic variant (R14del) of the PLN (phospholamban) gene is a prevalent cause of cardiomyopathy with heart failure. The exact underlying pathophysiology is unknown, and a suitable therapy is unavailable. We aim to identify molecular perturbations underlying this cardiomyopathy in a clinically relevant PLN-R14del mouse model. METHODS We investigated the progression of cardiomyopathy in PLN-R14Δ/Δ mice using echocardiography, ECG, and histological tissue analysis. RNA sequencing and mass spectrometry were performed on cardiac tissues at 3 (before the onset of disease), 5 (mild cardiomyopathy), and 8 (end stage) weeks of age. Data were compared with cardiac expression levels of mice that underwent myocardial ischemia-reperfusion or myocardial infarction surgery, in an effort to identify alterations that are specific to PLN-R14del-related cardiomyopathy. RESULTS At 3 weeks of age, PLN-R14Δ/Δ mice had normal cardiac function, but from the age of 4 weeks, we observed increased myocardial fibrosis and impaired global longitudinal strain. From 5 weeks onward, ventricular dilatation, decreased contractility, and diminished ECG voltages were observed. PLN protein aggregation was present before onset of functional deficits. Transcriptomics and proteomics revealed differential regulation of processes involved in remodeling, inflammation, and metabolic dysfunction, in part, similar to ischemic heart disease. Altered protein homeostasis pathways were identified exclusively in PLN-R14Δ/Δ mice, even before disease onset, in concert with aggregate formation. CONCLUSIONS We mapped the development of PLN-R14del-related cardiomyopathy and identified alterations in proteostasis and PLN protein aggregation among the first manifestations of this disease, which could possibly be a novel target for therapy.
Collapse
Affiliation(s)
- Tim R Eijgenraam
- Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands (T.R.E., N.M.S., V.O.N.T., M.M.D., P.v.d.M., H.H.W.S., R.A.d.B.)
| | - Cornelis J Boogerd
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, University Medical Center Utrecht (C.J.B., E.v.R.)
| | - Nienke M Stege
- Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands (T.R.E., N.M.S., V.O.N.T., M.M.D., P.v.d.M., H.H.W.S., R.A.d.B.)
| | - Vivian Oliveira Nunes Teixeira
- Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands (T.R.E., N.M.S., V.O.N.T., M.M.D., P.v.d.M., H.H.W.S., R.A.d.B.)
| | - Martin M Dokter
- Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands (T.R.E., N.M.S., V.O.N.T., M.M.D., P.v.d.M., H.H.W.S., R.A.d.B.)
| | - Lukas E Schmidt
- King's British Heart Foundation Centre, King's College London, United Kingdom (L.E.S., X.Y., K.T., M.M.)
| | - Xiaoke Yin
- King's British Heart Foundation Centre, King's College London, United Kingdom (L.E.S., X.Y., K.T., M.M.)
| | - Konstantinos Theofilatos
- King's British Heart Foundation Centre, King's College London, United Kingdom (L.E.S., X.Y., K.T., M.M.)
| | - Manuel Mayr
- King's British Heart Foundation Centre, King's College London, United Kingdom (L.E.S., X.Y., K.T., M.M.)
| | - Peter van der Meer
- Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands (T.R.E., N.M.S., V.O.N.T., M.M.D., P.v.d.M., H.H.W.S., R.A.d.B.)
| | - Eva van Rooij
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, University Medical Center Utrecht (C.J.B., E.v.R.)
| | - Jolanda van der Velden
- Department of Physiology, Vrije Universiteit, Amsterdam University Medical Center, Amsterdam Cardiovascular Sciences, the Netherlands (J.v.d.V.)
| | - Herman H W Silljé
- Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands (T.R.E., N.M.S., V.O.N.T., M.M.D., P.v.d.M., H.H.W.S., R.A.d.B.)
| | - Rudolf A de Boer
- Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands (T.R.E., N.M.S., V.O.N.T., M.M.D., P.v.d.M., H.H.W.S., R.A.d.B.)
| |
Collapse
|
27
|
Corrado D, Zorzi A, Cipriani A, Bauce B, Bariani R, Beffagna G, De Lazzari M, Migliore F, Pilichou K, Rampazzo A, Rigato I, Rizzo S, Thiene G, Perazzolo Marra M, Basso C. Evolving Diagnostic Criteria for Arrhythmogenic Cardiomyopathy. J Am Heart Assoc 2021; 10:e021987. [PMID: 34533054 PMCID: PMC8649536 DOI: 10.1161/jaha.121.021987] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Criteria for diagnosis of arrhythmogenic cardiomyopathy (ACM) were first proposed in 1994 and revised in 2010 by a Task Force. Although the Task Force criteria demonstrated a good accuracy for diagnosis of the original right ventricular phenotype (arrhythmogenic right ventricular cardiomyopathy), they lacked sensitivity for identification of the expanding phenotypic spectrum of ACM, which includes left‐sided variants and did not incorporate late‐gadolinium enhancement findings by cardiac magnetic resonance. The 2020 International criteria (“Padua criteria”) have been developed by International experts with the aim to improve the diagnosis of ACM by providing new criteria for the diagnosis of left ventricular phenotypic features. The key upgrade was the incorporation of tissue characterization findings by cardiac magnetic resonance for noninvasive detection of late‐gadolinium enhancement/myocardial fibrosis that are determinants for characterization of arrhythmogenic biventricular and left ventricular cardiomyopathy. The 2020 International criteria are heavily dependent on cardiac magnetic resonance, which has become mandatory to characterize the ACM phenotype and to exclude other diagnoses. New criteria regarding left ventricular depolarization and repolarization ECG abnormalities and ventricular arrhythmias of left ventricular origin were also provided. This article reviews the evolving approach to diagnosis of ACM, going back to the 1994 and 2010 International Task Force criteria and then grapple with the modern 2020 International criteria.
Collapse
Affiliation(s)
- Domenico Corrado
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health University of Padova Italy
| | - Alessandro Zorzi
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health University of Padova Italy
| | - Alberto Cipriani
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health University of Padova Italy
| | - Barbara Bauce
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health University of Padova Italy
| | - Riccardo Bariani
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health University of Padova Italy
| | - Giorgia Beffagna
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health University of Padova Italy
| | - Manuel De Lazzari
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health University of Padova Italy
| | - Federico Migliore
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health University of Padova Italy
| | - Kalliopi Pilichou
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health University of Padova Italy
| | | | - Ilaria Rigato
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health University of Padova Italy
| | - Stefania Rizzo
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health University of Padova Italy
| | - Gaetano Thiene
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health University of Padova Italy
| | - Martina Perazzolo Marra
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health University of Padova Italy
| | - Cristina Basso
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health University of Padova Italy
| |
Collapse
|
28
|
Taha K, Verstraelen TE, de Brouwer R, de Bruin-Bon RHACM, Cramer MJ, Te Rijdt WP, Bouma BJ, de Boer RA, Doevendans PA, Asselbergs FW, Wilde AAM, van den Berg MP, Teske AJ. Optimal echocardiographic assessment of myocardial dysfunction for arrhythmic risk stratification in phospholamban mutation carriers. Eur Heart J Cardiovasc Imaging 2021; 23:1492-1501. [PMID: 34516619 PMCID: PMC9584619 DOI: 10.1093/ehjci/jeab178] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/18/2021] [Indexed: 11/21/2022] Open
Abstract
Aims Phospholamban (PLN) p.Arg14del mutation carriers are at risk of developing malignant ventricular arrhythmias (VAs) and/or heart failure. Currently, left ventricular ejection fraction (LVEF) plays an important role in risk assessment for VA in these individuals. We aimed to study the incremental prognostic value of left ventricular mechanical dispersion (LVMD) by echocardiographic deformation imaging for prediction of sustained VA in PLN p.Arg14del mutation carriers. Methods and results We included 243 PLN p.Arg14del mutation carriers, which were classified into three groups according to the ‘45/45’ rule: (i) normal left ventricular (LV) function, defined as preserved LVEF ≥45% with normal LVMD ≤45 ms (n = 139), (ii) mechanical LV dysfunction, defined as preserved LVEF ≥45% with abnormal LVMD >45 ms (n = 63), and (iii) overt LV dysfunction, defined as reduced LVEF <45% (n = 41). During a median follow-up of 3.3 (interquartile range 1.8–6.0) years, sustained VA occurred in 35 individuals. The negative predictive value of having normal LV function at baseline was 99% [95% confidence interval (CI): 92–100%] for developing sustained VA. The positive predictive value of mechanical LV dysfunction was 20% (95% CI: 15–27%). Mechanical LV dysfunction was an independent predictor of sustained VA in multivariable analysis [hazard ratio adjusted for VA history: 20.48 (95% CI: 2.57–162.84)]. Conclusion LVMD has incremental prognostic value on top of LVEF in PLN p.Arg14del mutation carriers, particularly in those with preserved LVEF. The ‘45/45’ rule is a practical approach to echocardiographic risk stratification in this challenging group of patients. This approach may also have added value in other diseases where LVEF deterioration is a relative late marker of myocardial dysfunction.
Collapse
Affiliation(s)
- Karim Taha
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands.,Netherlands Heart Institute, Utrecht, The Netherlands
| | - Tom E Verstraelen
- Heart Center, Department of Cardiology, Amsterdam University Medical Center, Location Academic Medical Center, Amsterdam, The Netherlands
| | - Remco de Brouwer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Rianne H A C M de Bruin-Bon
- Heart Center, Department of Cardiology, Amsterdam University Medical Center, Location Academic Medical Center, Amsterdam, The Netherlands
| | - Maarten J Cramer
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wouter P Te Rijdt
- Netherlands Heart Institute, Utrecht, The Netherlands.,Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Berto J Bouma
- Heart Center, Department of Cardiology, Amsterdam University Medical Center, Location Academic Medical Center, Amsterdam, The Netherlands
| | - Rudolf A de Boer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Pieter A Doevendans
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands.,Netherlands Heart Institute, Utrecht, The Netherlands.,Central Military Hospital, Utrecht, The Netherlands
| | - Folkert W Asselbergs
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands.,Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, UK.,Health Data Research UK and Institute of Health Informatics, University College London, London, UK
| | - Arthur A M Wilde
- Heart Center, Department of Cardiology, Amsterdam University Medical Center, Location Academic Medical Center, Amsterdam, The Netherlands
| | - Maarten P van den Berg
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Arco J Teske
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
29
|
Corrado D, Migliore F, Zorzi A. Arrhythmic risk stratification in arrhythmogenic cardiomyopathy: new predictors for left-sided variants? Eur Heart J 2021; 42:2851-2853. [PMID: 34151346 DOI: 10.1093/eurheartj/ehab355] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Domenico Corrado
- Department of Cardiac, Thoracic and Vascular Sciences, and Public Health, University of Padova, Italy
| | - Federico Migliore
- Department of Cardiac, Thoracic and Vascular Sciences, and Public Health, University of Padova, Italy
| | - Alessandro Zorzi
- Department of Cardiac, Thoracic and Vascular Sciences, and Public Health, University of Padova, Italy
| |
Collapse
|
30
|
Verstraelen TE, van Lint FHM, Bosman LP, de Brouwer R, Proost VM, Abeln BGS, Taha K, Zwinderman AH, Dickhoff C, Oomen T, Schoonderwoerd BA, Kimman GP, Houweling AC, Gimeno-Blanes JR, Asselbergs FW, van der Zwaag PA, de Boer RA, van den Berg MP, van Tintelen JP, Wilde AAM. Prediction of ventricular arrhythmia in phospholamban p.Arg14del mutation carriers-reaching the frontiers of individual risk prediction. Eur Heart J 2021; 42:2842-2850. [PMID: 34113975 PMCID: PMC8325776 DOI: 10.1093/eurheartj/ehab294] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/20/2021] [Accepted: 04/28/2021] [Indexed: 12/23/2022] Open
Abstract
AIMS This study aims to improve risk stratification for primary prevention implantable cardioverter defibrillator (ICD) implantation by developing a new mutation-specific prediction model for malignant ventricular arrhythmia (VA) in phospholamban (PLN) p.Arg14del mutation carriers. The proposed model is compared to an existing PLN risk model. METHODS AND RESULTS Data were collected from PLN p.Arg14del mutation carriers with no history of malignant VA at baseline, identified between 2009 and 2020. Malignant VA was defined as sustained VA, appropriate ICD intervention, or (aborted) sudden cardiac death. A prediction model was developed using Cox regression. The study cohort consisted of 679 PLN p.Arg14del mutation carriers, with a minority of index patients (17%) and male sex (43%), and a median age of 42 years [interquartile range (IQR) 27-55]. During a median follow-up of 4.3 years (IQR 1.7-7.4), 72 (10.6%) carriers experienced malignant VA. Significant predictors were left ventricular ejection fraction, premature ventricular contraction count/24 h, amount of negative T waves, and presence of low-voltage electrocardiogram. The multivariable model had an excellent discriminative ability {C-statistic 0.83 [95% confidence interval (CI) 0.78-0.88]}. Applying the existing PLN risk model to the complete cohort yielded a C-statistic of 0.68 (95% CI 0.61-0.75). CONCLUSION This new mutation-specific prediction model for individual VA risk in PLN p.Arg14del mutation carriers is superior to the existing PLN risk model, suggesting that risk prediction using mutation-specific phenotypic features can improve accuracy compared to a more generic approach.
Collapse
Affiliation(s)
- Tom E Verstraelen
- Heart Center, Department of Cardiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, Netherlands
| | - Freyja H M van Lint
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, Netherlands
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, Netherlands
| | - Laurens P Bosman
- University Medical Center Utrecht, Division Heart and Lungs, Department of Cardiology, University of Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, Netherlands
| | - Remco de Brouwer
- University Medical Center Groningen, Department of Cardiology, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, Netherlands
| | - Virginnio M Proost
- Heart Center, Department of Cardiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, Netherlands
| | - Bob G S Abeln
- Heart Center, Department of Cardiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, Netherlands
| | - Karim Taha
- University Medical Center Utrecht, Division Heart and Lungs, Department of Cardiology, University of Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, Netherlands
| | - Aeilko H Zwinderman
- Department of Clinical Epidemiology and Biostatistics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, Netherlands
| | - Cathelijne Dickhoff
- Department of Cardiology, Dijklander Ziekenhuis Hoorn, Maelsonstraat 3, 1624 NP, Hoorn, Netherlands
| | - Toon Oomen
- Department of Cardiology, Antonius Ziekenhuis Sneek, Bolswarderbaan 1, 8601 ZK Sneek, Netherlands
| | - Bas A Schoonderwoerd
- Medical Center Leeuwarden, Department of Cardiology, Henri Dunantweg 2, 8934 AD, Leeuwarden, Netherlands
| | - Gerardus P Kimman
- Department of Cardiology, Noordwest Ziekenhuisgroep, Wilhelminalaan 12, 1815 JD, Alkmaar, Netherlands
| | - Arjan C Houweling
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, Netherlands
| | - Juan R Gimeno-Blanes
- Department of Cardiology, Virgen de Arrixaca Hospital, Ctra,Murcia-Cartagena, s/n, 30120 El Palmar, Murcia, Spain
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARDHEART)
| | - Folkert W Asselbergs
- University Medical Center Utrecht, Division Heart and Lungs, Department of Cardiology, University of Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, Netherlands
- Institute of Cardiovascular Science and Institute of Health Informatics, Faculty of Population Health Sciences, University College London, Gower St, London WC1E 6BT, UK
| | - Paul A van der Zwaag
- University Medical Center Groningen, Department of Clinical Genetics, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, Netherlands
| | - Rudolf A de Boer
- University Medical Center Groningen, Department of Cardiology, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, Netherlands
| | - Maarten P van den Berg
- University Medical Center Groningen, Department of Cardiology, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, Netherlands
| | - J Peter van Tintelen
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, Netherlands
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, Netherlands
| | - Arthur A M Wilde
- Heart Center, Department of Cardiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, Netherlands
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARDHEART)
| |
Collapse
|
31
|
The clinical and prognostic value of late Gadolinium enhancement imaging in heart failure with mid-range and preserved ejection fraction. Heart Vessels 2021; 37:273-281. [PMID: 34292389 PMCID: PMC8794962 DOI: 10.1007/s00380-021-01910-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/16/2021] [Indexed: 12/05/2022]
Abstract
Heart failure (HF) with mid-range or preserved ejection fraction (HFmrEF; HFpEF) is a heterogeneous disorder that could benefit from strategies to identify subpopulations at increased risk. We tested the hypothesis that HFmrEF and HFpEF patients with myocardial scars detected with late gadolinium enhancement (LGE) are at increased risk for all-cause mortality. Symptomatic HF patients with left ventricular ejection fraction (LVEF) > 40%, who underwent cardiac magnetic resonance (CMR) imaging were included. The presence of myocardial LGE lesions was visually assessed. T1 mapping was performed to calculate extracellular volume (ECV). Multivariable logistic regression analyses were used to determine associations between clinical characteristics and LGE. Cox regression analyses were used to assess the association between LGE and all-cause mortality. A total of 110 consecutive patients were included (mean age 71 ± 10 years, 49% women, median N-terminal brain natriuretic peptide (NT-proBNP) 1259 pg/ml). LGE lesions were detected in 37 (34%) patients. Previous myocardial infarction and increased LV mass index were strong and independent predictors for the presence of LGE (odds ratio 6.32, 95% confidence interval (CI) 2.07–19.31, p = 0.001 and 1.68 (1.03–2.73), p = 0.04, respectively). ECV was increased in patients with LGE lesions compared to those without (28.6 vs. 26.6%, p = 0.04). The presence of LGE lesions was associated with a fivefold increase in the incidence of all-cause mortality (hazards ratio 5.3, CI 1.5–18.1, p = 0.009), independent of age, sex, New York Heart Association (NYHA) functional class, NT-proBNP, LGE mass and LVEF. Myocardial scarring on CMR is associated with increased mortality in HF patients with LVEF > 40% and may aid in selecting a subpopulation at increased risk.
Collapse
|
32
|
Affiliation(s)
- Domenico Corrado
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova Medical School, Padova, Italy
| | - Cristina Basso
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova Medical School, Padova, Italy
| |
Collapse
|
33
|
Rationale and design of the PHOspholamban RElated CArdiomyopathy intervention STudy (i-PHORECAST). Neth Heart J 2021; 30:84-95. [PMID: 34143416 PMCID: PMC8799798 DOI: 10.1007/s12471-021-01584-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2021] [Indexed: 11/15/2022] Open
Abstract
Background The p.Arg14del (c.40_42delAGA) phospholamban (PLN) pathogenic variant is a founder mutation that causes dilated cardiomyopathy (DCM) and arrhythmogenic cardiomyopathy (ACM). Carriers are at increased risk of malignant ventricular arrhythmias and heart failure, which has been ascribed to cardiac fibrosis. Importantly, cardiac fibrosis appears to be an early feature of the disease, occurring in many presymptomatic carriers before the onset of overt disease. As with most monogenic cardiomyopathies, no evidence-based treatment is available for presymptomatic carriers. Aims The PHOspholamban RElated CArdiomyopathy intervention STudy (iPHORECAST) is designed to demonstrate that pre-emptive treatment of presymptomatic PLN p.Arg14del carriers using eplerenone, a mineralocorticoid receptor antagonist with established antifibrotic effects, can reduce disease progression and postpone the onset of overt disease. Methods iPHORECAST has a multicentre, prospective, randomised, open-label, blinded endpoint (PROBE) design. Presymptomatic PLN p.Arg14del carriers are randomised to receive either 50 mg eplerenone once daily or no treatment. The primary endpoint of the study is a multiparametric assessment of disease progression including cardiac magnetic resonance parameters (left and right ventricular volumes, systolic function and fibrosis), electrocardiographic parameters (QRS voltage, ventricular ectopy), signs and/or symptoms related to DCM and ACM, and cardiovascular death. The follow-up duration is set at 3 years. Baseline results A total of 84 presymptomatic PLN p.Arg14del carriers (n = 42 per group) were included. By design, at baseline, all participants were in New York Heart Association (NHYA) class I and had a left ventricular ejection fraction > 45% and < 2500 ventricular premature contractions during 24-hour Holter monitoring. There were no statistically significant differences between the two groups in any of the baseline characteristics. The study is currently well underway, with the last participants expected to finish in 2021. Conclusion iPHORECAST is a multicentre, prospective randomised controlled trial designed to address whether pre-emptive treatment of PLN p.Arg14del carriers with eplerenone can prevent or delay the onset of cardiomyopathy. iPHORECAST has been registered in the clinicaltrials.gov-register (number: NCT01857856).
Collapse
|
34
|
Jefferies JL. Echocardiographic Predictors of Arrhythmias in Phospholamban Mutation Carriers: A Glimpse Into the Future? JACC Cardiovasc Imaging 2021; 14:897-899. [PMID: 33744136 DOI: 10.1016/j.jcmg.2021.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 11/16/2022]
Affiliation(s)
- John L Jefferies
- Division of Cardiovascular Diseases, Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA.
| |
Collapse
|
35
|
Abstract
Purpose of Review The purpose of this review is to summarize the application of cardiac magnetic resonance (CMR) in the diagnostic and prognostic evaluation of patients with heart failure (HF). Recent Findings CMR is an important non-invasive imaging modality in the assessment of ventricular volumes and function and in the analysis of myocardial tissue characteristics. The information derived from CMR provides a comprehensive evaluation of HF. Its unique ability of tissue characterization not only helps to reveal the underlying etiologies of HF but also offers incremental prognostic information. Summary CMR is a useful non-invasive tool for the diagnosis and assessment of prognosis in patients suffering from heart failure.
Collapse
Affiliation(s)
- Chuanfen Liu
- Cardiovascular Division, Department of Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA USA
- Department of Cardiology, Peking University People’s Hospital, Beijing, China
| | - Victor A. Ferrari
- Cardiovascular Division, Department of Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA USA
| | - Yuchi Han
- Cardiovascular Division, Department of Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA USA
| |
Collapse
|
36
|
Taha K, Te Rijdt WP, Verstraelen TE, Cramer MJ, de Boer RA, de Bruin-Bon RHACM, Bouma BJ, Asselbergs FW, Wilde AAM, van den Berg MP, Teske AJ. Early Mechanical Alterations in Phospholamban Mutation Carriers: Identifying Subclinical Disease Before Onset of Symptoms. JACC Cardiovasc Imaging 2020; 14:885-896. [PMID: 33221241 DOI: 10.1016/j.jcmg.2020.09.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/31/2020] [Accepted: 09/28/2020] [Indexed: 12/22/2022]
Abstract
OBJECTIVES This study aimed to explore echocardiographic characteristics of phospholamban (PLN) p.Arg14del mutation carriers to investigate whether structural and/or functional abnormalities could be identified before onset of symptoms. BACKGROUND Carriers of the genetic PLN p.Arg14del mutation may develop arrhythmogenic and/or dilated cardiomyopathy. Overt disease is preceded by a pre-symptomatic phase of variable length in which disease expression seems to be absent. METHODS PLN p.Arg14del mutation carriers with an available echocardiogram were included. Mutation carriers were classified as pre-symptomatic if they had no history of ventricular arrhythmias (VAs), a premature ventricular complex count of <500/24 h, and a left ventricular (LV) ejection fraction of ≥45%. In addition, we included 70 control subjects with similar age and sex distribution as the pre-symptomatic mutation carriers. Comprehensive echocardiographic analysis (including deformation imaging) was performed. RESULTS The final study population consisted of 281 PLN p.Arg14del mutation carriers, 139 of whom were classified as pre-symptomatic. In comparison to control subjects, pre-symptomatic mutation carriers had lower global longitudinal strain and higher LV mechanical dispersion (both p < 0.001). In addition, post-systolic shortening (PSS) in the LV apex was observed in 43 pre-symptomatic mutation carriers (31%) and in none of the control subjects. During a median follow-up of 3.2 years (interquartile range: 2.1 to 5.6 years) in 104 pre-symptomatic mutation carriers, nonsustained VA occurred in 13 (13%). Presence of apical PSS was the strongest echocardiographic predictor of VA (multivariable hazards ratio: 5.11; 95% confidence interval [CI]: 1.37 to 19.08; p = 0.015), which resulted in a negative predictive value of 96% (95% CI: 89% to 98%) and a positive predictive value of 29% (95% CI: 21% to 40%). CONCLUSIONS Global and regional LV mechanical alterations in PLN p.Arg14del mutation carriers precede arrhythmic symptoms and overt structural disease. Pre-symptomatic mutation carriers with normal deformation patterns in the apex are at low risk of developing VA within 3 years, whereas mutation carriers with apical PSS appear to be at higher risk.
Collapse
Affiliation(s)
- Karim Taha
- Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands; Netherlands Heart Institute, Utrecht, the Netherlands.
| | - Wouter P Te Rijdt
- Netherlands Heart Institute, Utrecht, the Netherlands; Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Tom E Verstraelen
- Heart Center, Department of Cardiology, Amsterdam University Medical Center, Location Academic Medical Center, Amsterdam, the Netherlands
| | - Maarten J Cramer
- Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Rudolf A de Boer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Rianne H A C M de Bruin-Bon
- Heart Center, Department of Cardiology, Amsterdam University Medical Center, Location Academic Medical Center, Amsterdam, the Netherlands
| | - Berto J Bouma
- Heart Center, Department of Cardiology, Amsterdam University Medical Center, Location Academic Medical Center, Amsterdam, the Netherlands
| | - Folkert W Asselbergs
- Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands; Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, United Kingdom; Health Data Research United Kingdom and Institute of Health Informatics, University College London, London, United Kingdom
| | - Arthur A M Wilde
- Heart Center, Department of Cardiology, Amsterdam University Medical Center, Location Academic Medical Center, Amsterdam, the Netherlands
| | - Maarten P van den Berg
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Arco J Teske
- Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
37
|
Corrado D, Perazzolo Marra M, Zorzi A, Beffagna G, Cipriani A, Lazzari MD, Migliore F, Pilichou K, Rampazzo A, Rigato I, Rizzo S, Thiene G, Anastasakis A, Asimaki A, Bucciarelli-Ducci C, Haugaa KH, Marchlinski FE, Mazzanti A, McKenna WJ, Pantazis A, Pelliccia A, Schmied C, Sharma S, Wichter T, Bauce B, Basso C. Diagnosis of arrhythmogenic cardiomyopathy: The Padua criteria. Int J Cardiol 2020; 319:106-114. [DOI: 10.1016/j.ijcard.2020.06.005] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 12/16/2022]
|
38
|
Edvardsen T, Haugaa KH, Petersen SE, Gimelli A, Donal E, Maurer G, Popescu BA, Cosyns B. The year 2019 in the European Heart Journal-Cardiovascular Imaging: Part I. Eur Heart J Cardiovasc Imaging 2020; 21:1208-1215. [PMID: 32929466 DOI: 10.1093/ehjci/jeaa259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022] Open
Abstract
The European Heart Journal-Cardiovascular Imaging was launched in 2012 and has during these years become one of the leading multimodality cardiovascular imaging journals. The journal is now established as one of the top cardiovascular journals and is the most important cardiovascular imaging journal in Europe. The most important studies published in our Journal in 2019 will be highlighted in two reports. Part I of the review will focus on studies about myocardial function and risk prediction, myocardial ischaemia, and emerging techniques in cardiovascular imaging, while Part II will focus on valvular heart disease, heart failure, cardiomyopathies, and congenital heart disease.
Collapse
Affiliation(s)
- Thor Edvardsen
- Department of Cardiology, Centre of Cardiological Innovation, Oslo University Hospital, Rikshospitalet, Postbox 4950 Nydalen, Sognsvannsveien 20, NO-0424 Oslo, Norway.,Institute for Clinical Medicine, University of Oslo, Postboks 1171, Blindern 0318 Oslo, Norway
| | - Kristina H Haugaa
- Department of Cardiology, Centre of Cardiological Innovation, Oslo University Hospital, Rikshospitalet, Postbox 4950 Nydalen, Sognsvannsveien 20, NO-0424 Oslo, Norway.,Institute for Clinical Medicine, University of Oslo, Postboks 1171, Blindern 0318 Oslo, Norway
| | - Steffen E Petersen
- Barts Heart Centre, Barts Health NHS Trust, West Smithfield, EC1A 7BE, London, UK.,William Harvey Research Institute, Queen Mary University of London, EC1M 6BQ, London, UK
| | - Alessia Gimelli
- Fondazione Toscana Gabriele Monasterio via Moruzzi n.1 - 56124 - Pisa, Italy
| | - Erwan Donal
- Cardiology and CIC-IT1414, CHU Rennes, Rennes, France.,LTSI INSERM 1099, University Rennes-1, Rennes, France
| | - Gerald Maurer
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Wien, Austria
| | - Bogdan A Popescu
- Department of Cardiology, University of Medicine and Pharmacy "Carol Davila"-Euroecolab, Emergency Institute for Cardiovascular Diseases "Prof. Dr. C. C. Iliescu", Sos. Fundeni 258, Sector 2, 022328 Bucharest, Romania
| | - Bernard Cosyns
- Cardiology, CHVZ (Centrum voor Hart en Vaatziekten), ICMI (In Vivo Cellular and Molecular Imaging) Laboratory, Universitair Ziekenhuis Brussel, 109 Laarbeeklaan, B1090 Brussels, Belgium
| |
Collapse
|
39
|
van Veldhuisen DJ, van Woerden G, Gorter TM, van Empel VP, Manintveld OC, Tieleman RG, Maass AH, Vernooy K, Westenbrink BD, van Gelder IC, Rienstra M. Ventricular tachyarrhythmia detection by implantable loop recording in patients with heart failure and preserved ejection fraction: the VIP-HF study. Eur J Heart Fail 2020; 22:1923-1929. [PMID: 32683763 PMCID: PMC7693069 DOI: 10.1002/ejhf.1970] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/28/2022] Open
Abstract
AIMS The primary aim of the VIP-HF study was to examine the incidence of sustained ventricular tachyarrhythmias (VTs) in heart failure (HF) with mid-range (HFmrEF) or preserved ejection fraction (HFpEF). Secondary aims were to examine the incidence of non-sustained VTs, bradyarrhythmias, HF hospitalizations and mortality. METHODS AND RESULTS This was an investigator-initiated, prospective, multicentre, observational study of patients with HF and left ventricular ejection fraction (LVEF) >40%. Patients underwent extensive phenotyping, after which an implantable loop recorder was implanted. We enrolled 113 of the planned 250 patients [mean age 73 ± 8 years, 51% women, New York Heart Association class II/III 54%/46%, median N-terminal pro B-type natriuretic peptide 1367 (710-2452) pg/mL and mean LVEF 54 ± 6%; 75% had LVEF >50%]. Eighteen percent had non-sustained VTs and 37% had atrial fibrillation on Holter monitoring. During a median follow-up of 657 (219-748) days, the primary endpoint of sustained VT was observed in one patient. The incidence of the primary endpoint was 0.6 (95% confidence interval 0.2-3.5) per 100 person-years. The incidence of the secondary endpoint of non-sustained VT was 11.5 (7.1-18.7) per 100 person-years. Five patients developed bradyarrhythmias [3.2 (1.4-7.5) per 100 person-years], three were implanted with a pacemaker. In total, 23 patients (20%) were hospitalized for HF [16.3 (10.9-24.4) per 100 person-years]. Fourteen patients (12%) died [8.7 (5.2-14.7) per 100 person-years]; 10 due to cardiovascular causes, and four sudden deaths, one with implantable loop recorder-confirmed bradyarrhythmias as terminal event, three others undetermined. CONCLUSION Despite the lower than expected number of included patients, the incidence of sustained VTs in HFmrEF/HFpEF was low. Clinically relevant bradyarrhythmias were more often observed than expected.
Collapse
Affiliation(s)
- Dirk J. van Veldhuisen
- Department of CardiologyUniversity of Groningen, University Medical Centre GroningenGroningenThe Netherlands
| | - Gijs van Woerden
- Department of CardiologyUniversity of Groningen, University Medical Centre GroningenGroningenThe Netherlands
| | - Thomas M. Gorter
- Department of CardiologyUniversity of Groningen, University Medical Centre GroningenGroningenThe Netherlands
| | - Vanessa P.M. van Empel
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM)Medical University Centre MaastrichtMaastrichtThe Netherlands
| | | | - Robert G. Tieleman
- Department of CardiologyUniversity of Groningen, University Medical Centre GroningenGroningenThe Netherlands
- Department of CardiologyMartini Hospital GroningenGroningenThe Netherlands
| | - Alexander H. Maass
- Department of CardiologyUniversity of Groningen, University Medical Centre GroningenGroningenThe Netherlands
| | - Kevin Vernooy
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM)Medical University Centre MaastrichtMaastrichtThe Netherlands
| | - B. Daan Westenbrink
- Department of CardiologyUniversity of Groningen, University Medical Centre GroningenGroningenThe Netherlands
| | - Isabelle C. van Gelder
- Department of CardiologyUniversity of Groningen, University Medical Centre GroningenGroningenThe Netherlands
| | - Michiel Rienstra
- Department of CardiologyUniversity of Groningen, University Medical Centre GroningenGroningenThe Netherlands
| |
Collapse
|
40
|
Prevalence and Prognostic Impact of Pathogenic Variants in Patients With Dilated Cardiomyopathy Referred for Ventricular Tachycardia Ablation. JACC Clin Electrophysiol 2020; 6:1103-1114. [PMID: 32972544 DOI: 10.1016/j.jacep.2020.04.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/13/2020] [Accepted: 04/20/2020] [Indexed: 11/21/2022]
Abstract
OBJECTIVES This study aimed to assess the frequency of (likely) pathogenic variants (LP/Pv) among dilated cardiomyopathy (DCM) ventricular tachycardia (VT) patients referred for CA and their impact on procedural outcome and long-term prognosis. BACKGROUND The prevalence of genetic variants associated with monomorphic VT among DCM is unknown. METHODS Ninety-eight consecutive patients (age 56 ± 15 years; 84% men, left ventricular ejection fraction [LVEF] 39 ± 12%) referred for DCM-VT ablation were included. Patients underwent electroanatomical mapping and testing of ≥55 cardiomyopathy-related genes. Mapping data were analyzed for low-voltage areas and abnormal potentials. LP/Pv-positive (LP/Pv+) patients were compared with LP/Pv-negative (LP/Pv-) patients and followed for VT recurrence and mortality. RESULTS In 37 (38%) patients, LP/Pv were identified, most frequently LMNA (n = 11 of 37, [30%]), TTN (n = 6 of 37, [16%]), PLN (n = 6 of 37, [16%]), SCN5A (n = 3 of 37, [8%]), RBM20 (n = 2 of 37, [5%]) and DSP (n = 2 of 37, [5%]). LP/Pv+ carriers had lower LVEF (35 ± 13% vs. LP/Pv-: 42 ± 11%; p = 0.005) and were less often men (n = 27 [73%] vs. n = 55 [90%]; p = 0.03). After a median follow-up of 2.4 years (interquartile range: 0.9 to 4.4 years), 63 (64%) patients had VT recurrence (LP/Pv+: 30 of 37 [81%] vs. LP/Pv-: 33 of 61 [54%]; p = 0.007). Twenty-eight patients (29%) died (LP/Pv+: 19 of 37 [51%] vs. LP/Pv-: 9 of 61 [15%]; p < 0.001). The cumulative 2-year VT-free survival was 41% in the total cohort (LP/Pv+: 16% vs. LP/Pv-: 54%; p = 0.001). The presence of LP/Pv (hazard ratio: 1.9; 95% confidence interval: 1.1 to 3.4; p = 0.02) and unipolar low-voltage area size/cm2 increase (hazard ratio: 2.5; 95% confidence interval: 1.6 to 4.0; p < 0.001) were associated with a decreased 2-year VT-free survival. CONCLUSIONS In patients with DCM-VT, a genetic cause is frequently identified. LP/Pv+ patients have a lower LVEF and more extensive VT substrates, which, in combination with disease progression, may contribute to the poor prognosis. Genetic testing in patients with DCM-VT should therefore be recommended.
Collapse
|
41
|
Patel V, Asatryan B, Siripanthong B, Munroe PB, Tiku-Owens A, Lopes LR, Khanji MY, Protonotarios A, Santangeli P, Muser D, Marchlinski FE, Brady PA, Chahal CAA. State of the Art Review on Genetics and Precision Medicine in Arrhythmogenic Cardiomyopathy. Int J Mol Sci 2020; 21:E6615. [PMID: 32927679 PMCID: PMC7554944 DOI: 10.3390/ijms21186615] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is an inherited cardiomyopathy characterised by ventricular arrhythmia and an increased risk of sudden cardiac death (SCD). Numerous genetic determinants and phenotypic manifestations have been discovered in ACM, posing a significant clinical challenge. Further to this, wider evaluation of family members has revealed incomplete penetrance and variable expressivity in ACM, suggesting a complex genotype-phenotype relationship. This review details the genetic basis of ACM with specific genotype-phenotype associations, providing the reader with a nuanced perspective of this condition; whilst also proposing a future roadmap to delivering precision medicine-based management in ACM.
Collapse
Affiliation(s)
- Viraj Patel
- Department of Cardiology, Royal Papworth Hospital, Cambridge CB2 0AY, UK;
| | - Babken Asatryan
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland;
| | | | - Patricia B. Munroe
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK;
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Anjali Tiku-Owens
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA; (A.T.-O.); (P.S.); (D.M.); (F.E.M.)
| | - Luis R. Lopes
- Department of Cardiology, St Bartholomew’s Hospital, London EC1A 7BE, UK; (L.R.L.); (M.Y.K.); (A.P.)
- Centre for Heart Muscle Disease, UCL Institute of Cardiovascular Science, London WC1E 6BT, UK
| | - Mohammed Y. Khanji
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
- Department of Cardiology, St Bartholomew’s Hospital, London EC1A 7BE, UK; (L.R.L.); (M.Y.K.); (A.P.)
| | - Alexandros Protonotarios
- Department of Cardiology, St Bartholomew’s Hospital, London EC1A 7BE, UK; (L.R.L.); (M.Y.K.); (A.P.)
- Centre for Heart Muscle Disease, UCL Institute of Cardiovascular Science, London WC1E 6BT, UK
| | - Pasquale Santangeli
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA; (A.T.-O.); (P.S.); (D.M.); (F.E.M.)
| | - Daniele Muser
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA; (A.T.-O.); (P.S.); (D.M.); (F.E.M.)
| | - Francis E. Marchlinski
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA; (A.T.-O.); (P.S.); (D.M.); (F.E.M.)
| | - Peter A. Brady
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Division of Cardiology, Department of Medicine, Advocate Illinois Masonic Medical Center, Chicago, IL 60657, USA
| | - C. Anwar A. Chahal
- Department of Cardiology, Royal Papworth Hospital, Cambridge CB2 0AY, UK;
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA; (A.T.-O.); (P.S.); (D.M.); (F.E.M.)
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA;
| |
Collapse
|
42
|
Cipriani A, Perazzolo Marra M, Bariani R, Mattesi G, Vio R, Bettella N, DE Lazzari M, Motta R, Bauce B, Zorzi A, Corrado D. Differential diagnosis of arrhythmogenic cardiomyopathy: phenocopies versus disease variants. Minerva Med 2020; 112:269-280. [PMID: 32700864 DOI: 10.23736/s0026-4806.20.06782-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Arrhythmogenic cardiomyopathy (ACM) is a genetic heart muscle disease caused by mutations of desmosomal genes in about 50% of patients. Affected patients may have defective non-desmosomal genes. The ACM phenotype may occur in other genetic cardiomyopathies, cardio-cutaneous syndromes or neuromuscular disorders. A sizeable proportion of patients have non-genetic diseases with clinical features resembling ACM (phenocopies). The identification of biventricular and left-dominant phenotypic variants has made differential diagnosis more difficult because of the broader spectrum of phenocopies which requires a detailed clinical study with appropriate evaluation of most prominent and discriminatory disease features. Conditions that enter into differential diagnosis of ACM include heart muscle diseases affecting the right ventricle, the left ventricle, or both. To confirm a conclusive diagnosis of ACM, these differential possibilities need to be reasonably excluded by an accurate and targeted clinical evaluation. This article reviews the clinical and imaging features of major phenocopies of ACM and provides indications for differential diagnosis. The recent etiologic classification of Arrhythmogenic Cardiomyopathies, whose common denominator is the distinctive phenotype characterized by a hypokinetic and non-dilated ventricle with a large amount of myocardial fibrosis underlying its propensity to generate ventricular arrhythmias is also addressed.
Collapse
Affiliation(s)
- Alberto Cipriani
- Department of Cardiac-Thoracic-Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Martina Perazzolo Marra
- Department of Cardiac-Thoracic-Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Riccardo Bariani
- Department of Cardiac-Thoracic-Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Giulia Mattesi
- Department of Cardiac-Thoracic-Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Riccardo Vio
- Department of Cardiac-Thoracic-Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Natascia Bettella
- Department of Cardiac-Thoracic-Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Manuel DE Lazzari
- Department of Cardiac-Thoracic-Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Raffaella Motta
- Unit of Radiology, Department of Medicine, Medical School, University of Padua, Padua, Italy
| | - Barbara Bauce
- Department of Cardiac-Thoracic-Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Alessandro Zorzi
- Department of Cardiac-Thoracic-Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Domenico Corrado
- Department of Cardiac-Thoracic-Vascular Sciences and Public Health, University of Padua, Padua, Italy -
| |
Collapse
|
43
|
Eijgenraam TR, Boukens BJ, Boogerd CJ, Schouten EM, van de Kolk CWA, Stege NM, Te Rijdt WP, Hoorntje ET, van der Zwaag PA, van Rooij E, van Tintelen JP, van den Berg MP, van der Meer P, van der Velden J, Silljé HHW, de Boer RA. The phospholamban p.(Arg14del) pathogenic variant leads to cardiomyopathy with heart failure and is unreponsive to standard heart failure therapy. Sci Rep 2020; 10:9819. [PMID: 32555305 PMCID: PMC7300032 DOI: 10.1038/s41598-020-66656-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023] Open
Abstract
Phospholamban (PLN) plays a role in cardiomyocyte calcium handling as primary inhibitor of sarco/endoplasmic reticulum Ca2+-ATPase (SERCA). The p.(Arg14del) pathogenic variant in the PLN gene results in a high risk of developing dilated or arrhythmogenic cardiomyopathy with heart failure. There is no established treatment other than standard heart failure therapy or heart transplantation. In this study, we generated a novel mouse model with the PLN-R14del pathogenic variant, performed detailed phenotyping, and tested the efficacy of established heart failure therapies eplerenone or metoprolol. Heterozygous PLN-R14del mice demonstrated increased susceptibility to ex vivo induced arrhythmias, and cardiomyopathy at 18 months of age, which was not accelerated by isoproterenol infusion. Homozygous PLN-R14del mice exhibited an accelerated phenotype including cardiac dilatation, contractile dysfunction, decreased ECG potentials, high susceptibility to ex vivo induced arrhythmias, myocardial fibrosis, PLN protein aggregation, and early mortality. Neither eplerenone nor metoprolol administration improved cardiac function or survival. In conclusion, our novel PLN-R14del mouse model exhibits most features of human disease. Administration of standard heart failure therapy did not rescue the phenotype, underscoring the need for better understanding of the pathophysiology of PLN-R14del-associated cardiomyopathy. This model provides a great opportunity to study the pathophysiology, and to screen for potential therapeutic treatments.
Collapse
Affiliation(s)
- Tim R Eijgenraam
- Department of Experimental Cardiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Bastiaan J Boukens
- Department of Medical Biology, University of Amsterdam, Amsterdam University Medical Center, Amsterdam, the Netherlands
- Department of Experimental Cardiology, University of Amsterdam, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Cornelis J Boogerd
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), University Medical Center Utrecht, Utrecht, the Netherlands
| | - E Marloes Schouten
- Department of Experimental Cardiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Cees W A van de Kolk
- Central Animal Facility, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Groningen Small Animal Imaging Facility, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Nienke M Stege
- Department of Experimental Cardiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Wouter P Te Rijdt
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Edgar T Hoorntje
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Netherlands Heart Institute, Utrecht, the Netherlands
| | - Paul A van der Zwaag
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Eva van Rooij
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), University Medical Center Utrecht, Utrecht, the Netherlands
| | - J Peter van Tintelen
- Department of Genetics, University of Utrecht, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Maarten P van den Berg
- Department of Experimental Cardiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Peter van der Meer
- Department of Experimental Cardiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jolanda van der Velden
- Department of Physiology, University of Amsterdam, Amsterdam University Medical Center, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Herman H W Silljé
- Department of Experimental Cardiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Rudolf A de Boer
- Department of Experimental Cardiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
44
|
Cosyns B, Haugaa KH, Gerber BL, Gimelli A, Donal E, Maurer G, Edvardsen T. The year 2018 in the European Heart Journal-Cardiovascular Imaging: Part II. Eur Heart J Cardiovasc Imaging 2019; 20:1337-1344. [PMID: 31750534 DOI: 10.1093/ehjci/jez218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 09/10/2019] [Indexed: 01/12/2023] Open
Abstract
European Heart Journal - Cardiovascular Imaging was launched in 2012 as a multimodality cardiovascular imaging journal. It has gained an impressive impact factor during its first 5 years and is now established as one of the top cardiovascular journals and has become the most important cardiovascular imaging journal in Europe. The most important studies from 2018 will be highlighted in two reports. Part I of the review has focused on studies about myocardial function and risk prediction, myocardial ischaemia, and emerging techniques in cardiovascular imaging, while Part II will focus on cardiomyopathies, congenital heart diseases, valvular heart diseases, and heart failure.
Collapse
Affiliation(s)
- Bernard Cosyns
- Cardiology, CHVZ (Centrum voor Hart en Vaatziekten), ICMI (In Vivo Cellular and Molecular Imaging) Laboratory, Universitair ziekenhuis Brussel, 109 Laarbeeklaan, Brussels, Belgium
| | - Kristina H Haugaa
- Department of Cardiology, Centre of Cardiological Innovation, Oslo University Hospital, Rikshospitalet, Oslo Norway.,Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| | - Bernhard L Gerber
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc, Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Av Hippocrate 10/2806, Brussels, Belgium
| | | | - Erwan Donal
- Cardiology and CIC-IT1414, CHU Rennes, Rennes, France.,LTSI INSERM 1099, University Rennes-1, Rennes, France
| | - Gerald Maurer
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Thor Edvardsen
- Department of Cardiology, Centre of Cardiological Innovation, Oslo University Hospital, Rikshospitalet, Oslo Norway.,Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
45
|
Eijgenraam TR, Silljé HHW, de Boer RA. Current understanding of fibrosis in genetic cardiomyopathies. Trends Cardiovasc Med 2019; 30:353-361. [PMID: 31585768 DOI: 10.1016/j.tcm.2019.09.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/13/2019] [Accepted: 09/17/2019] [Indexed: 12/13/2022]
Abstract
Myocardial fibrosis is the excessive deposition of extracellular matrix proteins, including collagens, in the heart. In cardiomyopathies, the formation of interstitial fibrosis and/or replacement fibrosis is almost always part of the pathological cardiac remodeling process. Different forms of cardiomyopathies show particular patterns of myocardial fibrosis that can be considered as distinctive hallmarks. Although formation of fibrosis is initially aimed to be a reparative mechanism, in the long term, on-going and excessive myocardial fibrosis may lead to arrhythmias and stiffening of the heart wall and subsequently to diastolic dysfunction. Ultimately, adverse remodeling with progressive myocardial fibrosis can lead to heart failure. Not surprisingly, the presence of fibrosis in cardiomyopathies, even when subtle, has consistently been associated with complications and adverse outcomes. In the last decade, non-invasive in vivo techniques for visualization of myocardial fibrosis have emerged, and have been increasingly used in research and in the clinic. In this review, we will describe the epidemiology, distribution, and role of myocardial fibrosis in genetic cardiomyopathies, including hypertrophic, dilated, arrhythmogenic, and non-compaction cardiomyopathy, and a few specific forms of genetic cardiomyopathies.
Collapse
Affiliation(s)
- Tim R Eijgenraam
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Herman H W Silljé
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Rudolf A de Boer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands.
| |
Collapse
|
46
|
Abstract
Introduction Phospholamban cardiomyopathy is an inherited cardiomyopathy, characterised by a defect in regulation of the sarcoplasmic reticulum Ca2+ pump, often presenting with malignant arrhythmias and progressive cardiac dysfunction occurring at a young age. Methods Phospholamban R14del mutation carriers and family members were identified from inherited arrhythmia clinics at 13 sites across Canada. Cardiac investigations, including electrocardiograms, Holter monitoring (premature ventricular complexes, PVCs), and imaging results were summarised. Results Fifty patients (10 families) were identified (median age 30 years, range 3–71, 46% female). Mutation carriers were more likely to be older, have low-voltage QRS, T‑wave inversion, frequent PVCs, and cardiac dysfunction, compared to unaffected relatives. Increasing age, low-voltage QRS, T‑wave inversion, late potentials, and frequent PVCs were predictors of cardiac dysfunction (p < 0.05 for all). Older carriers (age ≥45 years) were more likely to have disease manifestations than were their younger counterparts, with disease onset occurring at an older age in Canadian patients and their Dutch counterparts. Discussion Among Canadian patients with phospholamban cardiomyopathy, clinical manifestations resembled those of their Dutch counterparts, with increasing age a major predictor of disease manifestation. Older mutation carriers were more likely to have electrical and structural abnormalities, and may represent variable expressivity, age-dependent penetrance, or genetic heterogeneity among Canadian patients. Electronic supplementary material The online version of this article (10.1007/s12471-019-1247-0) contains supplementary material, which is available to authorized users.
Collapse
|
47
|
Te Rijdt WP, Asimaki A, Jongbloed JDH, Hoorntje ET, Lazzarini E, van der Zwaag PA, de Boer RA, van Tintelen JP, Saffitz JE, van den Berg MP, Suurmeijer AJH. Distinct molecular signature of phospholamban p.Arg14del arrhythmogenic cardiomyopathy. Cardiovasc Pathol 2018; 40:2-6. [PMID: 30763825 DOI: 10.1016/j.carpath.2018.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 01/21/2023] Open
Abstract
Phospholamban (PLN) p.Arg14del cardiomyopathy is characterized by a distinct arrhythmogenic biventricular phenotype that can be predominantly left ventricular, right ventricular, or both. Our aim was to further elucidate distinct features of this cardiomyopathy with respect to the distribution of desmosomal proteins observed by immunofluorescence (IF) in comparison to desmosomal arrhythmogenic cardiomyopathy and co-existent genetic variants. We studied eight explanted heart specimens from PLN p.Arg14del mutation carriers. Macro- and microscopic examination revealed biventricular presence of fibrofatty replacement and interstitial fibrosis. Five out of 8 (63%) patients met consensus criteria for both arrhythmogenic right ventricular cardiomyopathy (ARVC) and dilated cardiomyopathy (DCM). In four cases, targeted next-generation sequencing revealed one additional pathogenic variant and six variants of unknown significance. IF showed diminished junction plakoglobin signal intensity at the intercalated disks in 4 (67%) out of 6 cases fulfilling ARVC criteria but normal intensity in both cases fulfilling only DCM criteria. Notably, the four cases with diminished junction plakoglobin were also those where an additional gene variant was detected. IF for two proteins recently investigated in desmosomal arrhythmogenic cardiomyopathy (ACM), synapse-associated protein 97 and glycogen synthase kinase-3 beta, showed a distinct distributional pattern in comparison to desmosomal ACM. In 7 (88%) out of 8 cases we observed both a strong synapse-associated protein 97 signal at the sarcomeres and no glycogen synthase kinase-3 beta translocation to the intercalated discs. Phospholamban p.Arg14del cardiomyopathy is characterized by a distinct molecular signature compared to desmosomal ACM, specifically a different desmosomal protein distribution. This study substantiates the idea that additional genetic variants play a role in the phenotypical heterogeneity.
Collapse
Affiliation(s)
- Wouter P Te Rijdt
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands; Netherlands Heart Institute, Utrecht, The Netherlands; University of Groningen, University Medical Center Groningen, Department of Clinical and Experimental Cardiology, Groningen, The Netherlands.
| | - Angeliki Asimaki
- Cardiology Clinical Academic Group, St. George's University of London, Cranmer Terrace, London, United Kingdom
| | - Jan D H Jongbloed
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Edgar T Hoorntje
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Elisabetta Lazzarini
- Departments of Cardiac, Thoracic, and Vascular Sciences, University of Padua, Padua, Italy
| | - Paul A van der Zwaag
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Rudolf A de Boer
- University of Groningen, University Medical Center Groningen, Department of Clinical and Experimental Cardiology, Groningen, The Netherlands
| | - J Peter van Tintelen
- Department of Clinical Genetics, Amsterdam Cardiovascular Sciences, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Durrer Center for Cardiovascular Research, Netherlands Heart Institute, Utrecht, The Netherlands
| | - Jeffrey E Saffitz
- Department of Pathology, Beth Israel Deaconess Medical Center & Harvard Medical School, Boston, MA, USA
| | - Maarten P van den Berg
- University of Groningen, University Medical Center Groningen, Department of Clinical and Experimental Cardiology, Groningen, The Netherlands
| | - Albert J H Suurmeijer
- University of Groningen, University Medical Center Groningen, Department of Pathology, Groningen, The Netherlands
| |
Collapse
|