1
|
Muskhelishvili G, Nasser W, Reverchon S, Travers A. DNA as a Double-Coding Device for Information Conversion and Organization of a Self-Referential Unity. DNA 2024; 4:473-493. [PMID: 40098770 PMCID: PMC7617498 DOI: 10.3390/dna4040032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Living systems are capable on the one hand of eliciting a coordinated response to changing environments (also known as adaptation), and on the other hand, they are capable of reproducing themselves. Notably, adaptation to environmental change requires the monitoring of the surroundings, while reproduction requires monitoring oneself. These two tasks appear separate and make use of different sources of information. Yet, both the process of adaptation as well as that of reproduction are inextricably coupled to alterations in genomic DNA expression, while a cell behaves as an indivisible unity in which apparently independent processes and mechanisms are both integrated and coordinated. We argue that at the most basic level, this integration is enabled by the unique property of the DNA to act as a double coding device harboring two logically distinct types of information. We review biological systems of different complexities and infer that the inter-conversion of these two distinct types of DNA information represents a fundamental self-referential device underlying both systemic integration and coordinated adaptive responses.
Collapse
Affiliation(s)
- Georgi Muskhelishvili
- School of Natural Sciences and Biotechnology, Agricultural University of Georgia, 0159Tbilisi, Georgia
| | - William Nasser
- INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, Université Lyon 1, F-69622Villeurbanne, France
| | - Sylvie Reverchon
- INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, Université Lyon 1, F-69622Villeurbanne, France
| | - Andrew Travers
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, CambridgeCB2 0QH, UK
| |
Collapse
|
2
|
Conway C, Beckett MC, Dorman CJ. The DNA relaxation-dependent OFF-to-ON biasing of the type 1 fimbrial genetic switch requires the Fis nucleoid-associated protein. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001283. [PMID: 36748578 PMCID: PMC9993118 DOI: 10.1099/mic.0.001283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The structural genes expressing type 1 fimbriae in Escherichia coli alternate between expressed (phase ON) and non-expressed (phase OFF) states due to inversion of the 314 bp fimS genetic switch. The FimB tyrosine integrase inverts fimS by site-specific recombination, alternately connecting and disconnecting the fim operon, encoding the fimbrial subunit protein and its associated secretion and adhesin factors, to and from its transcriptional promoter within fimS. Site-specific recombination by the FimB recombinase becomes biased towards phase ON as DNA supercoiling is relaxed, a condition that occurs when bacteria approach the stationary phase of the growth cycle. This effect can be mimicked in exponential phase cultures by inhibiting the negative DNA supercoiling activity of DNA gyrase. We report that this bias towards phase ON depends on the presence of the Fis nucleoid-associated protein. We mapped the Fis binding to a site within the invertible fimS switch by DNase I footprinting. Disruption of this binding site by base substitution mutagenesis abolishes both Fis binding and the ability of the mutated switch to sustain its phase ON bias when DNA is relaxed, even in bacteria that produce the Fis protein. In addition, the Fis binding site overlaps one of the sites used by the Lrp protein, a known directionality determinant of fimS inversion that also contributes to phase ON bias. The Fis–Lrp relationship at fimS is reminiscent of that between Fis and Xis when promoting DNA relaxation-dependent excision of bacteriophage λ from the E. coli chromosome. However, unlike the co-binding mechanism used by Fis and Xis at λ attR, the Fis–Lrp relationship at fimS involves competitive binding. We discuss these findings in the context of the link between fimS inversion biasing and the physiological state of the bacterium.
Collapse
Affiliation(s)
- Colin Conway
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland.,Present address: Technical University of the Atlantic, Galway, Ireland
| | - Michael C Beckett
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| | - Charles J Dorman
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
3
|
Muskhelishvili G, Sobetzko P, Travers A. Spatiotemporal Coupling of DNA Supercoiling and Genomic Sequence Organization-A Timing Chain for the Bacterial Growth Cycle? Biomolecules 2022; 12:biom12060831. [PMID: 35740956 PMCID: PMC9221221 DOI: 10.3390/biom12060831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 01/25/2023] Open
Abstract
In this article we describe the bacterial growth cycle as a closed, self-reproducing, or autopoietic circuit, reestablishing the physiological state of stationary cells initially inoculated in the growth medium. In batch culture, this process of self-reproduction is associated with the gradual decline in available metabolic energy and corresponding change in the physiological state of the population as a function of "travelled distance" along the autopoietic path. We argue that this directional alteration of cell physiology is both reflected in and supported by sequential gene expression along the chromosomal OriC-Ter axis. We propose that during the E. coli growth cycle, the spatiotemporal order of gene expression is established by coupling the temporal gradient of supercoiling energy to the spatial gradient of DNA thermodynamic stability along the chromosomal OriC-Ter axis.
Collapse
Affiliation(s)
- Georgi Muskhelishvili
- School of Natural Sciences, Biology Program, Agricultural University of Georgia, 0159 Tbilisi, Georgia
- Correspondence:
| | - Patrick Sobetzko
- Synmikro, Loewe Center for Synthetic Microbiology, Philipps-Universität Marburg, 35043 Marburg, Germany;
| | - Andrew Travers
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK;
| |
Collapse
|
4
|
Watson GD, Chan EW, Leake MC, Noy A. Structural interplay between DNA-shape protein recognition and supercoiling: The case of IHF. Comput Struct Biotechnol J 2022; 20:5264-5274. [PMID: 36212531 PMCID: PMC9519438 DOI: 10.1016/j.csbj.2022.09.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 11/03/2022] Open
|
5
|
Muskhelishvili G, Sobetzko P, Mehandziska S, Travers A. Composition of Transcription Machinery and Its Crosstalk with Nucleoid-Associated Proteins and Global Transcription Factors. Biomolecules 2021; 11:biom11070924. [PMID: 34206477 PMCID: PMC8301835 DOI: 10.3390/biom11070924] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 11/24/2022] Open
Abstract
The coordination of bacterial genomic transcription involves an intricate network of interdependent genes encoding nucleoid-associated proteins (NAPs), DNA topoisomerases, RNA polymerase subunits and modulators of transcription machinery. The central element of this homeostatic regulatory system, integrating the information on cellular physiological state and producing a corresponding transcriptional response, is the multi-subunit RNA polymerase (RNAP) holoenzyme. In this review article, we argue that recent observations revealing DNA topoisomerases and metabolic enzymes associated with RNAP supramolecular complex support the notion of structural coupling between transcription machinery, DNA topology and cellular metabolism as a fundamental device coordinating the spatiotemporal genomic transcription. We analyse the impacts of various combinations of RNAP holoenzymes and global transcriptional regulators such as abundant NAPs, on genomic transcription from this viewpoint, monitoring the spatiotemporal patterns of couplons—overlapping subsets of the regulons of NAPs and RNAP sigma factors. We show that the temporal expression of regulons is by and large, correlated with that of cognate regulatory genes, whereas both the spatial organization and temporal expression of couplons is distinctly impacted by the regulons of NAPs and sigma factors. We propose that the coordination of the growth phase-dependent concentration gradients of global regulators with chromosome configurational dynamics determines the spatiotemporal patterns of genomic expression.
Collapse
Affiliation(s)
- Georgi Muskhelishvili
- School of Natural Sciences, Agricultural University of Georgia, David Aghmashenebeli Alley 24, Tbilisi 0159, Georgia
- Correspondence:
| | - Patrick Sobetzko
- Department of Chromosome Biology, Philipps-Universität Marburg, LOEWE-Zentrum für Synthetische Mikrobiologie, Hans-Meerwein-Straße, 35043 Marburg, Germany;
| | - Sanja Mehandziska
- School of Engineering and Science, Campus Ring 1, Jacobs University Bremen, 28759 Bremen, Germany;
| | - Andrew Travers
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK;
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| |
Collapse
|
6
|
Dages S, Zhi X, Leng F. Fis protein forms DNA topological barriers to confine transcription-coupled DNA supercoiling in Escherichia coli. FEBS Lett 2020; 594:791-798. [PMID: 31639222 PMCID: PMC10857741 DOI: 10.1002/1873-3468.13643] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/30/2019] [Accepted: 10/18/2019] [Indexed: 01/07/2023]
Abstract
Previously, we demonstrated that transcription-coupled DNA supercoiling (TCDS) potently activated or inhibited nearby promoters in Escherichia coli even in the presence of all four DNA topoisomerases, suggesting that DNA topoisomerases are not the only factors regulating TCDS. A different mechanism exists to confine this localized DNA supercoiling. Using an in vivo system containing the TCDS-activated leu-500 promoter (Pleu-500 ), we find that the nucleoid-associated Fis protein potently inhibits the TCDS-mediated activation of Pleu-500 . We also find that deletion of the fis gene significantly enhances TCDS-mediated inhibition of transcription of three genes purH, yieP, and yrdA divergently coupled to different rrn operons in the early log phase. These results suggest that Fis protein forms DNA topological barriers upon binding to its recognition sites, blocks TCDS diffusion, and potently inhibits the TCDS-activated Pleu-500 .
Collapse
Affiliation(s)
- Samantha Dages
- Biomolecular Sciences Institute and Department of Chemistry & Biochemistry, Florida International University, Miami, FL, USA
| | - Xiaoduo Zhi
- Biomolecular Sciences Institute and Department of Chemistry & Biochemistry, Florida International University, Miami, FL, USA
| | - Fenfei Leng
- Biomolecular Sciences Institute and Department of Chemistry & Biochemistry, Florida International University, Miami, FL, USA
| |
Collapse
|
7
|
Muskhelishvili G, Forquet R, Reverchon S, Meyer S, Nasser W. Coherent Domains of Transcription Coordinate Gene Expression During Bacterial Growth and Adaptation. Microorganisms 2019; 7:microorganisms7120694. [PMID: 31847191 PMCID: PMC6956064 DOI: 10.3390/microorganisms7120694] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/28/2019] [Accepted: 12/09/2019] [Indexed: 01/07/2023] Open
Abstract
Recent studies strongly suggest that in bacteria, both the genomic pattern of DNA thermodynamic stability and the order of genes along the chromosomal origin-to-terminus axis are highly conserved and that this spatial organization plays a crucial role in coordinating genomic transcription. In this article, we explore the relationship between genomic sequence organization and transcription in the commensal bacterium Escherichia coli and the plant pathogen Dickeya. We argue that, while in E. coli the gradient of DNA thermodynamic stability and gene order along the origin-to-terminus axis represent major organizational features orchestrating temporal gene expression, the genomic sequence organization of Dickeya is more complex, demonstrating extended chromosomal domains of thermodynamically distinct DNA sequences eliciting specific transcriptional responses to various kinds of stress encountered during pathogenic growth. This feature of the Dickeya genome is likely an adaptation to the pathogenic lifestyle utilizing differences in genomic sequence organization for the selective expression of virulence traits. We propose that the coupling of DNA thermodynamic stability and genetic function provides a common organizational principle for the coordinated expression of genes during both normal and pathogenic bacterial growth.
Collapse
Affiliation(s)
| | - Raphaël Forquet
- INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, Univ. Lyon, Université Lyon 1, F-69622 Villeurbanne, France; (R.F.); (S.R.); (S.M.)
| | - Sylvie Reverchon
- INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, Univ. Lyon, Université Lyon 1, F-69622 Villeurbanne, France; (R.F.); (S.R.); (S.M.)
| | - Sam Meyer
- INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, Univ. Lyon, Université Lyon 1, F-69622 Villeurbanne, France; (R.F.); (S.R.); (S.M.)
| | - William Nasser
- INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, Univ. Lyon, Université Lyon 1, F-69622 Villeurbanne, France; (R.F.); (S.R.); (S.M.)
- Correspondence:
| |
Collapse
|
8
|
Chromosomal organization of transcription: in a nutshell. Curr Genet 2017; 64:555-565. [PMID: 29184972 DOI: 10.1007/s00294-017-0785-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/20/2017] [Accepted: 11/20/2017] [Indexed: 01/25/2023]
Abstract
Early studies of transcriptional regulation focused on individual gene promoters defined specific transcription factors as central agents of genetic control. However, recent genome-wide data propelled a different view by linking spatially organized gene expression patterns to chromosomal dynamics. Therefore, the major problem in contemporary molecular genetics concerned with transcriptional gene regulation is to establish a unifying model that reconciles these two views. This problem, situated at the interface of polymer physics and network theory, requires development of an integrative methodology. In this review, we discuss recent achievements in classical model organism E. coli and provide some novel insights gained from studies of a bacterial plant pathogen, D. dadantii. We consider DNA topology and the basal transcription machinery as key actors of regulation, in which activation of functionally relevant genes is coupled to and coordinated with the establishment of extended chromosomal domains of coherent transcription. We argue that the spatial organization of genome plays a fundamental role in its own regulation.
Collapse
|
9
|
Muskhelishvili G, Travers A. The regulatory role of DNA supercoiling in nucleoprotein complex assembly and genetic activity. Biophys Rev 2016; 8:5-22. [PMID: 28510220 PMCID: PMC5425797 DOI: 10.1007/s12551-016-0237-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 10/21/2016] [Indexed: 01/06/2023] Open
Abstract
We argue that dynamic changes in DNA supercoiling in vivo determine both how DNA is packaged and how it is accessed for transcription and for other manipulations such as recombination. In both bacteria and eukaryotes, the principal generators of DNA superhelicity are DNA translocases, supplemented in bacteria by DNA gyrase. By generating gradients of superhelicity upstream and downstream of their site of activity, translocases enable the differential binding of proteins which preferentially interact with respectively more untwisted or more writhed DNA. Such preferences enable, in principle, the sequential binding of different classes of protein and so constitute an essential driver of chromatin organization.
Collapse
Affiliation(s)
| | - Andrew Travers
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK.
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK.
| |
Collapse
|
10
|
Chromosomal "stress-response" domains govern the spatiotemporal expression of the bacterial virulence program. mBio 2015; 6:e00353-15. [PMID: 25922390 PMCID: PMC4436070 DOI: 10.1128/mbio.00353-15] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent studies strongly suggest that the gene expression sustaining both normal and pathogenic bacterial growth is governed by the structural dynamics of the chromosome. However, the mechanistic device coordinating the chromosomal configuration with selective expression of the adaptive traits remains largely unknown. We used a holistic approach exploring the inherent relationships between the physicochemical properties of the DNA and the expression of adaptive traits, including virulence factors, in the pathogen Dickeya dadantii (formerly Erwinia chrysanthemi). In the transcriptomes obtained under adverse conditions encountered during bacterial infection, we explored the patterns of chromosomal DNA sequence organization, supercoil dynamics, and gene expression densities, together with the long-range regulatory impacts of the abundant DNA architectural proteins implicated in pathogenicity control. By integrating these data, we identified transient chromosomal domains of coherent gene expression featuring distinct couplings between DNA thermodynamic stability, supercoil dynamics, and virulence traits. We infer that the organization of transient chromosomal domains serving specific functions acts as a fundamental device for versatile adjustment of the pathogen to environmental stress. We believe that the identification of chromosomal “stress-response” domains harboring distinct virulence traits and mediating the cellular adaptive behavior provides a breakthrough in understanding the control mechanisms of bacterial pathogenicity.
Collapse
|
11
|
Muskhelishvili G, Travers A. Order from the Order: How a Spatiotemporal Genetic Program Is Encoded in a 2-D Genetic Map of the Bacterial Chromosome. J Mol Microbiol Biotechnol 2015; 24:332-43. [DOI: 10.1159/000368852] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
12
|
Muskhelishvili G, Travers A. Integration of syntactic and semantic properties of the DNA code reveals chromosomes as thermodynamic machines converting energy into information. Cell Mol Life Sci 2013; 70:4555-67. [PMID: 23771629 PMCID: PMC11113758 DOI: 10.1007/s00018-013-1394-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 05/28/2013] [Accepted: 05/29/2013] [Indexed: 11/29/2022]
Abstract
Understanding genetic regulation is a problem of fundamental importance. Recent studies have made it increasingly evident that, whereas the cellular genetic regulation system embodies multiple disparate elements engaged in numerous interactions, the central issue is the genuine function of the DNA molecule as information carrier. Compelling evidence suggests that the DNA, in addition to the digital information of the linear genetic code (the semantics), encodes equally important continuous, or analog, information that specifies the structural dynamics and configuration (the syntax) of the polymer. These two DNA information types are intrinsically coupled in the primary sequence organisation, and this coupling is directly relevant to regulation of the genetic function. In this review, we emphasise the critical need of holistic integration of the DNA information as a prerequisite for understanding the organisational complexity of the genetic regulation system.
Collapse
Affiliation(s)
- Georgi Muskhelishvili
- School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759, Bremen, Germany,
| | | |
Collapse
|
13
|
Sobetzko P, Glinkowska M, Travers A, Muskhelishvili G. DNA thermodynamic stability and supercoil dynamics determine the gene expression program during the bacterial growth cycle. MOLECULAR BIOSYSTEMS 2013; 9:1643-51. [PMID: 23493878 DOI: 10.1039/c3mb25515h] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The chromosomal DNA polymer constituting the cellular genetic material is primarily a device for coding information. Whilst the gene sequences comprise the digital (discontinuous) linear code, physiological alterations of the DNA superhelical density generate in addition analog (continuous) three-dimensional information essential for regulation of both chromosome compaction and gene expression. Insight into the relationship between the DNA analog information and the digital linear code is of fundamental importance for understanding genetic regulation. Our previous study in the model organism Escherichia coli suggested that the chromosomal gene order and a spatiotemporal gradient of DNA superhelicity associated with DNA replication determine the growth phase-dependent gene transcription. In this study we reveal a general gradient of DNA thermodynamic stability correlated with the polarity of chromosomal replication and manifest in the spatiotemporal pattern of gene transcription during the bacterial growth cycle. Furthermore, by integrating the physical and dynamic features of the transcribed sequences with their functional content we identify spatiotemporal domains of gene expression encompassing different functions. We thus provide both an insight into the organisational principle of the bacterial growth program and a novel holistic methodology for exploring chromosomal dynamics.
Collapse
Affiliation(s)
- Patrick Sobetzko
- Jacobs University Bremen, School of Engineering and Science, Campus Ring 1, D-28759 Bremen, Germany
| | | | | | | |
Collapse
|
14
|
Ouafa ZA, Reverchon S, Lautier T, Muskhelishvili G, Nasser W. The nucleoid-associated proteins H-NS and FIS modulate the DNA supercoiling response of the pel genes, the major virulence factors in the plant pathogen bacterium Dickeya dadantii. Nucleic Acids Res 2012; 40:4306-19. [PMID: 22275524 PMCID: PMC3378864 DOI: 10.1093/nar/gks014] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Dickeya dadantii is a pathogen infecting a wide range of plant species. Soft rot, the visible symptom, is mainly due to the production of pectate lyases (Pels) that can destroy the plant cell walls. Previously we found that the pel gene expression is modulated by H-NS and FIS, two nucleoid-associated proteins (NAPs) modulating the DNA topology. Here, we show that relaxation of the DNA in growing D. dadantii cells decreases the expression of pel genes. Deletion of fis aggravates, whereas that of hns alleviates the negative impact of DNA relaxation on pel expression. We further show that H-NS and FIS directly bind the pelE promoter and that the response of D. dadantii pel genes to stresses that induce DNA relaxation is modulated, although to different extents, by H-NS and FIS. We infer that FIS acts as a repressor buffering the negative impact of DNA relaxation on pel gene transcription, whereas H-NS fine-tunes the response of virulence genes precluding their expression under suboptimal conditions of supercoiling. This novel dependence of H-NS effect on DNA topology expands our understanding of the role of NAPs in regulating the global bacterial gene expression and bacterial pathogenicity.
Collapse
|
15
|
Gene order and chromosome dynamics coordinate spatiotemporal gene expression during the bacterial growth cycle. Proc Natl Acad Sci U S A 2011; 109:E42-50. [PMID: 22184251 DOI: 10.1073/pnas.1108229109] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In Escherichia coli crosstalk between DNA supercoiling, nucleoid-associated proteins and major RNA polymerase σ initiation factors regulates growth phase-dependent gene transcription. We show that the highly conserved spatial ordering of relevant genes along the chromosomal replichores largely corresponds both to their temporal expression patterns during growth and to an inferred gradient of DNA superhelical density from the origin to the terminus. Genes implicated in similar functions are related mainly in trans across the chromosomal replichores, whereas DNA-binding transcriptional regulators interact predominantly with targets in cis along the replichores. We also demonstrate that macrodomains (the individual structural partitions of the chromosome) are regulated differently. We infer that spatial and temporal variation of DNA superhelicity during the growth cycle coordinates oxygen and nutrient availability with global chromosome structure, thus providing a mechanistic insight into how the organization of a complete bacterial chromosome encodes a spatiotemporal program integrating DNA replication and global gene expression.
Collapse
|
16
|
Structural coupling between RNA polymerase composition and DNA supercoiling in coordinating transcription: a global role for the omega subunit? mBio 2011; 2:mBio.00034-11. [PMID: 21810966 PMCID: PMC3147163 DOI: 10.1128/mbio.00034-11] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In growing bacterial cells, the global reorganization of transcription is associated with alterations of RNA polymerase composition and the superhelical density of the DNA. However, the existence of any regulatory device coordinating these changes remains elusive. Here we show that in an exponentially growing Escherichia coli rpoZ mutant lacking the polymerase ω subunit, the impact of the Eσ(38) holoenzyme on transcription is enhanced in parallel with overall DNA relaxation. Conversely, overproduction of σ(70) in an rpoZ mutant increases both overall DNA supercoiling and the transcription of genes utilizing high negative superhelicity. We further show that transcription driven by the Eσ(38) and Eσ(70) holoenzymes from cognate promoters induces distinct superhelical densities of plasmid DNA in vivo. We thus demonstrate a tight coupling between polymerase holoenzyme composition and the supercoiling regimen of genomic transcription. Accordingly, we identify functional clusters of genes with distinct σ factor and supercoiling preferences arranging alternative transcription programs sustaining bacterial exponential growth. We propose that structural coupling between DNA topology and holoenzyme composition provides a basic regulatory device for coordinating genome-wide transcription during bacterial growth and adaptation. IMPORTANCE Understanding the mechanisms of coordinated gene expression is pivotal for developing knowledge-based approaches to manipulating bacterial physiology, which is a problem of central importance for applications of biotechnology and medicine. This study explores the relationships between variations in the composition of the transcription machinery and chromosomal DNA topology and suggests a tight interdependence of these two variables as the major coordinating principle of gene regulation. The proposed structural coupling between the transcription machinery and DNA topology has evolutionary implications and suggests a new methodology for studying concerted alterations of gene expression during normal and pathogenic growth both in bacteria and in higher organisms.
Collapse
|
17
|
Sonnenschein N, Geertz M, Muskhelishvili G, Hütt MT. Analog regulation of metabolic demand. BMC SYSTEMS BIOLOGY 2011; 5:40. [PMID: 21406074 PMCID: PMC3068955 DOI: 10.1186/1752-0509-5-40] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 03/15/2011] [Indexed: 11/10/2022]
Abstract
Background The 3D structure of the chromosome of the model organism Escherichia coli is one key component of its gene regulatory machinery. This type of regulation mediated by topological transitions of the chromosomal DNA can be thought of as an analog control, complementing the digital control, i.e. the network of regulation mediated by dedicated transcription factors. It is known that alterations in the superhelical density of chromosomal DNA lead to a rich pattern of differential expressed genes. Using a network approach, we analyze these expression changes for wild type E. coli and mutants lacking nucleoid associated proteins (NAPs) from a metabolic and transcriptional regulatory network perspective. Results We find a significantly higher correspondence between gene expression and metabolism for the wild type expression changes compared to mutants in NAPs, indicating that supercoiling induces meaningful metabolic adjustments. As soon as the underlying regulatory machinery is impeded (as for the NAP mutants), this coherence between expression changes and the metabolic network is substantially reduced. This effect is even more pronounced, when we compute a wild type metabolic flux distribution using flux balance analysis and restrict our analysis to active reactions. Furthermore, we are able to show that the regulatory control exhibited by DNA supercoiling is not mediated by the transcriptional regulatory network (TRN), as the consistency of the expression changes with the TRN logic of activation and suppression is strongly reduced in the wild type in comparison to the mutants. Conclusions So far, the rich patterns of gene expression changes induced by alterations of the superhelical density of chromosomal DNA have been difficult to interpret. Here we characterize the effective networks formed by supercoiling-induced gene expression changes mapped onto reconstructions of E. coli's metabolic and transcriptional regulatory network. Our results show that DNA supercoiling coordinates gene expression with metabolism. Furthermore, this control is acting directly because we can exclude the potential role of the TRN as a mediator.
Collapse
|
18
|
Cameron ADS, Stoebel DM, Dorman CJ. DNA supercoiling is differentially regulated by environmental factors and FIS in Escherichia coli and Salmonella enterica. Mol Microbiol 2011; 80:85-101. [DOI: 10.1111/j.1365-2958.2011.07560.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Abstract
The Gram-negative bacterium Escherichia coli and its close relative Salmonella enterica have made important contributions historically to our understanding of how bacteria control DNA supercoiling and of how supercoiling influences gene expression and vice versa. Now they are contributing again by providing examples where changes in DNA supercoiling affect the expression of virulence traits that are important for infectious disease. Available examples encompass both the earliest stages of pathogen–host interactions and the more intimate relationships in which the bacteria invade and proliferate within host cells. A key insight concerns the link between the physiological state of the bacterium and the activity of DNA gyrase, with downstream effects on the expression of genes with promoters that sense changes in DNA supercoiling. Thus the expression of virulence traits by a pathogen can be interpreted partly as a response to its own changing physiology. Knowledge of the molecular connections between physiology, DNA topology and gene expression offers new opportunities to fight infection.
Collapse
Affiliation(s)
- Charles J Dorman
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College, Dublin 2, Ireland.
| | | |
Collapse
|
20
|
Cho BK, Knight EM, Barrett CL, Palsson BØ. Genome-wide analysis of Fis binding in Escherichia coli indicates a causative role for A-/AT-tracts. Genome Res 2008; 18:900-10. [PMID: 18340041 DOI: 10.1101/gr.070276.107] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We determined the genome-wide distribution of the nucleoid-associated protein Fis in Escherichia coli using chromatin immunoprecipitation coupled with high-resolution whole genome-tiling microarrays. We identified 894 Fis-associated regions across the E. coli genome. A significant number of these binding sites were found within open reading frames (33%) and between divergently transcribed transcripts (5%). Analysis indicates that A-tracts and AT-tracts are an important signal for preferred Fis-binding sites, and that A(6)-tracts in particular constitute a high-affinity signal that dictates Fis phasing in stretches of DNA containing multiple and variably spaced A-tracts and AT-tracts. Furthermore, we find evidence for an average of two Fis-binding regions per supercoiling domain in the chromosome of exponentially growing cells. Transcriptome analysis shows that approximately 21% of genes are affected by the deletion of fis; however, the changes in magnitude are small. To address the differential Fis bindings under growth environment perturbation, ChIP-chip analysis was performed using cells grown under aerobic and anaerobic growth conditions. Interestingly, the Fis-binding regions are almost identical in aerobic and anaerobic growth conditions-indicating that the E. coli genome topology mediated by Fis is superficially identical in the two conditions. These novel results provide new insight into how Fis modulates DNA topology at a genome scale and thus advance our understanding of the architectural bases of the E. coli nucleoid.
Collapse
Affiliation(s)
- Byung-Kwan Cho
- Department of Bioengineering, University of California-San Diego, La Jolla, California 92093-0412, USA
| | | | | | | |
Collapse
|
21
|
O Cróinín T, Dorman CJ. Expression of the Fis protein is sustained in late-exponential- and stationary-phase cultures of Salmonella enterica serovar Typhimurium grown in the absence of aeration. Mol Microbiol 2007; 66:237-51. [PMID: 17784910 DOI: 10.1111/j.1365-2958.2007.05916.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The classic expression pattern of the Fis global regulatory protein during batch culture consists of a high peak in the early logarithmic phase of growth, followed by a sharp decrease through mid-exponential growth phase until Fis is almost undetectable at the end of the exponential phase. We discovered that this pattern is contingent on the growth regime. In Salmonella enterica serovar Typhimurium cultures grown in non-aerated SPI1-inducing conditions, Fis can be detected readily in stationary phase. On the other hand, cultures grown with standard aeration showed the classic Fis expression pattern. Sustained Fis expression in non-aerated cultures was also detected in some Escherichia coli strains, but not in others. This novel pattern of Fis expression was independent of sequence differences in the fis promoter regions of Salmonella and E. coli. Instead, a clear negative correlation between the expression of the Fis protein and of the stress-and-stationary-phase sigma factor RpoS was observed in a variety of strains. An rpoS mutant displayed elevated levels of Fis and had a higher frequency of epithelial cell invasion under these growth conditions. We discuss a model whereby Fis and RpoS levels vary in response to environmental signals allowing the expression and repression of SPI1 invasion genes.
Collapse
Affiliation(s)
- Tadhg O Cróinín
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Ireland
| | | |
Collapse
|
22
|
Hin-mediated DNA knotting and recombining promote replicon dysfunction and mutation. BMC Mol Biol 2007; 8:44. [PMID: 17531098 PMCID: PMC1904230 DOI: 10.1186/1471-2199-8-44] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Accepted: 05/25/2007] [Indexed: 01/11/2023] Open
Abstract
Background The genetic code imposes a dilemma for cells. The DNA must be long enough to encode for the complexity of an organism, yet thin and flexible enough to fit within the cell. The combination of these properties greatly favors DNA collisions, which can knot and drive recombination of the DNA. Despite the well-accepted propensity of cellular DNA to collide and react with itself, it has not been established what the physiological consequences are. Results Here we analyze the effects of recombined and knotted plasmids in E. coli using the Hin site-specific recombination system. We show that Hin-mediated DNA knotting and recombination (i) promote replicon loss by blocking DNA replication; (ii) block gene transcription; and (iii) cause genetic rearrangements at a rate three to four orders of magnitude higher than the rate for an unknotted, unrecombined plasmid. Conclusion These results show that DNA reactivity leading to recombined and knotted DNA is potentially toxic and may help drive genetic evolution.
Collapse
|
23
|
O Cróinín T, Carroll RK, Kelly A, Dorman CJ. Roles for DNA supercoiling and the Fis protein in modulating expression of virulence genes during intracellular growth of Salmonella enterica serovar Typhimurium. Mol Microbiol 2006; 62:869-82. [PMID: 16999831 DOI: 10.1111/j.1365-2958.2006.05416.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Adaptation of bacterial pathogens to an intracellular environment requires resetting of the expression levels of a wide range of both virulence and housekeeping genes. We investigated the possibility that changes in DNA supercoiling could modulate the expression of genes known to be important in the intracellular growth of the pathogen Salmonella enterica serovar Typhimurium. Our data show that DNA becomes relaxed when Salmonella grows in murine macrophage but not in epithelial cells, indicating that DNA supercoiling plays a role in discrimination between two types of intracellular environment. The ssrA regulatory gene within the SPI-2 pathogenicity island that is required for survival in macrophage was found to be upregulated by DNA relaxation. This enhancement of expression also required the Fis nucleoid-associated protein. Manipulating the level of the Fis protein modulated both the level of DNA supercoiling and ssrA transcription. We discuss a model of bacterial intracellular adaptation in which Fis and DNA supercoiling collaborate to fine-tune virulence gene expression.
Collapse
Affiliation(s)
- Tadhg O Cróinín
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Ireland
| | | | | | | |
Collapse
|
24
|
Maurer S, Fritz J, Muskhelishvili G, Travers A. RNA polymerase and an activator form discrete subcomplexes in a transcription initiation complex. EMBO J 2006; 25:3784-90. [PMID: 16888625 PMCID: PMC1553194 DOI: 10.1038/sj.emboj.7601261] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Accepted: 07/06/2006] [Indexed: 11/09/2022] Open
Abstract
Using high-resolution atomic force microscopy (AFM) we show that in a ternary complex of an activator protein, FIS, and RNA polymerase containing the sigma(70) specificity factor at the Escherichia coli tyrT promoter the polymerase and the activator form discrete, but connected, subcomplexes in close proximity. This is the first time that a ternary complex between an activator, a sigma(70) polymerase holoenzyme and promoter DNA has been visualised. Individually FIS and RNA polymerase wrap approximately 80 and 150 bp of promoter DNA, respectively. We suggest that the architecture of the ternary complex provides a general paradigm for the facilitation of direct, but weak, interactions between polymerase and an activator.
Collapse
Affiliation(s)
| | - Jürgen Fritz
- International University Bremen, Bremen, Germany
| | | | | |
Collapse
|
25
|
Travers A, Muskhelishvili G. Bacterial chromatin. Curr Opin Genet Dev 2005; 15:507-14. [PMID: 16099644 DOI: 10.1016/j.gde.2005.08.006] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Accepted: 08/03/2005] [Indexed: 12/20/2022]
Abstract
Recent studies have revealed that the bacterial nucleoid is a dynamic entity that alters its overall structure in response to changes in both growth rate and growth phase. These structural changes are correlated with, and might be driven by, changes in the distribution and utilization of DNA supercoiling. In turn, these parameters in addition to the delimitation of topological domains are dependent both on the relative proportions of the abundant nucleoid-associated proteins and on transcriptional activity. The domain structure itself is dynamic.
Collapse
Affiliation(s)
- Andrew Travers
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 2QH, UK.
| | | |
Collapse
|
26
|
Moulin L, Rahmouni AR, Boccard F. Topological insulators inhibit diffusion of transcription-induced positive supercoils in the chromosome of Escherichia coli. Mol Microbiol 2005; 55:601-10. [PMID: 15659173 DOI: 10.1111/j.1365-2958.2004.04411.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The double helical nature of DNA implies that progression of transcription machinery that cannot rotate easily around the DNA axis creates waves of positive supercoils ahead of it and negative supercoils behind it. Using topological reporters that detect local variations in DNA supercoiling, we have characterized the diffusion of transcription-induced (TI) positive supercoils in plasmids or in the chromosome of wild type Escherichia coli cells. Transcription-induced positive supercoils were able to diffuse and affect local supercoiling several kilobases away from the site of origin. By testing the effect of various DNA sequences, these reporters enabled us to identify elements that impede supercoil diffusion, i.e. behave as topological insulators. All the elements tested correspond to DNA gyrase catalytic targets. These results correlate the ability of a DNA sequence to be cleaved by DNA gyrase with topological insulator activity. Implications of the asymmetry in supercoil diffusion for the control of DNA topology are discussed.
Collapse
MESH Headings
- Chromosomes, Bacterial/genetics
- Chromosomes, Bacterial/metabolism
- DNA Gyrase/metabolism
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- DNA, Superhelical/chemistry
- DNA, Superhelical/genetics
- DNA, Superhelical/metabolism
- DNA-Binding Proteins
- Diffusion
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Glucuronidase/genetics
- Glucuronidase/metabolism
- Plasmids
- Promoter Regions, Genetic
- Terminator Regions, Genetic
- Transcription, Genetic
- Viral Proteins
Collapse
Affiliation(s)
- Laurent Moulin
- Centre de Génétique Moléculaire du CNRS, Bât. 26, 1 Avenue de la Terrasse, F-91198 Gif-sur-Yvette, France and Centre de Biophysique Moléculaire du CNRS, Avenue Ch. Sadron, F-45071 Orléans, France
| | | | | |
Collapse
|
27
|
Travers A, Muskhelishvili G. DNA supercoiling — a global transcriptional regulator for enterobacterial growth? Nat Rev Microbiol 2005; 3:157-69. [PMID: 15685225 DOI: 10.1038/nrmicro1088] [Citation(s) in RCA: 224] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A fundamental principle of exponential bacterial growth is that no more ribosomes are produced than are necessary to support the balance between nutrient availability and protein synthesis. Although this conclusion was first expressed more than 40 years ago, a full understanding of the molecular mechanisms involved remains elusive and the issue is still controversial. There is currently agreement that, although many different systems are undoubtedly involved in fine-tuning this balance, an important control, and in our opinion perhaps the main control, is regulation of the rate of transcription initiation of the stable (ribosomal and transfer) RNA transcriptons. In this review, we argue that regulation of DNA supercoiling provides a coherent explanation for the main modes of transcriptional control - stringent control, growth-rate control and growth-phase control - during the normal growth of Escherichia coli.
Collapse
Affiliation(s)
- Andrew Travers
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.
| | | |
Collapse
|
28
|
Thanbichler M, Wang SC, Shapiro L. The bacterial nucleoid: A highly organized and dynamic structure. J Cell Biochem 2005; 96:506-21. [PMID: 15988757 DOI: 10.1002/jcb.20519] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recent advances in bacterial cell biology have revealed unanticipated structural and functional complexity, reminiscent of eukaryotic cells. Particular progress has been made in understanding the structure, replication, and segregation of the bacterial chromosome. It emerged that multiple mechanisms cooperate to establish a dynamic assembly of supercoiled domains, which are stacked in consecutive order to adopt a defined higher-level organization. The position of genetic loci on the chromosome is thereby linearly correlated with their position in the cell. SMC complexes and histone-like proteins continuously remodel the nucleoid to reconcile chromatin compaction with DNA replication and gene regulation. Moreover, active transport processes ensure the efficient segregation of sister chromosomes and the faithful restoration of nucleoid organization while DNA replication and condensation are in progress.
Collapse
Affiliation(s)
- Martin Thanbichler
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305-5329, USA
| | | | | |
Collapse
|
29
|
Rochman M, Blot N, Dyachenko M, Glaser G, Travers A, Muskhelishvili G. Buffering of stable RNA promoter activity against DNA relaxation requires a far upstream sequence. Mol Microbiol 2004; 53:143-52. [PMID: 15225310 DOI: 10.1111/j.1365-2958.2004.04126.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The stable RNA promoters of Escherichia coli are exquisitely sensitive to variations in the superhelical density of DNA. Previously, we have shown that binding of the DNA architectural protein FIS at the upstream activating sequences (UASs) of stable RNA promoters prevents the transcription complexes from inactivation induced by changes in the supercoiling level of DNA. Here, we identify a strong FIS binding site 89 bp upstream of the previously described cluster of FIS binding sites located between positions -64 and -150 in the rrnA P1 UAS. Binding of FIS to this 'far upstream sequence' allows the recruitment of additional FIS molecules to the region. We demonstrate that, upon DNA relaxation, the maintenance of promoter activity requires, in addition to UAS, the presence of the far upstream sequence. The far upstream sequence shows no effect in the absence of an intact cluster. This requirement for the integrity of the region encompassing the far upstream sequence and the UAS cluster is correlated with the in vitro modulation of binding of FIS to UAS and interaction of RNA polymerase with the UP element and the region around the transcriptional start point. Our results suggest that, at the rrnA P1 promoter, the entire region comprising the UAS and the far upstream sequence is involved in the assembly of the transcription initiation complex. We propose that the extensive engagement of upstream DNA in this nucleoprotein complex locally compensates for the lack of torsional strain in relaxed DNA, thus increasing the resistance of the promoter to global DNA relaxation.
Collapse
Affiliation(s)
- Mark Rochman
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse, D-35043 Marburg, Germany
| | | | | | | | | | | |
Collapse
|
30
|
Travers AA. The structural basis of DNA flexibility. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2004; 362:1423-1438. [PMID: 15306459 DOI: 10.1098/rsta.2004.1390] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Although the average physico-chemical properties of a long DNA molecule may approximate to those of a thin isotropic homogeneous rod, DNA behaves more locally as an anisotropic heterogeneous rod. This bending anisotropy is sequence dependent and to a first approximation reflects both the geometry and stability of individual base steps. The biological manipulation and packaging of the molecule often depend crucially on local variations in both bending and torsional flexibility. However, whereas the probability of DNA untwisting can be strongly correlated with a high bending flexibility, DNA bending, especially when the molecule is tightly wrapped on a protein surface, may be energetically favoured by a less flexible sequence whose preferred configuration conforms more closely to that of the complementary protein surface. In the latter situation the lower bending flexibility may be more than compensated for on binding by a reduced required deformation energy relative to a fully isotropic DNA molecule.
Collapse
Affiliation(s)
- A A Travers
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.
| |
Collapse
|
31
|
Oussatcheva EA, Pavlicek J, Sankey OF, Sinden RR, Lyubchenko YL, Potaman VN. Influence of global DNA topology on cruciform formation in supercoiled DNA. J Mol Biol 2004; 338:735-43. [PMID: 15099741 DOI: 10.1016/j.jmb.2004.02.075] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2003] [Revised: 02/12/2004] [Accepted: 02/14/2004] [Indexed: 11/22/2022]
Abstract
DNA supercoiling plays an important role in many genetic processes such as replication, transcription, and recombination. Supercoiling provides energy for helix un-pairing and drives the formation of alternative DNA structural transitions, like cruciforms. Supercoiling also allows distant DNA regions to be brought into close proximity through the formation of inter-wound supercoils. Recently, we showed that the inverted repeat-to-cruciform transition acts as a molecular switch, influencing the global topology of a topological plasmid domain. As alternative DNA structures can affect global topology, a corollary hypothesis might be that the localization of a specific DNA sequence within a topological domain may affect the energetics required for formation of an alternative DNA structure. Here, we test this hypothesis and show that the localization of an inverted repeat to an apical position increases the rate of cruciform formation and reduces the superhelical energy required to drive the transition. For this, we created a series of plasmids containing an inverted repeat and an A-tract bent DNA sequence. The A-tract forms a permanent 180 degrees bend irrespective of DNA topology. The inverted repeat and the bent sequence were placed either at six o'clock or nine o'clock positions with respect to each other. Using 2D agarose gel electrophoresis, we show that the six o'clock construct extrudes the cruciform at a lower superhelical density than a control plasmid without the bend. Atomic force microscopy shows that the nine o'clock construct has the propensity to form branched molecules with the cruciform at the end of one branch. These results demonstrate that the localization of sequences within specific regions of a topological domain can affect the energetics of structural transitions as well as the branching structure of the domain. As structural transitions can be involved in biological processes, localization of alternative conformation-forming sequences to specific locations within a domain provides an additional means for gene regulation.
Collapse
Affiliation(s)
- Elena A Oussatcheva
- Center for Genome Research, Institute of Biosciences and Technology, Texas A and M University System Health Sciences Center, 2121 W. Holcombe Blvd., Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
32
|
Browning DF, Beatty CM, Sanstad EA, Gunn KE, Busby SJW, Wolfe AJ. Modulation of CRP-dependent transcription at the Escherichia coli acsP2 promoter by nucleoprotein complexes: anti-activation by the nucleoid proteins FIS and IHF. Mol Microbiol 2004; 51:241-54. [PMID: 14651625 DOI: 10.1046/j.1365-2958.2003.03824.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
acs encodes acetyl-coenzyme A synthetase, a high-affinity enzyme that allows cells to scavenge for acetate during carbon starvation. CRP activates acs transcription by binding tandem DNA sites located upstream of the major promoter, acsP2. Here, we used electrophoretic mobility shift assays and DNase I footprint analyses to demonstrate that the nucleoid proteins FIS and IHF each bind multiple sites within the acs regulatory region, that FIS competes successfully with CRP for binding to their overlapping and neighbouring sites and that IHF binds independently of either FIS or CRP. Using in vitro transcription assays, we demonstrated that FIS and IHF independently reduce CRP-dependent acs transcription. Using in vivo reporter assays, we showed that disruption of DNA sites for FIS or deletion of DNA sites for IHF increases acs transcription. We propose that FIS and IHF each function directly as anti-activators of CRP, each working independently at different times during growth to set the levels of CRP-dependent acs transcription.
Collapse
Affiliation(s)
- Douglas F Browning
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | | | | | | | | | | |
Collapse
|
33
|
Zhi H, Wang X, Cabrera JE, Johnson RC, Jin DJ. Fis stabilizes the interaction between RNA polymerase and the ribosomal promoter rrnB P1, leading to transcriptional activation. J Biol Chem 2003; 278:47340-9. [PMID: 13679374 DOI: 10.1074/jbc.m305430200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It has been shown that Fis activates transcription of the ribosomal promoter rrnB P1; however, the mechanism by which Fis activates rrnB P1 transcription is not fully understood. Paradoxically, although Fis activates transcription of rrnB P1 in vitro, transcription from the promoter containing Fis sites (as measured from rrnB P1-lacZ fusions) is not reduced in a fis null mutant strain. In this study, we further investigated the mechanism by which Fis activates transcription of the rrnB P1 promoter and the role of Fis in rRNA synthesis and cell growth in Escherichia coli. Like all other stringent promoters investigated so far, open complex of rrnB P1 has been shown to be intrinsically unstable, making open complex stability a potential regulatory step in transcription of this class of promoters. Our results show that Fis acts at this regulatory step by stabilizing the interaction between RNA polymerase and rrnB P1 in the absence of NTPs. Mutational analysis of the Fis protein demonstrates that there is a complete correlation between Fis-mediated transcriptional activation of rrnB P1 and Fis-mediated stabilization of preinitiation complexes of the promoter. Thus, our study indicates that Fis-mediated stabilization of RNA polymerase-rrnB P1 preinitiation complexes, presumably at the open complex step, contributes prominently to transcriptional activation. Furthermore, our in vivo results show that rRNA synthesis from the P1 promoters of several rRNA operons are reduced 2-fold in a fis null mutant compared with the wild type strain, indicating that Fis plays an important role in the establishment of robust rRNA synthesis when E. coli cells are emerging from a growth-arrested phase to a rapid growth phase. Thus, our results resolve an apparent paradox of the role of Fis in vitro and in vivo in the field.
Collapse
Affiliation(s)
- Huijun Zhi
- Laboratory of Molecular Biology, National Cancer Institute/NIH, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
34
|
Auner H, Buckle M, Deufel A, Kutateladze T, Lazarus L, Mavathur R, Muskhelishvili G, Pemberton I, Schneider R, Travers A. Mechanism of transcriptional activation by FIS: role of core promoter structure and DNA topology. J Mol Biol 2003; 331:331-44. [PMID: 12888342 DOI: 10.1016/s0022-2836(03)00727-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Escherichia coli DNA architectural protein FIS activates transcription from stable RNA promoters on entry into exponential growth and also reduces the level of negative supercoiling. Here we show that such a reduction decreases the activity of the tyrT promoter but that activation by FIS rescues tyrT transcription at non-optimal superhelical densities. Additionally we show that three different "up" mutations in the tyrT core promoter either abolish or reduce the dependence of tyrT transcription on both high negative superhelicity and FIS in vivo and infer that the specific sequence organisation of the core promoter couples the control of transcription initiation by negative superhelicity and FIS. In vitro all the mutations potentiate FIS-independent untwisting of the -10 region while at the wild-type promoter FIS facilitates this step. We propose that this untwisting is a crucial limiting step in the initiation of tyrT RNA synthesis. The tyrT core promoter structure is thus optimised to combine high transcriptional activity with acute sensitivity to at least three major independent regulatory inputs: negative superhelicity, FIS and ppGpp.
Collapse
Affiliation(s)
- Helge Auner
- Institut für Genetik und Mikrobiologie, LMU, München, Maria-Ward-Str 1a, 80638, München, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|