1
|
Fan Q, He R, Li Y, Gao P, Huang R, Li R, Zhang J, Li H, Liang X. Studying the effect of hyperoside on recovery from cyclophosphamide induced oligoasthenozoospermia. Syst Biol Reprod Med 2023; 69:333-346. [PMID: 37578152 DOI: 10.1080/19396368.2023.2241600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023]
Abstract
Oligoasthenozoospermia is becoming a serious problem, but effective prevention or treatment is lacking. Hyperoside, one of the main active ingredients in traditional Chinese medicine, may be effective in the treatment of oligoasthenozoospermia. In this study, we used cyclophosphamide (CTX: 50 mg/kg) to establish a mouse model of Oligoasthenozoospermia to investigate the therapeutic effect of hyperoside (30 mg/kg) on CTX-induced oligoasthenozoospermia. All mice were divided into four groups: blank control group (Control), treatment control group (Hyp), disease group (CTX) and treatment group (CTX + H). Mice body weight, testicular weight, sperm parameters and testicular histology were used to assess the reproductive capacity of mice and to explore the underlying mechanism of hyperoside in the treatment of oligoasthenozoospermia by assessing hormone levels, protein levels of molecules related to hormone synthesis and transcript levels of important genes related to spermatogenesis. Treatment with hyperoside significantly improved sperm density, sperm viability and testicular function compared to untreated oligoasthenozoospermia mice. In mechanism, treatment with hyperoside resulted in significant improvement in pathological changes in spermatogenic tubules, with an increase in testosterone production, and upregulations of Protein Kinase CAMP-Activated Catalytic Subunit Beta (PRKACB), Steroidogenic Acute Regulatory Protein (STAR), and Cytochrome P450 Family 17 Subfamily A Member 1 (CYP17A1) for testosterone production. Hyperoside also promoted the cell cycle of germ cells and up-regulated meiosis and spermatogenesis-related genes, including DNA Meiotic Recombinase 1 (Dmc1), Ataxia telangiectasia mutated (Atm) and RAD21 Cohesin Complex Component (Rad21). In conclusion, hyperoside exerted protective effects on oligoasthenozoospermia mice by regulating testosterone production, meiosis and sperm maturation of germ cells.
Collapse
Affiliation(s)
- Qigang Fan
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Ruifen He
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Yi Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Pu Gao
- Second Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Runchun Huang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Rong Li
- Second Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Jiayu Zhang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Hongli Li
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Key Laboratory for Gynecologic Oncology Gansu Province, Lanzhou, China
| | - Xiaolei Liang
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Key Laboratory for Gynecologic Oncology Gansu Province, Lanzhou, China
| |
Collapse
|
2
|
Abstract
In meiosis, homologous chromosome synapsis is mediated by a supramolecular protein structure, the synaptonemal complex (SC), that assembles between homologous chromosome axes. The mammalian SC comprises at least eight largely coiled-coil proteins that interact and self-assemble to generate a long, zipper-like structure that holds homologous chromosomes in close proximity and promotes the formation of genetic crossovers and accurate meiotic chromosome segregation. In recent years, numerous mutations in human SC genes have been associated with different types of male and female infertility. Here, we integrate structural information on the human SC with mouse and human genetics to describe the molecular mechanisms by which SC mutations can result in human infertility. We outline certain themes in which different SC proteins are susceptible to different types of disease mutation and how genetic variants with seemingly minor effects on SC proteins may act as dominant-negative mutations in which the heterozygous state is pathogenic.
Collapse
Affiliation(s)
- Ian R Adams
- Medical Research Council (MRC) Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom;
| | - Owen R Davies
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom;
| |
Collapse
|
3
|
Zhang Q, Chen HJ, Xie CZ, Qiu GF. Potential role for the germ cell-specific Rad21 in early meiosis of oocyte and spermatocyte in the Chinese mitten crab Eriocheir sinensis. Gene 2023; 862:147262. [PMID: 36764338 DOI: 10.1016/j.gene.2023.147262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/26/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023]
Abstract
Rad21/Rec8 family proteins are vital for sister chromatid segregation in mitosis and homologous recombination in meiosis, but no molecular data are available in crustacean species. In this study, a germ cell-specific Rad21 named EsRad21 was identified in the crab Eriocheir sinensis. EsRad21 mRNA has an open reading frame of 2310 base pairs (bp) encoding a 769 amino acids (aa) protein. RT-PCR showed that EsRad21 mRNA was particularly expressed in testis and ovary. The RT-qPCR results further revealed that the EsRad21 mRNA exhibited similar expression pattern in gonads at various developmental stages. EsRad21 mRNA expression level was the highest in testis at early spermatogenesis stage and ovaries at previtellogenesis stage, thereafter decreased significantly at middle spermatogenesis and vitellogenesis, and finally reach the lowest level at late spermatogenesis and vitellogenesis. In situ hybridization (ISH) analysis showed that EsRad21 mRNA was exclusively expressed in germline cells, but not in gonadal somatic cells. Notably, hybridized signal was detected on chromosomes of metaphase spermatocytes. EsRad21 is thus an underlying helpful indicator of the early phases of germ cell development. RNAi knockdown of EsRad21 downregulated the expression of other meiosis-related genes like Smc5-Smc6 and SPO11 and resulted in high mortality of individuals after 24 h post injection of EsRad21 dsRNA. Taken together, our results showed a potential role for EsRad21 in early meiosis of oocytes and spermatocytes in E. sinensis. This is the first report on the molecular characterization of the Rad21 transcript in a crustacean species.
Collapse
Affiliation(s)
- Qin Zhang
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Hong-Jun Chen
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Chi-Zhen Xie
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Gao-Feng Qiu
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
4
|
Liu YJ, Ding Y, Yin YQ, Xiao H, Hu G, Zhou JW. Cspg4high microglia contribute to microgliosis during neurodegeneration. Proc Natl Acad Sci U S A 2023; 120:e2210643120. [PMID: 36795751 PMCID: PMC9974490 DOI: 10.1073/pnas.2210643120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 12/27/2022] [Indexed: 02/17/2023] Open
Abstract
Microglia play a critical role in the pathogenic process of neurodegenerative diseases, such as Parkinson's disease (PD) and Alzheimer's disease (AD). Upon pathological stimulation, microglia are converted from a surveillant to an overactivated phenotype. However, the molecular characters of proliferating microglia and their contributions to the pathogenesis of neurodegeneration remain unclear. Here, we identify chondroitin sulfate proteoglycan 4 (Cspg4, also known as neural/glial antigen 2)-expressing microglia as a specific subset of microglia with proliferative capability during neurodegeneration. We found that the percentage of Cspg4+ microglia was increased in mouse models of PD. The transcriptomic analysis of Cspg4+ microglia revealed that the subcluster Cspg4high microglia displayed a unique transcriptomic signature, which was characterized by the enrichment of orthologous cell cycle genes and a lower expression of genes responsible for neuroinflammation and phagocytosis. Their gene signatures were also distinct from that of known disease-associated microglia. The proliferation of quiescent Cspg4high microglia was evoked by pathological α-synuclein. Following the transplantation in the adult brain with the depletion of endogenous microglia, Cspg4high microglia grafts showed higher survival rates than their Cspg4- counterparts. Consistently, Cspg4high microglia were detected in the brain of AD patients and displayed the expansion in animal models of AD. These findings suggest that Cspg4high microglia are one of the origins of microgliosis during neurodegeneration and may open up a avenue for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ya-jing Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences (CAS) Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai200031, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing100049, China
| | - Yu Ding
- Nanjing University of Chinese Medicine, Nanjing210023, China
| | - Yan-qing Yin
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences (CAS) Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai200031, China
| | - Hui Xiao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences (CAS) Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai200031, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing100049, China
| | - Gang Hu
- Nanjing University of Chinese Medicine, Nanjing210023, China
| | - Jia-wei Zhou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences (CAS) Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai200031, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing100049, China
- Co-innovation Center of Neuroregeneration, School of Medicine, Nantong University, Nantong, Jiangsu 226001, China
| |
Collapse
|
5
|
Lee J. Is age-related increase of chromosome segregation errors in mammalian oocytes caused by cohesin deterioration? Reprod Med Biol 2020; 19:32-41. [PMID: 31956283 PMCID: PMC6955592 DOI: 10.1002/rmb2.12299] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Mammalian oocytes initiate meiosis in fetal ovary and are arrested at dictyate stage in prophase I for a long period. It is known that incidence of chromosome segregation errors in oocytes increases with advancing age, but the molecular mechanism underlying this phenomenon has not been clarified. METHODS Cohesin, a multi-subunit protein complex, mediates sister chromatid cohesion in both mitosis and meiosis. In this review, molecular basis of meiotic chromosome cohesion and segregation is summarized. Further, the relationship between chromosome segregation errors and cohesin deterioration in aged oocytes is discussed. RESULTS Recent studies show that chromosome-associated cohesin decreases in an age-dependent manner in mouse oocytes. Furthermore, conditional knockout or activation of cohesin in oocytes indicates that only the cohesin expressed before premeiotic S phase can establish and maintain sister chromatic cohesion and that cohesin does not turnover during the dictyate arrest. CONCLUSION In mice, the accumulating evidence suggests that deterioration of cohesin due to the lack of turnover during dictyate arrest is one of the major causes of chromosome segregation errors in aged oocytes. However, whether the same is true in human remains elusive since even the deterioration of cohesin during dictyate arrest has not been demonstrated in human oocytes.
Collapse
Affiliation(s)
- Jibak Lee
- Laboratory of Developmental BiotechnologyGraduate School of Agricultural ScienceKobe UniversityKobeJapan
| |
Collapse
|
6
|
Lee J. The Regulation and Function of Cohesin and Condensin in Mammalian Oocytes and Spermatocytes. Results Probl Cell Differ 2019; 63:355-372. [PMID: 28779325 DOI: 10.1007/978-3-319-60855-6_15] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Germ cells, such as oocytes and spermatocytes, produce haploid gametes by a special type of cell division called meiosis. The reduction of chromosome number is achieved in meiosis I, in which homologous chromosomes (homologs) are paired and recombined with their counterparts and finally segregated from each other. How meiotic chromosomes behave in a different manner from mitotic chromosomes has been a fascinating problem for cellular and developmental biology. Cohesin and condensin are multi-subunit protein complexes that play central roles in sister chromatid cohesion and chromosome condensation (also segregation), respectively. Recent studies investigating the expression and function of cohesin and condensin in mammalian germ cells greatly advance our understanding of the molecular mechanism underlying the meiotic chromosomal events. Furthermore, accumulating evidence suggests that reduction of cohesin during prophase I arrest in mammalian oocytes is one of the major causes for age-related chromosome segregation error. This review focuses on the regulation and functions of cohesins and condensins during mammalian meiosis.
Collapse
Affiliation(s)
- Jibak Lee
- Laboratory of Developmental Biotechnology, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan.
| |
Collapse
|
7
|
Ishiguro K. The cohesin complex in mammalian meiosis. Genes Cells 2019; 24:6-30. [PMID: 30479058 PMCID: PMC7379579 DOI: 10.1111/gtc.12652] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 12/13/2022]
Abstract
Cohesin is an evolutionary conserved multi-protein complex that plays a pivotal role in chromosome dynamics. It plays a role both in sister chromatid cohesion and in establishing higher order chromosome architecture, in somatic and germ cells. Notably, the cohesin complex in meiosis differs from that in mitosis. In mammalian meiosis, distinct types of cohesin complexes are produced by altering the combination of meiosis-specific subunits. The meiosis-specific subunits endow the cohesin complex with specific functions for numerous meiosis-associated chromosomal events, such as chromosome axis formation, homologue association, meiotic recombination and centromeric cohesion for sister kinetochore geometry. This review mainly focuses on the cohesin complex in mammalian meiosis, pointing out the differences in its roles from those in mitosis. Further, common and divergent aspects of the meiosis-specific cohesin complex between mammals and other organisms are discussed.
Collapse
Affiliation(s)
- Kei‐ichiro Ishiguro
- Institute of Molecular Embryology and GeneticsKumamoto UniversityKumamotoJapan
| |
Collapse
|
8
|
Reichman R, Alleva B, Smolikove S. Prophase I: Preparing Chromosomes for Segregation in the Developing Oocyte. Results Probl Cell Differ 2017; 59:125-173. [PMID: 28247048 DOI: 10.1007/978-3-319-44820-6_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Formation of an oocyte involves a specialized cell division termed meiosis. In meiotic prophase I (the initial stage of meiosis), chromosomes undergo elaborate events to ensure the proper segregation of their chromosomes into gametes. These events include processes leading to the formation of a crossover that, along with sister chromatid cohesion, forms the physical link between homologous chromosomes. Crossovers are formed as an outcome of recombination. This process initiates with programmed double-strand breaks that are repaired through the use of homologous chromosomes as a repair template. The accurate repair to form crossovers takes place in the context of the synaptonemal complex, a protein complex that links homologous chromosomes in meiotic prophase I. To allow proper execution of meiotic prophase I events, signaling processes connect different steps in recombination and synapsis. The events occurring in meiotic prophase I are a prerequisite for proper chromosome segregation in the meiotic divisions. When these processes go awry, chromosomes missegregate. These meiotic errors are thought to increase with aging and may contribute to the increase in aneuploidy observed in advanced maternal age female oocytes.
Collapse
Affiliation(s)
- Rachel Reichman
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA
| | - Benjamin Alleva
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA
| | - Sarit Smolikove
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
9
|
Rong M, Matsuda A, Hiraoka Y, Lee J. Meiotic cohesin subunits RAD21L and REC8 are positioned at distinct regions between lateral elements and transverse filaments in the synaptonemal complex of mouse spermatocytes. J Reprod Dev 2016; 62:623-630. [PMID: 27665783 PMCID: PMC5177981 DOI: 10.1262/jrd.2016-127] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 09/08/2016] [Indexed: 11/20/2022] Open
Abstract
Cohesins containing a meiosis-specific α-kleisin subunit, RAD21L or REC8, play roles in diverse aspects of meiotic chromosome dynamics including formation of axial elements (AEs), assembly of the synaptonemal complex (SC), recombination of homologous chromosomes (homologs), and cohesion of sister chromatids. However, the exact functions of individual α-kleisins remain to be elucidated. Here, we examined the localization of RAD21L and REC8 within the SC by super-resolution microscopy, 3D-SIM. We found that both RAD21L and REC8 were localized at the connection sites between lateral elements (LEs) and transverse filaments (TFs) of pachynema with RAD21L locating interior to REC8 sites. RAD21L and REC8 were not symmetrical in terms of synaptic homologs, suggesting that the arrangement of different cohesins is not strictly fixed along all chromosome axes. Intriguingly, some RAD21L signals, but not REC8 signals, were observed between unsynapsed regions of AEs of zygonema as if they formed a bridge between homologs. Furthermore, the signals of recombination intermediates overlapped with those of RAD21L to a greater degree than with those of REC8. These results highlight the different properties of two meiotic α-kleisins, and strongly support the previous proposition that RAD21L is an atypical cohesin that establishes the association between homologs rather than sister chromatids.
Collapse
Affiliation(s)
- Mei Rong
- Laboratory of Developmental Biotechnology, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | | | | | | |
Collapse
|
10
|
Ohta S, Montaño-Gutierrez LF, de Lima Alves F, Ogawa H, Toramoto I, Sato N, Morrison CG, Takeda S, Hudson DF, Rappsilber J, Earnshaw WC. Proteomics Analysis with a Nano Random Forest Approach Reveals Novel Functional Interactions Regulated by SMC Complexes on Mitotic Chromosomes. Mol Cell Proteomics 2016; 15:2802-18. [PMID: 27231315 PMCID: PMC4974353 DOI: 10.1074/mcp.m116.057885] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 05/04/2016] [Indexed: 12/31/2022] Open
Abstract
Packaging of DNA into condensed chromosomes during mitosis is essential for the faithful segregation of the genome into daughter nuclei. Although the structure and composition of mitotic chromosomes have been studied for over 30 years, these aspects are yet to be fully elucidated. Here, we used stable isotope labeling with amino acids in cell culture to compare the proteomes of mitotic chromosomes isolated from cell lines harboring conditional knockouts of members of the condensin (SMC2, CAP-H, CAP-D3), cohesin (Scc1/Rad21), and SMC5/6 (SMC5) complexes. Our analysis revealed that these complexes associate with chromosomes independently of each other, with the SMC5/6 complex showing no significant dependence on any other chromosomal proteins during mitosis. To identify subtle relationships between chromosomal proteins, we employed a nano Random Forest (nanoRF) approach to detect protein complexes and the relationships between them. Our nanoRF results suggested that as few as 113 of 5058 detected chromosomal proteins are functionally linked to chromosome structure and segregation. Furthermore, nanoRF data revealed 23 proteins that were not previously suspected to have functional interactions with complexes playing important roles in mitosis. Subsequent small-interfering-RNA-based validation and localization tracking by green fluorescent protein-tagging highlighted novel candidates that might play significant roles in mitotic progression.
Collapse
Affiliation(s)
- Shinya Ohta
- From the ‡Center for Innovative and Translational Medicine, Medical School, Kochi University Kohasu, Oko-cho, Nankoku, Kochi 783-8505, Japan; §Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Mayfield Road, Edinburgh EH9 3BF, UK;
| | - Luis F Montaño-Gutierrez
- §Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Mayfield Road, Edinburgh EH9 3BF, UK
| | - Flavia de Lima Alves
- §Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Mayfield Road, Edinburgh EH9 3BF, UK
| | - Hiromi Ogawa
- §Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Mayfield Road, Edinburgh EH9 3BF, UK
| | - Iyo Toramoto
- From the ‡Center for Innovative and Translational Medicine, Medical School, Kochi University Kohasu, Oko-cho, Nankoku, Kochi 783-8505, Japan
| | - Nobuko Sato
- From the ‡Center for Innovative and Translational Medicine, Medical School, Kochi University Kohasu, Oko-cho, Nankoku, Kochi 783-8505, Japan
| | - Ciaran G Morrison
- ¶Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Shunichi Takeda
- ‖Department of Radiation Genetics, Kyoto University Graduate School of Medicine, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Damien F Hudson
- **Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Victoria 3052, Australia
| | - Juri Rappsilber
- §Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Mayfield Road, Edinburgh EH9 3BF, UK; ‡‡Chair of Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| | - William C Earnshaw
- §Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Mayfield Road, Edinburgh EH9 3BF, UK
| |
Collapse
|
11
|
Hernández-Hernández A, Lilienthal I, Fukuda N, Galjart N, Höög C. CTCF contributes in a critical way to spermatogenesis and male fertility. Sci Rep 2016; 6:28355. [PMID: 27345455 PMCID: PMC4921845 DOI: 10.1038/srep28355] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 06/01/2016] [Indexed: 11/21/2022] Open
Abstract
The CCCTC-binding factor (CTCF) is an architectural protein that governs chromatin organization and gene expression in somatic cells. Here, we show that CTCF regulates chromatin compaction necessary for packaging of the paternal genome into mature sperm. Inactivation of Ctcf in male germ cells in mice (Ctcf-cKO mice) resulted in impaired spermiogenesis and infertility. Residual spermatozoa in Ctcf-cKO mice displayed abnormal head morphology, aberrant chromatin compaction, impaired protamine 1 incorporation into chromatin and accelerated histone depletion. Thus, CTCF regulates chromatin organization during spermiogenesis, contributing to the functional organization of mature sperm.
Collapse
Affiliation(s)
| | - Ingrid Lilienthal
- Karolinska Institutet, Department of Cell and Molecular Biology, Berzelius väg 35, 171 77 Stockholm, Sweden
| | - Nanaho Fukuda
- Karolinska Institutet, Department of Cell and Molecular Biology, Berzelius väg 35, 171 77 Stockholm, Sweden
| | - Niels Galjart
- Department of Cell Biology and Genetics, Erasmus MC, 2040 CA Rotterdam, The Netherlands
| | - Christer Höög
- Karolinska Institutet, Department of Cell and Molecular Biology, Berzelius väg 35, 171 77 Stockholm, Sweden
| |
Collapse
|
12
|
Ward A, Hopkins J, Mckay M, Murray S, Jordan PW. Genetic Interactions Between the Meiosis-Specific Cohesin Components, STAG3, REC8, and RAD21L. G3 (BETHESDA, MD.) 2016; 6:1713-24. [PMID: 27172213 PMCID: PMC4889667 DOI: 10.1534/g3.116.029462] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 04/05/2016] [Indexed: 11/21/2022]
Abstract
Cohesin is an essential structural component of chromosomes that ensures accurate chromosome segregation during mitosis and meiosis. Previous studies have shown that there are cohesin complexes specific to meiosis, required to mediate homologous chromosome pairing, synapsis, recombination, and segregation. Meiosis-specific cohesin complexes consist of two structural maintenance of chromosomes proteins (SMC1α/SMC1β and SMC3), an α-kleisin protein (RAD21, RAD21L, or REC8), and a stromal antigen protein (STAG1, 2, or 3). STAG3 is exclusively expressed during meiosis, and is the predominant STAG protein component of cohesin complexes in primary spermatocytes from mouse, interacting directly with each α-kleisin subunit. REC8 and RAD21L are also meiosis-specific cohesin components. Stag3 mutant spermatocytes arrest in early prophase ("zygotene-like" stage), displaying failed homolog synapsis and persistent DNA damage, as a result of unstable loading of cohesin onto the chromosome axes. Interestingly, Rec8, Rad21L double mutants resulted in an earlier "leptotene-like" arrest, accompanied by complete absence of STAG3 loading. To assess genetic interactions between STAG3 and α-kleisin subunits RAD21L and REC8, our lab generated Stag3, Rad21L, and Stag3, Rec8 double knockout mice, and compared them to the Rec8, Rad21L double mutant. These double mutants are phenotypically distinct from one another, and more severe than each single knockout mutant with regards to chromosome axis formation, cohesin loading, and sister chromatid cohesion. The Stag3, Rad21L, and Stag3, Rec8 double mutants both progress further into prophase I than the Rec8, Rad21L double mutant. Our genetic analysis demonstrates that cohesins containing STAG3 and REC8 are the main complex required for centromeric cohesion, and RAD21L cohesins are required for normal clustering of pericentromeric heterochromatin. Furthermore, the STAG3/REC8 and STAG3/RAD21L cohesins are the primary cohesins required for axis formation.
Collapse
Affiliation(s)
- Ayobami Ward
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205
| | - Jessica Hopkins
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205
| | | | | | - Philip W Jordan
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205
| |
Collapse
|
13
|
Agostinho A, Manneberg O, van Schendel R, Hernández-Hernández A, Kouznetsova A, Blom H, Brismar H, Höög C. High density of REC8 constrains sister chromatid axes and prevents illegitimate synaptonemal complex formation. EMBO Rep 2016; 17:901-13. [PMID: 27170622 PMCID: PMC5278604 DOI: 10.15252/embr.201642030] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/29/2016] [Accepted: 04/07/2016] [Indexed: 11/09/2022] Open
Abstract
During meiosis, cohesin complexes mediate sister chromatid cohesion (SCC), synaptonemal complex (SC) assembly and synapsis. Here, using super-resolution microscopy, we imaged sister chromatid axes in mouse meiocytes that have normal or reduced levels of cohesin complexes, assessing the relationship between localization of cohesin complexes, SCC and SC formation. We show that REC8 foci are separated from each other by a distance smaller than 15% of the total chromosome axis length in wild-type meiocytes. Reduced levels of cohesin complexes result in a local separation of sister chromatid axial elements (LSAEs), as well as illegitimate SC formation at these sites. REC8 but not RAD21 or RAD21L cohesin complexes flank sites of LSAEs, whereas RAD21 and RAD21L appear predominantly along the separated sister-chromatid axes. Based on these observations and a quantitative distribution analysis of REC8 along sister chromatid axes, we propose that the high density of randomly distributed REC8 cohesin complexes promotes SCC and prevents illegitimate SC formation.
Collapse
Affiliation(s)
- Ana Agostinho
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Otto Manneberg
- Science for Life Laboratory, Department of Applied Physics, Royal Institute of Technology, Solna, Sweden
| | - Robin van Schendel
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Anna Kouznetsova
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Hans Blom
- Science for Life Laboratory, Department of Applied Physics, Royal Institute of Technology, Solna, Sweden
| | - Hjalmar Brismar
- Science for Life Laboratory, Department of Applied Physics, Royal Institute of Technology, Solna, Sweden
| | - Christer Höög
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
14
|
Giguère SSB, Guise AJ, Jean Beltran PM, Joshi PM, Greco TM, Quach OL, Kong J, Cristea IM. The Proteomic Profile of Deleted in Breast Cancer 1 (DBC1) Interactions Points to a Multifaceted Regulation of Gene Expression. Mol Cell Proteomics 2015; 15:791-809. [PMID: 26657080 DOI: 10.1074/mcp.m115.054619] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Indexed: 01/01/2023] Open
Abstract
Deleted in breast cancer 1 (DBC1) has emerged as an important regulator of multiple cellular processes, ranging from gene expression to cell cycle progression. DBC1 has been linked to tumorigenesis both as an inhibitor of histone deacetylases, HDAC3 and sirtuin 1, and as a transcriptional cofactor for nuclear hormone receptors. However, despite mounting interest in DBC1, relatively little is known about the range of its interacting partners and the scope of its functions. Here, we carried out a functional proteomics-based investigation of DBC1 interactions in two relevant cell types, T cells and kidney cells. Microscopy, molecular biology, biochemistry, and mass spectrometry studies allowed us to assess DBC1 mRNA and protein levels, localization, phosphorylation status, and protein interaction networks. The comparison of DBC1 interactions in these cell types revealed conserved regulatory roles for DBC1 in gene expression, chromatin organization and modification, and cell cycle progression. Interestingly, we observe previously unrecognized DBC1 interactions with proteins encoded by cancer-associated genes. Among these interactions are five components of the SWI/SNF complex, the most frequently mutated chromatin remodeling complex in human cancers. Additionally, we identified a DBC1 interaction with TBL1XR1, a component of the NCoR complex, which we validated by reciprocal isolation. Strikingly, we discovered that DBC1 associates with proteins that regulate the circadian cycle, including DDX5, DHX9, and SFPQ. We validated this interaction by colocalization and reciprocal isolation. Functional assessment of this association demonstrated that DBC1 protein levels are important for regulating CLOCK and BMAL1 protein oscillations in synchronized T cells. Our results suggest that DBC1 is integral to the maintenance of the circadian molecular clock. Furthermore, the identified interactions provide a valuable resource for the exploration of pathways involved in DBC1-associated tumorigenesis.
Collapse
Affiliation(s)
- Sophie S B Giguère
- From the ‡Department of Molecular Biology, Princeton University, Princeton, New Jersey, 08544
| | - Amanda J Guise
- From the ‡Department of Molecular Biology, Princeton University, Princeton, New Jersey, 08544
| | - Pierre M Jean Beltran
- From the ‡Department of Molecular Biology, Princeton University, Princeton, New Jersey, 08544
| | - Preeti M Joshi
- From the ‡Department of Molecular Biology, Princeton University, Princeton, New Jersey, 08544
| | - Todd M Greco
- From the ‡Department of Molecular Biology, Princeton University, Princeton, New Jersey, 08544
| | - Olivia L Quach
- From the ‡Department of Molecular Biology, Princeton University, Princeton, New Jersey, 08544
| | - Jeffery Kong
- From the ‡Department of Molecular Biology, Princeton University, Princeton, New Jersey, 08544
| | - Ileana M Cristea
- From the ‡Department of Molecular Biology, Princeton University, Princeton, New Jersey, 08544
| |
Collapse
|
15
|
Patil S, Moeys S, von Dassow P, Huysman MJJ, Mapleson D, De Veylder L, Sanges R, Vyverman W, Montresor M, Ferrante MI. Identification of the meiotic toolkit in diatoms and exploration of meiosis-specific SPO11 and RAD51 homologs in the sexual species Pseudo-nitzschia multistriata and Seminavis robusta. BMC Genomics 2015; 16:930. [PMID: 26572248 PMCID: PMC4647503 DOI: 10.1186/s12864-015-1983-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 10/04/2015] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Sexual reproduction is an obligate phase in the life cycle of most eukaryotes. Meiosis varies among organisms, which is reflected by the variability of the gene set associated to the process. Diatoms are unicellular organisms that belong to the stramenopile clade and have unique life cycles that can include a sexual phase. RESULTS The exploration of five diatom genomes and one diatom transcriptome led to the identification of 42 genes potentially involved in meiosis. While these include the majority of known meiosis-related genes, several meiosis-specific genes, including DMC1, could not be identified. Furthermore, phylogenetic analyses supported gene identification and revealed ancestral loss and recent expansion in the RAD51 family in diatoms. The two sexual species Pseudo-nitzschia multistriata and Seminavis robusta were used to explore the expression of meiosis-related genes: RAD21, SPO11-2, RAD51-A, RAD51-B and RAD51-C were upregulated during meiosis, whereas other paralogs in these families showed no differential expression patterns, suggesting that they may play a role during vegetative divisions. An almost identical toolkit is shared among Pseudo-nitzschia multiseries and Fragilariopsis cylindrus, as well as two species for which sex has not been observed, Phaeodactylum tricornutum and Thalassiosira pseudonana, suggesting that these two may retain a facultative sexual phase. CONCLUSIONS Our results reveal the conserved meiotic toolkit in six diatom species and indicate that Stramenopiles share major modifications of canonical meiosis processes ancestral to eukaryotes, with important divergences in each Kingdom.
Collapse
Affiliation(s)
- Shrikant Patil
- Stazione Zoologica Anton Dohrn, Villa Comunale 1, 80121, Naples, Italy.
| | - Sara Moeys
- Department of Biology, Protistology and Aquatic Ecology, Ghent University, 9000, Ghent, Belgium. .,Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), 9052, Ghent, Belgium. .,Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium.
| | - Peter von Dassow
- Facultad de Ciencias Biológicas, Instituto Milenio de Oceanografía, Pontificia Universidad Católica de Chile, Santiago, Chile. .,UMI 3614, Evolutionary Biology and Ecology of Algae, CNRS-UPMC Sorbonne Universités, PUCCh, UACH, Station Biologique de Roscoff, Roscoff, France.
| | - Marie J J Huysman
- Department of Biology, Protistology and Aquatic Ecology, Ghent University, 9000, Ghent, Belgium. .,Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), 9052, Ghent, Belgium. .,Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium.
| | - Daniel Mapleson
- The Genome Analysis Centre (TGAC), Norwich Research Park, Norwich, NR4 7UH, UK.
| | - Lieven De Veylder
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), 9052, Ghent, Belgium. .,Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium.
| | - Remo Sanges
- Stazione Zoologica Anton Dohrn, Villa Comunale 1, 80121, Naples, Italy.
| | - Wim Vyverman
- Department of Biology, Protistology and Aquatic Ecology, Ghent University, 9000, Ghent, Belgium.
| | - Marina Montresor
- Stazione Zoologica Anton Dohrn, Villa Comunale 1, 80121, Naples, Italy.
| | | |
Collapse
|
16
|
Pripuzova NS, Getie-Kebtie M, Grunseich C, Sweeney C, Malech H, Alterman MA. Development of a protein marker panel for characterization of human induced pluripotent stem cells (hiPSCs) using global quantitative proteome analysis. Stem Cell Res 2015; 14:323-38. [PMID: 25840413 PMCID: PMC5778352 DOI: 10.1016/j.scr.2015.01.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 01/23/2015] [Accepted: 01/30/2015] [Indexed: 12/13/2022] Open
Abstract
The emergence of new methods for reprogramming of adult somatic cells into induced pluripotent stem cells (iPSC) led to the development of new approaches in drug discovery and regenerative medicine. Investigation of the molecular mechanisms underlying the self-renewal, expansion and differentiation of human iPSC (hiPSC) should lead to improvements in the manufacture of safe and reliable cell therapy products. The goal of our study was qualitative and quantitative proteomic characterizations of hiPSC by means of electrospray ionization (ESI)-MSe and MALDI-TOF/TOF mass spectrometry (MS). Proteomes of hiPSCs of different somatic origins: fibroblasts and peripheral blood CD34+ cells, reprogrammed by the same technique, were compared with the original somatic cells and hESC. Quantitative proteomic comparison revealed approximately 220 proteins commonly up-regulated in all three pluripotent stem cell lines compared to the primary cells. Expression of 21 proteins previously reported as pluripotency markers was up-regulated in both hiPSCs (8 were confirmed by Western blot). A number of novel candidate marker proteins with the highest fold-change difference between hiPSCs/hESC and somatic cells discovered by MS were confirmed by Western blot. A panel of 22 candidate marker proteins of hiPSC was developed and expression of these proteins was confirmed in 8 additional hiPSC lines.
Collapse
Affiliation(s)
- Natalia S Pripuzova
- Tumor Vaccine and Biotechnology Branch, Division of Cellular and Gene Therapies, FDA, Center for Biologics Evaluation and Research, Bethesda, MD 20892-4555, USA
| | - Melkamu Getie-Kebtie
- Tumor Vaccine and Biotechnology Branch, Division of Cellular and Gene Therapies, FDA, Center for Biologics Evaluation and Research, Bethesda, MD 20892-4555, USA
| | - Christopher Grunseich
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-3705, USA
| | - Colin Sweeney
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1456, USA
| | - Harry Malech
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1456, USA
| | - Michail A Alterman
- Tumor Vaccine and Biotechnology Branch, Division of Cellular and Gene Therapies, FDA, Center for Biologics Evaluation and Research, Bethesda, MD 20892-4555, USA.
| |
Collapse
|
17
|
Severson AF, Meyer BJ. Divergent kleisin subunits of cohesin specify mechanisms to tether and release meiotic chromosomes. eLife 2014; 3:e03467. [PMID: 25171895 PMCID: PMC4174578 DOI: 10.7554/elife.03467] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 08/28/2014] [Indexed: 12/22/2022] Open
Abstract
We show that multiple, functionally specialized cohesin complexes mediate the establishment and two-step release of sister chromatid cohesion that underlies the production of haploid gametes. In C. elegans, the kleisin subunits REC-8 and COH-3/4 differ between meiotic cohesins and endow them with distinctive properties that specify how cohesins load onto chromosomes and then trigger and release cohesion. Unlike REC-8 cohesin, COH-3/4 cohesin becomes cohesive through a replication-independent mechanism initiated by the DNA double-stranded breaks that induce crossover recombination. Thus, break-induced cohesion also tethers replicated meiotic chromosomes. Later, recombination stimulates separase-independent removal of REC-8 and COH-3/4 cohesins from reciprocal chromosomal territories flanking the crossover site. This region-specific removal likely underlies the two-step separation of homologs and sisters. Unexpectedly, COH-3/4 performs cohesion-independent functions in synaptonemal complex assembly. This new model for cohesin function diverges from that established in yeast but likely applies directly to plants and mammals, which utilize similar meiotic kleisins.
Collapse
Affiliation(s)
- Aaron F Severson
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
- Center for Gene Regulation in Health and Disease and Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, United States
| | - Barbara J Meyer
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
18
|
Urban E, Nagarkar-Jaiswal S, Lehner CF, Heidmann SK. The cohesin subunit Rad21 is required for synaptonemal complex maintenance, but not sister chromatid cohesion, during Drosophila female meiosis. PLoS Genet 2014; 10:e1004540. [PMID: 25101996 PMCID: PMC4125089 DOI: 10.1371/journal.pgen.1004540] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 06/16/2014] [Indexed: 01/03/2023] Open
Abstract
Replicated sister chromatids are held in close association from the time of their synthesis until their separation during the next mitosis. This association is mediated by the ring-shaped cohesin complex that appears to embrace the sister chromatids. Upon proteolytic cleavage of the α-kleisin cohesin subunit at the metaphase-to-anaphase transition by separase, sister chromatids are separated and segregated onto the daughter nuclei. The more complex segregation of chromosomes during meiosis is thought to depend on the replacement of the mitotic α-kleisin cohesin subunit Rad21/Scc1/Mcd1 by the meiotic paralog Rec8. In Drosophila, however, no clear Rec8 homolog has been identified so far. Therefore, we have analyzed the role of the mitotic Drosophila α-kleisin Rad21 during female meiosis. Inactivation of an engineered Rad21 variant by premature, ectopic cleavage during oogenesis results not only in loss of cohesin from meiotic chromatin, but also in precocious disassembly of the synaptonemal complex (SC). We demonstrate that the lateral SC component C(2)M can interact directly with Rad21, potentially explaining why Rad21 is required for SC maintenance. Intriguingly, the experimentally induced premature Rad21 elimination, as well as the expression of a Rad21 variant with destroyed separase consensus cleavage sites, do not interfere with chromosome segregation during meiosis, while successful mitotic divisions are completely prevented. Thus, chromatid cohesion during female meiosis does not depend on Rad21-containing cohesin.
Collapse
Affiliation(s)
- Evelin Urban
- Lehrstuhl für Genetik, University of Bayreuth, Bayreuth, Germany
| | | | - Christian F. Lehner
- Institute of Molecular Life Sciences (IMLS), University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
19
|
Winters T, McNicoll F, Jessberger R. Meiotic cohesin STAG3 is required for chromosome axis formation and sister chromatid cohesion. EMBO J 2014; 33:1256-70. [PMID: 24797474 PMCID: PMC4198028 DOI: 10.1002/embj.201387330] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 04/08/2014] [Accepted: 04/09/2014] [Indexed: 01/09/2023] Open
Abstract
The cohesin complex is essential for mitosis and meiosis. The specific meiotic roles of individual cohesin proteins are incompletely understood. We report in vivo functions of the only meiosis-specific STAG component of cohesin, STAG3. Newly generated STAG3-deficient mice of both sexes are sterile with meiotic arrest. In these mice, meiotic chromosome architecture is severely disrupted as no bona fide axial elements (AE) form and homologous chromosomes do not synapse. Axial element protein SYCP3 forms dot-like structures, many partially overlapping with centromeres. Asynapsis marker HORMAD1 is diffusely distributed throughout the chromatin, and SYCP1, which normally marks synapsed axes, is largely absent. Centromeric and telomeric sister chromatid cohesion are impaired. Centromere and telomere clustering occurs in the absence of STAG3, and telomere structure is not severely affected. Other cohesin proteins are present, localize throughout the STAG3-devoid chromatin, and form complexes with cohesin SMC1β. No other deficiency in a single meiosis-specific cohesin causes a phenotype as drastic as STAG3 deficiency. STAG3 emerges as the key STAG cohesin involved in major functions of meiotic cohesin.
Collapse
Affiliation(s)
- Tristan Winters
- Medical Faculty Carl Gustav Carus, Institute of Physiological Chemistry Technische Universität Dresden, Dresden, Germany
| | - Francois McNicoll
- Medical Faculty Carl Gustav Carus, Institute of Physiological Chemistry Technische Universität Dresden, Dresden, Germany
| | - Rolf Jessberger
- Medical Faculty Carl Gustav Carus, Institute of Physiological Chemistry Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
20
|
Fukuda T, Fukuda N, Agostinho A, Hernández-Hernández A, Kouznetsova A, Höög C. STAG3-mediated stabilization of REC8 cohesin complexes promotes chromosome synapsis during meiosis. EMBO J 2014; 33:1243-55. [PMID: 24797475 PMCID: PMC4198027 DOI: 10.1002/embj.201387329] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 03/26/2014] [Accepted: 03/28/2014] [Indexed: 11/10/2022] Open
Abstract
Cohesion between sister chromatids in mitotic and meiotic cells is promoted by a ring-shaped protein structure, the cohesin complex. The cohesin core complex is composed of four subunits, including two structural maintenance of chromosome (SMC) proteins, one α-kleisin protein, and one SA protein. Meiotic cells express both mitotic and meiosis-specific cohesin core subunits, generating cohesin complexes with different subunit composition and possibly separate meiotic functions. Here, we have analyzed the in vivo function of STAG3, a vertebrate meiosis-specific SA protein. Mice with a hypomorphic allele of Stag3, which display a severely reduced level of STAG3, are viable but infertile. We show that meiocytes in homozygous mutant Stag3 mice display chromosome axis compaction, aberrant synapsis, impaired recombination and developmental arrest. We find that the three different α-kleisins present in meiotic cells show different dosage-dependent requirements for STAG3 and that STAG3-REC8 cohesin complexes have a critical role in supporting meiotic chromosome structure and functions.
Collapse
Affiliation(s)
- Tomoyuki Fukuda
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Nanaho Fukuda
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ana Agostinho
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | | | - Anna Kouznetsova
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Christer Höög
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
21
|
Gómez R, Viera A, Berenguer I, Llano E, Pendás AM, Barbero JL, Kikuchi A, Suja JA. Cohesin removal precedes topoisomerase IIα-dependent decatenation at centromeres in male mammalian meiosis II. Chromosoma 2014; 123:129-46. [PMID: 24013524 DOI: 10.1007/s00412-013-0434-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 07/11/2013] [Accepted: 08/13/2013] [Indexed: 12/26/2022]
Abstract
Sister chromatid cohesion is regulated by cohesin complexes and topoisomerase IIα. Although relevant studies have shed some light on the relationship between these two mechanisms of cohesion during mammalian mitosis, their interplay during mammalian meiosis remains unknown. In the present study, we have studied the dynamics of topoisomerase IIα in relation to that of the cohesin subunits RAD21 and REC8, the shugoshin-like 2 (Schizosaccharomyces pombe) (SGOL2) and the polo-like kinase 1-interacting checkpoint helicase (PICH), during both male mouse meiotic divisions. Our results strikingly show that topoisomerase IIα appears at stretched strands connecting the sister kinetochores of segregating early anaphase II chromatids, once the cohesin complexes have been removed from the centromeres. Moreover, the number and length of these topoisomerase IIα-connecting strands increase between lagging chromatids at anaphase II after the chemical inhibition of the enzymatic activity of topoisomerase IIα by etoposide. Our results also show that the etoposide-induced inhibition of topoisomerase IIα is not able to rescue the loss of centromere cohesion promoted by the absence of the shugoshin SGOL2 during anaphase I. Taking into account our results, we propose a two-step model for the sequential release of centromeric cohesion during male mammalian meiosis II. We suggest that the cohesin removal is a prerequisite for the posterior topoisomerase IIα-mediated resolution of persisting catenations between segregating chromatids during anaphase II.
Collapse
Affiliation(s)
- Rocío Gómez
- Unidad de Biología Celular, Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Mailhes JB, Marchetti F. Advances in understanding the genetic causes and mechanisms of female germ cell aneuploidy. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/eog.10.62] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
23
|
Abstract
Mitosis and meiosis are essential processes that occur during development. Throughout these processes, cohesion is required to keep the sister chromatids together until their separation at anaphase. Cohesion is created by multiprotein subunit complexes called cohesins. Although the subunits differ slightly in mitosis and meiosis, the canonical cohesin complex is composed of four subunits that are quite diverse. The cohesin complexes are also important for DNA repair, gene expression, development, and genome integrity. Here we provide an overview of the roles of cohesins during these different events as well as their roles in human health and disease, including the cohesinopathies. Although the exact roles and mechanisms of these proteins are still being elucidated, this review serves as a guide for the current knowledge of cohesins.
Collapse
Affiliation(s)
- Amanda S Brooker
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245 N. 15th Street, MS 497, Philadelphia, PA, 19102, USA
| | | |
Collapse
|
24
|
Calvente A, Viera A, Parra MT, de la Fuente R, Suja JA, Page J, Santos JL, de la Vega CG, Barbero JL, Rufas JS. Dynamics of cohesin subunits in grasshopper meiotic divisions. Chromosoma 2013; 122:77-91. [PMID: 23283389 DOI: 10.1007/s00412-012-0393-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 11/08/2012] [Accepted: 12/01/2012] [Indexed: 01/18/2023]
Abstract
The cohesin complex plays a key role for the maintenance of sister chromatid cohesion and faithful chromosome segregation in both mitosis and meiosis. This complex is formed by two structural maintenance of chromosomes protein family (SMC) subunits and two non-SMC subunits: an α-kleisin subunit SCC1/RAD21/REC8 and an SCC3-like protein. Several studies carried out in different species have revealed that the distribution of the cohesin subunits along the chromosomes during meiotic prophase I is not regular and that some subunits are distinctly incorporated at different cell stages. However, the accurate distribution of the different cohesin subunits in condensed meiotic chromosomes is still controversial. Here, we describe the dynamics of the cohesin subunits SMC1α, SMC3, RAD21 and SA1 during both meiotic divisions in grasshoppers. Although these subunits show a similar patched labelling at the interchromatid domain of metaphase I bivalents, SMCs and non-SMCs subunits do not always colocalise. Indeed, SA1 is the only cohesin subunit accumulated at the centromeric region of all metaphase I chromosomes. Additionally, non-SMC subunits do not appear at the interchromatid domain in either single X or B chromosomes. These data suggest the existence of several cohesin complexes during metaphase I. The cohesin subunits analysed are released from chromosomes at the beginning of anaphase I, with the exception of SA1 which can be detected at the centromeres until telophase II. These observations indicate that the cohesin components may be differentially loaded and released from meiotic chromosomes during the first and second meiotic divisions. The roles of these cohesin complexes for the maintenance of chromosome structure and their involvement in homologous segregation at first meiotic division are proposed and discussed.
Collapse
Affiliation(s)
- A Calvente
- Departamento de Biología, Facultad de Ciencias, Edificio de Biológicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
UNLABELLED Malassezia commensal yeasts are associated with a number of skin disorders, such as atopic eczema/dermatitis and dandruff, and they also can cause systemic infections. Here we describe the 7.67-Mbp genome of Malassezia sympodialis, a species associated with atopic eczema, and contrast its genome repertoire with that of Malassezia globosa, associated with dandruff, as well as those of other closely related fungi. Ninety percent of the predicted M. sympodialis protein coding genes were experimentally verified by mass spectrometry at the protein level. We identified a relatively limited number of genes related to lipid biosynthesis, and both species lack the fatty acid synthase gene, in line with the known requirement of these yeasts to assimilate lipids from the host. Malassezia species do not appear to have many cell wall-localized glycosylphosphatidylinositol (GPI) proteins and lack other cell wall proteins previously identified in other fungi. This is surprising given that in other fungi these proteins have been shown to mediate interactions (e.g., adhesion and biofilm formation) with the host. The genome revealed a complex evolutionary history for an allergen of unknown function, Mala s 7, shown to be encoded by a member of an amplified gene family of secreted proteins. Based on genetic and biochemical studies with the basidiomycete human fungal pathogen Cryptococcus neoformans, we characterized the allergen Mala s 6 as the cytoplasmic cyclophilin A. We further present evidence that M. sympodialis may have the capacity to undergo sexual reproduction and present a model for a pseudobipolar mating system that allows limited recombination between two linked MAT loci. IMPORTANCE Malassezia commensal yeasts are associated with a number of skin disorders. The previously published genome of M. globosa provided some of the first insights into Malassezia biology and its involvement in dandruff. Here, we present the genome of M. sympodialis, frequently isolated from patients with atopic eczema and healthy individuals. We combined comparative genomics with sequencing and functional characterization of specific genes in a population of clinical isolates and in closely related model systems. Our analyses provide insights into the evolution of allergens related to atopic eczema and the evolutionary trajectory of the machinery for sexual reproduction and meiosis. We hypothesize that M. sympodialis may undergo sexual reproduction, which has important implications for the understanding of the life cycle and virulence potential of this medically important yeast. Our findings provide a foundation for the development of genetic and genomic tools to elucidate host-microbe interactions that occur on the skin and to identify potential therapeutic targets.
Collapse
|
26
|
Abstract
Sister chromatid cohesion depends on cohesin, a tripartite complex that forms ring structures to hold sister chromatids together in mitosis and meiosis. Meiocytes feature a multiplicity of distinct cohesin proteins and complexes, some meiosis specific, which serve additional functions such as supporting synapsis of two pairs of sister chromatids and determining the loop-axis architecture of prophase I chromosomes. Despite considerable new insights gained in the past few years into the localization and function of some cohesin proteins, and the recent identification of yet another meiosis-specific cohesin subunit, a plethora of open questions remains, which concern not only fundamental germ cell biology but also the consequences of cohesin impairment for human reproductive health.
Collapse
Affiliation(s)
- François McNicoll
- Institute of Physiological Chemistry, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | | | | |
Collapse
|
27
|
Llano E, Herrán Y, García-Tuñón I, Gutiérrez-Caballero C, de Álava E, Barbero JL, Schimenti J, de Rooij DG, Sánchez-Martín M, Pendás AM. Meiotic cohesin complexes are essential for the formation of the axial element in mice. J Cell Biol 2012; 197:877-85. [PMID: 22711701 PMCID: PMC3384418 DOI: 10.1083/jcb.201201100] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 05/21/2012] [Indexed: 12/24/2022] Open
Abstract
Cohesin is a conserved multisubunit protein complex that participates in chromosome segregation, DNA damage repair, chromatin regulation, and synaptonemal complex (SC) formation. Yeast, but not mice, depleted of the cohesin subunit Rec8 are defective in the formation of the axial elements (AEs) of the SC, suggesting that, in mammals, this function is not conserved. In this paper, we show that spermatocytes from mice lacking the two meiosis-specific cohesin subunits RAD21L and REC8 were unable to initiate RAD51- but not DMC1-mediated double-strand break repair, were not able to assemble their AEs, and arrested as early as the leptotene stage of prophase I, demonstrating that cohesin plays an essential role in AE assembly that is conserved from yeast to mammals.
Collapse
Affiliation(s)
- Elena Llano
- Instituto de Biología Molecular y Celular del Cáncer, Departamento de Fisiología, and Departamento de Medicina, Consejo Superior de Investigaciones Científicas-Universidad de Salamanca, 37007 Salamanca, Spain
| | - Yurema Herrán
- Instituto de Biología Molecular y Celular del Cáncer, Departamento de Fisiología, and Departamento de Medicina, Consejo Superior de Investigaciones Científicas-Universidad de Salamanca, 37007 Salamanca, Spain
| | - Ignacio García-Tuñón
- Instituto de Biología Molecular y Celular del Cáncer, Departamento de Fisiología, and Departamento de Medicina, Consejo Superior de Investigaciones Científicas-Universidad de Salamanca, 37007 Salamanca, Spain
| | - Cristina Gutiérrez-Caballero
- Instituto de Biología Molecular y Celular del Cáncer, Departamento de Fisiología, and Departamento de Medicina, Consejo Superior de Investigaciones Científicas-Universidad de Salamanca, 37007 Salamanca, Spain
| | - Enrique de Álava
- Instituto de Biología Molecular y Celular del Cáncer, Departamento de Fisiología, and Departamento de Medicina, Consejo Superior de Investigaciones Científicas-Universidad de Salamanca, 37007 Salamanca, Spain
| | - José Luis Barbero
- Departamento de Proliferación Celular y Desarrollo. Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain
| | - John Schimenti
- Center for Vertebrate Genomics, Cornell University, Ithaca, NY 14850
| | - Dirk G. de Rooij
- Center for Reproductive Medicine, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, Netherlands
| | - Manuel Sánchez-Martín
- Instituto de Biología Molecular y Celular del Cáncer, Departamento de Fisiología, and Departamento de Medicina, Consejo Superior de Investigaciones Científicas-Universidad de Salamanca, 37007 Salamanca, Spain
| | - Alberto M. Pendás
- Instituto de Biología Molecular y Celular del Cáncer, Departamento de Fisiología, and Departamento de Medicina, Consejo Superior de Investigaciones Científicas-Universidad de Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
28
|
Nuclear import and export signals of human cohesins SA1/STAG1 and SA2/STAG2 expressed in Saccharomyces cerevisiae. PLoS One 2012; 7:e38740. [PMID: 22715410 PMCID: PMC3371031 DOI: 10.1371/journal.pone.0038740] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 05/09/2012] [Indexed: 02/02/2023] Open
Abstract
Background Human SA/STAG proteins, homologues of the yeast Irr1/Scc3 cohesin, are the least studied constituents of the sister chromatid cohesion complex crucial for proper chromosome segregation. The two SA paralogues, SA1 and SA2, show some specificity towards the chromosome region they stabilize, and SA2, but not SA1, has been shown to participate in transcriptional regulation as well. The molecular basis of this functional divergence is unknown. Methodology/Principal Findings In silico analysis indicates numerous putative nuclear localization (NLS) and export (NES) signals in the SA proteins, suggesting the possibility of their nucleocytoplasmic shuttling. We studied the functionality of those putative signals by expressing fluorescently tagged SA1 and SA2 in the yeast Saccharomyces cerevisiae. Only the N-terminal NLS turned out to be functional in SA1. In contrast, the SA2 protein has at least two functional NLS and also two functional NES. Depending on the balance between these opposing signals, SA2 resides in the nucleus or is distributed throughout the cell. Validation of the above conclusions in HeLa cells confirmed that the same N-terminal NLS of SA1 is functional in those cells. In contrast, in SA2 the principal NLS functioning in HeLa cells is different from that identified in yeast and is localized to the C-terminus. Conclusions/Significance This is the first demonstration of the possibility of non-nuclear localization of an SA protein. The reported difference in the organization between the two SA homologues may also be relevant to their partially divergent functions. The mechanisms determining subcellular localization of cohesins are only partially conserved between yeast and human cells.
Collapse
|
29
|
Qiao H, Lohmiller LD, Anderson LK. Cohesin proteins load sequentially during prophase I in tomato primary microsporocytes. Chromosome Res 2011; 19:193-207. [PMID: 21234670 DOI: 10.1007/s10577-010-9184-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 12/27/2010] [Accepted: 12/28/2010] [Indexed: 10/18/2022]
Abstract
Proteins of the cohesin complex are essential for sister chromatid cohesion and proper chromosome segregation during both mitosis and meiosis. Cohesin proteins are also components of axial elements/lateral elements (AE/LEs) of synaptonemal complexes (SCs) during meiosis, and cohesins are thought to play an important role in meiotic chromosome morphogenesis and recombination. Here, we have examined the cytological behavior of four cohesin proteins (SMC1, SMC3, SCC3, and REC8/SYN1) during early prophase I in tomato microsporocytes using immunolabeling. All four cohesins are discontinuously distributed along the length of AE/LEs from leptotene through early diplotene. Based on current models for the cohesin complex, the four cohesin proteins should be present at the same time and place in equivalent amounts. However, we observed that cohesins often do not colocalize at the same AE/LE positions, and cohesins differ in when they load onto and dissociate from AE/LEs of early prophase I chromosomes. Cohesin labeling of LEs from pachytene nuclei is similar through euchromatin, pericentric heterochromatin, and kinetochores but is distinctly reduced through the nucleolar organizer region of chromosome 2. These results indicate that the four cohesin proteins may form different complexes and/or perform additional functions during meiosis in plants, which are distinct from their essential function in sister chromatid cohesion.
Collapse
Affiliation(s)
- Huanyu Qiao
- Department of Biology and Program in Molecular Plant Biology, Colorado State University, 1878 Campus Delivery, Fort Collins, CO 80523-1878, USA
| | | | | |
Collapse
|
30
|
Lee J, Hirano T. RAD21L, a novel cohesin subunit implicated in linking homologous chromosomes in mammalian meiosis. J Cell Biol 2011; 192:263-76. [PMID: 21242291 PMCID: PMC3172173 DOI: 10.1083/jcb.201008005] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 12/22/2010] [Indexed: 11/26/2022] Open
Abstract
Cohesins are multi-subunit protein complexes that regulate sister chromatid cohesion during mitosis and meiosis. Here we identified a novel kleisin subunit of cohesins, RAD21L, which is conserved among vertebrates. In mice, RAD21L is expressed exclusively in early meiosis: it apparently replaces RAD21 in premeiotic S phase, becomes detectable on the axial elements in leptotene, and stays on the axial/lateral elements until mid pachytene. RAD21L then disappears, and is replaced with RAD21. This behavior of RAD21L is unique and distinct from that of REC8, another meiosis-specific kleisin subunit. Remarkably, the disappearance of RAD21L at mid pachytene correlates with the completion of DNA double-strand break repair and the formation of crossovers as judged by colabeling with molecular markers, γ-H2AX, MSH4, and MLH1. RAD21L associates with SMC3, STAG3, and either SMC1α or SMC1β. Our results suggest that cohesin complexes containing RAD21L may be involved in synapsis initiation and crossover recombination between homologous chromosomes.
Collapse
Affiliation(s)
- Jibak Lee
- Chromosome Dynamics Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | |
Collapse
|
31
|
Abstract
Sister chromatids are held together from the time of their formation in S phase until they segregate in anaphase by the cohesin complex. In meiosis of most organisms, the mitotic Mcd1/Scc1/Rad21 subunit of the cohesin complex is largely replaced by its paralog named Rec8. This article reviews the specialized functions of Rec8 that are crucial for diverse aspects of chromosome dynamics in meiosis, and presents some speculations relating to meiotic chromosome organization.
Collapse
|
32
|
Garcia-Cruz R, Brieño MA, Roig I, Grossmann M, Velilla E, Pujol A, Cabero L, Pessarrodona A, Barbero JL, Garcia Caldés M. Dynamics of cohesin proteins REC8, STAG3, SMC1 beta and SMC3 are consistent with a role in sister chromatid cohesion during meiosis in human oocytes. Hum Reprod 2010; 25:2316-27. [PMID: 20634189 DOI: 10.1093/humrep/deq180] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Sister chromatid cohesion is essential for ordered chromosome segregation at mitosis and meiosis. This is carried out by cohesin complexes, comprising four proteins, which seem to form a ring-like complex. Data from animal models suggest that loss of sister chromatid cohesion may be involved in age-related non-disjunction in human oocytes. Here, we describe the distribution of cohesins throughout meiosis in human oocytes. METHODS We used immunofluorescence in human oocytes at different meiotic stages to detect cohesin subunits REC8, STAG3, SMC1 beta and SMC3, [also synaptonemal complex (SC) protein 3 and shugoshin 1]. Samples from euploid fetuses and adult women were collected, and 51 metaphase I (MI) and 113 metaphase II (MII) oocytes analyzed. SMC1 beta transcript levels were quantified in 85 maturing germinal vesicle (GV) oocytes from 34 women aged 19-43 years by real-time PCR. RESULTS At prophase I, cohesin subunits REC8, STAG3, SMC1 beta and SMC3 overlapped with the lateral element of the SC. Short cohesin fibers are observed in the oocyte nucleus during dictyate arrest. All four subunits are observed at centromeres and along chromosomal arms, except at chiasmata, at MI and are present at centromeric domains from anaphase I to MII. SMC1 beta transcripts were detected (with high inter-sample variability) in GV oocytes but no correlation between SMC1 beta mRNA levels and age was found. CONCLUSIONS The dynamics of cohesins REC8, STAG3, SMC1 beta and SMC3 suggest their participation in sister chromatid cohesion throughout the whole meiotic process in human oocytes. Our data do not support the view that decreased levels of SMC1 beta gene expression in older women are involved in age-related non-disjunction.
Collapse
Affiliation(s)
- R Garcia-Cruz
- Unitat de Biologia Cel·lular i Genètica Mèdica, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Blangiardo M, Cassese A, Richardson S. sdef: an R package to synthesize lists of significant features in related experiments. BMC Bioinformatics 2010; 11:270. [PMID: 20487547 PMCID: PMC3239329 DOI: 10.1186/1471-2105-11-270] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Accepted: 05/20/2010] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND In microarray studies researchers are often interested in the comparison of relevant quantities between two or more similar experiments, involving different treatments, tissues, or species. Typically each experiment reports measures of significance (e.g. p-values) or other measures that rank its features (e.g genes). Our objective is to find a list of features that are significant in all experiments, to be further investigated. In this paper we present an R package called sdef, that allows the user to quantify the evidence of communality between the experiments using previously proposed statistical methods based on the ranked lists of p-values. sdef implements two approaches that address this objective: the first is a permutation test of the maximal ratio of observed to expected common features under the hypothesis of independence between the experiments. The second approach, set in a Bayesian framework, is more flexible as it takes into account the uncertainty on the number of genes differentially expressed in each experiment. RESULTS We used sdef to re-analyze publicly available data i) on Type 2 diabetes susceptibility in mice on liver and skeletal muscle (two experiments); ii) on molecular similarities between mammalian sexes (three experiments). For the first example, we found between 68 and 104 genes commonly perturbed between the two tissues, using the two methods described above, and enrichment of the inflammation pathways, which are related to obesity and diabetes. For the second example, looking at three lists of features, we found 110 genes commonly perturbed between the three tissues, using the same two methods, and enrichment on genes involved in cell development. CONCLUSIONS sdef is an R package that provides researchers with an easy and powerful methodology to find lists of features commonly perturbed in two or more experiments to be further investigated. The package is provided with plots and tables to help the user visualize and interpret the results. The Windows, Linux and MacOS versions of the package, together with the documentation are available on the website http://cran.r-project.org/web/packages/sdef/index.html.
Collapse
Affiliation(s)
- Marta Blangiardo
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College. St. Mary's Campus, Norfolk Place London W2 1PG, UK
| | - Alberto Cassese
- Department of Statistics, University of Florence, V.le Morgagni 49, 50134, Florence, Italy
| | - Sylvia Richardson
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College. St. Mary's Campus, Norfolk Place London W2 1PG, UK
| |
Collapse
|
34
|
Viera A, Rufas JS, Martínez I, Barbero JL, Ortega S, Suja JA. CDK2 is required for proper homologous pairing, recombination and sex-body formation during male mouse meiosis. J Cell Sci 2009; 122:2149-59. [PMID: 19494131 DOI: 10.1242/jcs.046706] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyclin-dependent kinase 2 (CDK2) was assumed to be essential in the mammalian cell cycle both at the G1-S transition and throughout the S phase. Interestingly, ablation of Cdk2 in mice does not have substantial consequences for embryonic or postnatal development, but both males and females are infertile. In the present study, we have analysed the meiotic alterations leading to infertility in Cdk2-/- male mice. We have studied the distribution and dynamics of several proteins related to meiosis progression, such as synaptonemal complex proteins, cohesin complexes, and centromere-, telomere- and recombination-related proteins. Cdk2-/- spermatocytes show an incomplete chromosome pairing, an extensive non-homologous synapsis and arrest at a pachytene-like stage with unrepaired programmed double-strand breaks. In these spermatocytes, some telomeres do not attach to the nuclear envelope, and sex chromosomes do not form a sex body. Our data demonstrate an unpredicted participation of CDK2 in the accurate pairing and recombination between homologues during mammalian meiosis.
Collapse
Affiliation(s)
- Alberto Viera
- Unidad de Biología Celular, Departamento de Biología, Edificio de Ciencias Biológicas, Facultad de Ciencias, Universidad Autónoma de Madrid, Calle Darwin 2, 28049 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
35
|
Holt JE, Jones KT. Control of homologous chromosome division in the mammalian oocyte. Mol Hum Reprod 2009; 15:139-47. [DOI: 10.1093/molehr/gap007] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
36
|
Skibbens RV. Mechanisms of sister chromatid pairing. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 269:283-339. [PMID: 18779060 DOI: 10.1016/s1937-6448(08)01005-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
The continuance of life through cell division requires high fidelity DNA replication and chromosome segregation. During DNA replication, each parental chromosome is duplicated exactly and one time only. At the same time, the resulting chromosomes (called sister chromatids) become tightly paired along their length. This S-phase pairing, or cohesion, identifies chromatids as sisters over time. During mitosis in most eukaryotes, sister chromatids bi-orient to the mitotic spindle. After each chromosome pair is properly oriented, the cohesion established during S phase is inactivated in a tightly regulated fashion, allowing sister chromatids to segregate away from each other. Recent findings of cohesin structure and enzymology provide new insights into cohesion, while many critical facets of cohesion (how cohesins tether together sister chromatids and how those tethers are established) remain actively debated.
Collapse
Affiliation(s)
- Robert V Skibbens
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| |
Collapse
|
37
|
Lara-Pezzi E, Winn N, Paul A, McCullagh K, Slominsky E, Santini MP, Mourkioti F, Sarathchandra P, Fukushima S, Suzuki K, Rosenthal N. A naturally occurring calcineurin variant inhibits FoxO activity and enhances skeletal muscle regeneration. J Cell Biol 2007; 179:1205-18. [PMID: 18086917 PMCID: PMC2140042 DOI: 10.1083/jcb.200704179] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Accepted: 11/19/2007] [Indexed: 11/22/2022] Open
Abstract
The calcium-activated phosphatase calcineurin (Cn) transduces physiological signals through intracellular pathways to influence the expression of specific genes. Here, we characterize a naturally occurring splicing variant of the CnAbeta catalytic subunit (CnAbeta1) in which the autoinhibitory domain that controls enzyme activation is replaced with a unique C-terminal region. The CnAbeta1 enzyme is constitutively active and dephosphorylates its NFAT target in a cyclosporine-resistant manner. CnAbeta1 is highly expressed in proliferating myoblasts and regenerating skeletal muscle fibers. In myoblasts, CnAbeta1 knockdown activates FoxO-regulated genes, reduces proliferation, and induces myoblast differentiation. Conversely, CnAbeta1 overexpression inhibits FoxO and prevents myotube atrophy. Supplemental CnAbeta1 transgene expression in skeletal muscle leads to enhanced regeneration, reduced scar formation, and accelerated resolution of inflammation. This unique mode of action distinguishes the CnAbeta1 isoform as a candidate for interventional strategies in muscle wasting treatment.
Collapse
Affiliation(s)
- Enrique Lara-Pezzi
- European Molecular Biology Laboratory (EMBL), Mouse Biology Unit, Campus Buzzatti-Traverso, Monterotondo-Scalo, 00016 Rome, Italy
- Harefield Heart Science Centre, Imperial College London, Middlesex UB9 6JH, England, UK
| | - Nadine Winn
- European Molecular Biology Laboratory (EMBL), Mouse Biology Unit, Campus Buzzatti-Traverso, Monterotondo-Scalo, 00016 Rome, Italy
| | - Angelika Paul
- European Molecular Biology Laboratory (EMBL), Mouse Biology Unit, Campus Buzzatti-Traverso, Monterotondo-Scalo, 00016 Rome, Italy
| | - Karl McCullagh
- MRC Functional Genetics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, England, UK
| | - Esfir Slominsky
- European Molecular Biology Laboratory (EMBL), Mouse Biology Unit, Campus Buzzatti-Traverso, Monterotondo-Scalo, 00016 Rome, Italy
| | - Maria Paola Santini
- European Molecular Biology Laboratory (EMBL), Mouse Biology Unit, Campus Buzzatti-Traverso, Monterotondo-Scalo, 00016 Rome, Italy
- Harefield Heart Science Centre, Imperial College London, Middlesex UB9 6JH, England, UK
| | - Foteini Mourkioti
- European Molecular Biology Laboratory (EMBL), Mouse Biology Unit, Campus Buzzatti-Traverso, Monterotondo-Scalo, 00016 Rome, Italy
| | - Padmini Sarathchandra
- Harefield Heart Science Centre, Imperial College London, Middlesex UB9 6JH, England, UK
| | - Satsuki Fukushima
- Harefield Heart Science Centre, Imperial College London, Middlesex UB9 6JH, England, UK
| | - Ken Suzuki
- Harefield Heart Science Centre, Imperial College London, Middlesex UB9 6JH, England, UK
| | - Nadia Rosenthal
- European Molecular Biology Laboratory (EMBL), Mouse Biology Unit, Campus Buzzatti-Traverso, Monterotondo-Scalo, 00016 Rome, Italy
- Harefield Heart Science Centre, Imperial College London, Middlesex UB9 6JH, England, UK
| |
Collapse
|
38
|
Tao J, Zhang L, Chong K, Wang T. OsRAD21-3, an orthologue of yeast RAD21, is required for pollen development in Oryza sativa. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 51:919-30. [PMID: 17617177 DOI: 10.1111/j.1365-313x.2007.03190.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
In contrast to animals, in which products of meiosis differentiate directly into sperm, flowering plants employ a specific mechanism to give rise to functional sperm cells, the specifics of which remain largely unknown. A previous study revealed that, compared to yeast and vertebrates, which have two proteins (Rad21 and its meiosis-specific variant Rec8) that play a vital role in sister chromatid cohesion and segregation for mitosis and meiosis, respectively, the rice genome encodes four Rad21/Rec8 proteins (OsRad21s). In this paper, phylogenetic and immunostaining analyses reveal that OsRad21-3 is an orthologue of yeast Rad21. OsRAD21-3 transcript and protein accumulated preferentially in flowers, with low levels in vegetative tissues. In flowers, they persisted from the stamen and carpel primordia stages until the mature pollen stage. OsRAD21-3-deficient RNAi lines showed arrested pollen mitosis, aberrant pollen chromosome segregation and aborted pollen grains, which led to disrupted pollen viability. However, male meiosis in these RNAi lines did not appear to be severely disrupted, which suggests that the main involvement of OsRAD21-3 is in post-meiotic pollen development by affecting pollen mitosis. Furthermore, of the four OsRAD21 genes in the rice genome, only OsRAD21-3 was expressed in pollen grains. Given that the mechanism involving generation of sperm cells differs between flowering plants and metozoans, this study shows, in part, why flowering plants of rice and Arabidopsis have four Rad21/Rec8 proteins, as compared with two in yeast and metozoans, and gives some clues to the functional differentiation of Rad21/Rec8 proteins during evolution.
Collapse
Affiliation(s)
- Jiayi Tao
- Research Center for Molecular and Developmental Biology, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Haidianqu, Beijing, China
| | | | | | | |
Collapse
|
39
|
Viera A, Gómez R, Parra MT, Schmiesing JA, Yokomori K, Rufas JS, Suja JA. Condensin I reveals new insights on mouse meiotic chromosome structure and dynamics. PLoS One 2007; 2:e783. [PMID: 17712430 PMCID: PMC1942118 DOI: 10.1371/journal.pone.0000783] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Accepted: 07/18/2007] [Indexed: 11/18/2022] Open
Abstract
Chromosome shaping and individualization are necessary requisites to warrant the correct segregation of genomes in either mitotic or meiotic cell divisions. These processes are mainly prompted in vertebrates by three multiprotein complexes termed cohesin and condensin I and II. In the present study we have analyzed by immunostaining the appearance and subcellular distribution of condensin I in mouse mitotic and meiotic chromosomes. Our results demonstrate that in either mitotically or meiotically dividing cells, condensin I is loaded onto chromosomes by prometaphase. Condensin I is detectable as a fuzzy axial structure running inside chromatids of condensed chromosomes. The distribution of condensin I along the chromosome length is not uniform, since it preferentially accumulates close to the chromosome ends. Interestingly, these round accumulations found at the condensin I axes termini colocalized with telomere complexes. Additionally, we present the relative distribution of the condensin I and cohesin complexes in metaphase I bivalents. All these new data have allowed us to propose a comprehensive model for meiotic chromosome structure.
Collapse
Affiliation(s)
- Alberto Viera
- Departamento de Biología, Edificio de Biológicas, Universidad Autónoma de Madrid, Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
40
|
An expanded inventory of conserved meiotic genes provides evidence for sex in Trichomonas vaginalis. PLoS One 2007; 3:e2879. [PMID: 18663385 PMCID: PMC2488364 DOI: 10.1371/journal.pone.0002879] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Accepted: 06/08/2008] [Indexed: 12/23/2022] Open
Abstract
Meiosis is a defining feature of eukaryotes but its phylogenetic distribution has not been broadly determined, especially among eukaryotic microorganisms (i.e. protists)-which represent the majority of eukaryotic 'supergroups'. We surveyed genomes of animals, fungi, plants and protists for meiotic genes, focusing on the evolutionarily divergent parasitic protist Trichomonas vaginalis. We identified homologs of 29 components of the meiotic recombination machinery, as well as the synaptonemal and meiotic sister chromatid cohesion complexes. T. vaginalis has orthologs of 27 of 29 meiotic genes, including eight of nine genes that encode meiosis-specific proteins in model organisms. Although meiosis has not been observed in T. vaginalis, our findings suggest it is either currently sexual or a recent asexual, consistent with observed, albeit unusual, sexual cycles in their distant parabasalid relatives, the hypermastigotes. T. vaginalis may use meiotic gene homologs to mediate homologous recombination and genetic exchange. Overall, this expanded inventory of meiotic genes forms a useful "meiosis detection toolkit". Our analyses indicate that these meiotic genes arose, or were already present, early in eukaryotic evolution; thus, the eukaryotic cenancestor contained most or all components of this set and was likely capable of performing meiotic recombination using near-universal meiotic machinery.
Collapse
|
41
|
Valdeolmillos AM, Viera A, Page J, Prieto I, Santos JL, Parra MT, Heck MMS, Martínez-A C, Barbero JL, Suja JA, Rufas JS. Sequential loading of cohesin subunits during the first meiotic prophase of grasshoppers. PLoS Genet 2007; 3:e28. [PMID: 17319746 PMCID: PMC1802827 DOI: 10.1371/journal.pgen.0030028] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Accepted: 01/02/2007] [Indexed: 12/15/2022] Open
Abstract
The cohesin complexes play a key role in chromosome segregation during both mitosis and meiosis. They establish sister chromatid cohesion between duplicating DNA molecules during S-phase, but they also have an important role during postreplicative double-strand break repair in mitosis, as well as during recombination between homologous chromosomes in meiosis. An additional function in meiosis is related to the sister kinetochore cohesion, so they can be pulled by microtubules to the same pole at anaphase I. Data about the dynamics of cohesin subunits during meiosis are scarce; therefore, it is of great interest to characterize how the formation of the cohesin complexes is achieved in order to understand the roles of the different subunits within them. We have investigated the spatio-temporal distribution of three different cohesin subunits in prophase I grasshopper spermatocytes. We found that structural maintenance of chromosome protein 3 (SMC3) appears as early as preleptotene, and its localization resembles the location of the unsynapsed axial elements, whereas radiation-sensitive mutant 21 (RAD21) (sister chromatid cohesion protein 1, SCC1) and stromal antigen protein 1 (SA1) (sister chromatid cohesion protein 3, SCC3) are not visualized until zygotene, since they are located in the synapsed regions of the bivalents. During pachytene, the distribution of the three cohesin subunits is very similar and all appear along the trajectories of the lateral elements of the autosomal synaptonemal complexes. However, whereas SMC3 also appears over the single and unsynapsed X chromosome, RAD21 and SA1 do not. We conclude that the loading of SMC3 and the non-SMC subunits, RAD21 and SA1, occurs in different steps throughout prophase I grasshopper meiosis. These results strongly suggest the participation of SMC3 in the initial cohesin axis formation as early as preleptotene, thus contributing to sister chromatid cohesion, with a later association of both RAD21 and SA1 subunits at zygotene to reinforce and stabilize the bivalent structure. Therefore, we speculate that more than one cohesin complex participates in the sister chromatid cohesion at prophase I.
Collapse
Affiliation(s)
- Ana M Valdeolmillos
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Madrid, Spain
| | - Alberto Viera
- Departamento de Biología, Edificio de Biológicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Jesús Page
- Departamento de Biología, Edificio de Biológicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ignacio Prieto
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Madrid, Spain
| | - Juan L Santos
- Departamento de Genética, Facultad de Biología, Universidad Complutense, Madrid, Spain
| | - María Teresa Parra
- Departamento de Biología, Edificio de Biológicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Margarete M. S Heck
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Carlos Martínez-A
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Madrid, Spain
| | - José L Barbero
- Departamento de Biología Celular y del Desarrollo, Centro de Investigaciones Biologicas (CSIC), Madrid, Spain
| | - José A Suja
- Departamento de Biología, Edificio de Biológicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Julio S Rufas
- Departamento de Biología, Edificio de Biológicas, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
42
|
Bogdanov YF, Grishaeva TM, Dadashev SY. Similarity of the domain structure of proteins as a basis for the conservation of meiosis. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 257:83-142. [PMID: 17280896 DOI: 10.1016/s0074-7696(07)57003-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Meiosis is conserved in all eucaryotic kingdoms, and homologous rows of variability are revealed for the cytological traits of meiosis. To find the nature of these phenomenons, we reviewed the most-studied meiosis-specific proteins and studied them with the methods of bioinformatics. We found that synaptonemal complex proteins have no homology of amino-acid sequence, but are similar in the domain organization and three-dimensional (3D) structure of functionally important domains in budding yeast, nematode, Drosophila, Arabidopsis, and human. Recombination proteins of Rad51/Dmc1 family are conserved to the extent which permits them to make filamentous single-strand deoxyribonucleic acid (ssDNA)-protein intermediates of meiotic recombination. The same structural principles are valid for conservation of the ultrastructure of kinetochores, cell gap contacts, and nuclear pore complexes, such as in the cases when ultrastructure 3D parameters are important for the function. We suggest that self-assembly of protein molecules plays a significant role in building-up of all biological structures mentioned.
Collapse
Affiliation(s)
- Yu F Bogdanov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russian Federation
| | | | | |
Collapse
|
43
|
Ding DQ, Sakurai N, Katou Y, Itoh T, Shirahige K, Haraguchi T, Hiraoka Y. Meiotic cohesins modulate chromosome compaction during meiotic prophase in fission yeast. ACTA ACUST UNITED AC 2006; 174:499-508. [PMID: 16893973 PMCID: PMC2064256 DOI: 10.1083/jcb.200605074] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The meiotic cohesin Rec8 is required for the stepwise segregation of chromosomes during the two rounds of meiotic division. By directly measuring chromosome compaction in living cells of the fission yeast Schizosaccharomyces pombe, we found an additional role for the meiotic cohesin in the compaction of chromosomes during meiotic prophase. In the absence of Rec8, chromosomes were decompacted relative to those of wild-type cells. Conversely, loss of the cohesin-associated protein Pds5 resulted in hypercompaction. Although this hypercompaction requires Rec8, binding of Rec8 to chromatin was reduced in the absence of Pds5, indicating that Pds5 promotes chromosome association of Rec8. To explain these observations, we propose that meiotic prophase chromosomes are organized as chromatin loops emanating from a Rec8-containing axis: the absence of Rec8 disrupts the axis, resulting in disorganized chromosomes, whereas reduced Rec8 loading results in a longitudinally compacted axis with fewer attachment points and longer chromatin loops.
Collapse
Affiliation(s)
- Da-Qiao Ding
- Cell Biology Group, Kansai Advanced Research Center, National Institute of Information and Communications Technology, Kobe 651-2492, Japan
| | | | | | | | | | | | | |
Collapse
|
44
|
Revenkova E, Jessberger R. Shaping meiotic prophase chromosomes: cohesins and synaptonemal complex proteins. Chromosoma 2006; 115:235-40. [PMID: 16518630 DOI: 10.1007/s00412-006-0060-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Revised: 02/09/2006] [Accepted: 02/10/2006] [Indexed: 12/25/2022]
Abstract
Recent progress in elucidating the function of synaptonemal complex (SC) proteins and of cohesins in meiocytes made possible, in particular, through the analysis of mice deficient in SC or cohesin proteins has significantly enriched our understanding of how meiotic chromosome architecture is determined. Cohesins and the SC proteins act together in generating the characteristic axis-loop structure of meiotic chromosomes, their pairing into bivalents, their ability to recombine, and to be properly segregated. This minireview attempts to summarize the current knowledge with a focus on higher eukaryotic systems and to ask questions that ought to be addressed in the future.
Collapse
Affiliation(s)
- Ekaterina Revenkova
- Department of Gene and Cell Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | |
Collapse
|
45
|
Page J, de la Fuente R, Gómez R, Calvente A, Viera A, Parra MT, Santos JL, Berríos S, Fernández-Donoso R, Suja JA, Rufas JS. Sex chromosomes, synapsis, and cohesins: a complex affair. Chromosoma 2006; 115:250-9. [PMID: 16544151 DOI: 10.1007/s00412-006-0059-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2005] [Revised: 02/10/2006] [Accepted: 02/10/2006] [Indexed: 10/24/2022]
Abstract
During first meiotic prophase, homologous chromosomes are held together by the synaptonemal complex, a tripartite proteinaceous structure that extends along the entire length of meiotic bivalents. While this feature is applicable for autosomes, sex chromosomes often escape from this rule. Many species present sex chromosomes that differ between them in their morphology, length, and gene content. Moreover, in some species, sex chromosomes appear in a single dose in one of the sexes. In all of these cases, the behavior of sex chromosomes during meiosis is conspicuously affected, and this includes the assembly and dynamics of the synaptonemal complex. We review in this study the structure of the synaptonemal complex in the sex chromosomes of three groups of organisms, namely: mammals, orthopterans, and hemipterans, which present different patterns of sex chromosome structure and behavior. Of special interest is the analysis of the organization of the axial/lateral elements of the synaptonemal complex in relation to other axial structures organized along meiotic chromosomes, mainly the cohesin axis. The differences found in the behavior of both axial structures reveal that while the organization of a cohesin axis along sex chromosomes is a conserved feature in most organisms and it shows very little morphological variations, the axial/lateral elements of the synaptonemal complex present a wide range of structural modifications on these chromosomes.
Collapse
Affiliation(s)
- Jesús Page
- Departamento de Biología, Edificio de Ciencias Biológicas, Universidad Autónoma de Madrid, Cantoblanco, Madrid, 28049, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Krasikova A, Barbero JL, Gaginskaya E. Cohesion proteins are present in centromere protein bodies associated with avian lampbrush chromosomes. Chromosome Res 2005; 13:675-85. [PMID: 16235117 DOI: 10.1007/s10577-005-1005-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2005] [Accepted: 08/22/2005] [Indexed: 10/25/2022]
Abstract
Proteins of sister chromatid cohesion are important for maintenance of meiotic chromosome structure and retention of homologous chromosomes in bivalents during diplotene. Localization of the cohesion proteins within nuclei of growing oocytes merits special attention, particularly in avian oocytes, in which diplotene chromosomes assume the form of lampbrush chromosomes (LBCs). We performed indirect immunostaining using antibodies against cohesins SMC1alpha, SMC1beta, SMC3, Rad21, and the SA/STAG family on chaffinch, pigeon and duck LBCs spreads, and frozen ovary sections. On LBCs spreads, antibodies to the majority of cohesins showed punctate staining on chromosome axes. LBC lateral loops, where sister chromatids are separated, did not show cohesin components. The spherical entities attached to the LBCs centromeres in avian germinal vesicles, the so-called protein bodies (PBs), were enriched in SMC1alpha, SMC3, Rad21, STAG1 and STAG2. The synaptonemal complex component SYCP3, which also participates in cohesion, was detected in the axes of avian lampbrush bivalents and, to a greater degree, in the PBs. In vitellogenic oocytes, cohesion proteins persist in the PBs associated with condensing bivalents when they concentrate into the karyosphere. These results indicate that cohesion proteins accumulate in centromere PBs in avian oocytes and are involved into structural maintenance of lampbrush chromosome axes.
Collapse
Affiliation(s)
- Alla Krasikova
- Biological Research Institute, Saint-Petersburg State University, Oranienbaumskoie sch. 2, Stary Peterhof, Saint-Petersburg 198504, Russia
| | | | | |
Collapse
|
47
|
Xu H, Beasley MD, Warren WD, van der Horst GTJ, McKay MJ. Absence of mouse REC8 cohesin promotes synapsis of sister chromatids in meiosis. Dev Cell 2005; 8:949-61. [PMID: 15935783 DOI: 10.1016/j.devcel.2005.03.018] [Citation(s) in RCA: 259] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2004] [Revised: 01/25/2005] [Accepted: 03/30/2005] [Indexed: 12/21/2022]
Abstract
REC8 is a key component of the meiotic cohesin complex. During meiosis, cohesin is required for the establishment and maintenance of sister-chromatid cohesion, for the formation of the synaptonemal complex, and for recombination between homologous chromosomes. We show that REC8 has an essential role in mammalian meiosis, in that Rec8 null mice of both sexes have germ cell failure and are sterile. In the absence of REC8, early chromosome pairing events appear normal, but synapsis occurs in a novel fashion: between sister chromatids. This implies that a major role for REC8 in mammalian meiosis is to limit synapsis to between homologous chromosomes. In all other eukaryotic species studied to date, REC8 phenotypes have been restricted to meiosis. Unexpectedly, Rec8 null mice are born in sub-Mendelian frequencies and fail to thrive. These findings illuminate hitherto unknown REC8 functions in chromosome dynamics during mammalian meiosis and possibly in somatic development.
Collapse
Affiliation(s)
- Huiling Xu
- Divisions of Radiation Oncology and Research, Peter MacCallum Cancer Centre, Melbourne, Victoria 8006, Australia
| | | | | | | | | |
Collapse
|
48
|
Trelles-Sticken E, Adelfalk C, Loidl J, Scherthan H. Meiotic telomere clustering requires actin for its formation and cohesin for its resolution. J Cell Biol 2005; 170:213-23. [PMID: 16027219 PMCID: PMC2171397 DOI: 10.1083/jcb.200501042] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2005] [Accepted: 06/15/2005] [Indexed: 11/25/2022] Open
Abstract
In diploid organisms, meiosis reduces the chromosome number by half during the formation of haploid gametes. During meiotic prophase, telomeres transiently cluster at a limited sector of the nuclear envelope (bouquet stage) near the spindle pole body (SPB). Cohesin is a multisubunit complex that contributes to chromosome segregation in meiosis I and II divisions. In yeast meiosis, deficiency for Rec8 cohesin subunit induces telomere clustering to persist, whereas telomere cluster-SPB colocalization is defective. These defects are rescued by expressing the mitotic cohesin Scc1 in rec8delta meiosis, whereas bouquet-stage exit is independent of Cdc5 pololike kinase. An analysis of living Saccharomyces cerevisiae meiocytes revealed highly mobile telomeres from leptotene up to pachytene, with telomeres experiencing an actin- but not microtubule-dependent constraint of mobility during the bouquet stage. Our results suggest that cohesin is required for exit from actin polymerization-dependent telomere clustering and for linking the SPB to the telomere cluster in synaptic meiosis.
Collapse
|
49
|
Roig I, Robles P, Garcia R, Martínez-Flores I, Cabero L, Egozcue J, Liebe B, Scherthan H, Garcia M. Chromosome 18 pairing behavior in human trisomic oocytes. Presence of an extra chromosome extends bouquet stage. Reproduction 2005; 129:565-75. [PMID: 15855620 DOI: 10.1530/rep.1.00568] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Little is known about the first meiotic prophase stages in the human female because these occur during fetal life, and only a few studies have addressed aneuploid human oocytes. In this paper, the synaptic process in the meiotic prophase in three 47, XX + 18 cases is analyzed. A complete study of the dynamics of centromeres and telomeres, cohesin core and synapsis development in aneuploid female meiosis was performed. Investigation of chromosome dynamics in prophase of trisomy 18 oocytes show that these events follow the major patterns seen earlier in euploid oocytes. However, there is a significant delay in the resolution of bouquet topology which could relate to the presence of a surplus chromosome 18 axial element in zygotene oocytes. Pachytene oocytes displayed normal synapsis among the three chromosome 18s. However, in some oocytes the surplus chromosome 18 core was aligned to the bivalent 18. As ataxia telangiectasia and Rad3 related kinase (ATR) has been described as a marker for late-pairing chromosomes in mice, ATR distribution was analyzed in human meiocytes –spermatocytes, euploid oocytes and trisomic oocytes. In contrast to the observations made in mice, no preferential staining for late-pairing chromosomes was observed in humans. In the cases studied, bivalent synapses progressed as in a normal ovary, contrasting with the hypothesis that a surplus chromosome can modify pairing of other chromosomes.
Collapse
Affiliation(s)
- I Roig
- Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, 08193-Bellaterra, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Protein complexes consisting of structural maintenance of chromosomes (SMC) and kleisin subunits are crucial for the faithful segregation of chromosomes during cell proliferation in prokaryotes and eukaryotes. Two of the best-studied SMC complexes are cohesin and condensin. Cohesin is required to hold sister chromatids together, which allows their bio-orientation on the mitotic spindle. Cleavage of cohesin's kleisin subunit by the separase protease then triggers the movement of sister chromatids into opposite halves of the cell during anaphase. Condensin is required to organize mitotic chromosomes into coherent structures that prevent them from getting tangled up during segregation. Here we describe the discovery of SMC complexes and discuss recent advances in determining how members of this ancient protein family may function at a mechanistic level.
Collapse
Affiliation(s)
- Kim Nasmyth
- Institute of Molecular Pathology, A-1030 Vienna, Austria.
| | | |
Collapse
|