1
|
Yao S, Yue Z, Ye S, Liang X, Li Y, Gan H, Zhou J. Identification of MCM2-Interacting Proteins Associated with Replication Initiation Using APEX2-Based Proximity Labeling Technology. Int J Mol Sci 2025; 26:1020. [PMID: 39940790 PMCID: PMC11816892 DOI: 10.3390/ijms26031020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/04/2025] [Accepted: 01/08/2025] [Indexed: 02/16/2025] Open
Abstract
DNA replication is a crucial biological process that ensures the accurate transmission of genetic information, underpinning the growth, development, and reproduction of organisms. Abnormalities in DNA replication are a primary source of genomic instability and tumorigenesis. During DNA replication, the assembly of the pre-RC at the G1-G1/S transition is a crucial licensing step that ensures the successful initiation of replication. Although many pre-replication complex (pre-RC) proteins have been identified, technical limitations hinder the detection of transiently interacting proteins. The APEX system employs peroxidase-mediated rapid labeling with high catalytic efficiency, enabling protein labeling within one minute and detection of transient protein interactions. MCM2 is a key component of the eukaryotic replication initiation complex, which is essential for DNA replication. In this study, we fused MCM2 with enhanced APEX2 to perform in situ biotinylation. By combining this approach with mass spectrometry, we identified proteins proximal to the replication initiation complex in synchronized mouse ESCs and NIH/3T3. Through a comparison of the results from both cell types, we identified some candidate proteins. Interactions between MCM2 and the candidate proteins CD2BP2, VRK1, and GTSE1 were confirmed by bimolecular fluorescence complementation. This research establishes a basis for further study of the component proteins of the conserved DNA replication initiation complex and the transient regulatory network involving its proximal proteins.
Collapse
Affiliation(s)
- Sitong Yao
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; (S.Y.); (S.Y.); (X.L.)
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (Z.Y.); (H.G.)
| | - Zhen Yue
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (Z.Y.); (H.G.)
| | - Shaotang Ye
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; (S.Y.); (S.Y.); (X.L.)
| | - Xiaohuan Liang
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; (S.Y.); (S.Y.); (X.L.)
| | - Yugu Li
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; (S.Y.); (S.Y.); (X.L.)
| | - Haiyun Gan
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (Z.Y.); (H.G.)
| | - Jiaqi Zhou
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (Z.Y.); (H.G.)
| |
Collapse
|
2
|
Hizume K. In vitro observation of histone-hexamer association with and dissociation from the amino-terminal region of budding yeast Mcm2, a subunit of the replicative helicase. Biosci Biotechnol Biochem 2024; 88:1270-1278. [PMID: 39103894 DOI: 10.1093/bbb/zbae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/24/2024] [Indexed: 08/07/2024]
Abstract
During DNA replication, core histones that form nucleosomes on template strands are evicted and associate with newly synthesized strands to reform nucleosomes. Mcm2, a subunit of the Mcm2-7 complex, which is a core component of the replicative helicase, interacts with histones in the amino-terminal region (Mcm2N) and is involved in the parental histone recycling to lagging strands. Herein, the interaction of Mcm2N with histones was biochemically analyzed to reveal the molecular mechanisms underlying histone recycling by Mcm2N. With the addition of Mcm2N, a histone hexamer, comprising an H3-H4 tetramer and an H2A-H2B dimer, was excised from the histone octamer to form a complex with Mcm2N. The histone hexamer, but not H3-H4 tetramer was released from Mcm2N in the presence of Nap1, a histone chaperone. FACT, another histone chaperone, stabilized Mcm2N-histone hexamer complex to protect from Nap1-dependent dissociation. This study indicates cooperative histone transfer via Mcm2N and histone chaperones.
Collapse
Affiliation(s)
- Kohji Hizume
- Division of RI Laboratory, Biomedical Research Center, Faculty of Medicine, Saitama Medical University, Moroyama-machi, Saitama, Japan
| |
Collapse
|
3
|
Hu Y, Stillman B. Origins of DNA replication in eukaryotes. Mol Cell 2023; 83:352-372. [PMID: 36640769 PMCID: PMC9898300 DOI: 10.1016/j.molcel.2022.12.024] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 01/15/2023]
Abstract
Errors occurring during DNA replication can result in inaccurate replication, incomplete replication, or re-replication, resulting in genome instability that can lead to diseases such as cancer or disorders such as autism. A great deal of progress has been made toward understanding the entire process of DNA replication in eukaryotes, including the mechanism of initiation and its control. This review focuses on the current understanding of how the origin recognition complex (ORC) contributes to determining the location of replication initiation in the multiple chromosomes within eukaryotic cells, as well as methods for mapping the location and temporal patterning of DNA replication. Origin specification and configuration vary substantially between eukaryotic species and in some cases co-evolved with gene-silencing mechanisms. We discuss the possibility that centromeres and origins of DNA replication were originally derived from a common element and later separated during evolution.
Collapse
Affiliation(s)
- Yixin Hu
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA; Program in Molecular and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Bruce Stillman
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
4
|
|
5
|
You Z, Ode KL, Shindo M, Takisawa H, Masai H. Characterization of conserved arginine residues on Cdt1 that affect licensing activity and interaction with Geminin or Mcm complex. Cell Cycle 2017; 15:1213-26. [PMID: 26940553 DOI: 10.1080/15384101.2015.1106652] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
All organisms ensure once and only once replication during S phase through a process called replication licensing. Cdt1 is a key component and crucial loading factor of Mcm complex, which is a central component for the eukaryotic replicative helicase. In higher eukaryotes, timely inhibition of Cdt1 by Geminin is essential to prevent rereplication. Here, we address the mechanism of DNA licensing using purified Cdt1, Mcm and Geminin proteins in combination with replication in Xenopus egg extracts. We mutagenized the 223th arginine of mouse Cdt1 (mCdt1) to cysteine or serine (R-S or R-C, respectively) and 342nd and 346th arginines constituting an arginine finger-like structure to alanine (RR-AA). The RR-AA mutant of Cdt1 could not only rescue the DNA replication activity in Cdt1-depleted extracts but also its specific activity for DNA replication and licensing was significantly increased compared to the wild-type protein. In contrast, the R223 mutants were partially defective in rescue of DNA replication and licensing. Biochemical analyses of these mutant Cdt1 proteins indicated that the RR-AA mutation disabled its functional interaction with Geminin, while R223 mutations resulted in ablation in interaction with the Mcm2∼7 complex. Intriguingly, the R223 mutants are more susceptible to the phosphorylation-induced inactivation or chromatin dissociation. Our results show that conserved arginine residues play critical roles in interaction with Geminin and Mcm that are crucial for proper conformation of the complexes and its licensing activity.
Collapse
Affiliation(s)
- Zhiying You
- a Department of Genome Medicine , Tokyo Metropolitan Institute of Medical Science , Tokyo , Japan
| | - Koji L Ode
- b Department of Biological Sciences , Graduate School of Science, Osaka University , Toyonaka , Osaka , Japan
| | - Mayumi Shindo
- c Laboratory of Protein Analysis, Tokyo Metropolitan Institute of Medical Science , Tokyo , Japan
| | - Haruhiko Takisawa
- b Department of Biological Sciences , Graduate School of Science, Osaka University , Toyonaka , Osaka , Japan
| | - Hisao Masai
- a Department of Genome Medicine , Tokyo Metropolitan Institute of Medical Science , Tokyo , Japan
| |
Collapse
|
6
|
Hizume K, Kominami H, Kobayashi K, Yamada H, Araki H. Flexible DNA Path in the MCM Double Hexamer Loaded on DNA. Biochemistry 2017; 56:2435-2445. [DOI: 10.1021/acs.biochem.6b00922] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kohji Hizume
- Division
of Microbial Genetics, National Institute of Genetics, Mishima 411-8540, Japan
- Department
of Genetics, School of Life Science, the Graduate University for Advanced Studies (SOKENDAI), Mishima 411-8540, Japan
| | - Hiroaki Kominami
- Department
of Electronic Science and Engineering, Kyoto University, Kyoto University
Katsura, Nishikyo, Kyoto 615-8510, Japan
| | - Kei Kobayashi
- Department
of Electronic Science and Engineering, Kyoto University, Kyoto University
Katsura, Nishikyo, Kyoto 615-8510, Japan
| | - Hirofumi Yamada
- Department
of Electronic Science and Engineering, Kyoto University, Kyoto University
Katsura, Nishikyo, Kyoto 615-8510, Japan
| | - Hiroyuki Araki
- Division
of Microbial Genetics, National Institute of Genetics, Mishima 411-8540, Japan
- Department
of Genetics, School of Life Science, the Graduate University for Advanced Studies (SOKENDAI), Mishima 411-8540, Japan
| |
Collapse
|
7
|
Shinya M, Machiki D, Henrich T, Kubota Y, Takisawa H, Mimura S. Evolutionary diversification of MCM3 genes in Xenopus laevis and Danio rerio. Cell Cycle 2015; 13:3271-81. [PMID: 25485507 DOI: 10.4161/15384101.2014.954445] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Embryonic cell cycles of amphibians are rapid and lack zygotic transcription and checkpoint control. At the mid-blastula transition, zygotic transcription is initiated and cell divisions become asynchronous. Several cell cycle-related amphibian genes retain 2 distinct forms, maternal and zygotic, but little is known about the functional differences between these 2 forms of proteins. The minichromosome maintenance (MCM) 2-7 complex, consisting of 6 MCM proteins, plays a central role in the regulation of eukaryotic DNA replication. Almost all eukaryotes retain just a single MCM gene for each subunit. Here we report that Xenopus and zebrafish have 2 copies of MCM3 genes, one of which shows a maternal and the other a zygotic expression pattern. Phylogenetic analysis shows that the Xenopus and zebrafish zygotic MCM3 genes are more similar to their mammalian MCM3 ortholog, suggesting that maternal MCM3 was lost during evolution in most vertebrate lineages. Maternal MCM3 proteins in these 2 species are functionally different from zygotic MCM3 proteins because zygotic, but not maternal, MCM3 possesses an active nuclear localization signal in its C-terminal region, such as mammalian MCM3 orthologs do. mRNA injection experiments in zebrafish embryos show that overexpression of maternal MCM3 impairs proliferation and causes developmental defects, whereas zygotic MCM3 has a much weaker effect. This difference is brought about by the difference in their C-terminal regions, which contain putative nuclear localization signals; swapping the C-terminal region between maternal and zygotic genes diminishes the developmental defects. This study suggests that evolutionary diversification has occurred in MCM3 genes, leading to distinct functions, possibly as an adaption to the rapid DNA replication required for early development of Xenopus and zebrafish.
Collapse
Affiliation(s)
- Minori Shinya
- a Genetic Strains Research Center; National Institute of Genetics ; Mishima , Shizuoka , Japan
| | | | | | | | | | | |
Collapse
|
8
|
Rutz N, Heilbronn R, Weger S. Interactions of cullin3/KCTD5 complexes with both cytoplasmic and nuclear proteins: Evidence for a role in protein stabilization. Biochem Biophys Res Commun 2015; 464:922-8. [PMID: 26188516 DOI: 10.1016/j.bbrc.2015.07.069] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 07/14/2015] [Indexed: 01/09/2023]
Abstract
Based on its specific interaction with cullin3 mediated by an N-terminal BTB/POZ homologous domain, KCTD5 has been proposed to function as substrate adapter for cullin3 based ubiquitin E3 ligases. In the present study we tried to validate this hypothesis through identification and characterization of additional KCTD5 interaction partners. For the replication protein MCM7, the zinc finger protein ZNF711 and FAM193B, a yet poorly characterized cytoplasmic protein, we could demonstrate specific interaction with KCTD5 both in yeast two-hybrid and co-precipitation studies in mammalian cells. Whereas trimeric complexes of cullin3 and KCTD5 with the respective KCTD5 binding partner were formed, KCTD5/cullin3 induced polyubiquitylation and/or proteasome-dependent degradation of these binding partners could not be demonstrated. On the contrary, KCTD5 or Cullin3 overexpression increased ZNF711 protein stability.
Collapse
Affiliation(s)
- Natalja Rutz
- Institute of Virology, Campus Benjamin Franklin, Charité-University Medicine Berlin, Berlin, Germany
| | - Regine Heilbronn
- Institute of Virology, Campus Benjamin Franklin, Charité-University Medicine Berlin, Berlin, Germany
| | - Stefan Weger
- Institute of Virology, Campus Benjamin Franklin, Charité-University Medicine Berlin, Berlin, Germany.
| |
Collapse
|
9
|
MCM Paradox: Abundance of Eukaryotic Replicative Helicases and Genomic Integrity. Mol Biol Int 2014; 2014:574850. [PMID: 25386362 PMCID: PMC4217321 DOI: 10.1155/2014/574850] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 09/30/2014] [Indexed: 12/03/2022] Open
Abstract
As a crucial component of DNA replication licensing system, minichromosome maintenance (MCM) 2–7 complex acts as the eukaryotic DNA replicative helicase. The six related MCM proteins form a heterohexamer and bind with ORC, CDC6, and Cdt1 to form the prereplication complex. Although the MCMs are well known as replicative helicases, their overabundance and distribution patterns on chromatin present a paradox called the “MCM paradox.” Several approaches had been taken to solve the MCM paradox and describe the purpose of excess MCMs distributed beyond the replication origins. Alternative functions of these MCMs rather than a helicase had also been proposed. This review focuses on several models and concepts generated to solve the MCM paradox coinciding with their helicase function and provides insight into the concept that excess MCMs are meant for licensing dormant origins as a backup during replication stress. Finally, we extend our view towards the effect of alteration of MCM level. Though an excess MCM constituent is needed for normal cells to withstand stress, there must be a delineation of the threshold level in normal and malignant cells. This review also outlooks the future prospects to better understand the MCM biology.
Collapse
|
10
|
Abstract
Udu has been shown to play an essential role during blood cell development; however, its roles in other cellular processes remain largely unexplored. In addition, ugly duckling (udu) mutants exhibited somite and myotome boundary defects. Our fluorescence-activated cell sorting analysis also showed that the loss of udu function resulted in defective cell cycle progression and comet assay indicated the presence of increased DNA damage in udu(tu24) mutants. We further showed that the extensive p53-dependent apoptosis in udu(tu24) mutants is a consequence of activation in the Atm-Chk2 pathway. Udu seems not to be required for DNA repair, because both wild-type and udu embryos similarly respond to and recover from UV treatment. Yeast two-hybrid and coimmunoprecipitation data demonstrated that PAH-L repeats and SANT-L domain of Udu interacts with MCM3 and MCM4. Furthermore, Udu is colocalized with 5-bromo-2'-deoxyuridine and heterochromatin during DNA replication, suggesting a role in maintaining genome integrity.
Collapse
Affiliation(s)
- Chiaw-Hwee Lim
- Laboratory of Developmental Signalling and Patterning, Genes and Development Division, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138673
| | | | | |
Collapse
|
11
|
Minichromosome maintenance proteins 2 and 5 in non-benign epithelial ovarian tumours: relationship with cell cycle regulators and prognostic implications. Br J Cancer 2007; 97:1124-34. [PMID: 17940502 PMCID: PMC2360432 DOI: 10.1038/sj.bjc.6603992] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Minichromosome maintenance proteins (MCM) have recently emerged as novel proliferation markers with prognostic implications in several tumour types. This is the first study investigating MCM-2 and MCM-5 immunohistochemical expression in a series of ovarian adenocarcinomas and low malignant potential (LMP) tumours aiming to determine possible associations with clinicopathological parameters, the conventional proliferation index Ki-67, cell cycle regulators (p53, p27(Kip1), p21(WAF1) and pRb) and patients' outcome. Immunohistochemistry was applied in a series of 43 cases of ovarian LMP tumours and 85 cases of adenocarcinomas. Survival analysis was restricted to adenocarcinomas. The median MCM-2 and MCM-5 labelling indices (LIs) were significantly higher in adenocarcinomas compared to LMP tumours (P<0.0001 for both associations). In adenocarcinomas, the levels of MCM-2 and MCM-5 increased significantly with advancing tumour stage (P=0.0052 and P=0.0180, respectively), whereas both MCM-2 and MCM-5 increased significantly with increasing tumour grade (P=0.0002 and P=0.0006, respectively) and the presence of bulky residual disease (P<0.0001 in both relationships). A strong positive correlation was established between MCM-2 or MCM-5 expression level and Ki-67 LI (P<0.0001) as well as p53 protein (P=0.0038 and P=0.0500, respectively). Moreover, MCM-2 LI was inversely correlated with p27(Kip-1) LI (P=0.0068). Finally, both MCM-2 and MCM-5 were associated significantly with adverse patients' outcome in both univariate (> or =20 vs >20%, P=0.0011 and > or =25 vs <25%, P=0.0100, respectively) and multivariate (P=0.0001 and 0.0090, respectively) analysis. An adequately powered independent group of 45 patients was used in order to validate our results in univariate survival analysis. In this group, MCM-2 and MCM-5 expression retained their prognostic significance (P<0.0001 in both relationships). In conclusion, MCM-2 and MCM-5 proteins appear to be promising as prognostic markers in patients with ovarian adenocarcinomas.
Collapse
|
12
|
Srinivasan SV, Mayhew CN, Schwemberger S, Zagorski W, Knudsen ES. RB loss promotes aberrant ploidy by deregulating levels and activity of DNA replication factors. J Biol Chem 2007; 282:23867-77. [PMID: 17556357 DOI: 10.1074/jbc.m700542200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The retinoblastoma tumor suppressor (RB) is functionally inactivated in many human cancers. Classically, RB functions to repress E2F-mediated transcription and inhibit cell cycle progression. Consequently, RB ablation leads to loss of cell cycle control and aberrant expression of E2F target genes. Emerging evidence indicates a role for RB in maintenance of genomic stability. Here, mouse adult fibroblasts were utilized to demonstrate that aberrant DNA content in RB-deficient cells occurs concomitantly with an increase in levels and chromatin association of DNA replication factors. Furthermore, following exposure to nocodazole, RB-proficient cells arrest with 4 n DNA content, whereas RB-deficient cells bypass the mitotic block, continue DNA synthesis, and accumulate cells with higher ploidy and micronuclei. Under this condition, RB-deficient cells also retain high levels of tethered replication factors, MCM7 and PCNA, indicating that DNA replication occurs in these cells under nonpermissive conditions. Exogenous expression of replication factors Cdc6 or Cdt1 in RB-proficient cells does not recapitulate the RB-deficient cell phenotype. However, ectopic E2F expression in RB-proficient cells elevated ploidy and bypassed the response to nocodazole-induced cessation of DNA replication in a manner analogous to RB loss. Collectively, these results demonstrate that deregulated S phase control is a key mechanism by which RB-deficient cells acquire elevated ploidy.
Collapse
Affiliation(s)
- Seetha V Srinivasan
- Department of Cell and Cancer Biology, Vontz Center for Molecular Studies, Ohio 45267, USA
| | | | | | | | | |
Collapse
|
13
|
Agarwal MK, Ruhul Amin ARM, Agarwal ML. DNA replication licensing factor minichromosome maintenance deficient 5 rescues p53-mediated growth arrest. Cancer Res 2007; 67:116-21. [PMID: 17210690 DOI: 10.1158/0008-5472.can-06-2835] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Inactivation of p53 signaling by mutation of p53 itself or abrogation of its normal function by other transfactors, such as MDM2, is a key event in the development of most human cancers. To identify novel regulators of p53, we have used a phenotype-based selection in which a total cDNA library in a retroviral vector has been introduced into TR9-7ER cells, which arrest when p53 is expressed from a tetracycline-regulated promoter. We have isolated several clones derived from cells that are not growth-arrested when p53 is overexpressed. In one clone, the levels of p53, p21, and MDM2 are comparable with those in TR9-7ER cells and, therefore, the abrogation of growth arrest by an exogenous cDNA is likely to be distal to p21. Using reverse transcription-PCR, we were able to isolate a cDNA of approximately 2.2 kb, which was found to have 99% identity to the nucleotides between about 80 and 2,288 of the open reading frame of a gene encoding DNA replication licensing factor. It encodes complete peptide of 734 residues of this protein also called minichromosome maintenance deficient 5 (MCM5) or cell division cycle 46 (Saccharomyces cerevisiae). Northern and Western blot analyses revealed that the expression of MCM5 and its transcriptional regulator, E2F1, is negatively regulated by p53. When MCM5 cDNA was reintroduced into fresh TR9-7ER cells, numerous colonies that grow in the absence of tetracycline were formed. This novel observation establishes a role for MCM5 in negating the growth arrest function of p53.
Collapse
Affiliation(s)
- Mukesh K Agarwal
- Department of Genetics, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | |
Collapse
|
14
|
Pan H, Deng Y, Pollard JW. Progesterone blocks estrogen-induced DNA synthesis through the inhibition of replication licensing. Proc Natl Acad Sci U S A 2006; 103:14021-6. [PMID: 16966611 PMCID: PMC1599905 DOI: 10.1073/pnas.0601271103] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Indexed: 11/18/2022] Open
Abstract
In the uterus, progesterone (P4) acts early in G1 as a physiological inhibitor of estradiol-17beta (E2)-induced epithelial cell proliferation. Gene expression profiling of uterine epithelial cell RNA isolated 3 h after hormonal treatment of ovariectomized mice revealed the co-coordinate down-regulation by P4 of >20 genes whose functions are associated with DNA replication. This group included all of the minichromosome maintenance (MCM) proteins that are required for DNA replication licensing. E2 regulated loading of these MCM proteins onto chromatin in parallel with its induction of DNA synthesis. E2 caused this chromatin loading by retention of MCM proteins in the nucleus and through the induction of the loading factor Cdt1, which is necessary for the MCM heterohexamer to bind to the origin of DNA replication. P4 dramatically reduced the binding of the MCMs to chromatin by a number of mechanisms. First, MCM mRNA and protein abundance was down-regulated. Second, P4 inhibited the E2 induction of Cdt1. Third, P4 treatment sequestered the normally nuclear MCM proteins into the cytoplasm. This reduced MCM binding resulted in the complete inhibition of E2-induced DNA synthesis by P4. These data reveal mechanisms not only for female sex steroid hormone action but also in the regulation of DNA replication licensing.
Collapse
Affiliation(s)
- Haiyan Pan
- Department of Development and Molecular Biology and Department of Obstetrics & Gynecology and Women's Health, Center for the Study of Reproductive Biology and Women's Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461
| | - Yan Deng
- Department of Development and Molecular Biology and Department of Obstetrics & Gynecology and Women's Health, Center for the Study of Reproductive Biology and Women's Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461
| | - Jeffrey W. Pollard
- Department of Development and Molecular Biology and Department of Obstetrics & Gynecology and Women's Health, Center for the Study of Reproductive Biology and Women's Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461
| |
Collapse
|
15
|
Tsuji T, Ficarro SB, Jiang W. Essential role of phosphorylation of MCM2 by Cdc7/Dbf4 in the initiation of DNA replication in mammalian cells. Mol Biol Cell 2006; 17:4459-72. [PMID: 16899510 PMCID: PMC1635350 DOI: 10.1091/mbc.e06-03-0241] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We report the identification of Cdc7/Dbf4 phosphorylation sites in human MCM2 and the determination of the role of Cdc7/Dbf4 phosphorylation of MCM2 in the initiation of DNA replication. Using immunoblotting, immunofluorescence, and high-speed automated cell-imaging analyses with antibodies specific against MCM2 and Cdc7/Dbf4 phosphorylated MCM2, we show that the chromatin recruitment and phosphorylation of MCM2 are regulated during the cell cycle in HeLa cells. Chromatin-bound MCM2 is phosphorylated by Cdc7/Dbf4 during G1/S, which coincides with the initiation of DNA replication. Moreover, we show that baculovirus-expressed purified MCM2-7 complex and its phosphomimetic MCM2E-7 complex display higher ATPase activity when compared with the nonphosphorylatable MCM2A-7 complex in vitro. Furthermore, suppression of MCM2 expression in HeLa cells by siRNA results in the inhibition of DNA replication. The inhibition can be rescued by the coexpression of wild type MCM2 or MCM2E but not MCM2A. Taken together, these results indicate that Cdc7/Dbf4 phosphorylation of MCM2 is essential for the initiation of DNA replication in mammalian cells.
Collapse
Affiliation(s)
- Toshiya Tsuji
- *The Burnham Institute for Medical Research, La Jolla, CA 92037; and
| | - Scott B. Ficarro
- Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121
| | - Wei Jiang
- *The Burnham Institute for Medical Research, La Jolla, CA 92037; and
| |
Collapse
|
16
|
Waga S, Zembutsu A. Dynamics of DNA binding of replication initiation proteins during de novo formation of pre-replicative complexes in Xenopus egg extracts. J Biol Chem 2006; 281:10926-34. [PMID: 16497662 DOI: 10.1074/jbc.m600299200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We investigated the dynamics of DNA binding of replication initiation proteins during formation of the pre-replicative complex (pre-RC) on plasmids in Xenopus egg extracts. The pre-RC was efficiently formed on plasmids at 23 degrees C, with one or a few origin recognition complex (ORC) molecules and approximately 10-20 mini-chromosome maintenance 2 (MCM2) molecules loaded onto each plasmid. Although geminin inhibited MCM loading, MCM interacted weakly but stoichiometrically with the plasmid in an ORC-dependent manner, even in the presence of geminin (with approximately 10 MCM2 molecules per plasmid). Interestingly, DNA binding of ORC, CDC6, and CDT1 was significantly stabilized in the presence of geminin, under which conditions approximately 10-20 molecules each of ORC and CDC6 were bound. Moreover, a similarly stable ORC-CDC6-CDT1 complex rapidly formed on DNA at lower temperature (0 degrees C) without geminin, with approximately 10-20 molecules each of ORC and CDC6 bound to the plasmid, but almost no binding of MCM. However, upon shifting the temperature to 23 degrees C, most ORC, CDC6, and CDT1 molecules were displaced from the DNA, leaving about one ORC molecule on the plasmid, whereas approximately 10 MCM2 molecules were loaded onto each plasmid. Furthermore, it was possible to load MCM onto DNA when the isolated ORC-CDC6-CDT1-DNA complex was mixed with purified MCM proteins. These results suggest that an ORC-CDC6-CDT1 complex pre-formed on DNA is directly involved in MCM loading and imply that each DNA-bound ORC molecule loads only one or a few MCM2-7 complexes during metazoan pre-RC formation.
Collapse
Affiliation(s)
- Shou Waga
- Laboratories for Biomolecular Network, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan.
| | | |
Collapse
|
17
|
Dresselhaus T, Srilunchang KO, Leljak-Levanic D, Schreiber DN, Garg P. The fertilization-induced DNA replication factor MCM6 of maize shuttles between cytoplasm and nucleus, and is essential for plant growth and development. PLANT PHYSIOLOGY 2006; 140:512-27. [PMID: 16407440 PMCID: PMC1361320 DOI: 10.1104/pp.105.074294] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The eukaryotic genome is duplicated exactly once per cell division cycle. A strategy that limits every replication origin to a single initiation event is tightly regulated by a multiprotein complex, which involves at least 20 protein factors. A key player in this regulation is the evolutionary conserved hexameric MCM2-7 complex. From maize (Zea mays) zygotes, we have cloned MCM6 and characterized this essential gene in more detail. Shortly after fertilization, expression of ZmMCM6 is strongly induced. During progression of zygote and proembryo development, ZmMCM6 transcript amounts decrease and are low in vegetative tissues, where expression is restricted to tissues containing proliferating cells. The highest protein amounts are detectable about 6 to 20 d after fertilization in developing kernels. Subcellular localization studies revealed that MCM6 protein shuttles between cytoplasm and nucleoplasm in a cell cycle-dependent manner. ZmMCM6 is taken up by the nucleus during G1 phase and the highest protein levels were observed during late G1/S phase. ZmMCM6 is excluded from the nucleus during late S, G2, and mitosis. Transgenic maize was generated to overexpress and down-regulate ZmMCM6. Plants displaying minor antisense transcript amounts were reduced in size and did not develop cobs to maturity. Down-regulation of ZmMCM6 gene activity seems also to affect pollen development because antisense transgenes could not be propagated via pollen to wild-type plants. In summary, the transgenic data indicate that MCM6 is essential for both vegetative as well as reproductive growth and development in plants.
Collapse
Affiliation(s)
- Thomas Dresselhaus
- Developmental Biology and Biotechnology, Biocenter Klein Flottbek, University of Hamburg, 22609 Hamburg, Germany.
| | | | | | | | | |
Collapse
|
18
|
Abstract
Regulation of DNA replication is critical for accurate and timely dissemination of genomic material to daughter cells. The cell uses a variety of mechanisms to control this aspect of the cell cycle. There are various determinants of origin identification, as well as a large number of proteins required to load replication complexes at these defined genomic regions. A pre-Replication Complex (pre-RC) associates with origins in the G1 phase. This complex includes the Origin Recognition Complex (ORC), which serves to recognize origins, the putative helicase MCM2-7, and other factors important for complex assembly. Following pre-RC loading, a pre-Initiation Complex (pre-IC) builds upon the helicase with factors required for eventual loading of replicative polymerases. The chromatin association of these two complexes is temporally distinct, with pre-RC being inhibited, and pre-IC being activated by cyclin-dependent kinases (Cdks). This regulation is the basis for replication licensing, which allows replication to occur at a specific time once, and only once, per cell cycle. By preventing extra rounds of replication within a cell cycle, or by ensuring the cell cycle cannot progress until the environmental and intracellular conditions are most optimal, cells are able to carry out a successful replication cycle with minimal mutations.
Collapse
Affiliation(s)
- Jamie K Teer
- Biological and Biomedical Sciences Program, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
19
|
Ryu S, Holzschuh J, Erhardt S, Ettl AK, Driever W. Depletion of minichromosome maintenance protein 5 in the zebrafish retina causes cell-cycle defect and apoptosis. Proc Natl Acad Sci U S A 2005; 102:18467-72. [PMID: 16339308 PMCID: PMC1317923 DOI: 10.1073/pnas.0506187102] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In multicellular organisms, the control of genome duplication and cell division must be tightly coordinated. Essential roles of the minichromosome maintenance (MCM) proteins for genome duplication have been well established. However, no genetic model has been available to address the function of MCM proteins in the context of vertebrate organogenesis. Here, we present positional cloning of a zebrafish mcm5 mutation and characterization of its retina phenotype. In the retina, mcm5 expression correlates closely with the pattern of cell proliferation. By the third day of development, mcm5 is down-regulated in differentiated cells but is maintained in regions containing retinal stem cells. We demonstrate that a gradual depletion of maternally derived MCM5 protein leads to a prolonged S phase, cell-cycle-exit failure, apoptosis, and reduction in cell number in mcm5(m850) mutant embryos. Interestingly, by the third day of development, increased apoptosis is detectable only in the retina, tectum, and hindbrain but not in other late-proliferating tissues, suggesting that different tissues may employ distinct cellular programs in responding to the depletion of MCM5.
Collapse
Affiliation(s)
- Soojin Ryu
- Developmental Biology, Institute Biology 1, University of Freiburg, Hauptstrasse 1, D-79104 Freiburg, Germany
| | | | | | | | | |
Collapse
|
20
|
Ying CY, Gautier J. The ATPase activity of MCM2-7 is dispensable for pre-RC assembly but is required for DNA unwinding. EMBO J 2005; 24:4334-44. [PMID: 16369567 PMCID: PMC1356333 DOI: 10.1038/sj.emboj.7600892] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Accepted: 11/08/2005] [Indexed: 12/18/2022] Open
Abstract
Eukaryotes have six minichromosome maintenance (MCM) proteins that are essential for DNA replication. The contribution of ATPase activity of MCM complexes to their function in replication is poorly understood. We have established a cell-free system competent for replication in which all MCM proteins are supplied by purified recombinant Xenopus MCM complexes. Recombinant MCM2-7 complex was able to assemble onto chromatin, load Cdc45 onto chromatin, and restore DNA replication in MCM-depleted extracts. Using mutational analysis in the Walker A motif of MCM6 and MCM7 of MCM2-7, we show that ATP binding and/or hydrolysis by MCM proteins is dispensable for chromatin loading and pre-replicative complex (pre-RC) assembly, but is required for origin unwinding during DNA replication. Moreover, this ATPase-deficient mutant complex did not support DNA replication in MCM-depleted extracts. Altogether, these results both demonstrate the ability of recombinant MCM proteins to perform all replication roles of MCM complexes, and further support the model that MCM2-7 is the replicative helicase. These data establish that mutations affecting the ATPase activity of the MCM complex uncouple its role in pre-RC assembly from DNA replication.
Collapse
Affiliation(s)
- Carol Y Ying
- Integrated Program in Cellular, Molecular, and Biophysical Studies, Hammer Health Sciences Center, Columbia University College of Physicians and Surgeons, New York, NY, USA
- Department of Genetics and Development, Hammer Health Sciences Center, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Jean Gautier
- Department of Genetics and Development, Hammer Health Sciences Center, Columbia University College of Physicians and Surgeons, New York, NY, USA
- Department of Genetics and Development, Hammer Health Sciences Center, Columbia University College of Physicians and Surgeons, Room 1602A, 701 W 168th Street, New York, NY 10032, USA. Tel.: +1 212 305 9586; Fax: +1 212 923 2090; E-mail:
| |
Collapse
|
21
|
Yoshida K, Takisawa H, Kubota Y. Intrinsic nuclear import activity of geminin is essential to prevent re-initiation of DNA replication in Xenopus eggs. Genes Cells 2005; 10:63-73. [PMID: 15670214 DOI: 10.1111/j.1365-2443.2005.00815.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Prior to S phase, eukaryotic chromosomes are licensed for initiation of DNA replication, and re-licensing is prohibited after S phase has started until late mitosis, thus ensuring that genomic DNA is duplicated precisely once in each cell cycle. Here, we report that over-expression of Cdt1, an essential licensing protein, induced re-replication in Xenopus egg extracts. Geminin, a metazoan-specific inhibitor of Cdt1, was critical for preventing re-replication induced by Cdt1. Re-replication induced by the addition of recombinant Cdt1 and/or by the depletion of geminin from extracts was enhanced by a proteasome inhibitor, which suppressed the degradation of Cdt1 in the extracts. Furthermore, a nuclear localization sequence identified in Xenopus geminin had a significant role in the suppression of re-replication induced by Cdt1. These results suggest that nuclear accumulation of geminin plays a dominant role in the licensing system of Xenopus eggs.
Collapse
Affiliation(s)
- Kazumasa Yoshida
- Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | | | | |
Collapse
|
22
|
Maiorano D, Cuvier O, Danis E, Méchali M. MCM8 Is an MCM2-7-Related Protein that Functions as a DNA Helicase during Replication Elongation and Not Initiation. Cell 2005; 120:315-28. [PMID: 15707891 DOI: 10.1016/j.cell.2004.12.010] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2004] [Revised: 10/27/2004] [Accepted: 12/09/2004] [Indexed: 11/20/2022]
Abstract
MCM2-7 proteins are replication factors required to initiate DNA synthesis and are currently the best candidates for replicative helicases. We show that the MCM2-7-related protein MCM8 is required to efficiently replicate chromosomal DNA in Xenopus egg extracts. MCM8 does not associate with the soluble MCM2-7 complex and binds chromatin upon initiation of DNA synthesis. MCM8 depletion does not affect replication licensing or MCM3 loading but slows down DNA synthesis and reduces chromatin recruitment of RPA34 and DNA polymerase-alpha. Recombinant MCM8 displays both DNA helicase and ATPase activities in vitro. Reconstitution experiments show that ATP binding in MCM8 is required to rescue DNA synthesis in MCM8-depleted extracts. MCM8 colocalizes with replication foci and RPA34 on chromatin. We suggest that MCM8 functions in the elongation step of DNA replication as a helicase that facilitates the recruitment of RPA34 and stimulates the processivity of DNA polymerases at replication foci.
Collapse
Affiliation(s)
- Domenico Maiorano
- Institute of Human Genetics, Centre National de la Recherche Scientifique, 141 rue de la Cardonille, 34396 Montpellier Cedex 05, France
| | | | | | | |
Collapse
|
23
|
Li A, Blow JJ. Cdt1 downregulation by proteolysis and geminin inhibition prevents DNA re-replication in Xenopus. EMBO J 2004; 24:395-404. [PMID: 15616577 PMCID: PMC545810 DOI: 10.1038/sj.emboj.7600520] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Accepted: 11/23/2004] [Indexed: 01/04/2023] Open
Abstract
In late mitosis and G1, Mcm2-7 are assembled onto replication origins to 'license' them for initiation. At other cell cycle stages, licensing is inhibited, thus ensuring that origins fire only once per cell cycle. Three additional factors--the origin recognition complex, Cdc6 and Cdt1--are required for origin licensing. We examine here how licensing is regulated in Xenopus egg extracts. We show that Cdt1 is downregulated late in the cell cycle by two different mechanisms: proteolysis, which occurs in part due to the activity of the anaphase-promoting complex (APC/C), and inhibition by a protein called geminin. If both these regulatory mechanisms are abrogated, extracts undergo uncontrolled re-licensing and re-replication. The extent of re-replication is limited by checkpoint kinases that are activated as a consequence of re-replication itself. These results allow us to build a comprehensive model of how re-replication of DNA is prevented in Xenopus, with Cdt1 regulation being the key feature. The results also explain the original experiments that led to the proposal of a replication licensing factor.
Collapse
Affiliation(s)
- Anatoliy Li
- Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - J Julian Blow
- Wellcome Trust Biocentre, University of Dundee, Dundee, UK
- Wellcome Trust Biocentre, University of Dundee, Dow Street, Dundee DD1 5EH, UK. Tel.: +44 1382 345797; Fax: +44 1382 348072; E-mail:
| |
Collapse
|
24
|
Khoudoli GA, Porter IM, Blow JJ, Swedlow JR. Optimisation of the two-dimensional gel electrophoresis protocol using the Taguchi approach. Proteome Sci 2004. [PMID: 15357868 DOI: 10.1186/1477–5956–2–6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND: Quantitative proteomic analyses have traditionally used two-dimensional gel electrophoresis (2DE) for separation and characterisation of complex protein mixtures. Among the difficulties associated with this approach is the solubilisation of protein mixtures for isoelectric focusing (IEF). To find the optimal formulation of the multi-component IEF rehydration buffer (RB) we applied the Taguchi method, a widely used approach for the robust optimisation of complex industrial processes, to determine optimal concentrations for the detergents, carrier ampholytes and reducing agents in RB for 2DE using commercially supplied immobilised pH gradient (IPG) gel strips. RESULTS: Our optimisation resulted in increased protein solubility, improved resolution and reproducibility of 2D gels, using a wide variety of samples. With the updated protocol we routinely detected approximately 4-fold more polypeptides on samples containing complex protein mixtures resolved on small format 2D gels. In addition the pI and size ranges over which proteins could be resolved was substantially improved. Moreover, with improved sample loading and resolution, analysis of individual spots by immunoblotting and mass spectrometry revealed previously uncharacterised posttranscriptional modifications in a variety of chromatin proteins. CONCLUSIONS: While the optimised RB (oRB) is specific to the gels and analysis approach we use, our use of the Taguchi method should be generally applicable to a broad range of electrophoresis and analysis systems.
Collapse
Affiliation(s)
- Guennadi A Khoudoli
- Division of Gene Regulation and Expression, School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| | | | | | | |
Collapse
|
25
|
Khoudoli GA, Porter IM, Blow JJ, Swedlow JR. Optimisation of the two-dimensional gel electrophoresis protocol using the Taguchi approach. Proteome Sci 2004; 2:6. [PMID: 15357868 PMCID: PMC517948 DOI: 10.1186/1477-5956-2-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2004] [Accepted: 09/09/2004] [Indexed: 02/04/2023] Open
Abstract
Background Quantitative proteomic analyses have traditionally used two-dimensional gel electrophoresis (2DE) for separation and characterisation of complex protein mixtures. Among the difficulties associated with this approach is the solubilisation of protein mixtures for isoelectric focusing (IEF). To find the optimal formulation of the multi-component IEF rehydration buffer (RB) we applied the Taguchi method, a widely used approach for the robust optimisation of complex industrial processes, to determine optimal concentrations for the detergents, carrier ampholytes and reducing agents in RB for 2DE using commercially supplied immobilised pH gradient (IPG) gel strips. Results Our optimisation resulted in increased protein solubility, improved resolution and reproducibility of 2D gels, using a wide variety of samples. With the updated protocol we routinely detected approximately 4-fold more polypeptides on samples containing complex protein mixtures resolved on small format 2D gels. In addition the pI and size ranges over which proteins could be resolved was substantially improved. Moreover, with improved sample loading and resolution, analysis of individual spots by immunoblotting and mass spectrometry revealed previously uncharacterised posttranscriptional modifications in a variety of chromatin proteins. Conclusions While the optimised RB (oRB) is specific to the gels and analysis approach we use, our use of the Taguchi method should be generally applicable to a broad range of electrophoresis and analysis systems.
Collapse
Affiliation(s)
- Guennadi A Khoudoli
- Division of Gene Regulation and Expression, School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Iain M Porter
- Division of Gene Regulation and Expression, School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - J Julian Blow
- Division of Gene Regulation and Expression, School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Jason R Swedlow
- Division of Gene Regulation and Expression, School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| |
Collapse
|
26
|
Yu Z, Feng D, Liang C. Pairwise interactions of the six human MCM protein subunits. J Mol Biol 2004; 340:1197-206. [PMID: 15236977 DOI: 10.1016/j.jmb.2004.05.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2004] [Revised: 05/03/2004] [Accepted: 05/10/2004] [Indexed: 12/25/2022]
Abstract
The eukaryotic minichromosome maintenance (MCM) proteins have six subunits, Mcm2 to 7p. Together they play essential roles in the initiation and elongation of DNA replication, and the human MCM proteins present attractive targets for potential anticancer drugs. The six MCM subunits interact and form a ring-shaped heterohexameric complex containing one of each subunit in a variety of eukaryotes, and subcomplexes have also been observed. However, the architecture of the human MCM heterohexameric complex is still unknown. We systematically studied pairwise interactions of individual human MCM subunits by using the yeast two-hybrid system and in vivo protein-protein crosslinking with a non-cleavable crosslinker in human cells followed by co-immunoprecipitation. In the yeast two-hybrid assays, we revealed multiple binary interactions among the six human MCM proteins, and a subset of these interactions was also detected as direct interactions in human cells. Based on our results, we propose a model for the architecture of the human MCM protein heterohexameric complex. We also propose models for the structures of subcomplexes. Thus, this study may serve as a foundation for understanding the overall architecture and function of eukaryotic MCM protein complexes and as clues for developing anticancer drugs targeted to the human MCM proteins.
Collapse
Affiliation(s)
- Zhiling Yu
- Department of Biochemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, People's Republic of China
| | | | | |
Collapse
|
27
|
Shechter D, Ying CY, Gautier J. DNA unwinding is an Mcm complex-dependent and ATP hydrolysis-dependent process. J Biol Chem 2004; 279:45586-93. [PMID: 15326181 DOI: 10.1074/jbc.m407772200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Minichromosome maintenance proteins (Mcm) are essential in all eukaryotes and are absolutely required for initiation of DNA replication. The eukaryotic and archaeal Mcm proteins have conserved helicase motifs and exhibit DNA helicase and ATP hydrolysis activities in vitro. Although the Mcm proteins have been proposed to be the replicative helicase, the enzyme that melts the DNA helix at the replication fork, their function during cellular DNA replication elongation is still unclear. Using nucleoplasmic extract (NPE) from Xenopus laevis eggs and six purified polyclonal antibodies generated against each of the Xenopus Mcm proteins, we have demonstrated that Mcm proteins are required during DNA replication and DNA unwinding after initiation of replication. Quantitative depletion of Mcms from the NPE results in normal replication and unwinding, confirming that Mcms are required before pre-replicative complex assembly and dispensable thereafter. Replication and unwinding are inhibited when pooled neutralizing antibodies against the six different Mcm2-7 proteins are added during NPE incubation. Furthermore, replication is blocked by the addition of the Mcm antibodies after an initial period of replication in the NPE, visualized by a pulse of radiolabeled nucleotide at the same time as antibody addition. Addition of the cyclin-dependent kinase 2 inhibitor p21(cip1) specifically blocks origin firing but does not prevent helicase action. When p21(cip1) is added, followed by the non-hydrolyzable analog ATPgammaS to block helicase function, unwinding is inhibited, demonstrating that plasmid unwinding is specifically attributable to an ATP hydrolysis-dependent function. These data support the hypothesis that the Mcm protein complex functions as the replicative helicase.
Collapse
Affiliation(s)
- David Shechter
- Integrated Program in Cellular, Molecular, and Biophysical Studies, Department of Genetics and Development, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | |
Collapse
|
28
|
Jares P, Luciani MG, Blow JJ. A Xenopus Dbf4 homolog is required for Cdc7 chromatin binding and DNA replication. BMC Mol Biol 2004; 5:5. [PMID: 15222894 PMCID: PMC446192 DOI: 10.1186/1471-2199-5-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2004] [Accepted: 06/28/2004] [Indexed: 11/10/2022] Open
Abstract
Background Early in the cell cycle a pre-replicative complex (pre-RC) is assembled at each replication origin. This process involves the sequential assembly of the Origin Recognition Complex (ORC), Cdc6, Cdt1 and the MiniChromosome Maintenance (Mcm2-7) proteins onto chromatin to license the origin for use in the subsequent S phase. Licensed origins must then be activated by S phase-inducing cyclin-dependent kinases (S-CDKs) and the Dbf4/Cdc7 kinase. Results We have cloned a Xenopus homologue of Dbf4 (XDbf4), the sequence of which confirms the results of Furukhori et al. We have analysed the role of XDbf4 in DNA replication using cell-free extracts of Xenopus eggs. Our results indicate that XDbf4 is the regulatory subunit of XCdc7 required for DNA replication. We show that XDbf4 binds to chromatin during interphase, but unlike XCdc7, its chromatin association is independent of pre-RC formation, occurring in the absence of licensing, XCdc6 and XORC. Moreover, we show that the binding of XCdc7 to chromatin is dependent on the presence of XDbf4, whilst under certain circumstances XDbf4 can bind to chromatin in the absence of XCdc7. We provide evidence that the chromatin binding of XDbf4 that occurs in the absence of licensing depends on checkpoint activation. Conclusions We have identified XDbf4 as a functional activator of XCdc7, and show that it is required to recruit XCdc7 to chromatin. Our results also suggest that XCdc7 and XDbf4 are differentially regulated, potentially responding to different cell cycle signals.
Collapse
Affiliation(s)
- Pedro Jares
- Wellcome Trust Biocentre, University of Dundee, Dundee DD1 5EH, UK
- Genomics Unit, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - M Gloria Luciani
- Wellcome Trust Biocentre, University of Dundee, Dundee DD1 5EH, UK
| | - J Julian Blow
- Wellcome Trust Biocentre, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
29
|
Abstract
The minichromosome maintenance (or MCM) protein family is composed of six related proteins that are conserved in all eukaryotes. They were first identified by genetic screens in yeast and subsequently analyzed in other experimental systems using molecular and biochemical methods. Early data led to the identification of MCMs as central players in the initiation of DNA replication. More recent studies have shown that MCM proteins also function in replication elongation, probably as a DNA helicase. This is consistent with structural analysis showing that the proteins interact together in a heterohexameric ring. However, MCMs are strikingly abundant and far exceed the stoichiometry of replication origins; they are widely distributed on unreplicated chromatin. Analysis of mcm mutant phenotypes and interactions with other factors have now implicated the MCM proteins in other chromosome transactions including damage response, transcription, and chromatin structure. These experiments indicate that the MCMs are central players in many aspects of genome stability.
Collapse
Affiliation(s)
- Susan L Forsburg
- Molecular & Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA.
| |
Collapse
|
30
|
Hashimoto Y, Takisawa H. Xenopus Cut5 is essential for a CDK-dependent process in the initiation of DNA replication. EMBO J 2003; 22:2526-35. [PMID: 12743046 PMCID: PMC155996 DOI: 10.1093/emboj/cdg238] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Fission yeast Cut5/Rad4 and its budding yeast homolog Dpb11 are required for both DNA replication and the S-phase checkpoint. Here, we have investigated the role of the Xenopus homolog of Cut5 in the initiation of DNA replication using Xenopus egg extracts. Xenopus Cut5, which shows sequence similarity to DmMus101 and HsTopBP1, is essential for DNA replication in the egg extracts. It is required for the chromatin binding of Cdc45 and DNA polymerases, but not for the formation of pre-replicative complexes or the elongation stage of DNA replication. The chromatin binding of Cut5 consists of two distinct modes. S-phase cyclin-dependent kinase (S-CDK)-independent binding is sufficient for DNA replication while S-CDK-dependent binding is dispensable. Further, S-CDK acts after the chromatin binding of Cut5 and before the binding of Cdc45. These results demonstrate that the chromatin binding of Cut5 is required for the action of S-CDK, which in turn triggers the formation of pre-initiation complexes of DNA replication.
Collapse
Affiliation(s)
- Yoshitami Hashimoto
- Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Japan
| | | |
Collapse
|
31
|
Kneissl M, Pütter V, Szalay AA, Grummt F. Interaction and assembly of murine pre-replicative complex proteins in yeast and mouse cells. J Mol Biol 2003; 327:111-28. [PMID: 12614612 DOI: 10.1016/s0022-2836(03)00079-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Eukaryotic cells coordinate chromosome duplication by the assembly of protein complexes at origins of DNA replication by sequential binding of member proteins of the origin recognition complex (ORC), CDC6, and minichromosome maintenance (MCM) proteins. These pre-replicative complexes (pre-RCs) are activated by cyclin-dependent kinases and DBF4/CDC7 kinase. Here, we carried out a comprehensive yeast two-hybrid screen to establish sequential interactions between two individual proteins of the mouse pre-RC that are probably required for the initiation of DNA replication. The studies revealed multiple interactions among ORC subunits and MCM proteins as well as interactions between individual ORC and MCM proteins. In particular CDC6 was found to bind strongly to ORC1 and ORC2, and to MCM7 proteins. DBF4 interacts with the subunits of ORC as well as with MCM proteins. It was also demonstrated that CDC7 binds to different ORC and MCM proteins. CDC45 interacts with ORC1 and ORC6, and weakly with MCM3, -6, and -7. The three subunits of the single-stranded DNA binding protein RPA show interactions with various ORC subunits as well as with several MCM proteins. The data obtained by yeast two-hybrid analysis were paradigmatically confirmed in synchronized murine FM3A cells by immunoprecipitation of the interacting partners. Some of the interactions were found to be cell-cycle-dependent; however, most of them were cell-cycle-independent. Altogether, 90 protein-protein interactions were detected in this study, 52 of them were found for the first time in any eukaryotic pre-RC. These data may help to understand the complex interplay of the components of the mouse pre-RC and should allow us to refine its structural architecture as well as its assembly in real time.
Collapse
Affiliation(s)
- Margot Kneissl
- Institute of Biochemistry, University of Würzburg, Biozentrum Am Hubland, D-97074 Würzburg, Germany
| | | | | | | |
Collapse
|
32
|
Masuda T, Mimura S, Takisawa H. CDK- and Cdc45-dependent priming of the MCM complex on chromatin during S-phase in Xenopus egg extracts: possible activation of MCM helicase by association with Cdc45. Genes Cells 2003; 8:145-61. [PMID: 12581157 DOI: 10.1046/j.1365-2443.2003.00621.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND MCM and Cdc45 are required for the initiation and elongation stages of eukaryotic DNA replication. Recent studies show that a purified Mcm4/6/7 complex has DNA helicase activity. However, the biochemical function of the MCM complex and Cdc45 bound to chromatin has not been elucidated. RESULTS We have examined the biochemical properties of MCM proteins bound to chromatin fractions using Xenopus egg extracts. Immunoprecipitation of MCM proteins extracted under denaturing conditions reveals that all six subunits of MCM and Cdc45 form a tight complex following the initiation of DNA replication, and that both CDK activity and Cdc45 are essential for the complex formation. Chromatin immunoprecipitation of MCM proteins and Cdc45 shows that a complex containing MCM and Cdc45 has a DNA helicase activity which is dependent on CDK activity and Cdc45 in the extracts. Furthermore, both the complex and the helicase activity are resistant to treatment with phosphatase and high salt. CONCLUSIONS Following the initiation of DNA replication, a tight MCM-Cdc45 complex is formed on chromatin and its formation is closely correlated with the DNA helicase activity of chromatin immunoprecipitates containing MCM and Cdc45. We propose that the tight MCM-Cdc45 complex functions as a replicative DNA helicase in vivo.
Collapse
Affiliation(s)
- Taro Masuda
- Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | | | | |
Collapse
|
33
|
Abstract
The maintenance of the eukaryotic genome requires precisely coordinated replication of the entire genome each time a cell divides. To achieve this coordination, eukaryotic cells use an ordered series of steps to form several key protein assemblies at origins of replication. Recent studies have identified many of the protein components of these complexes and the time during the cell cycle they assemble at the origin. Interestingly, despite distinct differences in origin structure, the identity and order of assembly of eukaryotic replication factors is highly conserved across all species. This review describes our current understanding of these events and how they are coordinated with cell cycle progression. We focus on bringing together the results from different organisms to provide a coherent model of the events of initiation. We emphasize recent progress in determining the function of the different replication factors once they have been assembled at the origin.
Collapse
Affiliation(s)
- Stephen P Bell
- Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA.
| | | |
Collapse
|
34
|
Riley DE, Krieger JN. Diverse eukaryotic transcripts suggest short tandem repeats have cellular functions. Biochem Biophys Res Commun 2002; 298:581-6. [PMID: 12408991 DOI: 10.1016/s0006-291x(02)02509-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Previously thought "junk" DNA, short tandem repeats consisting of (GATA)n, or its compliment, were found in varied metazoan eukaryotic genomes but were rare in yeast and bacterial genomes. The (GATA)n sequence was found in cDNAs encoding mRNAs with known functions. At least 16 of 18 such transcripts encode membrane-associated proteins including: plasma membranes, synapses, mitochondrial membranes, nuclear envelopes, and brush border membranes. Flanking sequences were diverse but (GATA)n sequences clustered around 500 bases from stop codons. The (GATA)n sequences occurred in both orientations and showed constrained polymorphism. In sets of splice variants with and without (GAUA)n, the STR containing transcripts were the most abundant. These observations suggest that (GATA)n sequences probably function. In many cases, the function may be to encode post-transcriptional signals for mRNAs encoding membrane-associated proteins.
Collapse
Affiliation(s)
- Donald E Riley
- Department of Urology, University of Washington, Seattle, WA 98195, USA.
| | | |
Collapse
|
35
|
Holland L, Gauthier L, Bell-Rogers P, Yankulov K. Distinct parts of minichromosome maintenance protein 2 associate with histone H3/H4 and RNA polymerase II holoenzyme. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:5192-202. [PMID: 12392551 DOI: 10.1046/j.1432-1033.2002.03224.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Minichromosome maintenance (MCM) proteins are part of the replication licensing factor (RLF-M), which limits the initiation of DNA replication to once per cell cycle. We have previously reported that higher order complexes of mammalian pol II and general pol II transcription factors, referred to as pol II holoenzyme, also contain MCM proteins. In the present study we have analyzed in detail the interaction between MCM2 and pol II holoenzyme. N- and C- terminal deletions were introduced into epitope-tagged MCM2 and the truncated proteins were transiently expressed in 293 cells. Affinity chromatography was used to purify RNA pol II holoenzyme and histone binding MCM complexes. We found that amino acids 168-230 of MCM2 are required for its binding to pol II holoenzyme in vivo. We also showed that bacterially expressed amino acids 169-212 of MCM2 associate with pol II and several general transcription factors in vitro. Point mutations within the 169-212 domain of MCM2 disrupted its interaction with pol II holoenzyme both in vitro and in vivo. This region is distinct from the previously characterized histone H3 binding domain of MCM2.
Collapse
Affiliation(s)
- Linda Holland
- Department of Molecular Biology and Genetics, University of Guelph, Ontario Canada
| | | | | | | |
Collapse
|
36
|
Whitmire E, Khan B, Coué M. Cdc6 synthesis regulates replication competence in Xenopus oocytes. Nature 2002; 419:722-5. [PMID: 12384699 DOI: 10.1038/nature01032] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2002] [Accepted: 07/22/2002] [Indexed: 02/03/2023]
Abstract
The early division cycles of an embryo rely on the oocyte's ability to replicate DNA. During meiosis, oocytes temporarily lose this ability. After a single round of pre-meiotic S-phase, oocytes enter meiosis and rapidly arrest at prophase of meiosis I (G2). Upon hormonal stimulation, arrested oocytes resume meiosis, re-establish DNA replication competence in meiosis I shortly after germinal vesicle breakdown (GVBD), but repress replication until fertilization. How oocytes lose and regain replication competence during meiosis are important questions underlying the production of functional gametes. Here we show that the inability of immature Xenopus oocytes to replicate is linked to the absence of the Cdc6 protein and the cytoplasmic localization of other initiation proteins. Injection of Cdc6 protein into immature oocytes does not induce DNA replication. However, injection of Cdc6 into oocytes undergoing GVBD is sufficient to induce DNA replication in the absence of protein synthesis. Our results show that GVBD and Cdc6 synthesis are the only events that limit the establishment of the oocyte's replication competence during meiosis.
Collapse
Affiliation(s)
- Elizabeth Whitmire
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, Texas 79430, USA
| | | | | |
Collapse
|
37
|
Schaarschmidt D, Ladenburger EM, Keller C, Knippers R. Human Mcm proteins at a replication origin during the G1 to S phase transition. Nucleic Acids Res 2002; 30:4176-85. [PMID: 12364596 PMCID: PMC140533 DOI: 10.1093/nar/gkf532] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Previous work with yeast cells and with Xenopus egg extracts had shown that eukaryotic pre-replication complexes assemble on chromatin in a step-wise manner whereby specific loading factors promote the recruitment of essential Mcm proteins at pre-bound origin recognition complexes (ORC with proteins Orc1p-Orc6p). While the order of assembly--Mcm binding follows ORC binding--seems to be conserved in cycling mammalian cells in culture, it has not been determined whether mammalian Mcm proteins associate with ORC-bearing chromatin sites. We have used a chromatin immunoprecipitation approach to investigate the site of Mcm binding in a genomic region that has previously been shown to contain an ORC-binding site and an origin of replication. Using chromatin from HeLa cells in G1 phase, antibodies against Orc2p as well as antibodies against Mcm proteins specifically immunoprecipitate chromatin enriched for a DNA region that includes a replication origin. However, with chromatin from cells in S phase, only Orc2p-specific antibodies immunoprecipitate the origin-containing DNA region while Mcm-specific antibodies immunoprecipitate chromatin with DNA from all parts of the genomic region investigated. Thus, human Mcm proteins first assemble at or adjacent to bound ORC and move to other sites during genome replication.
Collapse
|
38
|
Lei M, Cheng IH, Roberts LA, McAlear MA, Tye BK. Two mcm3 mutations affect different steps in the initiation of DNA replication. J Biol Chem 2002; 277:30824-31. [PMID: 12060653 DOI: 10.1074/jbc.m201816200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Mcm3 is a subunit of the hexameric MCM2-7 complex required for the initiation and elongation of DNA replication in eukaryotes. We have characterized two mutant alleles, mcm3-1 and mcm3-10, in Saccharomyces cerevisiae and showed that they are defective at different steps of the replication initiation process. Mcm3-10 contains a P118L substitution that compromises its interaction with Mcm5 and the recruitment of Mcm3 and Mcm7 to a replication origin. P118 is conserved between Mcm3, Mcm4, Mcm5, and Mcm7. An identical substitution of this conserved residue in Mcm5 (P83L of mcm5-bob1) strengthens the interaction between Mcm3 and Mcm5 and allows cells to enter S phase independent of Cdc7-Dbf4 kinase (Hardy, C. F., Dryga, O., Pahl, P. M. B., and Sclafani, R. A. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 3151-3155). Mcm3-1 contains a G246E mutation that diminishes the efficiency of replication initiation (Yan, H., Merchant, A. M., and Tye, B. K. (1993) Genes Dev. 7, 2149-2160) but not its interaction with Mcm5 or recruitment of the MCM2-7 complex to replication origin. These observations indicate that Mcm3-10 is defective in a step before, and Mcm3-1 is defective in a step after the recruitment of the MCM2-7 complex to replication origins.
Collapse
Affiliation(s)
- Ming Lei
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | | | | | | | | |
Collapse
|
39
|
Kono Y, Maeda K, Kuwahara K, Yamamoto H, Miyamoto E, Yonezawa K, Takagi K, Sakaguchi N. MCM3-binding GANP DNA-primase is associated with a novel phosphatase component G5PR. Genes Cells 2002; 7:821-34. [PMID: 12167160 DOI: 10.1046/j.1365-2443.2002.00562.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND GANP, carrying DNA-primase and MCM3-binding domains, is up-regulated in germinal centre B cells. To understand the regulatory function of GANP upon MCM complex, we searched for GANP-associated molecules by yeast two-hybrid screening. RESULTS Using the 1 kb fragment (G5) of the ganp cDNA, we identified a clone named G5PR that is structurally homologous to known regulatory subunits of protein phosphatases (PPases) and determined the association of G5PR with GANP in vivo in the DNA transfectant. G5PR is associated with protein phosphatase 5 (PP5) through its tetratricopeptide-repeat (TPR) domain. Pull-down assays demonstrated that G5PR is also associated with protein phosphatase 2A (PP2A), the complex of A subunit (PR65) and the catalytic (C) subunit (PP2Ac), similar to the B" subunit. The G5PR-associated complex had phosphatase activity on casein, histone H1 and MCM3 in vitro, but the addition of G5PR did not stimulate or inhibit the phosphatase activities of PP5 and PP2A. The cellular localization of G5PR in transfected cells varies during cell cycling, appearing in the nucleus during prophase, in the peri-chromatin during mitotic phase, and in the cytoplasm after cell division. CONCLUSION G5PR is capable of recruiting two kinds of PPases, PP5 and PP2A, into the GANP/MCM3 complex, which might regulate its phosphorylation state during cell cycle progression.
Collapse
Affiliation(s)
- Yoshihiko Kono
- Department of Immunology, Kumamoto University School of Medicine, 2-2-1, Honjo, Kumamoto, 860-0811, Japan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Affiliation(s)
- B Sugden
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI 53706, USA
| | | |
Collapse
|
41
|
Iwabuchi M, Ohsumi K, Yamamoto TM, Kishimoto T. Coordinated regulation of M phase exit and S phase entry by the Cdc2 activity level in the early embryonic cell cycle. Dev Biol 2002; 243:34-43. [PMID: 11846475 DOI: 10.1006/dbio.2001.0562] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the early embryonic cell cycle, exit from M phase is immediately followed by entry into S phase without an intervening gap phase. To understand the regulatory mechanisms for the cell cycle transition from M to S phase, we examined dependence on Cdc2 inactivation of cell-cycle events occurring during the M-S transition period, using Xenopus egg extracts in which the extent of Cdc2 inactivation at M phase exit was quantitatively controlled. The result demonstrated that MCM binding to and the initiation of DNA replication of nuclear chromatin occurred depending on the decrease of Cdc2 activity to critical levels. Similarly, we found that Cdc2 inhibitory phosphorylation and cyclin B degradation were turned on and off, respectively, depending on the decrease in Cdc2 activity. However, their sensitivity to Cdc2 activity was different, with the turning-on of Cdc2 inhibitory phosphorylation occurring at higher Cdc2 activity levels than the turning-off of cyclin B degradation. This means that, when cyclin B degradation ceases at M phase exit, Cdc2 inhibitory phosphorylation is necessarily activated. In the presence of constitutive synthesis of cyclin B, this condition favors the occurrence of the Cdc2 inactivation period after M phase exit, thereby ensuring progression through S phase. Thus, M phase exit and S phase entry are coordinately regulated by the Cdc2 activity level in the early embryonic cell cycle.
Collapse
Affiliation(s)
- Mari Iwabuchi
- CREST Research Project, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuta 4259, Midoriku, Yokohama, 226-8501, Japan
| | | | | | | |
Collapse
|
42
|
Pasion SG, Forsburg SL. Deconstructing a conserved protein family: the role of MCM proteins in eukaryotic DNA replication. GENETIC ENGINEERING 2002; 23:129-55. [PMID: 11570101 DOI: 10.1007/0-306-47572-3_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Affiliation(s)
- S G Pasion
- Molecular Biology and Virology Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | | |
Collapse
|
43
|
Abstract
Polyploidy, recognized by multiple copies of the haploid chromosome number, has been described in plants, insects, and in mammalian cells such as, the platelet precursors, the megakaryocytes. Several of these cell types reach high ploidy via a different cell cycle. Megakaryocytes undergo an endomitotic cell cycle, which consists of an S phase interrupted by a gap, during which the cells enter mitosis but skip anaphase B and cytokinesis. Here, we review the mechanisms that lead to this cell cycle and to polyploidy in megakaryocytes, while also comparing them to those described for other systems in which high ploidy is achieved. Overall, polyploidy is associated with an orchestrated change in expression of several genes, of which, some may be a result of high ploidy and hence a determinant of a new cell physiology, while others are inducers of polyploidization. Future studies will aim to further explore these two groups of genes.
Collapse
Affiliation(s)
- Katya Ravid
- Department of Biochemistry, Whitaker Cardiovascular Institute, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA.
| | | | | | | |
Collapse
|
44
|
Dimitrova DS, Prokhorova TA, Blow JJ, Todorov IT, Gilbert DM. Mammalian nuclei become licensed for DNA replication during late telophase. J Cell Sci 2002; 115:51-9. [PMID: 11801723 PMCID: PMC1255924 DOI: 10.1242/jcs.115.1.51] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Mcm 2-7 are essential replication proteins that bind to chromatin in mammalian nuclei during late telophase. Here, we have investigated the relationship between Mcm binding, licensing of chromatin for replication, and specification of the dihydrofolate reductase (DHFR) replication origin. Approximately 20% of total Mcm3 protein was bound to chromatin in Chinese hamster ovary (CHO) cells during telophase, while an additional 25% bound gradually and cumulatively throughout G1-phase. To investigate the functional significance of this binding, nuclei prepared from CHO cells synchronized at various times after metaphase were introduced into Xenopus egg extracts, which were either immunodepleted of Mcm proteins or supplemented with geminin, an inhibitor of the Mcm-loading protein Cdt1. Within 1 hour after metaphase, coincident with completion of nuclear envelope formation, CHO nuclei were fully competent to replicate in both of these licensing-defective extracts. However, sites of initiation of replication in each of these extracts were found to be dispersed throughout the DHFR locus within nuclei isolated between 1 to 5 hours after metaphase, but became focused to the DHFR origin within nuclei isolated after 5 hours post-metaphase. Importantly, introduction of permeabilized post-ODP, but not pre-ODP, CHO nuclei into licensing-deficient Xenopus egg extracts resulted in the preservation of a significant degree of DHFR origin specificity, implying that the previously documented lack of specific origin selection in permeabilized nuclei is at least partially due to the licensing of new initiation sites by proteins in the Xenopus egg extracts. We conclude that the functional association of Mcm proteins with chromatin (i.e. replication licensing) in CHO cells takes place during telophase, several hours prior to the specification of replication origins at the DHFR locus.
Collapse
Affiliation(s)
- Daniela S Dimitrova
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA.
| | | | | | | | | |
Collapse
|
45
|
Gillespie PJ, Li A, Blow JJ. Reconstitution of licensed replication origins on Xenopus sperm nuclei using purified proteins. BMC BIOCHEMISTRY 2001; 2:15. [PMID: 11737877 PMCID: PMC60996 DOI: 10.1186/1471-2091-2-15] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2001] [Accepted: 12/05/2001] [Indexed: 11/26/2022]
Abstract
BACKGROUND In order to ensure precise chromosome duplication, eukaryotes "license" their replication origins during late mitosis and early G1 by assembling complexes of Mcm2-7 onto them. Mcm2-7 are essential for DNA replication, but are displaced from origins as they initiate, thus ensuring that no origin fires more than once in a single cell cycle. RESULTS Here we show that a combination of purified nucleoplasmin, the origin recognition complex (ORC), Cdc6, RLF-B/Cdt1 and Mcm2-7 can promote functional origin licensing and the assembly of Mcm2-7 onto Xenopus sperm nuclei. The reconstituted reaction is inhibited by geminin, a specific RLF-B/Cdt1 inhibitor. Interestingly, the purified ORC used in the reconstitution had apparently lost the Orc6 subunit, suggesting that Orc6 is not essential for replication licensing. We use the reconstituted system to make a preliminary analysis of the different events occurring during origin assembly, and examine their nucleotide requirements. We show that the loading of Xenopus ORC onto chromatin is strongly stimulated by both ADP, ATP and ATP-gamma-S whilst the loading of Cdc6 and Cdt1 is stimulated only by ATP or ATP-gamma-S. CONCLUSIONS Nucleoplasmin, ORC, Cdc6, RLF-B/Cdt1 and Mcm2-7 are the only proteins required for functional licensing and the loading of Mcm2-7 onto chromatin. The requirement for nucleoplasmin probably only reflects a requirement to decondense sperm chromatin before ORC can bind to it. Use of this reconstituted system should allow a full biochemical analysis of origin licensing and Mcm2-7 loading.
Collapse
Affiliation(s)
- Peter J Gillespie
- CRC Chromosome Replication Research Group, Wellcome Trust Biocentre, University of Dundee, Dundee DD1 5EH, UK
- Current address: Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | - Anatoliy Li
- CRC Chromosome Replication Research Group, Wellcome Trust Biocentre, University of Dundee, Dundee DD1 5EH, UK
| | - J Julian Blow
- CRC Chromosome Replication Research Group, Wellcome Trust Biocentre, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
46
|
Labib K, Kearsey SE, Diffley JF. MCM2-7 proteins are essential components of prereplicative complexes that accumulate cooperatively in the nucleus during G1-phase and are required to establish, but not maintain, the S-phase checkpoint. Mol Biol Cell 2001; 12:3658-67. [PMID: 11694596 PMCID: PMC60283 DOI: 10.1091/mbc.12.11.3658] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
A prereplicative complex (pre-RC) of proteins is assembled at budding yeast origins of DNA replication during the G1-phase of the cell cycle, as shown by genomic footprinting. The proteins responsible for this prereplicative footprint have yet to be identified but are likely to be involved in the earliest stages of the initiation step of chromosome replication. Here we show that MCM2-7 proteins are essential for both the formation and maintenance of the pre-RC footprint at the origin ARS305. It is likely that pre-RCs contain heteromeric complexes of MCM2-7 proteins, since degradation of Mcm2, 3, 6, or 7 during G1-phase, after pre-RC formation, causes loss of Mcm4 from the nucleus. It has been suggested that pre-RCs on unreplicated chromatin may generate a checkpoint signal that inhibits premature mitosis during S-phase. We show that, although mitosis does indeed occur in the absence of replication if MCM proteins are degraded during G1-phase, anaphase is prevented if MCMs are degraded during S-phase. Our data indicate that pre-RCs do not play a direct role in checkpoint control during chromosome replication.
Collapse
Affiliation(s)
- K Labib
- ICRF Clare Hall Laboratories, South Mimms, Hertfordshire, EN6 3LD, United Kingdom
| | | | | |
Collapse
|
47
|
Endl E, Kausch I, Baack M, Knippers R, Gerdes J, Scholzen T. The expression of Ki-67, MCM3, and p27 defines distinct subsets of proliferating, resting, and differentiated cells. J Pathol 2001; 195:457-62. [PMID: 11745678 DOI: 10.1002/path.978] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The mini-chromosome maintenance proteins (MCM), which are involved in the control of DNA replication, and the cyclin-dependent kinase inhibitors, such as p27/KIP1, represent two groups of proteins that are currently under investigation as diagnostic tumour markers. The expression of p27 and MCM3 was compared with the expression of the Ki-67 protein, an approved marker for proliferating cells, extensively used in histopathology and cancer research. The expression pattern of all three proteins was assessed on germinal centres and oral mucosa, which display a well-defined spatio-temporal organization. The expression of the p27 protein was closely related to differentiated cells, whereas MCM3 and Ki-67 were predominantly localized to the regions of proliferating cells. However, it is important to note that considerable numbers of cells that were growth-arrested, as confirmed by the absence of the Ki-67 protein, stained positive for the MCM3 protein. These results were verified in vitro using growth-arrested Swiss 3T3. The MCM3 protein is therefore expressed in cells that have ceased to proliferate, but are not terminally differentiated, according to the absence of p27 protein expression. In conclusion, a combined analysis of Ki-67, MCM3, and p27 protein expression may provide a more detailed insight into the cell proliferation and differentiation processes that determine individual tumour growth.
Collapse
Affiliation(s)
- E Endl
- Department of Immunology and Cell Biology, Division of Molecular Immunology, Research Center Borstel, D-23845 Borstel, Germany.
| | | | | | | | | | | |
Collapse
|
48
|
Affiliation(s)
- J J Blow
- CRC Chromosome Replication Research Group, Wellcome Trust Biocentre, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| |
Collapse
|
49
|
Takeda T, Ogino K, Tatebayashi K, Ikeda H, Arai Ki, Masai H. Regulation of initiation of S phase, replication checkpoint signaling, and maintenance of mitotic chromosome structures during S phase by Hsk1 kinase in the fission yeast. Mol Biol Cell 2001; 12:1257-74. [PMID: 11359920 PMCID: PMC34582 DOI: 10.1091/mbc.12.5.1257] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2000] [Revised: 12/27/2000] [Accepted: 02/20/2001] [Indexed: 01/31/2023] Open
Abstract
Hsk1, Saccharomyces cerevisiae Cdc7-related kinase in Shizosaccharomyces pombe, is required for G1/S transition and its kinase activity is controlled by the regulatory subunit Dfp1/Him1. Analyses of a newly isolated temperature-sensitive mutant, hsk1-89, reveal that Hsk1 plays crucial roles in DNA replication checkpoint signaling and maintenance of proper chromatin structures during mitotic S phase through regulating the functions of Rad3 (ATM)-Cds1 and Rad21 (cohesin), respectively, in addition to expected essential roles for initiation of mitotic DNA replication through phosphorylating Cdc19 (Mcm2). Checkpoint defect in hsk1-89 is indicated by accumulation of cut cells at 30 degrees C. hsk1-89 displays synthetic lethality in combination with rad3 deletion, indicating that survival of hsk1-89 depends on Rad3-dependent checkpoint pathway. Cds1 kinase activation, which normally occurs in response to early S phase arrest by nucleotide deprivation, is largely impaired in hsk1-89. Furthermore, Cds1-dependent hyperphosphorylation of Dfp1 in response to hydroxyurea arrest is eliminated in hsk1-89, suggesting that sufficient activation of Hsk1-Dfp1 kinase is required for S phase entry and replication checkpoint signaling. hsk1-89 displays apparent defect in mitosis at 37 degrees C leading to accumulation of cells with near 2C DNA content and with aberrant nuclear structures. These phenotypes are similar to those of rad21-K1 and are significantly enhanced in a hsk1-89 rad21-K1 double mutant. Consistent with essential roles of Rad21 as a component for the cohesin complex, sister chromatid cohesion is partially impaired in hsk1-89, suggesting a possibility that infrequent origin firing of the mutant may affect the cohesin functions during S phase.
Collapse
Affiliation(s)
- T Takeda
- Departments of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
The exact duplication of a genome once per cell division is required of every proliferating cell. To achieve this goal, eukaryotes adopt a strategy that limits every replication origin to a single initiation event within a narrow window of the cell cycle by temporally separating the assembly of the pre-replication complex (pre-RC) from the initiation of DNA synthesis. A key component of the pre-RC is the hexameric MCM complex, which is also the presumed helicase of the growing forks. An elaborate mechanism recruits the MCM complex to replication origins, and a regulatory chain reaction converts the poised, but inactive, MCM complex into an enzymatically active helicase. A growing list of proteins, including Mcm10 and Cdt1, are involved in the recruitment process. Two protein kinases, the Cdc7-Dbf4 kinase (DDK) and the cyclin-dependent kinase (CDK), trigger a chain reaction that results in the phosphorylation of the MCM complex and finally in the initiation of DNA synthesis. A composite picture from recent studies suggests that DDK is recruited to the pre-RC during G(1) phase but must wait until S phase to phosphorylate the MCM complex. CDK is required for the recruitment of Cdc45 and other downstream components of the elongation machinery.
Collapse
Affiliation(s)
- M Lei
- Dept of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | |
Collapse
|