1
|
Li J, Li Z, Yin J, Wang Y, Zheng D, Cai L, Wang GG. The sotos syndrome gene Nsd1 safeguards developmental gene enhancers poised for transcription by maintaining the precise deposition of histone methylation. J Biol Chem 2025; 301:108423. [PMID: 40118455 PMCID: PMC12033923 DOI: 10.1016/j.jbc.2025.108423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/27/2025] [Accepted: 03/13/2025] [Indexed: 03/23/2025] Open
Abstract
Germline haploinsufficiency of NSD1 is implicated as the etiology of Sotos syndrome; however, the underlying mechanism remains far from being clear. Here, we use mouse embryonic stem cell (mESC) differentiation as a model system to address this question. We found Nsd1 to be indispensable for the faithful differentiation of mESCs into three primary germ layers, particularly, meso-endodermal cell lineages related to the development of the heart and the skeletal system. Time-course transcriptomic profiling following the mESC differentiation revealed that Nsd1 not only facilitates the basal expression but also permits the differentiation-accompanied rapid induction of a suite of meso-endoderm lineage-specifying transcription factor genes such as T and Gata4. Mechanistically, Nsd1 directly occupies putative distal enhancers of the lineage transcription factor genes under the pluripotent cell state, where it deposits H3K36me2 to antagonize the excessive H3K27me3 and maintains the basal H3K27ac level, thereby safeguarding these gene enhancers at a primed state that responds readily to differentiation cues. In agreement, gene rescue assays using the Nsd1 KO mESCs showed that the H3K36me2 catalysis by Nsd1 requires several functional modules within Nsd1 (namely, PHD1-4, PWWP2, and SET) to a similar degree. Disruption of either one of these Nsd1 modules severely abrogated H3K36me2 in mESCs and significantly impaired appropriate induction of developmental genes upon mESC differentiation. Altogether, our study provides novel molecular insight into how the NSD1 perturbation derails normal development and causes the disease.
Collapse
Affiliation(s)
- Jie Li
- Division of Hematology and Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, New York, USA
| | - Zhucui Li
- Department of Biochemistry, Weill Cornell Medicine, Cornell University, New York, New York, USA
| | - Jiekai Yin
- Environmental Toxicology Graduate Program and Department of Chemistry, University of California Riverside, Riverside, California, USA
| | - Yinsheng Wang
- Environmental Toxicology Graduate Program and Department of Chemistry, University of California Riverside, Riverside, California, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA; Department of Neurology and Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Ling Cai
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA.
| | - Gang Greg Wang
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA; Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA.
| |
Collapse
|
2
|
de Souza Leite F, Lambert MR, Zhang TY, Conner JR, Paulo JA, Oliveira SF, Thakurta S, Bowles J, Gussoni E, Gygi SP, Widrick JJ, Kunkel LM. Muscle-specific increased expression of JAG1 improves skeletal muscle phenotype in dystrophin-deficient mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.12.642857. [PMID: 40161820 PMCID: PMC11952387 DOI: 10.1101/2025.03.12.642857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Therapeutic strategies for Duchenne Muscular Dystrophy (DMD) will likely require complementary approaches. One possibility is to explore genetic modifiers that improve muscle regeneration and function. The beneficial effects of the overexpression of Jagged-1 were described in escaper golden retriever muscular dystrophy (GRMD) dogs that had a near-normal life and validated in dystrophin-deficient zebrafish (1). To clarify the underlying biology of JAG1 overexpression in dystrophic muscles, we generated a transgenic mouse (mdx5cv-JAG1) model that lacks dystrophin and overexpresses human JAG1 in striated muscles. Skeletal muscles from mdx5cv-JAG1 and mdx5cv mice were studied at one, four, and twelve-month time points. JAG1 expression in mdx5cv-JAG1 increased by three to five times compared to mdx5cv. Consequently, mdx5cv-JAG1 muscles were significantly bigger and stronger than dystrophic controls, along with an increased number of myofibers. Proteomics data show increased dysferlin in mdx5cv-JAG1 muscles and an association of Nsd1 with the phenotype. Our data supports the positive effect of JAG1 overexpression in dystrophic muscles.
Collapse
Affiliation(s)
- Felipe de Souza Leite
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Genetics and Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Matthias R. Lambert
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Genetics and Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Tracy Yuanfan Zhang
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Genetics and Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - James R. Conner
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Genetics and Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Sheldon Furtado Oliveira
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Genetics and Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Sanjukta Thakurta
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Jennifer Bowles
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Genetics and Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Emanuela Gussoni
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Genetics and Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Jeffrey J. Widrick
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Genetics and Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Louis M. Kunkel
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Genetics and Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- The Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
- The Manton Center for Orphan Disease Research at Boston Children's Hospital, Boston, MA 02115, USA
| |
Collapse
|
3
|
Gui Z, Shi W, Zhou F, Yan Y, Li Y, Xu Y. The role of estrogen receptors in intracellular estrogen signaling pathways, an overview. J Steroid Biochem Mol Biol 2025; 245:106632. [PMID: 39551163 DOI: 10.1016/j.jsbmb.2024.106632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/29/2024] [Accepted: 11/09/2024] [Indexed: 11/19/2024]
Abstract
To date five members of estrogen receptors (ESRs) have been reported. They are grouped into two classes, the nuclear estrogen receptors are members of the nuclear receptor family which found at nuclear, cytoplasm and plasma membrane, and the membrane estrogen receptors, such as G protein-coupled estrogen receptor 1, ESR-X and Gq-coupled membrane estrogen receptor. The structure and function of estrogen receptors, and interaction between ESR and coregulators were reviewed. In canonical pathway ESRs can translocate to the nucleus, bind to the target gene promotor with or without estrogen responsive element and regulate transcription, mediating the genomic effects of estrogen. Coactivators and corepressors are recruited to activate or inhibit transcription by activated ESRs. Many coactivators and corepressors are recruited to activate or inhibit ESR mediated gene transcription via different mechanisms. ESRs also indirectly bind to the promoter via interaction with other transcription factors, tethering the transcription factors. ESRs can be phosphorylated by several kinases such as p38, extracellular-signal-regulated kinase, and activated protein kinase B, and which activates transcription without ligand binding. Non-genomic estrogen action can be manifested by the increases of cytoplasmic NO and Ca2+ through the activation of membrane ESRs. In female, ESRs signaling is crucial for folliculogenesis, oocyte growth, ovulation, oviduct and uterus. In male, ESRs signaling modulates libido, erectile function, leydig cell steroidogenesis, sertoli cell's function, and epididymal fluid homeostatsis, supporting spermatogenesis and sperm maturation. The abnormal ESRs signaling is believed to be closely related to reproductive diseases and cancer.
Collapse
Affiliation(s)
- Zichang Gui
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China.
| | - Wei Shi
- School of Chemistry, Biology and Environment, Yuxi Normal University, Yuxi 653100, China.
| | - Fangting Zhou
- School of Chemistry, Biology and Environment, Yuxi Normal University, Yuxi 653100, China.
| | - Yongqing Yan
- Yunnan Dasheng Biotechnology Co., LTD, Yuxi 653100, China.
| | - Yuntian Li
- School of Chemistry, Biology and Environment, Yuxi Normal University, Yuxi 653100, China.
| | - Yang Xu
- School of Chemistry, Biology and Environment, Yuxi Normal University, Yuxi 653100, China; Yunnan Dasheng Biotechnology Co., LTD, Yuxi 653100, China.
| |
Collapse
|
4
|
Conteduca G, Cangelosi D, Baldo C, Arado A, Testa B, Wagner RT, Robertson KD, Dequiedt F, Fitzsimmons L, Malacarne M, Filaci G, Coviello DA. Impact of NSD1 Alternative Transcripts in Actin Filament Formation and Cellular Division Pathways in Fibroblasts. Genes (Basel) 2024; 15:1117. [PMID: 39336709 PMCID: PMC11431170 DOI: 10.3390/genes15091117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Germline variants in the NSD1 gene are responsible for Sotos syndrome, while somatic variants promote neoplastic cell transformation. Our previous studies revealed three alternative RNA isoforms of NSD1 present in fibroblast cell lines (FBs): the canonical full transcript and 2 alternative transcripts, termed AT2 (NSD1 Δ5Δ7) and AT3 (NSD1 Δ19-23 at the 5' end). The precise molecular pathways affected by each specific isoform of NSD1 are uncharacterized to date. To elucidate the role of these isoforms, their expression was suppressed by siRNA knockdown in FBs and protein expression and transcriptome data was explored. We demonstrate that one gene target of NSD1 isoform AT2 is ARP3 actin-related protein 3 homolog B (ACTR3B). We show that loss of both canonical NSD1 and AT2 isoforms impaired the ability of fibroblasts to regulate the actin cytoskeleton, and we observed that this caused selective loss of stress fibers. Our findings provide novel insights into NSD1 function by distinguishing isoform function and demonstrating an essential role of NSD1 in regulating the actin cytoskeleton and stress fiber formation in fibroblasts.
Collapse
Affiliation(s)
| | - Davide Cangelosi
- Clinical Bioinformatics Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Chiara Baldo
- Laboratory of Human Genetics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Alessia Arado
- Laboratory of Human Genetics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Barbara Testa
- Laboratory of Human Genetics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Ryan T Wagner
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Keith D Robertson
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Franck Dequiedt
- GIGA-Molecular Biology of Diseases Laboratory of Gene Expression and Cancer, University of Liege, 4000 Liège, Belgium
| | - Lane Fitzsimmons
- Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Michela Malacarne
- Laboratory of Human Genetics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Gilberto Filaci
- Biotherapy Unit, IRCCS San Martino, 16132 Genoa, Italy
- Department of Internal Medicine (DIMI), University of Genoa, 16132 Genoa, Italy
| | - Domenico A Coviello
- Laboratory of Human Genetics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| |
Collapse
|
5
|
Lappay JI, Sanchez-Gan BC, Abadingo ME. Electrical Status Epilepticus during Sleep in a Male Filipino with Rare Nonsense Mutation Variant of Sotos Syndrome on Carbamazepine Monotherapy. ACTA MEDICA PHILIPPINA 2024; 58:83-87. [PMID: 38966610 PMCID: PMC11219534 DOI: 10.47895/amp.vi0.3013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Electrical status epilepticus during sleep (ESES) is an electrographic pattern associated with specific genetic disorders, brain malformations, and use of some antiseizure medications. This case report aims to present the management of ESES in Sotos syndrome (SoS) on carbamazepine. A nine-year-old Filipino male with clinical features suggestive of overgrowth syndrome presented with febrile seizure at one year old. Cranial imaging showed cavum septum pellucidum, corpus callosal dysgenesis, and ventriculomegaly. He was on carbamazepine monotherapy starting at three years old. A near continuous diffuse spike-wave discharges in slow wave sleep was recorded at nine years old hence shifted to valproic acid. Follow-up study showed focal epileptiform discharges during sleep with disappearance of ESES. Next generation sequencing tested positive for rare nonsense mutation of nuclear receptor binding set-domain protein 1 confirming the diagnosis of SoS. Advanced molecular genetics contributed to determination of ESES etiologies. To date, this is the first documented case of SoS developing ESES. Whether an inherent genetic predisposition or drug-induced, we recommend the avoidance of carbamazepine and use of valproic acid as first-line therapy.
Collapse
Affiliation(s)
- Jeffrey I. Lappay
- Division of Pediatric Neurology, Departments of Pediatrics and Neurosciences, Philippine General Hospital, University of the Philippines Manila, Manila, Philippines
- Department of Pediatrics, Northern Mindanao Medical Center, Cagayan de Oro City, Philippines
| | - Benilda C. Sanchez-Gan
- Division of Pediatric Neurology, Departments of Pediatrics and Neurosciences, Philippine General Hospital, University of the Philippines Manila, Manila, Philippines
| | - Michelle E. Abadingo
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, Philippine General Hospital, University of the Philippines Manila, Manila, Philippines
| |
Collapse
|
6
|
Rivas JFG, Clugston RD. The etiology of congenital diaphragmatic hernia: the retinoid hypothesis 20 years later. Pediatr Res 2024; 95:912-921. [PMID: 37990078 PMCID: PMC10920205 DOI: 10.1038/s41390-023-02905-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/16/2023] [Accepted: 10/30/2023] [Indexed: 11/23/2023]
Abstract
Congenital diaphragmatic hernia (CDH) is a severe birth defect and a major cause of neonatal respiratory distress. Impacting ~2-3 in 10,000 births, CDH is associated with a high mortality rate, and long-term morbidity in survivors. Despite the significant impact of CDH, its etiology remains incompletely understood. In 2003, Greer et al. proposed the Retinoid Hypothesis, stating that the underlying cause of abnormal diaphragm development in CDH was related to altered retinoid signaling. In this review, we provide a comprehensive update to the Retinoid Hypothesis, discussing work published in support of this hypothesis from the past 20 years. This includes reviewing teratogenic and genetic models of CDH, lessons from the human genetics of CDH and epidemiological studies, as well as current gaps in the literature and important areas for future research. The Retinoid Hypothesis is one of the leading hypotheses to explain the etiology of CDH, as we continue to better understand the role of retinoid signaling in diaphragm development, we hope that this information can be used to improve CDH outcomes. IMPACT: This review provides a comprehensive update on the Retinoid Hypothesis, which links abnormal retinoic acid signaling to the etiology of congenital diaphragmatic hernia. The Retinoid Hypothesis was formulated in 2003. Twenty years later, we extensively review the literature in support of this hypothesis from both animal models and humans.
Collapse
Affiliation(s)
- Juan F Garcia Rivas
- Department of Physiology, University of Alberta, Edmonton, AB, Canada
- Women and Children's Health Research Institute, Edmonton, AB, Canada
| | - Robin D Clugston
- Department of Physiology, University of Alberta, Edmonton, AB, Canada.
- Women and Children's Health Research Institute, Edmonton, AB, Canada.
| |
Collapse
|
7
|
Chervova A, Molliex A, Baymaz HI, Coux RX, Papadopoulou T, Mueller F, Hercul E, Fournier D, Dubois A, Gaiani N, Beli P, Festuccia N, Navarro P. Mitotic bookmarking redundancy by nuclear receptors in pluripotent cells. Nat Struct Mol Biol 2024; 31:513-522. [PMID: 38196033 PMCID: PMC10948359 DOI: 10.1038/s41594-023-01195-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 11/30/2023] [Indexed: 01/11/2024]
Abstract
Mitotic bookmarking transcription factors (TFs) are thought to mediate rapid and accurate reactivation after mitotic gene silencing. However, the loss of individual bookmarking TFs often leads to the deregulation of only a small proportion of their mitotic targets, raising doubts on the biological significance and importance of their bookmarking function. Here we used targeted proteomics of the mitotic bookmarking TF ESRRB, an orphan nuclear receptor, to discover a large redundancy in mitotic binding among members of the protein super-family of nuclear receptors. Focusing on the nuclear receptor NR5A2, which together with ESRRB is essential in maintaining pluripotency in mouse embryonic stem cells, we demonstrate conjoint bookmarking activity of both factors on promoters and enhancers of a large fraction of active genes, particularly those most efficiently reactivated in G1. Upon fast and simultaneous degradation of both factors during mitotic exit, hundreds of mitotic targets of ESRRB/NR5A2, including key players of the pluripotency network, display attenuated transcriptional reactivation. We propose that redundancy in mitotic bookmarking TFs, especially nuclear receptors, confers robustness to the reestablishment of gene regulatory networks after mitosis.
Collapse
Affiliation(s)
- Almira Chervova
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, Paris, France
- Equipe Labéllisée Ligue Contre le cancer, Paris, France
| | - Amandine Molliex
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, Paris, France
- Equipe Labéllisée Ligue Contre le cancer, Paris, France
| | | | - Rémi-Xavier Coux
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, Paris, France
- Equipe Labéllisée Ligue Contre le cancer, Paris, France
| | - Thaleia Papadopoulou
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, Paris, France
- Equipe Labéllisée Ligue Contre le cancer, Paris, France
| | - Florian Mueller
- Department of Computational Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3691, Imaging and Modeling Unit, Paris, France
| | - Eslande Hercul
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, Paris, France
- Equipe Labéllisée Ligue Contre le cancer, Paris, France
| | - David Fournier
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, Paris, France
- Equipe Labéllisée Ligue Contre le cancer, Paris, France
| | - Agnès Dubois
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, Paris, France
- Equipe Labéllisée Ligue Contre le cancer, Paris, France
| | - Nicolas Gaiani
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, Paris, France
- Equipe Labéllisée Ligue Contre le cancer, Paris, France
| | - Petra Beli
- Institute of Molecular Biology, Mainz, Germany
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg-Universität, Mainz, Germany
| | - Nicola Festuccia
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, Paris, France.
- Equipe Labéllisée Ligue Contre le cancer, Paris, France.
| | - Pablo Navarro
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, Paris, France.
- Equipe Labéllisée Ligue Contre le cancer, Paris, France.
| |
Collapse
|
8
|
Ashton AW, Dhanjal HK, Rossner B, Mahmood H, Patel VI, Nadim M, Lota M, Shahid F, Li Z, Joyce D, Pajkos M, Dosztányi Z, Jiao X, Pestell RG. Acetylation of nuclear receptors in health and disease: an update. FEBS J 2024; 291:217-236. [PMID: 36471658 DOI: 10.1111/febs.16695] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/17/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Lysine acetylation is a common reversible post-translational modification of proteins that plays a key role in regulating gene expression. Nuclear receptors (NRs) include ligand-inducible transcription factors and orphan receptors for which the ligand is undetermined, which together regulate the expression of genes involved in development, metabolism, homeostasis, reproduction and human diseases including cancer. Since the original finding that the ERα, AR and HNF4 are acetylated, we now understand that the vast majority of NRs are acetylated and that this modification has profound effects on NR function. Acetylation sites are often conserved and involve both ordered and disordered regions of NRs. The acetylated residues function as part of an intramolecular signalling platform intersecting phosphorylation, methylation and other modifications. Acetylation of NR has been shown to impact recruitment into chromatin, co-repressor and coactivator complex formation, sensitivity and specificity of regulation by ligand and ligand antagonists, DNA binding, subcellular distribution and transcriptional activity. A growing body of evidence in mice indicates a vital role for NR acetylation in metabolism. Additionally, mutations of the NR acetylation site occur in human disease. This review focuses on the role of NR acetylation in coordinating signalling in normal physiology and disease.
Collapse
Affiliation(s)
- Anthony W Ashton
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
- Lankenau Institute for Medical Research, Wynnewood, PA, USA
| | | | - Benjamin Rossner
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
| | - Huma Mahmood
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
| | - Vivek I Patel
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
| | - Mohammad Nadim
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
| | - Manpreet Lota
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
| | - Farhan Shahid
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
| | - Zhiping Li
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Wynnewood, PA, USA
| | - David Joyce
- Medical School, Faculty of Health and Medical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Matyas Pajkos
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Zsuzsanna Dosztányi
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Xuanmao Jiao
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Wynnewood, PA, USA
| | - Richard G Pestell
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Wynnewood, PA, USA
- The Wistar Cancer Center, Philadelphia, PA, USA
| |
Collapse
|
9
|
Sun Z, Lin Y, Islam MT, Koche R, Hedehus L, Liu D, Huang C, Vierbuchen T, Sawyers CL, Helin K. Chromatin regulation of transcriptional enhancers and cell fate by the Sotos syndrome gene NSD1. Mol Cell 2023; 83:2398-2416.e12. [PMID: 37402365 PMCID: PMC10529604 DOI: 10.1016/j.molcel.2023.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 04/27/2023] [Accepted: 06/05/2023] [Indexed: 07/06/2023]
Abstract
Nuclear receptor-binding SET-domain protein 1 (NSD1), a methyltransferase that catalyzes H3K36me2, is essential for mammalian development and is frequently dysregulated in diseases, including Sotos syndrome. Despite the impacts of H3K36me2 on H3K27me3 and DNA methylation, the direct role of NSD1 in transcriptional regulation remains largely unknown. Here, we show that NSD1 and H3K36me2 are enriched at cis-regulatory elements, particularly enhancers. NSD1 enhancer association is conferred by a tandem quadruple PHD (qPHD)-PWWP module, which recognizes p300-catalyzed H3K18ac. By combining acute NSD1 depletion with time-resolved epigenomic and nascent transcriptomic analyses, we demonstrate that NSD1 promotes enhancer-dependent gene transcription by facilitating RNA polymerase II (RNA Pol II) pause release. Notably, NSD1 can act as a transcriptional coactivator independent of its catalytic activity. Moreover, NSD1 enables the activation of developmental transcriptional programs associated with Sotos syndrome pathophysiology and controls embryonic stem cell (ESC) multilineage differentiation. Collectively, we have identified NSD1 as an enhancer-acting transcriptional coactivator that contributes to cell fate transition and Sotos syndrome development.
Collapse
Affiliation(s)
- Zhen Sun
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Yuan Lin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mohammed T Islam
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Richard Koche
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lin Hedehus
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Biotech Research and Innovation Centre, University of Copenhagen 2200 Copenhagen N, Denmark
| | - Dingyu Liu
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Chang Huang
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Division of Cancer Biology, Institute of Cancer Research, London SW7 3RP, UK
| | - Thomas Vierbuchen
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Charles L Sawyers
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Kristian Helin
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Biotech Research and Innovation Centre, University of Copenhagen 2200 Copenhagen N, Denmark; Division of Cancer Biology, Institute of Cancer Research, London SW7 3RP, UK.
| |
Collapse
|
10
|
Ludwig CH, Thurm AR, Morgens DW, Yang KJ, Tycko J, Bassik MC, Glaunsinger BA, Bintu L. High-throughput discovery and characterization of viral transcriptional effectors in human cells. Cell Syst 2023; 14:482-500.e8. [PMID: 37348463 PMCID: PMC10350249 DOI: 10.1016/j.cels.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/17/2023] [Accepted: 05/23/2023] [Indexed: 06/24/2023]
Abstract
Viruses encode transcriptional regulatory proteins critical for controlling viral and host gene expression. Given their multifunctional nature and high sequence divergence, it is unclear which viral proteins can affect transcription and which specific sequences contribute to this function. Using a high-throughput assay, we measured the transcriptional regulatory potential of over 60,000 protein tiles across ∼1,500 proteins from 11 coronaviruses and all nine human herpesviruses. We discovered hundreds of transcriptional effector domains, including a conserved repression domain in all coronavirus Spike homologs, dual activation-repression domains in viral interferon regulatory factors (VIRFs), and an activation domain in six herpesvirus homologs of the single-stranded DNA-binding protein that we show is important for viral replication and late gene expression in Kaposi's sarcoma-associated herpesvirus (KSHV). For the effector domains we identified, we investigated their mechanisms via high-throughput sequence and chemical perturbations, pinpointing sequence motifs essential for function. This work massively expands viral protein annotations, serving as a springboard for studying their biological and health implications and providing new candidates for compact gene regulation tools.
Collapse
Affiliation(s)
- Connor H Ludwig
- Bioengineering Department, Stanford University, Stanford, CA 94305, USA
| | - Abby R Thurm
- Biophysics Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - David W Morgens
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, CA 94720, USA
| | - Kevin J Yang
- Department of Molecular and Cell Biology, UC Berkeley, Berkeley, CA 94720, USA
| | - Josh Tycko
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Michael C Bassik
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Britt A Glaunsinger
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, UC Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, UC Berkeley, Berkeley, CA 94720, USA
| | - Lacramioara Bintu
- Bioengineering Department, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
11
|
Wang T, Liu L, Fan T, Xia K, Sun Z. Shared and divergent contribution of vitamin A and oxytocin to the aetiology of autism spectrum disorder. Comput Struct Biotechnol J 2023; 21:3109-3123. [PMID: 38213898 PMCID: PMC10782014 DOI: 10.1016/j.csbj.2023.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/15/2023] [Accepted: 05/15/2023] [Indexed: 01/13/2024] Open
Abstract
Rare genetic variations contribute to the heterogeneity of autism spectrum disorder (ASD) and the responses to various interventions for ASD probands. However, the associated molecular underpinnings remain unclear. Herein, we estimated the association between rare genetic variations in 410 vitamin A (VA)-related genes (VARGs) and ASD aetiology using publicly available de novo mutations (DNMs), rare inherited variants, and copy number variations (CNVs) from about 50,000 ASD probands and 20,000 normal controls (discovery and validation cohorts). Additionally, given the functional relevance of VA and oxytocin, we systematically compared the similarities and differences between VA and oxytocin with respect to ASD aetiology and evaluated their potential for clinical applications. Functional DNMs and pathogenic CNVs in VARGs contributed to ASD pathogenesis in the discovery and validation cohorts. Additionally, 324 potential VA-related biomarkers were identified, 243 of which were shared with previously identified oxytocin-related biomarkers, while 81 were unique VA biomarkers. Moreover, multivariable logistic regression analysis revealed that both VA- and oxytocin-related biomarkers were able to predict ASD aetiology for individuals carrying functional DNM in corresponding biomarkers with an average precision of 0.94. As well as, convergent and divergent functions were also identified between VA- and oxytocin-related biomarkers. The findings of this study provide a basis for future studies aimed at understanding the pathophysiological mechanisms underlying ASD while also defining a set of potential molecular biomarkers for adjuvant diagnosis and intervention in ASD.
Collapse
Affiliation(s)
- Tao Wang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Kaifu District, Changsha, Hunan 410078, China
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Liqiu Liu
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Tianda Fan
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Kaifu District, Changsha, Hunan 410078, China
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325025, China
| | - Kun Xia
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Kaifu District, Changsha, Hunan 410078, China
- CAS Center for Excellence in Brain Science and Intelligences Technology (CEBSIT), Shanghai 200031, China
- Hengyang Medical School, University of South China, Hengyang, Hunan 410078, China
| | - Zhongsheng Sun
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325025, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
12
|
Molecular Analysis and Reclassification of NSD1 Gene Variants in a Cohort of Patients with Clinical Suspicion of Sotos Syndrome. Genes (Basel) 2023; 14:genes14020295. [PMID: 36833222 PMCID: PMC9956575 DOI: 10.3390/genes14020295] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Sotos syndrome is a rare genetic disorder caused by haploinsufficiency of the NSD1 (nuclear receptor binding SET domain containing protein 1) gene. No clinical diagnostic consensus criteria are published yet, and molecular analysis reduces the clinical diagnostic uncertainty. We screened 1530 unrelated patients enrolled from 2003 to 2021 at Galliera Hospital and Gaslini Institute in Genoa. NSD1 variants were identified in 292 patients including nine partial gene deletions, 13 microdeletions of the entire NSD1 gene, and 115 novel intragenic variants never previously described. Thirty-two variants of uncertain significance (VUS) out of 115 identified were re-classified. Twenty-five missense NSD1 VUS (25/32, 78.1%) changed class to likely pathogenic or likely benign, showing a highly significant shift in class (p < 0.01). Apart from NSD1, we identified variants in additional genes (NFIX, PTEN, EZH2, TCF20, BRWD3, PPP2R5D) in nine patients analyzed by the NGS custom panel. We describe the evolution of diagnostic techniques in our laboratory to ascertain molecular diagnosis, the identification of 115 new variants, and the re-classification of 25 VUS in NSD1. We underline the utility of sharing variant classification and the need to improve communication between the laboratory staff and the referring physician.
Collapse
|
13
|
Poojari A, Dev K, Rabiee A. Lipedema: Insights into Morphology, Pathophysiology, and Challenges. Biomedicines 2022; 10:biomedicines10123081. [PMID: 36551837 PMCID: PMC9775665 DOI: 10.3390/biomedicines10123081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Lipedema is an adipofascial disorder that almost exclusively affects women. Lipedema leads to chronic pain, swelling, and other discomforts due to the bilateral and asymmetrical expansion of subcutaneous adipose tissue. Although various distinctive morphological characteristics, such as the hyperproliferation of fat cells, fibrosis, and inflammation, have been characterized in the progression of lipedema, the mechanisms underlying these changes have not yet been fully investigated. In addition, it is challenging to reduce the excessive fat in lipedema patients using conventional weight-loss techniques, such as lifestyle (diet and exercise) changes, bariatric surgery, and pharmacological interventions. Therefore, lipedema patients also go through additional psychosocial distress in the absence of permanent treatment. Research to understand the pathology of lipedema is still in its infancy, but promising markers derived from exosome, cytokine, lipidomic, and metabolomic profiling studies suggest a condition distinct from obesity and lymphedema. Although genetics seems to be a substantial cause of lipedema, due to the small number of patients involved in such studies, the extrapolation of data at a broader scale is challenging. With the current lack of etiology-guided treatments for lipedema, the discovery of new promising biomarkers could provide potential solutions to combat this complex disease. This review aims to address the morphological phenotype of lipedema fat, as well as its unclear pathophysiology, with a primary emphasis on excessive interstitial fluid, extracellular matrix remodeling, and lymphatic and vasculature dysfunction. The potential mechanisms, genetic implications, and proposed biomarkers for lipedema are further discussed in detail. Finally, we mention the challenges related to lipedema and emphasize the prospects of technological interventions to benefit the lipedema community in the future.
Collapse
|
14
|
Murali M, Saloura V. Understanding the Roles of the NSD Protein Methyltransferases in Head and Neck Squamous Cell Carcinoma. Genes (Basel) 2022; 13:2013. [PMID: 36360250 PMCID: PMC9689908 DOI: 10.3390/genes13112013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/26/2022] [Accepted: 10/29/2022] [Indexed: 09/18/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most prevalent non-skin cancer in the world. While immunotherapy has revolutionized the standard of care treatment in patients with recurrent/metastatic HNSCC, more than 70% of patients do not respond to this treatment, making the identification of novel therapeutic targets urgent. Recently, research endeavors have focused on how epigenetic modifications may affect tumor initiation and progression of HNSCC. The nuclear receptor binding SET domain (NSD) family of protein methyltransferases NSD1-NSD3 is of particular interest for HNSCC, with NSD1 and NSD3 being amongst the most commonly mutated or amplified genes respectively in HNSCC. Preclinical studies have identified both oncogenic and tumor-suppressing properties across NSD1, NSD2, and NSD3 within the context of HNSCC. The purpose of this review is to provide a better understanding of the contribution of the NSD family of protein methyltransferases to the pathogenesis of HNSCC, underscoring their promise as novel therapeutic targets in this devastating disease.
Collapse
Affiliation(s)
- Madhavi Murali
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
- School of Medicine, The University of Missouri-Kansas City, Kansas City, MO 64018, USA
| | - Vassiliki Saloura
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
15
|
Berardi A, Botrugno OA, Quilici G, Manteiga JMG, Bachi A, Tonon G, Musco G. Nizp1 is a specific
NUP98
‐
NSD1
functional interactor that regulates
NUP98
‐
NSD1
‐dependent oncogenic programs. FEBS J 2022; 290:1782-1797. [PMID: 36271682 DOI: 10.1111/febs.16664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/27/2022] [Accepted: 10/21/2022] [Indexed: 11/05/2022]
Abstract
NSD1, NSD2 and NSD3 proteins constitute a family of histone 3 lysine 36 (H3K36) methyltransferases with similar domain architecture, but diversified activities, in part, dependent on their non-enzymatic domains. These domains, despite their high sequence identity, recruit the hosting proteins to different chromatin regions through the recognition of diverse epigenetic marks and/or associations to distinct interactors. In this sense, the PHDvC5HCH finger tandem domain represents a paradigmatic example of functional divergence within the NSD family. In this work, we prove and give a structural rationale for the uniqueness of the PHDvC5HCH domain of NSD1 in recognizing the C2HR Zinc finger domain of Nizp1 (NSD1 interacting Zn finger protein). Importantly, we show that, in a leukaemogenic context, Nizp1 is pivotal in driving the unscheduled expression of HoxA genes and of genes involved in the type I IFN pathway, triggered by the expression of the fusion protein NUP98-NSD1. These data provide the first insight into the pathophysiological relevance of the Nizp1-NSD1 functional association. Targeting of this interaction might open new therapeutic windows to inhibit the NUP98-NSD1 oncogenic properties.
Collapse
Affiliation(s)
- Andrea Berardi
- Biomolecular NMR, Division of Genetics and Cell Biology IRCCS Ospedale San Raffaele Milan Italy
| | - Oronza A. Botrugno
- Functional Genomics of Cancer, Division of Experimental Oncology IRCCS Ospedale San Raffaele Milan Italy
| | - Giacomo Quilici
- Biomolecular NMR, Division of Genetics and Cell Biology IRCCS Ospedale San Raffaele Milan Italy
| | | | - Angela Bachi
- Functional Proteomics Group IFOM‐FIRC Institute of Molecular Oncology Milan Italy
| | - Giovanni Tonon
- Functional Genomics of Cancer, Division of Experimental Oncology IRCCS Ospedale San Raffaele Milan Italy
| | - Giovanna Musco
- Biomolecular NMR, Division of Genetics and Cell Biology IRCCS Ospedale San Raffaele Milan Italy
| |
Collapse
|
16
|
Conteduca G, Cangelosi D, Coco S, Malacarne M, Baldo C, Arado A, Pinto R, Testa B, Coviello DA. NSD1 Mutations in Sotos Syndrome Induce Differential Expression of Long Noncoding RNAs, miR646 and Genes Controlling the G2/M Checkpoint. Life (Basel) 2022; 12:life12070988. [PMID: 35888078 PMCID: PMC9324496 DOI: 10.3390/life12070988] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 12/16/2022] Open
Abstract
An increasing amount of evidence indicates the critical role of the NSD1 gene in Sotos syndrome (SoS), a rare genetic disease, and in tumors. Molecular mechanisms affected by NSD1 mutations are largely uncharacterized. In order to assess the impact of NSD1 haploinsufficiency in the pathogenesis of SoS, we analyzed the gene expression profile of fibroblasts isolated from the skin samples of 15 SoS patients and of 5 healthy parents. We identified seven differentially expressed genes and five differentially expressed noncoding RNAs. The most upregulated mRNA was stratifin (SFN) (fold change, 3.9, Benjamini−Hochberg corrected p < 0.05), and the most downregulated mRNA was goosecoid homeobox (GSC) (fold change, 3.9, Benjamini−Hochberg corrected p < 0.05). The most upregulated lncRNA was lnc-C2orf84-1 (fold change, 4.28, Benjamini−Hochberg corrected p < 0.001), and the most downregulated lncRNA was Inc-C15orf57 (fold change, −0.7, Benjamini−Hochberg corrected p < 0.05). A gene set enrichment analysis reported the enrichment of genes involved in the KRAS and E2F signaling pathways, splicing regulation and cell cycle G2/M checkpoints. Our results suggest that NSD1 is involved in cell cycle regulation and that its mutation can induce the down-expression of genes involved in tumoral and neoplastic differentiation. The results contribute to defining the role of NSD1 in fibroblasts for the prevention, diagnosis and control of SoS.
Collapse
Affiliation(s)
- Giuseppina Conteduca
- Laboratory of Human Genetics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (G.C.); (M.M.); (C.B.); (A.A.); (R.P.); (B.T.)
| | - Davide Cangelosi
- Clinical Bioinformatics Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
| | - Simona Coco
- Lung Cancer Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy;
| | - Michela Malacarne
- Laboratory of Human Genetics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (G.C.); (M.M.); (C.B.); (A.A.); (R.P.); (B.T.)
| | - Chiara Baldo
- Laboratory of Human Genetics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (G.C.); (M.M.); (C.B.); (A.A.); (R.P.); (B.T.)
| | - Alessia Arado
- Laboratory of Human Genetics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (G.C.); (M.M.); (C.B.); (A.A.); (R.P.); (B.T.)
| | - Rute Pinto
- Laboratory of Human Genetics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (G.C.); (M.M.); (C.B.); (A.A.); (R.P.); (B.T.)
| | - Barbara Testa
- Laboratory of Human Genetics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (G.C.); (M.M.); (C.B.); (A.A.); (R.P.); (B.T.)
| | - Domenico A. Coviello
- Laboratory of Human Genetics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (G.C.); (M.M.); (C.B.); (A.A.); (R.P.); (B.T.)
- Correspondence: ; Tel.: +39-010-5636-3977
| |
Collapse
|
17
|
Shrestha A, Kim N, Lee SJ, Jeon YH, Song JJ, An H, Cho SJ, Kadayat TM, Chin J. Targeting the Nuclear Receptor-Binding SET Domain Family of Histone Lysine Methyltransferases for Cancer Therapy: Recent Progress and Perspectives. J Med Chem 2021; 64:14913-14929. [PMID: 34488340 DOI: 10.1021/acs.jmedchem.1c01116] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nuclear receptor-binding SET domain (NSD) proteins are a class of histone lysine methyltransferases (HKMTases) that are amplified, mutated, translocated, or overexpressed in various types of cancers. Several campaigns to develop NSD inhibitors for cancer treatment have begun following recent advances in knowledge of NSD1, NSD2, and NSD3 structures and functions as well as the U.S. FDA approval of the first HKMTase inhibitor (tazemetostat, an EZH2 inhibitor) to treat follicular lymphoma and epithelioid sarcoma. This perspective highlights recent findings on the structures of catalytic su(var), enhancer-of-zeste, trithorax (SET) domains and other functional domains of NSD methyltransferases. In addition, recent progress and efforts to discover NSD-specific small molecule inhibitors against cancer-targeting catalytic SET domains, plant homeodomains, and proline-tryptophan-tryptophan-proline domains are summarized.
Collapse
Affiliation(s)
- Aarajana Shrestha
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Republic of Korea
| | - Nayeon Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Republic of Korea
| | - Su-Jeong Lee
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Republic of Korea
| | - Yong Hyun Jeon
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Republic of Korea
| | - Ji-Joon Song
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hongchan An
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Republic of Korea
| | - Sung Jin Cho
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Tara Man Kadayat
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Republic of Korea
| | - Jungwook Chin
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Republic of Korea
| |
Collapse
|
18
|
Tauchmann S, Schwaller J. NSD1: A Lysine Methyltransferase between Developmental Disorders and Cancer. Life (Basel) 2021; 11:life11090877. [PMID: 34575025 PMCID: PMC8465848 DOI: 10.3390/life11090877] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/16/2021] [Accepted: 08/23/2021] [Indexed: 01/25/2023] Open
Abstract
Recurrent epigenomic alterations associated with multiple human pathologies have increased the interest in the nuclear receptor binding SET domain protein 1 (NSD1) lysine methyltransferase. Here, we review the current knowledge about the biochemistry, cellular function and role of NSD1 in human diseases. Several studies have shown that NSD1 controls gene expression by methylation of lysine 36 of histone 3 (H3K36me1/2) in a complex crosstalk with de novo DNA methylation. Inactivation in flies and mice revealed that NSD1 is essential for normal development and that it regulates multiple cell type-specific functions by interfering with transcriptional master regulators. In humans, putative loss of function NSD1 mutations characterize developmental syndromes, such as SOTOS, as well as cancer from different organs. In pediatric hematological malignancies, a recurrent chromosomal translocation forms a NUP98-NSD1 fusion with SET-dependent leukemogenic activity, which seems targetable by small molecule inhibitors. To treat or prevent diseases driven by aberrant NSD1 activity, future research will need to pinpoint the mechanistic correlation between the NSD1 gene dosage and/or mutational status with development, homeostasis, and malignant transformation.
Collapse
|
19
|
González-Alvarez ME, McGuire BC, Keating AF. Obesity alters the ovarian proteomic response to zearalenone exposure†. Biol Reprod 2021; 105:278-289. [PMID: 33855340 PMCID: PMC8256104 DOI: 10.1093/biolre/ioab069] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/10/2021] [Accepted: 04/07/2021] [Indexed: 12/21/2022] Open
Abstract
Zearalenone (ZEN), a nonsteroidal estrogenic mycotoxin, is detrimental to female reproduction. Altered chemical biotransformation, depleted primordial follicles and a blunted genotoxicant response have been discovered in obese female ovaries, thus, this study investigated the hypothesis that obesity would enhance ovarian sensitivity to ZEN exposure. Seven-week-old female wild-type nonagouti KK.Cg-a/a mice (lean) and agouti lethal yellow KK.Cg-Ay/J mice (obese) received food and water ad libitum, and either saline or ZEN (40 μg/kg) per os for 15 days. Body and organ weights, and estrous cyclicity were recorded, and ovaries collected posteuthanasia for protein analysis. Body and liver weights were increased (P < 0.05) in the obese mice, but obesity did not affect (P > 0.05) heart, kidney, spleen, uterus, or ovary weight and there was no impact (P > 0.05) of ZEN exposure on body or organ weight in lean or obese mice. Obese mice had shorter proestrus (P < 0.05) and a tendency (P = 0.055) for longer metestrus/diestrus. ZEN exposure in obese mice increased estrus but shortened metestrus/diestrus length. Neither obesity nor ZEN exposure impacted (P > 0.05) circulating progesterone, or ovarian abundance of EPHX1, GSTP1, CYP2E1, ATM, BRCA1, DNMT1, HDAC1, H4K16ac, or H3K9me3. Lean mice exposed to ZEN had a minor increase in γH2AX abundance (P < 0.05). In lean and obese mice, LC-MS/MS identified alterations to proteins involved in chemical metabolism, DNA repair and reproduction. These data identify ZEN-induced adverse ovarian modes of action and suggest that obesity is additive to ZEN-induced ovotoxicity.
Collapse
Affiliation(s)
- M Estefanía González-Alvarez
- Department of Animal Science and Interdepartmental Toxicology Graduate Program, Iowa State University, Ames IA, USA
| | - Bailey C McGuire
- Department of Animal Science and Interdepartmental Toxicology Graduate Program, Iowa State University, Ames IA, USA
| | - Aileen F Keating
- Department of Animal Science and Interdepartmental Toxicology Graduate Program, Iowa State University, Ames IA, USA
| |
Collapse
|
20
|
Itai T, Miyatake S, Hatano T, Hattori N, Ohno A, Aoki Y, Itomi K, Mori H, Saitsu H, Matsumoto N. Cerebrovascular diseases in two patients with entire NSD1 deletion. Hum Genome Var 2021; 8:20. [PMID: 34031356 PMCID: PMC8144564 DOI: 10.1038/s41439-021-00151-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/13/2021] [Accepted: 04/21/2021] [Indexed: 11/09/2022] Open
Abstract
We describe two patients with NSD1 deletion, who presented with early-onset, or recurrent cerebrovascular diseases (CVDs). A 39-year-old female showed developmental delay and abnormal gait in infancy, and developed slowly-progressive intellectual disability and movement disorders. Brain imaging suggested recurrent parenchymal hemorrhages. A 6-year-old male had tremor as a neonate and brain imaging revealed subdural hematoma and brain contusion. This report suggests possible involvement of CVDs associated with NSD1 deletion.
Collapse
Affiliation(s)
- Toshiyuki Itai
- Department of human genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Satoko Miyatake
- Department of human genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan.,Clinical Genetics Department, Yokohama City University Hospital, Yokohama, Kanagawa, Japan
| | - Taku Hatano
- Department of Neurology, Juntendo University, Bunkyo-Ku, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University, Bunkyo-Ku, Tokyo, Japan
| | - Atsuko Ohno
- Department of Pediatric Neurology, Toyota Municipal Child Development Center, Toyota, Aichi, Japan
| | - Yusuke Aoki
- Division of Neurology, Aichi Children's Health and Medical Center, Obu, Aichi, Japan
| | - Kazuya Itomi
- Division of Neurology, Aichi Children's Health and Medical Center, Obu, Aichi, Japan
| | - Harushi Mori
- Department of Radiology, School of Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Naomichi Matsumoto
- Department of human genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan.
| |
Collapse
|
21
|
Yu XX, Chu X, Wu WJ, Wei ZL, Song HL, Bai MR, Lu YJ, Gu BL, Gong YM, Cai W. Common variation of the NSD1 gene is associated with susceptibility to Hirschsprung's disease in Chinese Han population. Pediatr Res 2021; 89:694-700. [PMID: 32380506 DOI: 10.1038/s41390-020-0933-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 11/09/2022]
Abstract
BACKGROUND Hirschsprung's disease (HSCR) is the most common congenital cause of intestinal obstruction in children. Sotos syndrome (SoS) is an overgrowth disorder with constipation and sometimes accompanied by HSCR. NSD1 gene mutation is the main cause of SoS. We aimed to investigate association of NSD1 common single nucleotide polymorphisms (SNPs) with HSCR susceptibility in Chinese Han population. METHOD We genotyped 15 SNPs encompassing NSD1 gene region in 420 HSCR patients and 1665 controls on Fludigm EP1 platform. Association analysis was performed between cases and controls. RESULT Rs244709 was the most associated SNP with HSCR susceptibility of the sample set (PAllelic = 9.69 × 10-5, OR = 1.37, 95% CI: 1.17-1.61). Gender stratification analysis revealed that NSD1 SNPs were associated with HSCR in males, but not in females. The nonsynonymous coding SNP rs28932178 in NSD1 exon 5 represented the most significant signal in males (PAllelic = 6.43 × 10-5, OR = 1.42, 95% CI: 1.20-1.69). The associated SNPs were expression quantitative trait loci (eQTLs) of nearby genes in multiple tissues. NSD1 expression levels were higher in aganglionic colon tissues than ganglionic tissues (P = 3.00 × 10-6). CONCLUSION NSD1 variation conferred risk to HSCR in males, indicating SoS and HSCR may share common genetic factors. IMPACT This is the first study to reveal that NSD1 variation conferred risk to Hirschsprung's disease susceptibility in males of Chinese Han population, indicating Sotos syndrome and Hirschsprung's disease may share some common genetic background. This study indicates more attention should be paid to the symptom of constipation in patients with Sotos syndrome. Our results raise questions about the role of NSD1 in the development of enteric nervous system and the pathogenesis of Hirschsprung's disease.
Collapse
Affiliation(s)
- Xian-Xian Yu
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Xun Chu
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China. .,Shanghai Institute of Pediatric Research, Shanghai, China.
| | - Wen-Jie Wu
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Zhi-Liang Wei
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Huan-Lei Song
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Mei-Rong Bai
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Yan-Jiao Lu
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Bei-Lin Gu
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Yi-Ming Gong
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Wei Cai
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China. .,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China. .,Shanghai Institute of Pediatric Research, Shanghai, China.
| |
Collapse
|
22
|
Farhangdoost N, Horth C, Hu B, Bareke E, Chen X, Li Y, Coradin M, Garcia BA, Lu C, Majewski J. Chromatin dysregulation associated with NSD1 mutation in head and neck squamous cell carcinoma. Cell Rep 2021; 34:108769. [PMID: 33626351 PMCID: PMC8006058 DOI: 10.1016/j.celrep.2021.108769] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 11/12/2020] [Accepted: 01/28/2021] [Indexed: 12/17/2022] Open
Abstract
Chromatin dysregulation has emerged as an important mechanism of oncogenesis. To develop targeted treatments, it is important to understand the transcriptomic consequences of mutations in chromatin modifier genes. Recently, mutations in the histone methyltransferase gene nuclear receptor binding SET domain protein 1 (NSD1) have been identified in a subset of common and deadly head and neck squamous cell carcinomas (HNSCCs). Here, we use genome-wide approaches and genome editing to dissect the downstream effects of loss of NSD1 in HNSCC. We demonstrate that NSD1 mutations are responsible for loss of intergenic H3K36me2 domains, followed by loss of DNA methylation and gain of H3K27me3 in the affected genomic regions. In addition, those regions are enriched in cis-regulatory elements, and subsequent loss of H3K27ac correlates with reduced expression of their target genes. Our analysis identifies genes and pathways affected by the loss of NSD1 and paves the way to further understanding the interplay among chromatin modifications in cancer. Farhangdoost et al. use genome editing and TCGA primary tumor data to provide a link between NSD1 loss, chromatin and regulatory landscape, gene expression, and molecular characteristics of this tumor subtype. Their study extends the understanding of tumorigenic mechanisms underlying head and neck cancers with mutations in NSD1.
Collapse
Affiliation(s)
- Nargess Farhangdoost
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada; McGill University Genome Centre, Montreal, QC H3A 0G1, Canada
| | - Cynthia Horth
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada; McGill University Genome Centre, Montreal, QC H3A 0G1, Canada
| | - Bo Hu
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada; McGill University Genome Centre, Montreal, QC H3A 0G1, Canada
| | - Eric Bareke
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada; McGill University Genome Centre, Montreal, QC H3A 0G1, Canada
| | - Xiao Chen
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Yinglu Li
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Mariel Coradin
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Benjamin A Garcia
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chao Lu
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jacek Majewski
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada; McGill University Genome Centre, Montreal, QC H3A 0G1, Canada.
| |
Collapse
|
23
|
Fallah MS, Szarics D, Robson CM, Eubanks JH. Impaired Regulation of Histone Methylation and Acetylation Underlies Specific Neurodevelopmental Disorders. Front Genet 2021; 11:613098. [PMID: 33488679 PMCID: PMC7820808 DOI: 10.3389/fgene.2020.613098] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/09/2020] [Indexed: 12/19/2022] Open
Abstract
Epigenetic processes are critical for governing the complex spatiotemporal patterns of gene expression in neurodevelopment. One such mechanism is the dynamic network of post-translational histone modifications that facilitate recruitment of transcription factors or even directly alter chromatin structure to modulate gene expression. This is a tightly regulated system, and mutations affecting the function of a single histone-modifying enzyme can shift the normal epigenetic balance and cause detrimental developmental consequences. In this review, we will examine select neurodevelopmental conditions that arise from mutations in genes encoding enzymes that regulate histone methylation and acetylation. The methylation-related conditions discussed include Wiedemann-Steiner, Kabuki, and Sotos syndromes, and the acetylation-related conditions include Rubinstein-Taybi, KAT6A, genitopatellar/Say-Barber-Biesecker-Young-Simpson, and brachydactyly mental retardation syndromes. In particular, we will discuss the clinical/phenotypic and genetic basis of these conditions and the model systems that have been developed to better elucidate cellular and systemic pathological mechanisms.
Collapse
Affiliation(s)
- Merrick S Fallah
- Division of Experimental and Translational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Dora Szarics
- Division of Experimental and Translational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Clara M Robson
- Division of Experimental and Translational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - James H Eubanks
- Division of Experimental and Translational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.,Department of Surgery (Neurosurgery), University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
24
|
Moskovich D, Alfandari A, Finkelshtein Y, Weisz A, Katzav A, Kidron D, Edelstein E, Veroslavski D, Perets R, Arbib N, Kadan Y, Fishman A, Lerer B, Ellis M, Ashur-Fabian O. DIO3, the thyroid hormone inactivating enzyme, promotes tumorigenesis and metabolic reprogramming in high grade serous ovarian cancer. Cancer Lett 2020; 501:224-233. [PMID: 33221455 DOI: 10.1016/j.canlet.2020.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/18/2020] [Accepted: 11/11/2020] [Indexed: 12/27/2022]
Abstract
High grade serous ovarian cancer (HGSOC) is the most lethal gynecologic malignancy with a need for better understanding the disease pathogenesis. The biologically active thyroid hormone, T3, is considered a tumor suppressor by promoting cell differentiation and mitochondrial respiration. Tumors evolved a strategy to avoid these anticancer actions by expressing the T3 catabolizing enzyme, Deiodinase type 3 (DIO3). This stimulates cancer proliferation and aerobic glycolysis (Warburg effect). We identified DIO3 expression in HGSOC cell lines, tumor tissues from mice and human patients, fallopian tube (FT) premalignant lesion and secretory cells of normal FT, considered the disease site-of-origin. Stable DIO3 knockdown (DIO3-KD) in HGSOC cells led to increased T3 bioavailability and demonstrated induced apoptosis and attenuated proliferation, migration, colony formation, oncogenic signaling, Warburg effect and tumor growth in mice. Proteomics analysis further indicated alterations in an array of cancer-relevant proteins, the majority of which are involved in tumor suppression and metabolism. Collectively this study establishes the functional role of DIO3 in facilitating tumorigenesis and metabolic reprogramming, and proposes this enzyme as a promising target for inhibition in HGSOC.
Collapse
Affiliation(s)
- Dotan Moskovich
- Translational Oncology Laboratory, Hematology Institute and Blood Bank, Meir Medical Center, Kfar-Saba, Israel; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Adi Alfandari
- Translational Oncology Laboratory, Hematology Institute and Blood Bank, Meir Medical Center, Kfar-Saba, Israel; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yael Finkelshtein
- Translational Oncology Laboratory, Hematology Institute and Blood Bank, Meir Medical Center, Kfar-Saba, Israel; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Avivit Weisz
- Department of Pathology, Meir Medical Center, Kfar Saba, Israel; Sackler Faculty of Medicine, Israel
| | - Aviva Katzav
- Department of Pathology, Meir Medical Center, Kfar Saba, Israel; Sackler Faculty of Medicine, Israel
| | - Debora Kidron
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Pathology, Meir Medical Center, Kfar Saba, Israel; Sackler Faculty of Medicine, Israel
| | - Evgeny Edelstein
- Department of Pathology, Meir Medical Center, Kfar Saba, Israel; Sackler Faculty of Medicine, Israel
| | - Daniel Veroslavski
- Clinical Research Institute at Rambam, Division of Oncology, Rambam Health Care Campus, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ruth Perets
- Clinical Research Institute at Rambam, Division of Oncology, Rambam Health Care Campus, Technion-Israel Institute of Technology, Haifa, Israel
| | - Nissim Arbib
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Gynecological Oncology Unit, The Department of Obstetrics and Gynecology, Meir Medical Center, Kfar Saba, Israel
| | - Yfat Kadan
- Gynecological Oncology Unit, The Department of Obstetrics and Gynecology, Meir Medical Center, Kfar Saba, Israel
| | - Ami Fishman
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Gynecological Oncology Unit, The Department of Obstetrics and Gynecology, Meir Medical Center, Kfar Saba, Israel
| | - Bernard Lerer
- Biological Psychiatry Laboratory Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Martin Ellis
- Translational Oncology Laboratory, Hematology Institute and Blood Bank, Meir Medical Center, Kfar-Saba, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Osnat Ashur-Fabian
- Translational Oncology Laboratory, Hematology Institute and Blood Bank, Meir Medical Center, Kfar-Saba, Israel; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
25
|
Leonards K, Almosailleakh M, Tauchmann S, Bagger FO, Thirant C, Juge S, Bock T, Méreau H, Bezerra MF, Tzankov A, Ivanek R, Losson R, Peters AHFM, Mercher T, Schwaller J. Nuclear interacting SET domain protein 1 inactivation impairs GATA1-regulated erythroid differentiation and causes erythroleukemia. Nat Commun 2020; 11:2807. [PMID: 32533074 PMCID: PMC7293310 DOI: 10.1038/s41467-020-16179-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 04/17/2020] [Indexed: 12/20/2022] Open
Abstract
The nuclear receptor binding SET domain protein 1 (NSD1) is recurrently mutated in human cancers including acute leukemia. We show that NSD1 knockdown alters erythroid clonogenic growth of human CD34+ hematopoietic cells. Ablation of Nsd1 in the hematopoietic system of mice induces a transplantable erythroleukemia. In vitro differentiation of Nsd1−/− erythroblasts is majorly impaired despite abundant expression of GATA1, the transcriptional master regulator of erythropoiesis, and associated with an impaired activation of GATA1-induced targets. Retroviral expression of wildtype NSD1, but not a catalytically-inactive NSD1N1918Q SET-domain mutant induces terminal maturation of Nsd1−/− erythroblasts. Despite similar GATA1 protein levels, exogenous NSD1 but not NSDN1918Q significantly increases the occupancy of GATA1 at target genes and their expression. Notably, exogenous NSD1 reduces the association of GATA1 with the co-repressor SKI, and knockdown of SKI induces differentiation of Nsd1−/− erythroblasts. Collectively, we identify the NSD1 methyltransferase as a regulator of GATA1-controlled erythroid differentiation and leukemogenesis. Loss of function mutations of NSD1 occur in blood cancers. Here, the authors report that NSD1 loss blocks erythroid differentiation which leads to an erythroleukemia-like disease in mice by impairing GATA1-induced target gene activation.
Collapse
Affiliation(s)
- Katharina Leonards
- University Children's Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University of Basel, 4031, Basel, Switzerland
| | - Marwa Almosailleakh
- University Children's Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University of Basel, 4031, Basel, Switzerland
| | - Samantha Tauchmann
- University Children's Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University of Basel, 4031, Basel, Switzerland
| | - Frederik Otzen Bagger
- University Children's Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University of Basel, 4031, Basel, Switzerland.,Swiss Institute of Bioinfomatics, 4031, Basel, Switzerland.,Genomic Medicine, Righospitalet, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Cécile Thirant
- INSERM U1170, Equipe Labellisée Ligue Contre le Cancer, Gustave Roussy Institute, Université Paris Diderot, Université Paris-Sud, Villejuif, 94800, France
| | - Sabine Juge
- University Children's Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University of Basel, 4031, Basel, Switzerland
| | - Thomas Bock
- Proteomics Core Facility, Biozentrum University of Basel, Basel, Switzerland
| | - Hélène Méreau
- Department of Biomedicine, University of Basel, 4031, Basel, Switzerland
| | - Matheus F Bezerra
- University Children's Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University of Basel, 4031, Basel, Switzerland.,Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Brazil
| | - Alexandar Tzankov
- Institute for Pathology, University Hospital Basel, 4031, Basel, Switzerland
| | - Robert Ivanek
- Department of Biomedicine, University of Basel, 4031, Basel, Switzerland.,Swiss Institute of Bioinfomatics, 4031, Basel, Switzerland
| | - Régine Losson
- Institute de Génétique et de Biologie Moléculaire et Cellulaire (I.G.B.M.C.), CNRS/INSERM Université de Strasbourg, BP10142, 67404, Illkirch Cedex, France
| | - Antoine H F M Peters
- Friedrich Miescher Institute for Biomedical Research, 4058, Basel, Switzerland.,Faculty of Sciences, University of Basel, 4056, Basel, Switzerland
| | - Thomas Mercher
- INSERM U1170, Equipe Labellisée Ligue Contre le Cancer, Gustave Roussy Institute, Université Paris Diderot, Université Paris-Sud, Villejuif, 94800, France
| | - Juerg Schwaller
- University Children's Hospital Basel, Basel, Switzerland. .,Department of Biomedicine, University of Basel, 4031, Basel, Switzerland.
| |
Collapse
|
26
|
Oishi S, Zalucki O, Vega MS, Harkins D, Harvey TJ, Kasherman M, Davila RA, Hale L, White M, Piltz S, Thomas P, Burne THJ, Harris L, Piper M. Investigating cortical features of Sotos syndrome using mice heterozygous for Nsd1. GENES BRAIN AND BEHAVIOR 2020; 19:e12637. [PMID: 31909872 DOI: 10.1111/gbb.12637] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/03/2020] [Accepted: 01/04/2020] [Indexed: 12/18/2022]
Abstract
Sotos syndrome is a developmental disorder characterized by a suite of clinical features. In children, the three cardinal features of Sotos syndrome are a characteristic facial appearance, learning disability and overgrowth (height and/or head circumference > 2 SDs above average). These features are also evident in adults with this syndrome. Over 90% of Sotos syndrome patients are haploinsufficient for the gene encoding nuclear receptor-binding Su(var)3-9, Enhancer-of-zesteand Trithorax domain-containing protein 1 (NSD1). NSD1 is a histone methyltransferase that catalyzes the methylation of lysine residue 36 on histone H3. However, although the symptomology of Sotos syndrome is well established, many aspects of NSD1 biology remain unknown. Here, we assessed the expression of Nsd1 within the mouse brain, and showed a predominantly neuronal pattern of expression for this histone-modifying factor. We also generated a mouse strain lacking one allele of Nsd1 and analyzed morphological and behavioral characteristics in these mice, showing behavioral characteristics reminiscent of some of the deficits seen in Sotos syndrome patients.
Collapse
Affiliation(s)
- Sabrina Oishi
- The School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Oressia Zalucki
- The School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Michelle S Vega
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Danyon Harkins
- The School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Tracey J Harvey
- The School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Maria Kasherman
- The School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Raul A Davila
- The School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Lauren Hale
- The School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Melissa White
- School of Biological Sciences and South Australia Genome Editing Facility, University of Adelaide, Adelaide, South Australia, Australia
| | - Sandra Piltz
- School of Biological Sciences and South Australia Genome Editing Facility, University of Adelaide, Adelaide, South Australia, Australia
| | - Paul Thomas
- School of Biological Sciences and South Australia Genome Editing Facility, University of Adelaide, Adelaide, South Australia, Australia
| | - Thomas H J Burne
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia.,Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, Queensland, Australia
| | - Lachlan Harris
- The School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Michael Piper
- The School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
27
|
Zaghi M, Broccoli V, Sessa A. H3K36 Methylation in Neural Development and Associated Diseases. Front Genet 2020; 10:1291. [PMID: 31998360 PMCID: PMC6962298 DOI: 10.3389/fgene.2019.01291] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022] Open
Abstract
Post-translational methylation of H3 lysine 36 (H3K36) is an important epigenetic marker that majorly contributes to the functionality of the chromatin. This mark is interpreted by the cell in several crucial biological processes including gene transcription and DNA methylation. The homeostasis of H3K36 methylation is finely regulated by different enzyme classes which, when impaired, lead to a plethora of diseases; ranging from multi-organ syndromes to cancer, to pure neurological diseases often associated with brain development. This mini-review summarizes current knowledge on these important epigenetic signals with emphasis on the molecular mechanisms that (i) regulate their abundance, (ii) are influenced by H3K36 methylation, and (iii) the associated diseases.
Collapse
Affiliation(s)
- Mattia Zaghi
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Vania Broccoli
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy.,Concilio Nazionale Delle Ricerche (CNR), Instituto di Neuroscienze, Milan, Italy
| | - Alessandro Sessa
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
28
|
Foster A, Zachariou A, Loveday C, Ashraf T, Blair E, Clayton‐Smith J, Dorkins H, Fryer A, Gener B, Goudie D, Henderson A, Irving M, Joss S, Keeley V, Lahiri N, Lynch SA, Mansour S, McCann E, Morton J, Motton N, Murray A, Riches K, Shears D, Stark Z, Thompson E, Vogt J, Wright M, Cole T, Tatton‐Brown K. The phenotype of Sotos syndrome in adulthood: A review of 44 individuals. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2019; 181:502-508. [PMID: 31479583 DOI: 10.1002/ajmg.c.31738] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Alison Foster
- University of Birmingham, Institution of Cancer and Genomic Sciences Birmingham UK
- West Midlands Regional Clinical Genetics Service and Birmingham Health Partners, Birmingham Women and Children's NHS Foundation Trust Birmingham UK
| | - Anna Zachariou
- Division of Genetics and EpidemiologyInstitute of Cancer Research London UK
| | - Chey Loveday
- Division of Genetics and EpidemiologyInstitute of Cancer Research London UK
| | - Tazeen Ashraf
- Department of Clinical GeneticsGuy's and St Thomas' NHS Foundation Trust London UK
| | - Edward Blair
- Oxford Centre for Genomic MedicineOxford University Hospitals NHS Foundation Trust Oxford UK
| | - Jill Clayton‐Smith
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of BiologyMedicine and Health, University of Manchester Manchester UK
- Manchester Centre for Genomic MedicineSt Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester Manchester UK
| | - Huw Dorkins
- Leicester Royal InfirmaryUniversity Hospitals of Leicester NHS Trust Leicester UK
| | - Alan Fryer
- Department of Clinical GeneticsLiverpool Women's NHS Foundation Trust Liverpool UK
| | - Blanca Gener
- Department of GeneticsCruces University Hospital, Biocruces Bizkaia Health Research Institute Barakaldo Spain
| | - David Goudie
- East of Scotland Regional Genetics ServiceNinewells Hospital and Medical School Dundee UK
| | - Alex Henderson
- Northern Genetics Service, The Newcastle upon Tyne Hospitals NHS Foundation Trust Newcastle upon Tyne UK
| | - Melita Irving
- Department of Clinical GeneticsGuy's and St Thomas' NHS Foundation Trust London UK
| | - Shelagh Joss
- West of Scotland Regional Genetics Service, Laboratory Medicine BuildingQueen Elizabeth University Hospital Glasgow UK
| | - Vaughan Keeley
- University Hospitals of Derby and Burton NHS Foundation Trust Derby UK
| | - Nayana Lahiri
- South West Thames Regional Genetics Service, St George's University Hospitals NHS Foundation Trust London UK
| | - Sally Ann Lynch
- Department of Clinical GeneticsTemple Street Children's University Hospital Dublin Ireland
| | - Sahar Mansour
- South West Thames Regional Genetics Service, St George's University Hospitals NHS Foundation Trust London UK
- St George's University of London London UK
| | - Emma McCann
- Department of Clinical GeneticsLiverpool Women's NHS Foundation Trust Liverpool UK
| | - Jenny Morton
- West Midlands Regional Clinical Genetics Service and Birmingham Health Partners, Birmingham Women and Children's NHS Foundation Trust Birmingham UK
| | - Nicole Motton
- West Midlands Regional Genetics ServiceBirmingham Women's Hospital Birmingham UK
| | - Alexandra Murray
- All Wales Medical Genomics ServiceUniversity Hospital of Wales Cardiff UK
| | - Katie Riches
- University Hospitals of Derby and Burton NHS Foundation Trust Derby UK
| | - Deborah Shears
- Oxford Centre for Genomic MedicineOxford University Hospitals NHS Foundation Trust Oxford UK
| | - Zornitza Stark
- Victorian Clinical Genetics ServicesMurdoch Children's Research Institute Melbourne Australia
- Department of PaediatricsUniversity of Melbourne Melbourne Australia
| | - Elizabeth Thompson
- SA Clinical Genetics ServiceWomen's and Children's Hospital Adelaide South Australia Australia
- Faculty of Health and Medical SciencesUniversity of Adelaide Adelaide South Australia
| | - Julie Vogt
- West Midlands Regional Clinical Genetics Service and Birmingham Health Partners, Birmingham Women and Children's NHS Foundation Trust Birmingham UK
| | - Michael Wright
- Northern Genetics Service, The Newcastle upon Tyne Hospitals NHS Foundation Trust Newcastle upon Tyne UK
| | - Trevor Cole
- West Midlands Regional Clinical Genetics Service and Birmingham Health Partners, Birmingham Women and Children's NHS Foundation Trust Birmingham UK
| | - Katrina Tatton‐Brown
- Division of Genetics and EpidemiologyInstitute of Cancer Research London UK
- South West Thames Regional Genetics Service, St George's University Hospitals NHS Foundation Trust London UK
- St George's University of London London UK
| |
Collapse
|
29
|
Pan C, Izreig S, Yarbrough WG, Issaeva N. NSD1 mutations by HPV status in head and neck cancer: differences in survival and response to DNA-damaging agents. CANCERS OF THE HEAD & NECK 2019; 4:3. [PMID: 31321084 PMCID: PMC6613249 DOI: 10.1186/s41199-019-0042-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/31/2019] [Indexed: 12/12/2022]
Abstract
Background Compared to HPV-negative head and neck squamous cell carcinomas (HNSCCs), HPV-positive HNSCCs are associated with a favorable prognosis in part due to their improved treatment sensitivity. Inactivating mutations in NSD1 were shown to be a favorable prognostic biomarker in laryngeal cancers. Here, we characterize NSD1 mutations from the expanded The Cancer Genome Atlas (TCGA) HNSCC cohort (n = 522) and examine their prognostic implications based on HPV status of the tumor. We also begin to examine if NSD1 regulates response to platinum-based drugs and other DNA-damaging agents. Methods TCGA HNSCC samples were segregated by HPV and NSD1 mutations using cBioPortal and patient survival was determined. Pathogenicity of mutations was predicted using UMD-Predictor. NSD1-depleted cell lines were established by transfection with control or shRNAs against NSD1, followed by puromycin selection, and confirmed by qRT-PCR. Cell sensitivity to DNA damaging agents was assessed using short-term proliferation and long-term clonogenic survival assays. Results Among 457 HPV(-) tumors, 13% contained alterations in the NSD1 gene. The majority (61.3%) of NSD1 gene alterations in HPV(-) specimens were truncating mutations within or before the enzymatic SET domain. The remaining alterations included homozygous gene deletions (6.7%), missense point mutations (30.7%) and inframe deletions (1.3%). UMD-Predictor categorized 18 of 23 missense point mutations as pathogenic. For HPV(+) HNSCC (n = 65), 6 NSD1 mutations, comprised of two truncating (33%) and 4 missense point (66%) mutations, were identified. Three of the 4 missense point mutations were predicted to be pathogenic or probably pathogenic by UMD-Predictor. Kaplan-Meier survival analysis determined significantly improved survival of HPV(-) HNSCC patients whose tumors harbored NSD1 gene alterations, as compared to patients with wild-type NSD1 tumors. Interestingly, the survival effect of NSD1 mutations observed in HPV-negative HNSCC was reversed in HPV(+) tumors. Proliferation and clonogenic survival of two HPV(-) cell lines stably expressing control or NSD1 shRNAs showed that NSD1-depleted cells were more sensitive to cisplatin and carboplatin, but not to other DNA damaging drugs. Conclusions Genetic alterations in NSD1 hold potential as novel prognostic biomarkers in HPV(-) head and neck cancers. NSD1 mutations in HPV(+) cancers may also play a prognostic role, although this effect must be examined in a larger cohort. NSD1 downregulation results in improved sensitivity to cisplatin and carboplatin, but not to other DNA-damaging agents, in epithelial cells. Increased sensitivity to platinum-based chemotherapy agents associated with NSD1 depletion may contribute to improved survival in HPV(-) HNSCCs. Further studies are needed to determine mechanisms through which NSD1 protects HPV(-) HNSCC cells from platinum-based therapy, as well as confirmation of NSD1 effect in HPV(+) HNSCC.
Collapse
Affiliation(s)
- Cassie Pan
- 1Department of Surgery, Division of Otolaryngology, Yale University, New Haven, CT USA
| | - Said Izreig
- 1Department of Surgery, Division of Otolaryngology, Yale University, New Haven, CT USA
| | - Wendell G Yarbrough
- 2Department of Otolaryngology/Head and Neck Surgery, The University of North Carolina at Chapel Hill, 170 Manning Drive, Campus Box 7070, Chapel Hill, NC 27599-7070 USA.,3Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Natalia Issaeva
- 2Department of Otolaryngology/Head and Neck Surgery, The University of North Carolina at Chapel Hill, 170 Manning Drive, Campus Box 7070, Chapel Hill, NC 27599-7070 USA.,3Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| |
Collapse
|
30
|
Anwer F, Gee KM, Iftikhar A, Baig M, Russ AD, Saeed S, Zar MA, Razzaq F, Carew J, Nawrocki S, Al-Kateb H, Cavalcante Parr NN, McBride A, Valent J, Samaras C. Future of Personalized Therapy Targeting Aberrant Signaling Pathways in Multiple Myeloma. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2019; 19:397-405. [PMID: 31036508 PMCID: PMC6626550 DOI: 10.1016/j.clml.2019.03.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 02/19/2019] [Accepted: 03/17/2019] [Indexed: 12/19/2022]
Abstract
Multiple myeloma (MM) is a genetically complex disease. Identification of mutations and aberrant signaling pathways that contribute to the progression of MM and drug resistance has potential to lead to specific targets and personalized treatment. Aberrant signal pathways include RAS pathway activation due to RAS or BRAF mutations (targeted by vemurafenib alone or combined with cobimetinib), BCL-2 overexpression in t(11:14) (targeted by venetoclax), JAK2 pathway activation (targeted by ruxolitinib), NF-κB pathway activation (treated with DANFIN combined with bortezomib), MDM2 overexpression, and PI3K/mTOR pathway activation (targeted by BEZ235). Cyclin D1 (CCND1) and MYC are also emerging as key potential targets. In addition, histone deacetylase inhibitors are already in use for the treatment of MM in combination therapy, and targeted inhibition of FGFR3 (AZD4547) is effective in myeloma cells with t(4;14) translocation. Bromodomain and extra terminal (BET) protein antagonists decrease the expression of MYC and have displayed promising antimyeloma activity. A better understanding of the alterations in signaling pathways that promote MM progression will further inform the development of precision therapy for patients.
Collapse
Affiliation(s)
- Faiz Anwer
- Taussig Cancer Center, Department of Hematology, Medical Oncology, Cleveland Clinic, Cleveland, OH.
| | - Kevin Mathew Gee
- Department of Molecular and Cellular Biology, The University of Arizona, Tucson, AZ
| | - Ahmad Iftikhar
- Department of Medicine, The University of Arizona, Tucson, AZ
| | - Mirza Baig
- Department of Medicine, Summit Medical Group, Summit, NJ
| | | | - Sabina Saeed
- College of Public Health, The University of Arizona, Tucson, AZ
| | - Muhammad Abu Zar
- Department of Medicine, Division of Hematology & Oncology, The University of Arizona, Tucson, AZ
| | - Faryal Razzaq
- Department of Medicine, Division of Hematology & Oncology, The University of Arizona, Tucson, AZ
| | - Jennifer Carew
- Department of Medicine, Division of Hematology & Oncology, The University of Arizona, Tucson, AZ
| | - Steffan Nawrocki
- Department of Medicine, Division of Hematology & Oncology, The University of Arizona, Tucson, AZ
| | - Hussam Al-Kateb
- Division of Human Genetics, Children's Hospital, Cincinnati, OH
| | | | - Ali McBride
- College of Pharmacy, The University of Arizona, Tucson, AZ
| | - Jason Valent
- Taussig Cancer Center, Department of Hematology, Medical Oncology, Cleveland Clinic, Cleveland, OH
| | - Christy Samaras
- Taussig Cancer Center, Department of Hematology, Medical Oncology, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
31
|
Saha T, Makar S, Swetha R, Gutti G, Singh SK. Estrogen signaling: An emanating therapeutic target for breast cancer treatment. Eur J Med Chem 2019; 177:116-143. [PMID: 31129450 DOI: 10.1016/j.ejmech.2019.05.023] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/29/2019] [Accepted: 05/06/2019] [Indexed: 12/15/2022]
Abstract
Breast cancer, a most common malignancy in women, was known to be associated with steroid hormone estrogen. The discovery of estrogen receptor (ER) gave us not only a powerful predictive and prognostic marker, but also an efficient target for the treatment of hormone-dependent breast cancer with various estrogen ligands. ER consists of two subtypes i.e. ERα and ERβ, that are mostly G-protein-coupled receptors and activated by estrogen, specially 17β-estradiol. The activation is followed by translocation into the nucleus and binding with DNA to modulate activities of different genes. ERs can manage synthesis of RNA through genomic actions without directly binding to DNA. Receptors are tethered by protein-protein interactions to a transcription factor complex to communicate with DNA. Estrogens also exhibit nongenomic actions, a characteristic feature of steroid hormones, which are so rapid to be considered by the activation of RNA and translation. These are habitually related to stimulation of different protein kinase cascades. Majority of post-menopausal breast cancer is estrogen dependent, mostly potent biological estrogen (E2) for continuous growth and proliferation. Estrogen helps in regulating the differentiation and proliferation of normal breast epithelial cells. In this review we have investigated the important role of ER in development and progression of breast cancer, which is complicated by receptor's interaction with co-regulatory proteins, cross-talk with other signal transduction pathways and development of treatment strategies viz. selective estrogen receptor modulators (SERMs), selective estrogen receptor down regulators (SERDs), aromatase and sulphatase inhibitors.
Collapse
Affiliation(s)
- Tanmay Saha
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, U.P, India
| | - Subhajit Makar
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, U.P, India
| | - Rayala Swetha
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, U.P, India
| | - Gopichand Gutti
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, U.P, India
| | - Sushil K Singh
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, U.P, India.
| |
Collapse
|
32
|
Cato L, de Tribolet-Hardy J, Lee I, Rottenberg JT, Coleman I, Melchers D, Houtman R, Xiao T, Li W, Uo T, Sun S, Kuznik NC, Göppert B, Ozgun F, van Royen ME, Houtsmuller AB, Vadhi R, Rao PK, Li L, Balk SP, Den RB, Trock BJ, Karnes RJ, Jenkins RB, Klein EA, Davicioni E, Gruhl FJ, Long HW, Liu XS, Cato ACB, Lack NA, Nelson PS, Plymate SR, Groner AC, Brown M. ARv7 Represses Tumor-Suppressor Genes in Castration-Resistant Prostate Cancer. Cancer Cell 2019; 35:401-413.e6. [PMID: 30773341 PMCID: PMC7246081 DOI: 10.1016/j.ccell.2019.01.008] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 08/23/2018] [Accepted: 01/14/2019] [Indexed: 12/19/2022]
Abstract
Androgen deprivation therapy for prostate cancer (PCa) benefits patients with early disease, but becomes ineffective as PCa progresses to a castration-resistant state (CRPC). Initially CRPC remains dependent on androgen receptor (AR) signaling, often through increased expression of full-length AR (ARfl) or expression of dominantly active splice variants such as ARv7. We show in ARv7-dependent CRPC models that ARv7 binds together with ARfl to repress transcription of a set of growth-suppressive genes. Expression of the ARv7-repressed targets and ARv7 protein expression are negatively correlated and predicts for outcome in PCa patients. Our results provide insights into the role of ARv7 in CRPC and define a set of potential biomarkers for tumors dependent on ARv7.
Collapse
Affiliation(s)
- Laura Cato
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jonas de Tribolet-Hardy
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Irene Lee
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jaice T Rottenberg
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Ilsa Coleman
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Diana Melchers
- PamGene International B.V., 5211 HH Den Bosch, the Netherlands
| | - René Houtman
- PamGene International B.V., 5211 HH Den Bosch, the Netherlands
| | - Tengfei Xiao
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard TH Chan School of Public Health, Boston, MA 02215, USA
| | - Wei Li
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard TH Chan School of Public Health, Boston, MA 02215, USA
| | - Takuma Uo
- Department of Medicine, University of Washington School of Medicine and GRECC-VAPSHCS, Seattle, WA 98104, USA
| | - Shihua Sun
- Department of Medicine, University of Washington School of Medicine and GRECC-VAPSHCS, Seattle, WA 98104, USA
| | - Nane C Kuznik
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Bettina Göppert
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Fatma Ozgun
- School of Medicine, Koç University, 34450 Istanbul, Turkey
| | - Martin E van Royen
- Department of Pathology, Erasmus Optical Imaging Centre, Erasmus MC, 3015 GE Rotterdam, the Netherlands
| | - Adriaan B Houtsmuller
- Department of Pathology, Erasmus Optical Imaging Centre, Erasmus MC, 3015 GE Rotterdam, the Netherlands
| | - Raga Vadhi
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Prakash K Rao
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Lewyn Li
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Steven P Balk
- Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Robert B Den
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Bruce J Trock
- Department of Urology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Robert B Jenkins
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Eric A Klein
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | - Friederike J Gruhl
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Henry W Long
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - X Shirley Liu
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard TH Chan School of Public Health, Boston, MA 02215, USA
| | - Andrew C B Cato
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Nathan A Lack
- School of Medicine, Koç University, 34450 Istanbul, Turkey; Vancouver Prostate Center, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Peter S Nelson
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Stephen R Plymate
- Department of Medicine, University of Washington School of Medicine and GRECC-VAPSHCS, Seattle, WA 98104, USA.
| | - Anna C Groner
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland.
| | - Myles Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| |
Collapse
|
33
|
Marques P, Korbonits M. Pseudoacromegaly. Front Neuroendocrinol 2019; 52:113-143. [PMID: 30448536 DOI: 10.1016/j.yfrne.2018.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/30/2018] [Accepted: 11/14/2018] [Indexed: 01/19/2023]
Abstract
Individuals with acromegaloid physical appearance or tall stature may be referred to endocrinologists to exclude growth hormone (GH) excess. While some of these subjects could be healthy individuals with normal variants of growth or physical traits, others will have acromegaly or pituitary gigantism, which are, in general, straightforward diagnoses upon assessment of the GH/IGF-1 axis. However, some patients with physical features resembling acromegaly - usually affecting the face and extremities -, or gigantism - accelerated growth/tall stature - will have no abnormalities in the GH axis. This scenario is termed pseudoacromegaly, and its correct diagnosis can be challenging due to the rarity and variability of these conditions, as well as due to significant overlap in their characteristics. In this review we aim to provide a comprehensive overview of pseudoacromegaly conditions, highlighting their similarities and differences with acromegaly and pituitary gigantism, to aid physicians with the diagnosis of patients with pseudoacromegaly.
Collapse
Affiliation(s)
- Pedro Marques
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
34
|
Huang C, Zhu B. Roles of H3K36-specific histone methyltransferases in transcription: antagonizing silencing and safeguarding transcription fidelity. BIOPHYSICS REPORTS 2018; 4:170-177. [PMID: 30310854 PMCID: PMC6153486 DOI: 10.1007/s41048-018-0063-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 07/15/2018] [Indexed: 12/20/2022] Open
Abstract
Histone H3K36 methylation is well-known for its role in active transcription. In Saccharomyces cerevisiae, H3K36 methylation is mediated solely by SET2 during transcription elongation. In metazoans, multiple H3K36-specific methyltransferases exist and contribute to distinct biochemical activities and subsequent functions. In this review, we focus on the H3K36-specific histone methyltransferases in metazoans, and discuss their enzymatic activity regulation and their roles in antagonizing Polycomb silencing and safeguarding transcription fidelity.
Collapse
Affiliation(s)
- Chang Huang
- 1National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Bing Zhu
- 1National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China.,2College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
35
|
Dual origin of relapses in retinoic-acid resistant acute promyelocytic leukemia. Nat Commun 2018; 9:2047. [PMID: 29795382 PMCID: PMC5967331 DOI: 10.1038/s41467-018-04384-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 04/26/2018] [Indexed: 12/11/2022] Open
Abstract
Retinoic acid (RA) and arsenic target the t(15;17)(q24;q21) PML/RARA driver of acute promyelocytic leukemia (APL), their combination now curing over 95% patients. We report exome sequencing of 64 matched samples collected from patients at initial diagnosis, during remission, and following relapse after historical combined RA-chemotherapy treatments. A first subgroup presents a high incidence of additional oncogenic mutations disrupting key epigenetic or transcriptional regulators (primarily WT1) or activating MAPK signaling at diagnosis. Relapses retain these cooperating oncogenes and exhibit additional oncogenic alterations and/or mutations impeding therapy response (RARA, NT5C2). The second group primarily exhibits FLT3 activation at diagnosis, which is lost upon relapse together with most other passenger mutations, implying that these relapses derive from ancestral pre-leukemic PML/RARA-expressing cells that survived RA/chemotherapy. Accordingly, clonogenic activity of PML/RARA-immortalized progenitors ex vivo is only transiently affected by RA, but selectively abrogated by arsenic. Our studies stress the role of cooperating oncogenes in direct relapses and suggest that targeting pre-leukemic cells by arsenic contributes to its clinical efficacy. Historical acute promyelocytic leukemia patients treated with retinoic acid and chemotherapy sometimes did relapse. Here the authors performed exome sequencing on 64 patient's samples from diagnosis/relapse/remission and show relapse associates either with cooperating oncogenes at diagnosis, or with unexpected persistence of ancestral pre-leukemic clones.
Collapse
|
36
|
Bennett RL, Swaroop A, Troche C, Licht JD. The Role of Nuclear Receptor-Binding SET Domain Family Histone Lysine Methyltransferases in Cancer. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a026708. [PMID: 28193767 DOI: 10.1101/cshperspect.a026708] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The nuclear receptor-binding SET Domain (NSD) family of histone H3 lysine 36 methyltransferases is comprised of NSD1, NSD2 (MMSET/WHSC1), and NSD3 (WHSC1L1). These enzymes recognize and catalyze methylation of histone lysine marks to regulate chromatin integrity and gene expression. The growing number of reports demonstrating that alterations or translocations of these genes fundamentally affect cell growth and differentiation leading to developmental defects illustrates the importance of this family. In addition, overexpression, gain of function somatic mutations, and translocations of NSDs are associated with human cancer and can trigger cellular transformation in model systems. Here we review the functions of NSD family members and the accumulating evidence that these proteins play key roles in tumorigenesis. Because epigenetic therapy is an important emerging anticancer strategy, understanding the function of NSD family members may lead to the development of novel therapies.
Collapse
Affiliation(s)
- Richard L Bennett
- Departments of Medicine, Biochemistry and Molecular Biology and University of Florida Health Cancer Center, The University of Florida, Gainesville, Florida 32610
| | - Alok Swaroop
- Departments of Medicine, Biochemistry and Molecular Biology and University of Florida Health Cancer Center, The University of Florida, Gainesville, Florida 32610
| | - Catalina Troche
- Departments of Medicine, Biochemistry and Molecular Biology and University of Florida Health Cancer Center, The University of Florida, Gainesville, Florida 32610
| | - Jonathan D Licht
- Departments of Medicine, Biochemistry and Molecular Biology and University of Florida Health Cancer Center, The University of Florida, Gainesville, Florida 32610
| |
Collapse
|
37
|
Naderi A. C1orf64 is a novel androgen receptor target gene and coregulator that interacts with 14-3-3 protein in breast cancer. Oncotarget 2017; 8:57907-57933. [PMID: 28915724 PMCID: PMC5593696 DOI: 10.18632/oncotarget.17826] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/11/2017] [Indexed: 12/12/2022] Open
Abstract
This study investigated the network of genes that are co-expressed with androgen receptor (AR) to discover novel AR targets in breast cancer. Bioinformatics analysis of two datasets from breast cancer cell lines resulted in the identification of an AR-gene signature constituted of 98 genes that highly correlated with AR expression. Notably, C1orf64 showed the highest positive correlation with AR across the datasets with a correlation coefficient (CC) of 0.737. In addition, C1orf64 closely correlated with AR expression in primary and metastatic breast tumors and C1orf64 expression was relatively higher in breast tumors with a lower grade and lobular histology. Furthermore, there is a functional interplay between AR and C1orf64 in breast cancer. In this process, AR activation directly represses C1orf64 transcription and C1orf64, in turn, interacts with AR as a corepressor and negatively regulates the AR-mediated induction of prolactin-induced protein (PIP) and AR reporter activity. Moreover, the corepressor effect of C1orf64 results in a reduction of AR binding to PIP promoter. The other aspect of this interplay involves a cross-talk between AR and estrogen receptor (ER) signaling in which C1orf64 silencing intensifies the AR-mediated down-regulation of ER target gene, progesterone receptor. Therefore, the repression of C1orf64 by AR provides an underlying mechanism for the AR inhibitory effects on ER signaling. To elucidate the biochemical mechanisms of C1orf64 function, this study demonstrates that C1orf64 is a phosphothreonine protein that interacts with the chaperone protein 14-3-3. In summary, C1orf64 is a novel AR coregulator and a 14-3-3 binding partner in breast cancer.
Collapse
Affiliation(s)
- Ali Naderi
- University of Hawaii Cancer Center, Cancer Biology Program, Honolulu, Hawaii 96813, USA
| |
Collapse
|
38
|
Steric Clash in the SET Domain of Histone Methyltransferase NSD1 as a Cause of Sotos Syndrome and Its Genetic Heterogeneity in a Brazilian Cohort. Genes (Basel) 2016; 7:genes7110096. [PMID: 27834868 PMCID: PMC5126782 DOI: 10.3390/genes7110096] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/08/2016] [Accepted: 10/21/2016] [Indexed: 12/26/2022] Open
Abstract
Most histone methyltransferases (HMTase) harbor a predicted Su(var)3–9, Enhancer-of-zeste, Trithorax (SET) domain, which transfers a methyl group to a lysine residue in their substrates. Mutations of the SET domains were reported to cause intellectual disability syndromes such as Sotos, Weaver, or Kabuki syndromes. Sotos syndrome is an overgrowth syndrome with intellectual disability caused by haploinsufficiency of the nuclear receptor binding SET domain protein 1 (NSD1) gene, an HMTase at 5q35.2–35.3. Here, we analyzed NSD1 in 34 Brazilian Sotos patients and identified three novel and eight known mutations. Using protein modeling and bioinformatic approaches, we evaluated the effects of one novel (I2007F) and 21 previously reported missense mutations in the SET domain. For the I2007F mutation, we observed conformational change and loss of structural stability in Molecular Dynamics (MD) simulations which may lead to loss-of-function of the SET domain. For six mutations near the ligand-binding site we observed in simulations steric clashes with neighboring side chains near the substrate S-Adenosyl methionine (SAM) binding site, which may disrupt the enzymatic activity of NSD1. These results point to a structural mechanism underlying the pathology of the NSD1 missense mutations in the SET domain in Sotos syndrome. NSD1 mutations were identified in only 32% of the Brazilian Sotos patients in our study cohort suggesting other genes (including unknown disease genes) underlie the molecular etiology for the majority of these patients. Our studies also found NSD1 expression to be profound in human fetal brain and cerebellum, accounting for prenatal onset and hypoplasia of cerebellar vermis seen in Sotos syndrome.
Collapse
|
39
|
Amin N, Nietlispach D, Qamar S, Coyle J, Chiarparin E, Williams G. NMR backbone resonance assignment and solution secondary structure determination of human NSD1 and NSD2. BIOMOLECULAR NMR ASSIGNMENTS 2016; 10:315-320. [PMID: 27356987 DOI: 10.1007/s12104-016-9691-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 06/22/2016] [Indexed: 06/06/2023]
Abstract
Proteins of the NSD family are histone-methyl transferases with critical functions in the regulation of chromatin structure and function. NSD1 and NSD2 are homologous proteins that function as epigenetic regulators of transcription through their abilities to catalyse histone methylation. Misregulation of NSD1 and NSD2 expression or mutations in their genes are linked to a number of human diseases such as Sotos syndrome, and cancers including acute myeloid leukemia, multiple myeloma, and lung cancer. The catalytic domain of both proteins contains a conserved SET domain which is involved in histone methylation. Here we report the backbone resonance assignments and secondary structure information of the catalytic domains of human NSD1 and NSD2.
Collapse
Affiliation(s)
- Nader Amin
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, CB4 0QA, UK
- Nuffield Department of Population Health, University of Oxford, Richard Doll Building, Oxford, OX3 7LF, UK
| | - Daniel Nietlispach
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Rd, Cambridge, CB2 1GA, UK
| | - Seema Qamar
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge, CB2 0XY, UK
| | - Joe Coyle
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, CB4 0QA, UK
| | - Elisabetta Chiarparin
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, CB4 0QA, UK
- AstraZeneca, 310 Cambridge Science Park, Cambridge, CB4 0WG, UK
| | - Glyn Williams
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, CB4 0QA, UK.
| |
Collapse
|
40
|
Berardi A, Quilici G, Spiliotopoulos D, Corral-Rodriguez MA, Martin-Garcia F, Degano M, Tonon G, Ghitti M, Musco G. Structural basis for PHDVC5HCHNSD1-C2HRNizp1 interaction: implications for Sotos syndrome. Nucleic Acids Res 2016; 44:3448-63. [PMID: 26896805 PMCID: PMC4838375 DOI: 10.1093/nar/gkw103] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 02/09/2016] [Indexed: 12/19/2022] Open
Abstract
Sotos syndrome is an overgrowth syndrome caused by mutations within the functional domains ofNSD1 gene coding for NSD1, a multidomain protein regulating chromatin structure and gene expression. In particular, PHDVC5HCHNSD1 tandem domain, composed by a classical (PHDV) and an atypical (C5HCH) plant homeo-domain (PHD) finger, is target of several pathological missense-mutations. PHDVC5HCHNSD1 is also crucial for NSD1-dependent transcriptional regulation and interacts with the C2HR domain of transcriptional repressor Nizp1 (C2HRNizp1)in vitro To get molecular insights into the mechanisms dictating the patho-physiological relevance of the PHD finger tandem domain, we solved its solution structure and provided a structural rationale for the effects of seven Sotos syndrome point-mutations. To investigate PHDVC5HCHNSD1 role as structural platform for multiple interactions, we characterized its binding to histone H3 peptides and to C2HRNizp1 by ITC and NMR. We observed only very weak electrostatic interactions with histone H3 N-terminal tails, conversely we proved specific binding to C2HRNizp1 We solved C2HRNizp1 solution structure and generated a 3D model of the complex, corroborated by site-directed mutagenesis. We suggest a mechanistic scenario where NSD1 interactions with cofactors such as Nizp1 are impaired by PHDVC5HCHNSD1 pathological mutations, thus impacting on the repression of growth-promoting genes, leading to overgrowth conditions.
Collapse
Affiliation(s)
- Andrea Berardi
- Biomolecular NMR Unit, Division of Genetics and Cell Biology, IRCCS S. Raffaele Scientific Institute, Milan 20132, Italy Università degli Studi di Milano, Italy
| | - Giacomo Quilici
- Biomolecular NMR Unit, Division of Genetics and Cell Biology, IRCCS S. Raffaele Scientific Institute, Milan 20132, Italy
| | - Dimitrios Spiliotopoulos
- Biomolecular NMR Unit, Division of Genetics and Cell Biology, IRCCS S. Raffaele Scientific Institute, Milan 20132, Italy Università Vita e Salute San Raffaele, Milano 21032, Italy
| | - Maria Angeles Corral-Rodriguez
- Biomolecular NMR Unit, Division of Genetics and Cell Biology, IRCCS S. Raffaele Scientific Institute, Milan 20132, Italy Università Vita e Salute San Raffaele, Milano 21032, Italy
| | - Fernando Martin-Garcia
- Biomolecular NMR Unit, Division of Genetics and Cell Biology, IRCCS S. Raffaele Scientific Institute, Milan 20132, Italy
| | - Massimo Degano
- Biocrystallography Unit, Division of Immunology, Transplantation, and Infectious Diseases, IRCCS S. Raffaele Scientific Institute, Milan 20132, Italy
| | - Giovanni Tonon
- Functional genomics of cancer, Division of Experimental Oncology, IRCCS S. Raffaele Scientific Institute, Milan 20132, Italy
| | - Michela Ghitti
- Biomolecular NMR Unit, Division of Genetics and Cell Biology, IRCCS S. Raffaele Scientific Institute, Milan 20132, Italy
| | - Giovanna Musco
- Biomolecular NMR Unit, Division of Genetics and Cell Biology, IRCCS S. Raffaele Scientific Institute, Milan 20132, Italy
| |
Collapse
|
41
|
Sound of silence: the properties and functions of repressive Lys methyltransferases. Nat Rev Mol Cell Biol 2015. [PMID: 26204160 DOI: 10.1038/nrm4029] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The methylation of histone Lys residues by Lys methyltransferases (KMTs) regulates chromatin organization and either activates or represses gene expression, depending on the residue that is targeted. KMTs are emerging as key components in several cellular processes, and their deregulation is often associated with pathogenesis. Here, we review the current knowledge on the main KMTs that are associated with gene silencing: namely, those responsible for methylating histone H3 Lys 9 (H3K9), H3K27 and H4K20. We discuss their biochemical properties and the various mechanisms by which they are targeted to the chromatin and regulate gene expression, as well as new data on the interplay between them and other chromatin modifiers.
Collapse
|
42
|
Cui J, Xie J, Qin L, Chen S, Zhao Y, Wu D. A unique acute myeloid leukemia patient with cryptic NUP98-NSD1 gene and ASXL1 mutation. Leuk Lymphoma 2015; 57:196-8. [PMID: 25860235 DOI: 10.3109/10428194.2015.1037755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jiangxia Cui
- a Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University , Suzhou , P.R. China.,b Collaborative Innovation Center of Hematology, Soochow University , Suzhou , P.R. China.,c Shanxi Academy of Medical Science, Shanxi Da Yi Hospital , Taiyuan , P.R. China
| | - Jundan Xie
- a Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University , Suzhou , P.R. China.,b Collaborative Innovation Center of Hematology, Soochow University , Suzhou , P.R. China
| | - Lili Qin
- a Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University , Suzhou , P.R. China.,b Collaborative Innovation Center of Hematology, Soochow University , Suzhou , P.R. China
| | - Suning Chen
- a Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University , Suzhou , P.R. China.,b Collaborative Innovation Center of Hematology, Soochow University , Suzhou , P.R. China
| | - Yun Zhao
- d Cyrus Tang Hematology Center, Soochow University , Suzhou , P.R. China
| | - Deipei Wu
- a Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University , Suzhou , P.R. China.,b Collaborative Innovation Center of Hematology, Soochow University , Suzhou , P.R. China
| |
Collapse
|
43
|
Vougiouklakis T, Hamamoto R, Nakamura Y, Saloura V. The NSD family of protein methyltransferases in human cancer. Epigenomics 2015; 7:863-74. [PMID: 25942451 DOI: 10.2217/epi.15.32] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The NSD family of protein lysine methyltransferases consists of NSD1, NSD2/WHSC1/MMSET and NSD3/WHSC1L1. NSD2 haploinsufficiency causes Wolf-Hirschhorn syndrome, while NSD1 mutations lead to the Sotos syndrome. Recently, a number of studies showed that the NSD methyltransferases were overexpressed, amplified or somatically mutated in multiple types of cancer, suggesting their critical role in cancer. These enzymes methylate specific lysine residues on histone tails and their dysfunction results in epigenomic aberrations which play a fundamental role in oncogenesis. Furthermore, NSD1 was also reported to methylate a nonhistone protein substrate, RELA/p65 subunit of NF-κB, implying its regulatory function through nonhistone methylation pathways. In this review, we summarize the current research regarding the role of the NSD family proteins in cancer and underline their potential as targets for novel cancer therapeutics.
Collapse
Affiliation(s)
- Theodore Vougiouklakis
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, 5841 S. Maryland Ave, MC2115 Chicago, IL 60637, USA
| | - Ryuji Hamamoto
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, 5841 S. Maryland Ave, MC2115 Chicago, IL 60637, USA
| | - Yusuke Nakamura
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, 5841 S. Maryland Ave, MC2115 Chicago, IL 60637, USA
| | - Vassiliki Saloura
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, 5841 S. Maryland Ave, MC2115 Chicago, IL 60637, USA
| |
Collapse
|
44
|
NF-κB-dependent and -independent epigenetic modulation using the novel anti-cancer agent DMAPT. Cell Death Dis 2015; 6:e1608. [PMID: 25611383 PMCID: PMC4669767 DOI: 10.1038/cddis.2014.569] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 12/03/2014] [Accepted: 12/05/2014] [Indexed: 01/09/2023]
Abstract
The transcription factor nuclear factor-kappaB (NF-κB) is constitutively active in several cancers and is a target of therapeutic development. We recently developed dimethylaminoparthenolide (DMAPT), a clinical grade water-soluble analog of parthenolide, as a potent inhibitor of NF-κB and demonstrated in vitro and in vivo anti-tumor activities in multiple cancers. In this study, we show DMAPT is an epigenetic modulator functioning in an NF-κB-dependent and -independent manner. DMAPT-mediated NF-κB inhibition resulted in elevated histone H3K36 trimethylation (H3K36me3), which could be recapitulated through genetic ablation of the p65 subunit of NF-κB or inhibitor-of-kappaB alpha super-repressor overexpression. DMAPT treatment and p65 ablation increased the levels of H3K36 trimethylases NSD1 (KMT3B) and SETD2 (KMT3A), suggesting that NF-κB directly represses their expression and that lower H3K36me3 is an epigenetic marker of constitutive NF-κB activity. Overexpression of a constitutively active p65 subunit of NF-κB reduced NSD1 and H3K36me3 levels. NSD1 is essential for DMAPT-induced expression of pro-apoptotic BIM, indicating a functional link between epigenetic modification and gene expression. Interestingly, we observed enhanced H4K20 trimethylation and induction of H4K20 trimethylase KMT5C in DMAPT-treated cells independent of NF-κB inhibition. These results add KMT5C to the list NF-κB-independent epigenetic targets of parthenolide, which include previously described histone deacetylase 1 (HDAC-1) and DNA methyltransferase 1. As NSD1 and SETD2 are known tumor suppressors and loss of H4K20 trimethylation is an early event in cancer progression, which contributes to genomic instability, we propose DMAPT as a potent pharmacologic agent that can reverse NF-κB-dependent and -independent cancer-specific epigenetic abnormalities.
Collapse
|
45
|
Lucio-Eterovic AK, Carpenter PB. An open and shut case for the role of NSD proteins as oncogenes. Transcription 2014; 2:158-161. [PMID: 21922056 DOI: 10.4161/trns.2.4.16217] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 04/29/2011] [Accepted: 04/29/2011] [Indexed: 11/19/2022] Open
Abstract
The three components of the mammalian nuclear SET domain containing protein (NSD) family have been implicated in multiple diseases and cancers, but very little is known about their mechanisms of action. NSD proteins are epigenetic regulators and methylate lysine side chains, particularly lysine 36 of histone H3 (H3K36), where they appear to deposit mono and/or dimethyl marks. This modification (H3K36Me) has been shown to be important in various processes including gene expression, alternative splicing and DNA repair. Here, we examine recent findings regarding the oncogenic role of NSD proteins and suggest that a de-regulated switch between H3K36Me and H3K27Me plays an important role in the oncogenic potential of NSD proteins.
Collapse
Affiliation(s)
- Agda Karina Lucio-Eterovic
- Department of Biochemistry and Molecular Biology; University of Texas Health Science Center at Houston; Houston, TX USA
| | | |
Collapse
|
46
|
MMSET: role and therapeutic opportunities in multiple myeloma. BIOMED RESEARCH INTERNATIONAL 2014; 2014:636514. [PMID: 25093175 PMCID: PMC4100374 DOI: 10.1155/2014/636514] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 06/16/2014] [Indexed: 02/07/2023]
Abstract
Recurrent chromosomal translocations are central to the pathogenesis, diagnosis, and prognosis of hematologic malignancies. The translocation t(4; 14)(p16; q32) is one of the most common translocations in multiple myeloma (MM) and is associated with very poor prognosis. The t(4; 14) translocation leads to the simultaneous overexpression of two genes, FGFR3 (fibroblast growth factor receptor 3) and MMSET (multiple myeloma SET domain), both of which have potential oncogenic activity. However, approximately 30% of t(4; 14) MM patients do not express FGFR3 and have poor prognosis irrespective of FGFR3 expression, whereas MMSET overexpression is universal in t(4; 14) cases. In this review, we provide an overview of recent findings regarding the oncogenic roles of MMSET in MM and its functions on histone methylation. We also highlight some of MMSET partners and its downstream signalling pathways and discuss the potential therapeutics targeting MMSET.
Collapse
|
47
|
Substrate specificity analysis and novel substrates of the protein lysine methyltransferase NSD1. ACTA ACUST UNITED AC 2014; 21:226-37. [PMID: 24412544 DOI: 10.1016/j.chembiol.2013.10.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 10/14/2013] [Accepted: 10/21/2013] [Indexed: 12/17/2022]
Abstract
The nuclear receptor binding SET [su(var) 3-9, enhancer of zeste, trithorax] domain-containing protein 1 (NSD1) protein lysine methyltransferase (PKMT) was known to methylate histone H3 lysine 36 (H3K36). We show here that NSD1 prefers aromatic, hydrophobic, and basic residues at the -2, -1 and +2, and +1 sites of its substrate peptide, respectively. We show methylation of 25 nonhistone peptide substrates by NSD1, two of which were (weakly) methylated at the protein level, suggesting that unstructured protein regions are preferred NSD1 substrates. Methylation of H4K20 and p65 was not observed. We discovered strong methylation of H1.5 K168, which represents the best NSD1 substrate protein identified so far, and methylation of H4K44 which was weaker than H3K36. Furthermore, we show that Sotos mutations in the SET domain of NSD1 inactivate the enzyme. Our results illustrate the importance of specificity analyses of PKMTs for understanding protein lysine methylation signaling pathways.
Collapse
|
48
|
Wang H, Zhou X, Wu M, Wang C, Zhang X, Tao Y, Chen N, Zang J. Structure of the JmjC-domain-containing protein JMJD5. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:1911-20. [PMID: 24100311 DOI: 10.1107/s0907444913016600] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 06/14/2013] [Indexed: 11/10/2022]
Abstract
The post-translational modification of histone tails is the principal process controlling epigenetic regulation in eukaryotes. The lysine methylation of histones is dynamically regulated by two distinct classes of enzymes: methyltransferases and demethylases. JMJD5, which plays an important role in cell-cycle progression, circadian rhythms and embryonic cell proliferation, has been shown to be a JmjC-domain-containing histone demethylase with enzymatic activity towards H3K36me2. Here, the crystal structure of human JMJD5 lacking the N-terminal 175 amino-acid residues is reported. The structure showed that the Gln275, Trp310 and Trp414 side chains might block the insertion of methylated lysine into the active centre of JMJD5, suppressing the histone demethylase activity of the truncated JMJD5 construct. A comparison of the structure of JMJD5 with that of FIH, a well characterized protein hydroxylase, revealed that human JMJD5 might function as a protein hydroxylase. The interaction between JMJD5 and the core histone octamer proteins indicated that the histone proteins could be potential substrates for JMJD5.
Collapse
Affiliation(s)
- Haipeng Wang
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Sakhon OS, Victor KA, Choy A, Tsuchiya T, Eulgem T, Pedra JHF. NSD1 mitigates caspase-1 activation by listeriolysin O in macrophages. PLoS One 2013; 8:e75911. [PMID: 24058709 PMCID: PMC3776765 DOI: 10.1371/journal.pone.0075911] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 08/18/2013] [Indexed: 12/14/2022] Open
Abstract
Mammals and plants share pathogen-sensing systems named nod-like receptors (NLRs). Some NLRs form the inflammasome, a protein scaffold that regulates the secretion of interleukin (IL)-1β and IL-18 by cleaving catalytically inactive substrates into mature cytokines. Here, we show an immune conservation between plant and mammalian NLRs and demonstrate that the murine nuclear receptor binding SET domain protein 1 (NSD1), a protein that bears similarity to the NLR regulator enhanced downy mildew 2 (EDM2) in Arabidopsis, diminishes caspase-1 activity during extracellular stimulation with Listeria monocytogenes listeriolysin O (LLO). EDM2 is known to regulate plant developmental processes, whereas NSD1 is associated with developmental disorders. We observed that NSD1 neither affects nuclear factor (NF)-κB signaling nor regulates NLRP3 inflammasome gene expression at the chromatin, transcriptional or translational level during LLO stimulation of macrophages. Silencing of Nsd1 followed by LLO stimulation led to increased caspase-1 activation, enhanced post-translational maturation of IL-1β and IL-18 and elevated pyroptosis, a form of cell death associated with inflammation. Furthermore, treatment of macrophages with LLOW492A, which lacks hemolytic activity due to a tryptophan to alanine substitution in the undecapeptide motif, indicates the importance of functional LLO for NSD1 regulation of the NLRP3 inflammasome. Taken together, our results indicate that NLR signaling in plants may be used for gene discovery in mammals.
Collapse
Affiliation(s)
- Olivia S. Sakhon
- Division of Biomedical Sciences, University of California Riverside, Riverside, California, United States of America
| | - Kaitlin A. Victor
- Institute for Integrative Genome Biology, Center for Disease Vector Research and Department of Entomology, University of California Riverside, Riverside, California, United States of America
| | - Anthony Choy
- Institute for Integrative Genome Biology, Center for Disease Vector Research and Department of Entomology, University of California Riverside, Riverside, California, United States of America
| | - Tokuji Tsuchiya
- Institute for Integrative Genome Biology, Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California Riverside, Riverside, California, United States of America
| | - Thomas Eulgem
- Institute for Integrative Genome Biology, Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California Riverside, Riverside, California, United States of America
| | - Joao H. F. Pedra
- Institute for Integrative Genome Biology, Center for Disease Vector Research and Department of Entomology, University of California Riverside, Riverside, California, United States of America
- * E-mail:
| |
Collapse
|
50
|
Ko JM. Genetic syndromes associated with overgrowth in childhood. Ann Pediatr Endocrinol Metab 2013; 18:101-5. [PMID: 24904861 PMCID: PMC4027072 DOI: 10.6065/apem.2013.18.3.101] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 08/26/2013] [Indexed: 12/29/2022] Open
Abstract
Overgrowth syndromes comprise a diverse group of conditions with unique clinical, behavioral and molecular genetic features. While considerable overlap in presentation sometimes exists, advances in identification of the precise etiology of specific overgrowth disorders continue to improve clinicians' ability to make an accurate diagnosis. Among them, this paper introduces two classic genetic overgrowth syndromes: Sotos syndrome and Beckwith-Wiedemann syndrome. Historically, the diagnosis was based entirely on clinical findings. However, it is now understood that Sotos syndrome is caused by a variety of molecular genetic alterations resulting in haploinsufficiency of the NSD1 gene at chromosome 5q35 and that Beckwith-Wiedemann syndrome is caused by heterogeneous abnormalities in the imprinting of a number of growth regulatory genes within chromosome 11p15 in the majority of cases. Interestingly, the 11p15 imprinting region is also associated with Russell-Silver syndrome which is a typical growth retardation syndrome. Opposite epigenetic alterations in 11p15 result in opposite clinical features shown in Beckwith-Wiedemann syndrome and Russell-Silver syndrome. Although the exact functions of the causing genes have not yet been completely understood, these overgrowth syndromes can be good models to clarify the complex basis of human growth and help to develop better-directed therapies in the future.
Collapse
Affiliation(s)
- Jung Min Ko
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|