1
|
Murugesan SN, Monteiro A. Butterfly eyespots exhibit unique patterns of open chromatin. F1000Res 2023; 12:1428. [PMID: 38778811 PMCID: PMC11109672 DOI: 10.12688/f1000research.133789.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/02/2023] [Indexed: 05/25/2024] Open
Abstract
Background: How the precise spatial regulation of genes is correlated with spatial variation in chromatin accessibilities is not yet clear. Previous studies that analysed chromatin from homogenates of whole-body parts of insects found little variation in chromatin accessibility across those parts, but single-cell studies of Drosophila brains showed extensive spatial variation in chromatin accessibility across that organ. In this work we studied the chromatin accessibility of butterfly wing tissue fated to differentiate distinct colors and patterns in pupal wings of Bicyclus anynana. Methods: We dissected small eyespot and adjacent control tissues from 3h pupae and performed ATAC-Seq to identify the chromatin accessibility differences between different sections of the wings. Results: We observed that three dissected wing regions showed unique chromatin accessibilities. Open chromatin regions specific to eyespot color patterns were highly enriched for binding motifs recognized by Suppressor of Hairless (Su(H)), Krüppel (Kr), Buttonhead (Btd) and Nubbin (Nub) transcription factors. Genes in the vicinity of the eyespot-specific open chromatin regions included those involved in wound healing and SMAD signal transduction pathways, previously proposed to be involved in eyespot development. Conclusions: We conclude that eyespot and non-eyespot tissue samples taken from the same wing have distinct patterns of chromatin accessibility, possibly driven by the eyespot-restricted expression of potential pioneer factors, such as Kr.
Collapse
Affiliation(s)
| | - Antónia Monteiro
- Biological Sciences, National University of Singapore, Singapore, 117558, Singapore
| |
Collapse
|
2
|
Fox PM, Tang JLY, Brand AH. The Drosophila homologue of CTIP1 (Bcl11a) and CTIP2 (Bcl11b) regulates neural stem cell temporal patterning. Development 2022; 149:dev200677. [PMID: 36069896 PMCID: PMC9482335 DOI: 10.1242/dev.200677] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/03/2022] [Indexed: 11/07/2023]
Abstract
In the developing nervous system, neural stem cells (NSCs) use temporal patterning to generate a wide variety of different neuronal subtypes. In Drosophila, the temporal transcription factors, Hunchback, Kruppel, Pdm and Castor, are sequentially expressed by NSCs to regulate temporal identity during neurogenesis. Here, we identify a new temporal transcription factor that regulates the transition from the Pdm to Castor temporal windows. This factor, which we call Chronophage (or 'time-eater'), is homologous to mammalian CTIP1 (Bcl11a) and CTIP2 (Bcl11b). We show that Chronophage binds upstream of the castor gene and regulates its expression. Consistent with Chronophage promoting a temporal switch, chronophage mutants generate an excess of Pdm-specified neurons and are delayed in generating neurons associated with the Castor temporal window. In addition to promoting the Pdm to Castor transition, Chronophage also represses the production of neurons generated during the earlier Hunchback and Kruppel temporal windows. Genetic interactions with Hunchback and Kruppel indicate that Chronophage regulates NSC competence to generate Hunchback- and Kruppel-specified neurons. Taken together, our results suggest that Chronophage has a conserved role in temporal patterning and neuronal subtype specification.
Collapse
Affiliation(s)
| | | | - Andrea H. Brand
- The Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| |
Collapse
|
3
|
Huot L, Bigourdan A, Pagès S, Ogier JC, Girard PA, Nègre N, Duvic B. Partner-specific induction of Spodoptera frugiperda immune genes in response to the entomopathogenic nematobacterial complex Steinernema carpocapsae-Xenorhabdus nematophila. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 108:103676. [PMID: 32184079 DOI: 10.1016/j.dci.2020.103676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 06/10/2023]
Abstract
The Steinernema carpocapsae-Xenorhabdus nematophila association is a nematobacterial complex used in biological control of insect crop pests. The infection success of this dual pathogen strongly depends on its interactions with the host's immune system. Here, we used the lepidopteran pest Spodoptera frugiperda to analyze the respective impact of each partner in the induction of its immune responses. First, we used previously obtained RNAseq data to construct the immunome of S. frugiperda and analyze its induction. We then selected representative genes to study by RT-qPCR their induction kinetics and specificity after independent injections of each partner. We showed that both X. nematophila and S. carpocapsae participate in the induction of stable immune responses to the complex. While X. nematophila mainly induces genes classically involved in antibacterial responses, S. carpocapsae induces lectins and genes involved in melanization and encapsulation. We discuss putative relationships between these differential inductions and the pathogen immunosuppressive strategies.
Collapse
Affiliation(s)
- Louise Huot
- DGIMI, Univ Montpellier, INRAE, Montpellier, France
| | | | - Sylvie Pagès
- DGIMI, Univ Montpellier, INRAE, Montpellier, France
| | | | | | - Nicolas Nègre
- DGIMI, Univ Montpellier, INRAE, Montpellier, France.
| | - Bernard Duvic
- DGIMI, Univ Montpellier, INRAE, Montpellier, France.
| |
Collapse
|
4
|
Parrish JZ, Kim CC, Tang L, Bergquist S, Wang T, Derisi JL, Jan LY, Jan YN, Davis GW. Krüppel mediates the selective rebalancing of ion channel expression. Neuron 2014; 82:537-44. [PMID: 24811378 DOI: 10.1016/j.neuron.2014.03.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2014] [Indexed: 12/27/2022]
Abstract
Ion channel gene expression can vary substantially among neurons of a given type, even though neuron-type-specific firing properties remain stable and reproducible. The mechanisms that modulate ion channel gene expression and stabilize neural firing properties are unknown. In Drosophila, we demonstrate that loss of the Shal potassium channel induces the compensatory rebalancing of ion channel expression including, but not limited to, the enhanced expression and function of Shaker and slowpoke. Using genomic and network modeling approaches combined with genetic and electrophysiological assays, we demonstrate that the transcription factor Krüppel is necessary for the homeostatic modulation of Shaker and slowpoke expression. Remarkably, Krüppel induction is specific to the loss of Shal, not being observed in five other potassium channel mutants that cause enhanced neuronal excitability. Thus, homeostatic signaling systems responsible for rebalancing ion channel expression can be selectively induced after the loss or impairment of a specific ion channel.
Collapse
Affiliation(s)
- Jay Z Parrish
- Department of Biology, University of Washington, Seattle, WA 98195, USA.
| | - Charles C Kim
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA 94110, USA.
| | - Lamont Tang
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sharon Bergquist
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Tingting Wang
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Joseph L Derisi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Lily Yeh Jan
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yuh Nung Jan
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Graeme W Davis
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
5
|
Hale AT, Tian H, Anih E, Recio FO, Shatat MA, Johnson T, Liao X, Ramirez-Bergeron DL, Proweller A, Ishikawa M, Hamik A. Endothelial Kruppel-like factor 4 regulates angiogenesis and the Notch signaling pathway. J Biol Chem 2014; 289:12016-12028. [PMID: 24599951 PMCID: PMC4002108 DOI: 10.1074/jbc.m113.530956] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 02/18/2014] [Indexed: 01/08/2023] Open
Abstract
Regulation of endothelial cell biology by the Notch signaling pathway (Notch) is essential to vascular development, homeostasis, and sprouting angiogenesis. Although Notch determines cell fate and differentiation in a wide variety of cells, the molecular basis of upstream regulation of Notch remains poorly understood. Our group and others have implicated the Krüppel-like factor family of transcription factors as critical regulators of endothelial function. Here, we show that Krüppel-like factor 4 (KLF4) is a central regulator of sprouting angiogenesis via regulating Notch. Using a murine model in which KLF4 is overexpressed exclusively in the endothelium, we found that sustained expression of KLF4 promotes ineffective angiogenesis leading to diminished tumor growth independent of endothelial cell proliferation or cell cycling effects. These tumors feature increased vessel density yet are hypoperfused, leading to tumor hypoxia. Mechanistically, we show that KLF4 differentially regulates expression of Notch receptors, ligands, and target genes. We also demonstrate that KLF4 limits cleavage-mediated activation of Notch1. Finally, we rescue Notch target gene expression and the KLF4 sprouting angiogenesis phenotype by supplementation of DLL4 recombinant protein. Identification of this hitherto undiscovered role of KLF4 implicates this transcription factor as a critical regulator of Notch, tumor angiogenesis, and sprouting angiogenesis.
Collapse
Affiliation(s)
- Andrew T Hale
- Case Cardiovascular Research Institute and Harrington Heart & Vascular Institute, University Hospitals Case Medical Center, Cleveland, Ohio 44106; Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals Case Medical Center, Cleveland, Ohio 44106
| | - Hongmei Tian
- Case Cardiovascular Research Institute and Harrington Heart & Vascular Institute, University Hospitals Case Medical Center, Cleveland, Ohio 44106; Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals Case Medical Center, Cleveland, Ohio 44106
| | - Ejike Anih
- Case Cardiovascular Research Institute and Harrington Heart & Vascular Institute, University Hospitals Case Medical Center, Cleveland, Ohio 44106; Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals Case Medical Center, Cleveland, Ohio 44106
| | - Fernando O Recio
- Case Cardiovascular Research Institute and Harrington Heart & Vascular Institute, University Hospitals Case Medical Center, Cleveland, Ohio 44106
| | - Mohammad A Shatat
- Case Cardiovascular Research Institute and Harrington Heart & Vascular Institute, University Hospitals Case Medical Center, Cleveland, Ohio 44106; Division of Pulmonary, Critical Care and Sleep Medicine
| | - Trent Johnson
- Case Cardiovascular Research Institute and Harrington Heart & Vascular Institute, University Hospitals Case Medical Center, Cleveland, Ohio 44106
| | - Xudong Liao
- Case Cardiovascular Research Institute and Harrington Heart & Vascular Institute, University Hospitals Case Medical Center, Cleveland, Ohio 44106; Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals Case Medical Center, Cleveland, Ohio 44106
| | - Diana L Ramirez-Bergeron
- Case Cardiovascular Research Institute and Harrington Heart & Vascular Institute, University Hospitals Case Medical Center, Cleveland, Ohio 44106; Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals Case Medical Center, Cleveland, Ohio 44106
| | - Aaron Proweller
- Case Cardiovascular Research Institute and Harrington Heart & Vascular Institute, University Hospitals Case Medical Center, Cleveland, Ohio 44106; Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals Case Medical Center, Cleveland, Ohio 44106
| | - Masakazu Ishikawa
- Case Cardiovascular Research Institute and Harrington Heart & Vascular Institute, University Hospitals Case Medical Center, Cleveland, Ohio 44106; Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals Case Medical Center, Cleveland, Ohio 44106
| | - Anne Hamik
- Case Cardiovascular Research Institute and Harrington Heart & Vascular Institute, University Hospitals Case Medical Center, Cleveland, Ohio 44106; Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals Case Medical Center, Cleveland, Ohio 44106; Division of Cardiovascular Medicine, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio 44106.
| |
Collapse
|
6
|
Tran KD, Doe CQ. Pdm and Castor close successive temporal identity windows in the NB3-1 lineage. Development 2008; 135:3491-9. [PMID: 18832394 DOI: 10.1242/dev.024349] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neurogenesis in Drosophila and mammals requires the precise integration of spatial and temporal cues. In Drosophila, embryonic neural progenitors (neuroblasts) sequentially express the transcription factors Hunchback, Kruppel, Pdm1/Pdm2 (Pdm) and Castor as they generate a stereotyped sequence of neuronal and glial progeny. Hunchback and Kruppel specify early temporal identity in two posterior neuroblast lineages (NB7-1 and NB7-3), whereas Pdm and Castor specify late neuronal identity in the NB7-1 lineage. Because Pdm and Castor have only been assayed in one lineage, it is unknown whether their function is restricted to neuronal identity in the NB7-1 lineage, or whether they function more broadly as late temporal identity genes in all neuroblast lineages. Here, we identify neuronal birth-order and molecular markers within the NB3-1 cell lineage, and then use this lineage to assay Pdm and Castor function. We show that Hunchback and Kruppel specify first and second temporal identities, respectively. Surprisingly, Pdm does not specify the third temporal identity, but instead acts as a timing factor to close the second temporal identity window. Similarly, Castor closes the third temporal identity window. We conclude that Hunchback and Kruppel specify the first and second temporal identities, an unknown factor specifies the third temporal identity, and Pdm and Castor are timing factors that close the second and third temporal identity windows in the NB3-1 lineage. Our results provide a new neuroblast lineage for investigating temporal identity and reveal the importance of Pdm and Cas as timing factors that close temporal identity windows.
Collapse
Affiliation(s)
- Khoa D Tran
- Institute of Neuroscience, Institute of Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403, USA
| | | |
Collapse
|
7
|
Liu Y, Lehmann M. Genes and biological processes controlled by the Drosophila FOXA orthologue Fork head. INSECT MOLECULAR BIOLOGY 2008; 17:91-101. [PMID: 18353099 DOI: 10.1111/j.1365-2583.2007.00785.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The larval salivary glands of Drosophila express the FOXA transcription factor Fork head (Fkh) before, but not after, puparium formation. Forced expression of Fkh in late prepupae prevents the programmed destruction of the tissue, which normally occurs in the early pupa. Using Affymetrix GeneChips, we analysed changes in gene expression brought about by Fkh when expressed shortly before the normal time of salivary gland death. Genes identified as responsive to Fkh include not only cell death genes, but also genes involved in autophagy, phospholipid metabolism and hormone-controlled signalling pathways. In addition, Fkh changed the expression of genes involved in glucose and fatty acid metabolism that are known to be target genes of the FOXAs in vertebrates. Premature loss of fkh induced by RNAi and gain of Fkh by ectopic expression at earlier times of development confirmed that genes identified in the microarray study are under normal developmental control by Fkh. These genes include Eip63F-1, which is expressed in both salivary glands and Malpighian tubules, suggesting that Fkh controls common aspects of the secretory function of the two organs. Eip63F-1 is one of many genes controlled by the steroid hormone 20-hydroxyecdysone that appear to be co-regulated by Fkh.
Collapse
Affiliation(s)
- Y Liu
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701-1201, USA
| | | |
Collapse
|
8
|
The C. elegans M3 neuron guides the growth cone of its sister cell M2 via the Krüppel-like zinc finger protein MNM-2. Dev Biol 2007; 311:185-99. [PMID: 17916347 DOI: 10.1016/j.ydbio.2007.08.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Revised: 08/14/2007] [Accepted: 08/20/2007] [Indexed: 11/21/2022]
Abstract
The invariant cell-cell interactions occurring during C. elegans development offer unique opportunities to discover how growing axons may receive guidance cues from neighboring cells. The mnm-2 mutant was isolated because of its defects in the axon trajectory of the bilateral M2 pharyngeal neurons in C. elegans. We found that mnm-2 enhances the effects of many growth cone guidance mutations on these axons, suggesting that it performs a novel function during axon guidance. We cloned mnm-2 and found that it encodes a protein with three C2H2 zinc finger domains related to the Krüppel-like Factor protein family. mnm-2 is expressed only transiently in the M2 neuron, but exhibits a sustained expression in its sister cell, the M3 neuron. Strikingly, the expression of mnm-2 is not sustained in the M3 cell of the mnm-2 mutant, indicating that this gene positively regulates itself in that cell. Electropharyngeograms also indicate that the M3 cell is functionally impaired in the mnm-2 mutant. We used an M3-specific promoter to show that the M2 axon defect can be rescued by expression of mnm-2 in its sister cell M3. The same promoter was used to express the pro-apoptotic gene egl-1 to kill the M3 cell, which resulted in an M2 axon guidance defect similar to that found in the mnm-2 mutant. Our results suggest an M2 axon guidance model in which the M3 cell provides an important signal to the growth cone of its sister M2 and that this signal and the proper differentiation of M3 both depend on mnm-2 expression. This mechanism of axon guidance regulation allows fine-tuning of trajectories between sister cells.
Collapse
|
9
|
Rossi A, Wippersteg V, Klinkert MQ, Grevelding CG. Cloning of 5' and 3' flanking regions of the Schistosoma mansoni calcineurin A gene and their characterization in transiently transformed parasites. Mol Biochem Parasitol 2003; 130:133-8. [PMID: 12946850 DOI: 10.1016/s0166-6851(03)00158-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Alessandro Rossi
- Department of Parasitology, Institute for Tropical Medicine, University of Tübingen, Wilhelmstrasse 27, Tübingen 72074, Germany.
| | | | | | | |
Collapse
|
10
|
Sudarsan V, Pasalodos-Sanchez S, Wan S, Gampel A, Skaer H. A genetic hierarchy establishes mitogenic signalling and mitotic competence in the renal tubules of Drosophila. Development 2002; 129:935-44. [PMID: 11861476 DOI: 10.1242/dev.129.4.935] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cell proliferation in the developing renal tubules of Drosophila is strikingly patterned, occurring in two phases to generate a consistent number of tubule cells. The later phase of cell division is promoted by EGF receptor signalling from a specialised subset of tubule cells, the tip cells, which express the protease Rhomboid and are thus able to secrete the EGF ligand, Spitz. We show that the response to EGF signalling, and in consequence cell division, is patterned by the specification of a second cell type in the tubules. These cells are primed to respond to EGF signalling by the transcription of two pathway effectors, PointedP2, which is phosphorylated on pathway activation, and Seven up. While expression of pointedP2 is induced by Wingless signalling, seven up is initiated in a subset of the PointedP2 cells through the activity of the proneural genes. We demonstrate that both signalling and responsive cells are set aside in each tubule primordium from a proneural gene-expressing cluster of cells, in a two-step process. First, a proneural cluster develops within the domain of Wingless-activated, pointedP2-expressing cells to initiate the co-expression of seven up. Second, lateral inhibition, mediated by the neurogenic genes, acts within this cluster of cells to segregate the tip cell precursor, in which proneural gene expression strengthens to initiate rhomboid expression. As a consequence, when the precursor cell divides, both daughters secrete Spitz and become signalling cells. Establishing domains of cells competent to transduce the EGF signal and divide ensures a rapid and reliable response to mitogenic signalling in the tubules and also imposes a limit on the extent of cell division, thus preventing tubule hyperplasia.
Collapse
Affiliation(s)
- Vikram Sudarsan
- Centre for Developmental Genetics, BMS, University of Sheffield, UK, S10 2TN
| | | | | | | | | |
Collapse
|
11
|
Abrell S, Jäckle H. Axon guidance of Drosophila SNb motoneurons depends on the cooperative action of muscular Krüppel and neuronal capricious activities. Mech Dev 2001; 109:3-12. [PMID: 11677048 DOI: 10.1016/s0925-4773(01)00511-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The body wall musculature of the Drosophila larva consists of a stereotyped pattern of 30 muscles per abdominal hemisegment which are innervated by about 40 distinct motoneurons. Proper innervation by motoneurons is established during late embryogenesis. Guidance of motor axons to specific muscles requires appropriate pathfinding decisions as they follow their pathways within the central nervous system and on the surface of muscles. Once the appropriate targets are reached, stable synaptic contacts between motoneurons and muscles are formed. Recent studies revealed a number of molecular components required for proper motor axon pathfinding and demonstrated specific roles in fasciculation/defasciculation events, a key process in the formation of discrete motoneuron pathways. The gene capricious (caps), which encodes a cell-surface protein, functions as a recognition molecule in motor axon guidance, regulating the formation of the selective connections between the SNb-derived motoneuron RP5 and muscle 12. Here we show that Krüppel (Kr), best known as a segmentation gene of the gap class, functionally interacts with caps in establishing the proper axonal pathway of SNb including the RP5 axons. The results suggest that the transcription factor Krüppel participates in proper control of cell-surface molecules which are necessary for the SNb neurons to navigate in a caps-dependent manner within the array of the ventral longitudinal target muscles.
Collapse
Affiliation(s)
- S Abrell
- Max-Planck-Institut für biophysikalische Chemie, Abteilung Molekulare Entwicklungsbiologie, D-37070, Göttingen, Germany.
| | | |
Collapse
|
12
|
Isshiki T, Pearson B, Holbrook S, Doe CQ. Drosophila neuroblasts sequentially express transcription factors which specify the temporal identity of their neuronal progeny. Cell 2001; 106:511-21. [PMID: 11525736 DOI: 10.1016/s0092-8674(01)00465-2] [Citation(s) in RCA: 499] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neural precursors often generate distinct cell types in a specific order, but the intrinsic or extrinsic cues regulating the timing of cell fate specification are poorly understood. Here we show that Drosophila neural precursors (neuroblasts) sequentially express the transcription factors Hunchback --> Krüppel --> Pdm --> Castor, with differentiated progeny maintaining the transcription factor profile present at their birth. Hunchback is necessary and sufficient for first-born cell fates, whereas Krüppel is necessary and sufficient for second-born cell fates; this is observed in multiple lineages and is independent of the cell type involved. We propose that Hunchback and Krüppel control early-born temporal identity in neuroblast cell lineages.
Collapse
Affiliation(s)
- T Isshiki
- Institute of Neuroscience/Institute of Molecular Biology, Howard Hughes Medical Institute, 1254 University of Oregon, Eugene, OR 97403, USA
| | | | | | | |
Collapse
|
13
|
Choo KB, Chen HH, Cheng WT, Chang HS, Wang M. In silico mining of EST databases for novel pre-implantation embryo-specific zinc finger protein genes. Mol Reprod Dev 2001; 59:249-55. [PMID: 11424210 DOI: 10.1002/mrd.1029] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Progress in the understanding of early mammalian embryo development has been severely hampered by scarcity of study materials. To circumvent such a constraint, we have developed a strategy that involves a combination of in silico mining of new genes from expressed sequence tags (EST) databases and rapid determination of expression profiles of the dbEST-derived genes using a PCR-based assay and a panel of cDNA libraries derived from different developmental stages and somatic tissues. We demonstrate that in a random sample of 49 independent dbEST-derived zinc finger protein genes mined from a mouse embryonic 2-cell cDNA library, more than three-quarters of these genes are novel. Examination of characteristics of the human orthologues derived from these mouse genes reveals that many of them are associated with human malignancies. Expression studies have further led to the identification of three novel genes that are exclusively expressed in mouse embryos before or up to the 8-cell stage. Two of the genes, designated 2czf45 and 2czf48 (2czf for 2-cell zinc finger), are zinc finger protein genes coding for a RBCC protein with a RFP domain and a protein with three C2H2 fingers, respectively. The third gene, designated 2cpoz56, codes for a protein with a POZ domain that is often associated with zinc finger proteins. These three genes are candidate genes for regulatory or other functions in early embryogenesis. The strategy described in this report should generally be applicable to rapid and large-scale mining of other classes of rare genes involved in other biological and pathological processes. Mol. Reprod. Dev. 59:249-255, 2001.
Collapse
Affiliation(s)
- K B Choo
- Recombinant DNA Laboratory, Department of Medical Research and Education, Veterans General Hospital-Taipei, Shih-Pai, Taipei, Taiwan.
| | | | | | | | | |
Collapse
|
14
|
Lovas G, Li W, Pott U, Verga T, Hudson LD. Expression of the Krüppel-type zinc finger protein rKr2 in the developing nervous system. Glia 2001; 34:110-20. [PMID: 11307160 DOI: 10.1002/glia.1046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Zinc finger transcription factors of the Krüppel-class figure prominently in cell fate specification and differentiation in the nervous system. One of the Krüppel-type genes that was originally cloned from an oligodendrocyte library by virtue of its homology with the prototypic Krüppel motif is the rat rKr2 gene (Pott et al., 1995). In primary cultures of rat glial cells, the rKr2 protein was only present in the oligodendrocyte lineage, predominantly in progenitors. Ninety percent of A2B5(+) oligodendrocyte progenitors displayed rKr2 immunoreactivity, while most MBP(+) oligodendrocytes lacked detectable rKr2. A similar pattern was found in vivo, in which the peak expression of rKr2 in the oligodendrocyte lineage of rats coincided with the wave of progenitor proliferation in early postnatal life. The subventricular zone, a source of neuronal and glial progenitors, displayed intense staining for rKr2 at late embryonic and postnatal stages. In the adult, cells within the remnants of this germinal zone continued to express rKr2 protein strongly. Some populations of mature neurons also displayed rKr2 immunostaining. Astrocytes and microglia were not labeled with the polyclonal anti-rKr2 antibody in vitro or in vivo. At all developmental stages, the rKr2 protein was localized to the nucleus. The stage-specific expression pattern and the subcellular localization of rKr2 recommend a role for this Krüppel-type gene in the progression of neural stem cells and in the early development of the oligodendrocyte lineage.
Collapse
Affiliation(s)
- G Lovas
- Laboratory of Developmental Neurogenetics, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892-4160, USA
| | | | | | | | | |
Collapse
|
15
|
Crispi S, Giordano E, D'Avino PP, Peluso I, Furia M. Functional analysis of regulatory elements controlling the expression of the ecdysone-regulated Drosophila ng-1 gene. Mech Dev 2001; 100:25-35. [PMID: 11118881 DOI: 10.1016/s0925-4773(00)00498-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The steroid hormone ecdysone controls multiple aspects of insect development, including larval moults and metamorphosis, and can induce specific genetic responses in different tissues. The definition of the molecular mechanisms able to mediate this tissue-specific responsiveness may greatly contribute to understanding how such an accurate genetic response is achieved. In this work we have identified, by transgenic analysis, the regulatory elements directing the expression of ng-1, an ecdysone-regulated Drosophila gene showing a highly specific developmental expression profile. Our results show that an ecdysone-responsive element located within the ng-1 coding region is necessary for high-level gene expression, whereas the gene's spatial and temporal expression profile is fully controlled by a distinct upstream regulatory region. This region binds a set of transcriptional factors, including the FKH regulatory protein, which can potentially modulate the ecdysone genetic regulated response.
Collapse
Affiliation(s)
- S Crispi
- Dipartimento di Genetica, Biologia Generale e Molecolare, Università di Napoli, via Mezzocannone 8, I-80134 Napoli, Italy
| | | | | | | | | |
Collapse
|
16
|
Wan S, Cato AM, Skaer H. Multiple signalling pathways establish cell fate and cell number in Drosophila malpighian tubules. Dev Biol 2000; 217:153-65. [PMID: 10625542 DOI: 10.1006/dbio.1999.9499] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A unique cell, the tip mother cell, arises in the primordium of each Drosophila Malpighian tubule by lateral inhibition within a cluster of achaete-expressing cells. This cell maintains achaete expression and divides to produce daughters of equivalent potential, of which only one, the tip cell, adopts the primary fate and continues to express achaete, while in the other, the sibling cell, achaete expression is lost (M. Hoch et al., 1994, Development 120, 3439-3450). In this paper we chart the mechanisms by which achaete expression is differentially maintained in the tip cell lineage to stabilise cell fate. First, wingless is required to maintain the expression of achaete in the tubule primordium so that wingless mutants lack tip cells. Conversely, increasing wingless expression results in the persistence of achaete expression in the cell cluster. Second, Notch signalling is restricted by the asymmetric segregation of Numb, as the tip mother cell divides, so that achaete expression is maintained only in the tip cell. In embryos mutant for Notch tip cells segregate at the expense of sibling cells, whereas in numb neither daughter cell adopts the tip cell fate resulting in tubules with two sibling cells. Conversely, when numb is overexpressed two tip cells segregate and tubules have no sibling cells. Analysis of cell proliferation in the developing tubules of embryos lacking Wingless after the critical period for tip cell allocation reveals an additional requirement for wingless for the promotion of cell division. In contrast, alteration in the expression of numb has no effect on the final tubule cell number.
Collapse
Affiliation(s)
- S Wan
- Developmental Genetics Programme, Krebs Institute, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, United Kingdom
| | | | | |
Collapse
|
17
|
King-Jones K, Korge G, Lehmann M. The helix-loop-helix proteins dAP-4 and daughterless bind both in vitro and in vivo to SEBP3 sites required for transcriptional activation of the Drosophila gene Sgs-4. J Mol Biol 1999; 291:71-82. [PMID: 10438607 DOI: 10.1006/jmbi.1999.2963] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The expression of Sgs genes in the salivary gland of the third instar larva of Drosophila is a spatially restricted response to signalling by the steroid hormone 20-hydroxyecdysone. For Sgs-4, we have previously demonstrated that its strictly tissue and stage-specific expression is the result of combined action of the ecdysone receptor and secretion enhancer binding proteins (SEBPs). One of these SEBPs, SEBP2, was shown to be the product of the homeotic gene fork head. Together with SEBP3, SEBP2 appears to be responsible for the spatial restriction of the hormone response of Sgs-4. Here, we show that SEBP3 is a heterogeneous binding activity that consists of different helix-loop-helix (HLH) proteins. We cloned the Drosophila homologue of human transcription factor AP-4 (dAP-4) and identified it as one of these HLH proteins. The dAP-4 protein shows great similarity to its human and Caenorhabditis counterparts within the bHLHZip domain, the second leucine zipper dimerization motif, and a third region of unknown function. The expression pattern of dAP-4 indicates that it is a ubiquitously expressed HLH protein in Drosophila. As a second component of SEBP3 we identified the Daughterless (Da) protein, which is also ubiquitously expressed and binds to SEBP3 sites independent of dAP-4. Since both dAP-4 and Da can be detected in situ at transposed Sgs-4 transcriptional control elements in polytene salivary gland chromosomes, we propose that each of the two proteins contributes to the transcriptional control of Sgs-4.
Collapse
Affiliation(s)
- K King-Jones
- Institut für Genetik der Freien Universität Berlin, Arnimallee 7, Berlin, D-14195, Germany
| | | | | |
Collapse
|