1
|
Palacios-Blanco I, Gómez L, Bort M, Mayerová N, Bágeľová Poláková S, Martín-Castellanos C. CDK phosphorylation of Sfr1 downregulates Rad51 function in late-meiotic homolog invasions. EMBO J 2024; 43:4356-4383. [PMID: 39174851 PMCID: PMC11445502 DOI: 10.1038/s44318-024-00205-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 08/24/2024] Open
Abstract
Meiosis is the developmental program that generates gametes. To produce healthy gametes, meiotic recombination creates reciprocal exchanges between each pair of homologous chromosomes that facilitate faithful chromosome segregation. Using fission yeast and biochemical, genetic, and cytological approaches, we have studied the role of CDK (cyclin-dependent kinase) in the control of Swi5-Sfr1, a Rad51-recombinase auxiliary factor involved in homolog invasion during recombination. We show that Sfr1 is a CDK target, and its phosphorylation downregulates Swi5-Sfr1 function in the meiotic prophase. Expression of a phospho-mimetic sfr1-7D mutant inhibits Rad51 binding, its robust chromosome loading, and subsequently decreases interhomolog recombination. On the other hand, the non-phosphorylatable sfr1-7A mutant alters Rad51 dynamics at late prophase, and exacerbates chromatin segregation defects and Rad51 retention observed in dbl2 deletion mutants when combined with them. We propose Sfr1 phospho-inhibition as a novel cell-cycle-dependent mechanism, which ensures timely resolution of recombination intermediates and successful chromosome distribution into the gametes. Furthermore, the N-terminal disordered part of Sfr1, an evolutionarily conserved feature, serves as a regulatory platform coordinating this phospho-regulation, protein localization and stability, with several CDK sites and regulatory sequences being conserved.
Collapse
Affiliation(s)
- Inés Palacios-Blanco
- Instituto de Biología Funcional y Genómica (IBFG), CSIC-USAL, Salamanca, 37007, Spain
| | - Lucía Gómez
- Instituto de Biología Funcional y Genómica (IBFG), CSIC-USAL, Salamanca, 37007, Spain
| | - María Bort
- Instituto de Biología Funcional y Genómica (IBFG), CSIC-USAL, Salamanca, 37007, Spain
| | - Nina Mayerová
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, 841 04, Slovakia
| | - Silvia Bágeľová Poláková
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, 841 04, Slovakia
- Centre of Biosciences SAS, Institute of Animal Biochemistry and Genetics, Bratislava, 840 05, Slovakia
| | | |
Collapse
|
2
|
Ohtsuka H, Otsubo Y, Shimasaki T, Yamashita A, Aiba H. ecl family genes: Factors linking starvation and lifespan extension in Schizosaccharomyces pombe. Mol Microbiol 2023; 120:645-657. [PMID: 37525511 DOI: 10.1111/mmi.15134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 08/02/2023]
Abstract
In the fission yeast Schizosaccharomyces pombe, the duration of survival in the stationary phase, termed the chronological lifespan (CLS), is affected by various environmental factors and the corresponding gene activities. The ecl family genes were identified in the genomic region encoding non-coding RNA as positive regulators of CLS in S. pombe, and subsequently shown to encode relatively short proteins. Several studies revealed that ecl family genes respond to various nutritional starvation conditions via different mechanisms, and they are additionally involved in stress resistance, autophagy, sexual differentiation, and cell cycle control. Recent studies reported that Ecl family proteins strongly suppress target of rapamycin complex 1, which is a conserved eukaryotic nutrient-sensing kinase complex that also regulates longevity in a variety of organisms. In this review, we introduce the regulatory mechanisms of Ecl family proteins and discuss their emerging findings.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Yoko Otsubo
- Interdisciplinary Research Unit, National Institute for Basic Biology, Okazaki, Japan
| | - Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Akira Yamashita
- Interdisciplinary Research Unit, National Institute for Basic Biology, Okazaki, Japan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
3
|
Jacobsen NL, Bloch M, Millard PS, Ruidiaz SF, Elsborg JD, Boomsma W, Hendus‐Altenburger R, Hartmann‐Petersen R, Kragelund BB. Phosphorylation of Schizosaccharomyces pombe Dss1 mediates direct binding to the ubiquitin-ligase Dma1 in vitro. Protein Sci 2023; 32:e4733. [PMID: 37463013 PMCID: PMC10443397 DOI: 10.1002/pro.4733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 08/25/2023]
Abstract
Intrinsically disordered proteins (IDPs) are often multifunctional and frequently posttranslationally modified. Deleted in split hand/split foot 1 (Dss1-Sem1 in budding yeast) is a highly multifunctional IDP associated with a range of protein complexes. However, it remains unknown if the different functions relate to different modified states. In this work, we show that Schizosaccharomyces pombe Dss1 is a substrate for casein kinase 2 in vitro, and we identify three phosphorylated threonines in its linker region separating two known disordered ubiquitin-binding motifs. Phosphorylations of the threonines had no effect on ubiquitin-binding but caused a slight destabilization of the C-terminal α-helix and mediated a direct interaction with the forkhead-associated (FHA) domain of the RING-FHA E3-ubiquitin ligase defective in mitosis 1 (Dma1). The phosphorylation sites are not conserved and are absent in human Dss1. Sequence analyses revealed that the Txx(E/D) motif, which is important for phosphorylation and Dma1 binding, is not linked to certain branches of the evolutionary tree. Instead, we find that the motif appears randomly, supporting the mechanism of ex nihilo evolution of novel motifs. In support of this, other threonine-based motifs, although frequent, are nonconserved in the linker, pointing to additional functions connected to this region. We suggest that Dss1 acts as an adaptor protein that docks to Dma1 via the phosphorylated FHA-binding motifs, while the C-terminal α-helix is free to bind mitotic septins, thereby stabilizing the complex. The presence of Txx(D/E) motifs in the disordered regions of certain septin subunits may be of further relevance to the formation and stabilization of these complexes.
Collapse
Affiliation(s)
- Nina L. Jacobsen
- Structural Biology and NMR LaboratoryUniversity of CopenhagenCopenhagen NDenmark
- REPINUniversity of CopenhagenCopenhagen NDenmark
- The Linderstrøm Lang Centre for Protein Science, Department of BiologyUniversity of CopenhagenCopenhagen NDenmark
| | - Magnus Bloch
- Structural Biology and NMR LaboratoryUniversity of CopenhagenCopenhagen NDenmark
| | - Peter S. Millard
- REPINUniversity of CopenhagenCopenhagen NDenmark
- The Linderstrøm Lang Centre for Protein Science, Department of BiologyUniversity of CopenhagenCopenhagen NDenmark
| | - Sarah F. Ruidiaz
- Structural Biology and NMR LaboratoryUniversity of CopenhagenCopenhagen NDenmark
- REPINUniversity of CopenhagenCopenhagen NDenmark
| | - Jonas D. Elsborg
- Structural Biology and NMR LaboratoryUniversity of CopenhagenCopenhagen NDenmark
| | - Wouter Boomsma
- Department of Computer ScienceUniversity of CopenhagenCopenhagen ØDenmark
| | | | - Rasmus Hartmann‐Petersen
- REPINUniversity of CopenhagenCopenhagen NDenmark
- The Linderstrøm Lang Centre for Protein Science, Department of BiologyUniversity of CopenhagenCopenhagen NDenmark
| | - Birthe B. Kragelund
- Structural Biology and NMR LaboratoryUniversity of CopenhagenCopenhagen NDenmark
- REPINUniversity of CopenhagenCopenhagen NDenmark
- The Linderstrøm Lang Centre for Protein Science, Department of BiologyUniversity of CopenhagenCopenhagen NDenmark
| |
Collapse
|
4
|
Ohtsuka H, Sakata H, Kitazaki Y, Tada M, Shimasaki T, Otsubo Y, Maekawa Y, Kobayashi M, Imada K, Yamashita A, Aiba H. The ecl family gene ecl3+ is induced by phosphate starvation and contributes to sexual differentiation in fission yeast. J Cell Sci 2023; 136:287015. [PMID: 36779416 PMCID: PMC10038150 DOI: 10.1242/jcs.260759] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/07/2023] [Indexed: 02/14/2023] Open
Abstract
In Schizosaccharomyces pombe, ecl family genes are induced by several signals, such as starvation of various nutrients, including sulfur, amino acids and Mg2+, and environmental stress, including heat or oxidative stress. These genes mediate appropriate cellular responses and contribute to the maintenance of cell viability and induction of sexual differentiation. Although this yeast has three ecl family genes with overlapping functions, any environmental conditions that induce ecl3+ remain unidentified. We demonstrate that ecl3+ is induced by phosphate starvation, similar to its chromosomally neighboring genes, pho1+ and pho84+, which respectively encode an extracellular acid phosphatase and an inorganic phosphate transporter. ecl3+ expression was induced by the transcription factor Pho7 and affected by the cyclin-dependent kinase (CDK)-activating kinase Csk1. Phosphate starvation induced G1 arrest and sexual differentiation via ecl family genes. Biochemical analyses suggested that this G1 arrest was mediated by the stabilization of the CDK inhibitor Rum1, which was dependent on ecl family genes. This study shows that ecl family genes are required for appropriate responses to phosphate starvation and provides novel insights into the diversity and similarity of starvation responses.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Hiroki Sakata
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Yuto Kitazaki
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Masanobu Tada
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Yoko Otsubo
- Interdisciplinary Research Unit, National Institute for Basic Biology, Okazaki, Aichi 444-858, Japan
- National Institute for Fusion Science, Toki, Gifu 509-5292, Japan
- Center for Novel Science Initiatives, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan
| | - Yasukichi Maekawa
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Mikuto Kobayashi
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Kazuki Imada
- Department of Chemistry and Biochemistry, National Institute of Technology (KOSEN), Suzuka College, Suzuka 510-0294, Japan
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Akira Yamashita
- Interdisciplinary Research Unit, National Institute for Basic Biology, Okazaki, Aichi 444-858, Japan
- Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Aichi 464-8603, Japan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
5
|
Dong F, Zhu M, Zheng F, Fu C. Mitochondrial fusion and fission are required for proper mitochondrial function and cell proliferation in fission yeast. FEBS J 2021; 289:262-278. [PMID: 34310050 DOI: 10.1111/febs.16138] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/15/2021] [Accepted: 07/22/2021] [Indexed: 01/09/2023]
Abstract
Mitochondria form a branched tubular network in many types of cells, depending on a balance between mitochondrial fusion and fission. How mitochondrial fusion and fission are involved in regulating mitochondrial function and cell proliferation is not well understood. Here, we dissected the roles of mitochondrial fusion and fission in mitochondrial function and cell proliferation in fission yeast. We examined mitochondrial membrane potential by staining cells with DiOC6 and assessed mitochondrial respiration by directly measuring oxygen consumption of cells with a dissolved oxygen respirometer. We found that defects in mitochondrial fission or fusion reduce mitochondrial membrane potential and compromise mitochondrial respiration while the absence of both mitochondrial fusion and fission restores wild type-like respiration, normal membrane potential, and tubular networks of mitochondria. Moreover, we found that the absence of either mitochondrial fission or fusion prolongs the cell cycle and that the absence of both mitochondrial fusion and fission significantly delays cell cycle progression after nitrogen replenishment. The prolonged/delayed cell cycle is likely due to the deregulation of Cdc2 activation. Hence, our work not only establishes an intimate link between mitochondrial morphology and function but also underscores the importance of mitochondrial dynamics in regulating the cell cycle.
Collapse
Affiliation(s)
- Fenfen Dong
- CAS Center for Excellence in Molecular Cell Sciences, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Mengdan Zhu
- CAS Center for Excellence in Molecular Cell Sciences, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Fan Zheng
- CAS Center for Excellence in Molecular Cell Sciences, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chuanhai Fu
- CAS Center for Excellence in Molecular Cell Sciences, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
6
|
Bustamante-Jaramillo LF, Ramos C, Martín-Castellanos C. The Meiosis-Specific Crs1 Cyclin Is Required for Efficient S-Phase Progression and Stable Nuclear Architecture. Int J Mol Sci 2021; 22:ijms22115483. [PMID: 34067465 PMCID: PMC8196990 DOI: 10.3390/ijms22115483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 11/26/2022] Open
Abstract
Cyclins and CDKs (Cyclin Dependent Kinases) are key players in the biology of eukaryotic cells, representing hubs for the orchestration of physiological conditions with cell cycle progression. Furthermore, as in the case of meiosis, cyclins and CDKs have acquired novel functions unrelated to this primal role in driving the division cycle. Meiosis is a specialized developmental program that ensures proper propagation of the genetic information to the next generation by the production of gametes with accurate chromosome content, and meiosis-specific cyclins are widespread in evolution. We have explored the diversification of CDK functions studying the meiosis-specific Crs1 cyclin in fission yeast. In addition to the reported role in DSB (Double Strand Break) formation, this cyclin is required for meiotic S-phase progression, a canonical role, and to maintain the architecture of the meiotic chromosomes. Crs1 localizes at the SPB (Spindle Pole Body) and is required to stabilize the cluster of telomeres at this location (bouquet configuration), as well as for normal SPB motion. In addition, Crs1 exhibits CDK(Cdc2)-dependent kinase activity in a biphasic manner during meiosis, in contrast to a single wave of protein expression, suggesting a post-translational control of its activity. Thus, Crs1 displays multiple functions, acting both in cell cycle progression and in several key meiosis-specific events.
Collapse
|
7
|
Novák B, Tyson JJ. Computational modeling of chromosome re-replication in mutant strains of fission yeast. Mol Biol Cell 2021; 32:830-841. [PMID: 33534609 PMCID: PMC8108527 DOI: 10.1091/mbc.e20-09-0610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Typically cells replicate their genome only once per division cycle, but under some circumstances, both natural and unnatural, cells synthesize an overabundance of DNA, either in a disorganized manner (“overreplication”) or by a systematic doubling of chromosome number (“endoreplication”). These variations on the theme of DNA replication and division have been studied in strains of fission yeast, Schizosaccharomyces pombe, carrying mutations that interfere with the function of mitotic cyclin-dependent kinase (Cdk1:Cdc13) without impeding the roles of DNA-replication loading factor (Cdc18) and S-phase cyclin-dependent kinase (Cdk1:Cig2). Some of these mutations support endoreplication, and some overreplication. In this paper, we propose a dynamical model of the interactions among the proteins governing DNA replication and cell division in fission yeast. By computational simulations of the mathematical model, we account for the observed phenotypes of these re-replicating mutants, and by theoretical analysis of the dynamical system, we provide insight into the molecular distinctions between overreplicating and endoreplicating cells. In the case of induced overproduction of regulatory proteins, our model predicts that cells first switch from normal mitotic cell cycles to growth-controlled endoreplication, and ultimately to disorganized overreplication, parallel to the slow increase of protein to very high levels.
Collapse
Affiliation(s)
- Béla Novák
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - John J Tyson
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
8
|
Stonyte V, Martín R, Segura-Peña D, Sekulić N, Lopez-Aviles S. Requirement of PP2A-B56 Par1 for the Stabilization of the CDK Inhibitor Rum1 and Activation of APC/C Ste9 during Pre-Start G1 in S. pombe. iScience 2020; 23:101063. [PMID: 32361273 PMCID: PMC7195536 DOI: 10.1016/j.isci.2020.101063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/15/2020] [Accepted: 04/09/2020] [Indexed: 11/30/2022] Open
Abstract
Exit from the cell cycle during the establishment of quiescence and upon cell differentiation requires the sustained inactivation of CDK complexes. Fission yeast cells deprived of nitrogen halt cell cycle progression in pre-Start G1, before becoming quiescent or undergoing sexual differentiation. The CDK inhibitor Rum1 and the APC/C activator Ste9 are fundamental for this arrest, but both are down-regulated by CDK complexes. Here, we show that PP2A-B56Par1 is instrumental for Rum1 stabilization and Ste9 activation. In the absence of PP2A-B56Par1, cells fail to accumulate Rum1, and this results in persistent CDK activity, Ste9 inactivation, retention of the mitotic cyclin Cdc13, and impaired withdrawal from the cell cycle during nitrogen starvation. Importantly, mutation of a putative B56 interacting motif in Rum1 recapitulates these defects. These results underscore the relevance of CDK-counteracting phosphatases in cell differentiation, establishment of the quiescent state, and escape from it in cancer cells. PP2A-B56Par1 is required for cell-cycle arrest and mating upon nitrogen deprivation Loss of Par1 impairs degradation of Cdc13 under nitrogen starvation Absence of Par1 impedes proper dephosphorylation of Ste9 and accumulation of Rum1 Mutation of a Rum1 putative PP2A-B56 SLiM depicts similar defects as the loss Par1
Collapse
Affiliation(s)
- Vilte Stonyte
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, Oslo, Norway
| | - Ruth Martín
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, Oslo, Norway.
| | - Dario Segura-Peña
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, Oslo, Norway
| | - Nikolina Sekulić
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, Oslo, Norway; Department of Chemistry, University of Oslo, Oslo, Norway
| | - Sandra Lopez-Aviles
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, Oslo, Norway; Department of Biosciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
9
|
Protein Phosphatases in G1 Regulation. Int J Mol Sci 2020; 21:ijms21020395. [PMID: 31936296 PMCID: PMC7013402 DOI: 10.3390/ijms21020395] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/29/2019] [Accepted: 12/31/2019] [Indexed: 01/15/2023] Open
Abstract
Eukaryotic cells make the decision to proliferate, to differentiate or to cease dividing during G1, before passage through the restriction point or Start. Keeping cyclin-dependent kinase (CDK) activity low during this period restricts commitment to a new cell cycle and is essential to provide the adequate timeframe for the sensing of environmental signals. Here, we review the role of protein phosphatases in the modulation of CDK activity and as the counteracting force for CDK-dependent substrate phosphorylation, in budding and fission yeast. Moreover, we discuss recent findings that place protein phosphatases in the interface between nutritional signalling pathways and the cell cycle machinery.
Collapse
|
10
|
Lim JY, Park HM. The Dual-Specificity LAMMER Kinase Affects Stress-Response and Morphological Plasticity in Fungi. Front Cell Infect Microbiol 2019; 9:213. [PMID: 31275866 PMCID: PMC6593044 DOI: 10.3389/fcimb.2019.00213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/03/2019] [Indexed: 11/13/2022] Open
Abstract
The morphological plasticity of fungal pathogens has long been implicated in their virulence and is often influenced by extracellular factors. Complex signal transduction cascades are critical for sensing stresses imposed by external cues such as antifungal drugs, and for mediating appropriate cellular responses. Many of these signal transduction cascades are well-conserved and involve in the distinct morphogenetic processes during the life cycle of the pathogenic fungi. The dual-specificity LAMMER kinases are evolutionarily conserved across species ranging from yeasts to mammals and have multiple functions in various physiological processes; however, their functions in fungi are relatively unknown. In this review, we first describe the involvement of LAMMER kinases in cell surface changes, which often accompany alterations in growth pattern and differentiation. Then, we focus on the LAMMER kinase-dependent molecular machinery responsible for the stress responses and cell cycle regulation. Last, we discuss the possible cross-talk between LAMMER kinases and other signaling cascades, which integrates exogenous and host signals together with genetic factors to affect the morphological plasticity and virulence in fungi.
Collapse
Affiliation(s)
- Joo-Yeon Lim
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, South Korea
| | - Hee-Moon Park
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
11
|
Down-regulation of Cdk1 activity in G1 coordinates the G1/S gene expression programme with genome replication. Curr Genet 2019; 65:685-690. [DOI: 10.1007/s00294-018-00926-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 12/20/2018] [Accepted: 12/22/2018] [Indexed: 02/07/2023]
|
12
|
CDK contribution to DSB formation and recombination in fission yeast meiosis. PLoS Genet 2019; 15:e1007876. [PMID: 30640914 PMCID: PMC6331086 DOI: 10.1371/journal.pgen.1007876] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 12/04/2018] [Indexed: 12/19/2022] Open
Abstract
CDKs (cyclin-dependent kinases) associate with different cyclins to form different CDK-complexes that are fundamental for an ordered cell cycle progression, and the coordination of this progression with different aspects of the cellular physiology. During meiosis programmed DNA double-strand breaks (DSBs) initiate recombination that in addition to generating genetic variability are essential for the reductional chromosome segregation during the first meiotic division, and therefore for genome stability and viability of the gametes. However, how meiotic progression and DSB formation are coordinated, and the role CDKs have in the process, is not well understood. We have used single and double cyclin deletion mutants, and chemical inhibition of global CDK activity using the cdc2-asM17 allele, to address the requirement of CDK activity for DSB formation and recombination in fission yeast. We report that several cyclins (Cig1, Cig2, and the meiosis-specific Crs1) control DSB formation and recombination, with a major contribution of Crs1. Moreover, complementation analysis indicates specificity at least for this cyclin, suggesting that different CDK complexes might act in different pathways to promote recombination. Down-regulation of CDK activity impinges on the formation of linear elements (LinEs, protein complexes required for break formation at most DSB hotspot sites). This defect correlates with a reduction in the capability of one structural component (Rec25) to bind chromatin, suggesting a molecular mechanism by which CDK controls break formation. However, reduction in DSB formation in cyclin deletion mutants does not always correspondingly correlate with a proportional reduction in meiotic recombination (crossovers), suggesting that specific CDK complexes might also control downstream events balancing repair pathways. Therefore, our work points to CDK regulation of DSB formation as a key conserved feature in the initiation of meiotic recombination, in addition to provide a view of possible roles CDK might have in other steps of the recombination process. Meiotic division is a cell division process where a single round of DNA replication is followed by two sequential chromosome segregations, the first reductional (homologous chromosomes separate) and the second equational (sister chromatids segregate). As a consequence diploid organisms halve ploidy, producing haploid gametes that after fertilization generate a new diploid organism with a complete chromosome complement. At early stages of meiosis physical exchange between homologous chromosomes ensures the accurate following reductional segregation. Physical exchange is provided by recombination that initiates with highly-controlled self-inflicted DNA damage (DSBs, double strand breaks). We have found that the conserved CDK (cyclin-dependent kinase) activity controls DSB formation in fission yeast. Available data were uncertain about the conservation of CDK in the process, and thus our work points to a broad evolutionary conservation of this regulation. Regulation is exerted at least by controlling chromatin-binding of one structural component of linear elements, a protein complex related to the synaptonemal complex and required for high levels of DSBs. Correspondingly, depletion of CDK activity impairs formation of these structures. In addition, CDK might control homeostatic mechanisms, critical to maintain efficient levels of recombination across the genome and, therefore, high rates of genetic exchange between parental chromosomes.
Collapse
|
13
|
Humaidan D, Breinig F, Helms V. Adding phosphorylation events to the core oscillator driving the cell cycle of fission yeast. PLoS One 2018; 13:e0208515. [PMID: 30513113 PMCID: PMC6279014 DOI: 10.1371/journal.pone.0208515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 11/19/2018] [Indexed: 11/19/2022] Open
Abstract
Much is known about the regulatory elements controlling the cell cycle in fission yeast (Schizosaccharomyces pombe). This regulation is mainly done by the (cyclin-dependent kinase/cyclin) complex (Cdc2/Cdc13) that activates specific target genes and proteins via phosphorylation events during the cell cycle in a time-dependent manner. However, more work is still needed to complement the existing gaps in the current fission yeast gene regulatory network to be able to overcome abnormalities in its growth, repair and development, i.e. explain many phenomena including mitotic catastrophe. In this work we complement the previously presented core oscillator of the cell cycle of fission yeast by selected phosphorylation events and study their effects on the temporal evolution of the core oscillator based Boolean network. Thereby, we attempt to establish a regulatory link between the autonomous cell cycle oscillator and the remainder of the cell. We suggest the unclear yet regulatory effect of phosphorylation on the added components, and discuss many unreported points regarding the temporal evolution of the cell cycle and its components. To better visualize the results regardless of the programming background we developed an Android application that can be used to run the core and extended model of the fission yeast cell cycle step by step.
Collapse
Affiliation(s)
- Dania Humaidan
- Center for Bioinformatics, Saarland University, Saarbruecken, Germany
- * E-mail:
| | - Frank Breinig
- Molecular and Cell Biology and Center of Human and Molecular Biology, Saarland University, Saarbruecken, Germany
| | - Volkhard Helms
- Center for Bioinformatics, Saarland University, Saarbruecken, Germany
| |
Collapse
|
14
|
Rubio A, García-Blanco N, Vázquez-Bolado A, Belén Suárez M, Moreno S. Nutritional cell cycle reprogramming reveals that inhibition of Cdk1 is required for proper MBF-dependent transcription. J Cell Sci 2018; 131:jcs.218743. [PMID: 30154212 DOI: 10.1242/jcs.218743] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/20/2018] [Indexed: 01/22/2023] Open
Abstract
In nature, cells and in particular unicellular microorganisms are exposed to a variety of nutritional environments. Fission yeast cells cultured in nitrogen-rich media grow fast, divide with a large size and show a short G1 and a long G2. However, when cultured in nitrogen-poor media, they exhibit reduced growth rate and cell size and a long G1 and a short G2. In this study, we compared the phenotypes of cells lacking the highly conserved cyclin-dependent kinase (Cdk) inhibitor Rum1 and the anaphase-promoting complex/cyclosome (APC/C) activator Ste9 in nitrogen-rich and nitrogen-poor media. Rum1 and Ste9 are dispensable for cell division in nitrogen-rich medium. However, in nitrogen-poor medium they are essential for generating a proper wave of MluI cell-cycle box binding factor (MBF)-dependent transcription at the end of G1, which is crucial for promoting a successful S phase. Mutants lacking Rum1 and Ste9 showed premature entry into S phase and a reduced wave of MBF-dependent transcription, leading to replication stress, DNA damage and G2 cell cycle arrest. This work demonstrates how reprogramming the cell cycle by changing the nutritional environment may reveal new roles for cell cycle regulators.
Collapse
Affiliation(s)
- Angela Rubio
- Instituto de Biología Funcional y Genómica, CSIC, University of Salamanca, 37007 Salamanca, Spain.,Department of Microbiology and Genetics, University of Salamanca, 37007 Salamanca. Spain
| | - Natalia García-Blanco
- Instituto de Biología Funcional y Genómica, CSIC, University of Salamanca, 37007 Salamanca, Spain.,Department of Microbiology and Genetics, University of Salamanca, 37007 Salamanca. Spain
| | - Alicia Vázquez-Bolado
- Instituto de Biología Funcional y Genómica, CSIC, University of Salamanca, 37007 Salamanca, Spain.,Department of Microbiology and Genetics, University of Salamanca, 37007 Salamanca. Spain
| | - María Belén Suárez
- Instituto de Biología Funcional y Genómica, CSIC, University of Salamanca, 37007 Salamanca, Spain.,Department of Microbiology and Genetics, University of Salamanca, 37007 Salamanca. Spain
| | - Sergio Moreno
- Instituto de Biología Funcional y Genómica, CSIC, University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
15
|
Yang Z, Xie J, Zhu J, Kang C, Chiang C, Wang X, Wang X, Kuang T, Chen F, Chen Z, Zhang A, Yu B, Lee RJ, Teng L, Lee LJ. Functional exosome-mimic for delivery of siRNA to cancer: in vitro and in vivo evaluation. J Control Release 2016; 243:160-171. [PMID: 27742443 DOI: 10.1016/j.jconrel.2016.10.008] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/02/2016] [Accepted: 10/11/2016] [Indexed: 12/21/2022]
Abstract
Exosomes, the smallest subgroup of extracellular vesicles, have been recognized as extracellular organelles that contain genetic and proteomic information for long distance intercellular communication. Exosome-based drug delivery is currently a subject of intensive research. Here, we report a novel strategy to produce nanoscale exosome-mimics (EMs) in sufficient quantity for gene delivery in cancer both in vitro and in vivo. Size-controllable EMs were generated at a high yield by serial extrusion of non-tumorigenic epithelial MCF-10A cells through filters with different pore sizes. siRNA was then encapsulated into the EMs by electroporation. Biosafety and uptake efficiency of the EMs were evaluated both in vitro and in vivo. The mechanism underlying their cellular endocytosis was also studied.
Collapse
Affiliation(s)
- Zhaogang Yang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Jing Xie
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Jing Zhu
- College of Pharmacy, The Ohio State University, Columbus, OH 43212, USA
| | - Chen Kang
- College of Pharmacy, The Ohio State University, Columbus, OH 43212, USA
| | - Chiling Chiang
- Division of Hematology, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43212, USA
| | - Xinmei Wang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Xiaobing Wang
- Tumor Biomarker Research Center, Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Beijing 100021, China; Peking Union Medical College, Beijing 100021, China
| | - Tairong Kuang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Feng Chen
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Zhou Chen
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Aili Zhang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Bo Yu
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Robert J Lee
- College of Pharmacy, The Ohio State University, Columbus, OH 43212, USA
| | - Lesheng Teng
- School of Life Sciences, Jilin University, Changchun, 130012, China.
| | - L James Lee
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
16
|
Gérard C, Tyson JJ, Coudreuse D, Novák B. Cell cycle control by a minimal Cdk network. PLoS Comput Biol 2015; 11:e1004056. [PMID: 25658582 PMCID: PMC4319789 DOI: 10.1371/journal.pcbi.1004056] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 11/21/2014] [Indexed: 12/14/2022] Open
Abstract
In present-day eukaryotes, the cell division cycle is controlled by a complex network of interacting proteins, including members of the cyclin and cyclin-dependent protein kinase (Cdk) families, and the Anaphase Promoting Complex (APC). Successful progression through the cell cycle depends on precise, temporally ordered regulation of the functions of these proteins. In light of this complexity, it is surprising that in fission yeast, a minimal Cdk network consisting of a single cyclin-Cdk fusion protein can control DNA synthesis and mitosis in a manner that is indistinguishable from wild type. To improve our understanding of the cell cycle regulatory network, we built and analysed a mathematical model of the molecular interactions controlling the G1/S and G2/M transitions in these minimal cells. The model accounts for all observed properties of yeast strains operating with the fusion protein. Importantly, coupling the model's predictions with experimental analysis of alternative minimal cells, we uncover an explanation for the unexpected fact that elimination of inhibitory phosphorylation of Cdk is benign in these strains while it strongly affects normal cells. Furthermore, in the strain without inhibitory phosphorylation of the fusion protein, the distribution of cell size at division is unusually broad, an observation that is accounted for by stochastic simulations of the model. Our approach provides novel insights into the organization and quantitative regulation of wild type cell cycle progression. In particular, it leads us to propose a new mechanistic model for the phenomenon of mitotic catastrophe, relying on a combination of unregulated, multi-cyclin-dependent Cdk activities.
Collapse
Affiliation(s)
- Claude Gérard
- Oxford Centre for Integrative Systems Biology, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - John J. Tyson
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Damien Coudreuse
- Institut de Génétique et Développement de Rennes, CNRS UMR 6290, Rennes, France
- * E-mail: (DC); (BN)
| | - Béla Novák
- Oxford Centre for Integrative Systems Biology, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- * E-mail: (DC); (BN)
| |
Collapse
|
17
|
The role of the RACK1 ortholog Cpc2p in modulating pheromone-induced cell cycle arrest in fission yeast. PLoS One 2013; 8:e65927. [PMID: 23843946 PMCID: PMC3701009 DOI: 10.1371/journal.pone.0065927] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 05/04/2013] [Indexed: 11/24/2022] Open
Abstract
The detection and amplification of extracellular signals requires the involvement of multiple protein components. In mammalian cells the receptor of activated C kinase (RACK1) is an important scaffolding protein for signal transduction networks. Further, it also performs a critical function in regulating the cell cycle by modulating the G1/S transition. Many eukaryotic cells express RACK1 orthologs, with one example being Cpc2p in the fission yeast Schizosaccharomyces pombe. In contrast to RACK1, Cpc2p has been described to positively regulate, at the ribosomal level, cells entry into M phase. In addition, Cpc2p controls the stress response pathways through an interaction with Msa2p, and sexual development by modulating Ran1p/Pat1p. Here we describe investigations into the role, which Cpc2p performs in controlling the G protein-mediated mating response pathway. Despite structural similarity to Gβ-like subunits, Cpc2p appears not to function at the G protein level. However, upon pheromone stimulation, cells overexpressing Cpc2p display substantial cell morphology defects, disorientation of septum formation and a significantly protracted G1 arrest. Cpc2p has the potential to function at multiple positions within the pheromone response pathway. We provide a mechanistic interpretation of this novel data by linking Cpc2p function, during the mating response, with its previous described interactions with Ran1p/Pat1p. We suggest that overexpressing Cpc2p prolongs the stimulated state of pheromone-induced cells by increasing ste11 gene expression. These data indicate that Cpc2p regulates the pheromone-induced cell cycle arrest in fission yeast by delaying cells entry into S phase.
Collapse
|
18
|
Verdugo A, Vinod PK, Tyson JJ, Novak B. Molecular mechanisms creating bistable switches at cell cycle transitions. Open Biol 2013; 3:120179. [PMID: 23486222 PMCID: PMC3718337 DOI: 10.1098/rsob.120179] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Progression through the eukaryotic cell cycle is characterized by specific transitions, where cells move irreversibly from stage i−1 of the cycle into stage i. These irreversible cell cycle transitions are regulated by underlying bistable switches, which share some common features. An inhibitory protein stalls progression, and an activatory protein promotes progression. The inhibitor and activator are locked in a double-negative feedback loop, creating a one-way toggle switch that guarantees an irreversible commitment to move forward through the cell cycle, and it opposes regression from stage i to stage i−1. In many cases, the activator is an enzyme that modifies the inhibitor in multiple steps, whereas the hypo-modified inhibitor binds strongly to the activator and resists its enzymatic activity. These interactions are the basis of a reaction motif that provides a simple and generic account of many characteristic properties of cell cycle transitions. To demonstrate this assertion, we apply the motif in detail to the G1/S transition in budding yeast and to the mitotic checkpoint in mammalian cells. Variations of the motif might support irreversible cellular decision-making in other contexts.
Collapse
Affiliation(s)
- Anael Verdugo
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | | | | | |
Collapse
|
19
|
Fission yeast LAMMER kinase Lkh1 regulates the cell cycle by phosphorylating the CDK-inhibitor Rum1. Biochem Biophys Res Commun 2013; 432:80-5. [PMID: 23376070 DOI: 10.1016/j.bbrc.2013.01.082] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 01/18/2013] [Indexed: 11/23/2022]
Abstract
In eukaryotes, LAMMER kinases are involved in various cellular events, including the cell cycle. However, no attempt has been made to investigate the mechanisms that underlie the involvement of LAMMER kinase. In this study, we performed a functional analysis of LAMMER kinase using the fission yeast, Schizosaccharomyces pombe. FACS analyses revealed that deletion of the gene that encodes the LAMMER kinase Lkh1 made mutant cells pass through the G1/S phase faster than their wild-type counterparts. Co-immunoprecipitation and an in vitro kinase assay also revealed that Lkh1 can interact with and phosphorylate Rum1 to activate this molecule as a cyclin-dependent kinase inhibitor, which blocks cell cycle progression from the G1 phase to the S phase. Peptide mass fingerprinting and kinase assay with Rum1(T110A) confirmed T110 as the Lkh1-dependent phosphorylation residue. In this report we present for the first time a positive acting mechanism that is responsible for the CKI activity of Rum1, in which the LAMMER kinase-mediated phosphorylation of Rum1 is involved.
Collapse
|
20
|
Santosa V, Martha S, Hirose N, Tanaka K. The fission yeast minichromosome maintenance (MCM)-binding protein (MCM-BP), Mcb1, regulates MCM function during prereplicative complex formation in DNA replication. J Biol Chem 2013; 288:6864-80. [PMID: 23322785 DOI: 10.1074/jbc.m112.432393] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The minichromosome maintenance (MCM) complex is a replicative helicase, which is essential for chromosome DNA replication. In recent years, the identification of a novel MCM-binding protein (MCM-BP) in most eukaryotes has led to numerous studies investigating its function and its relationship to the MCM complex. However, the mechanisms by which MCM-BP functions and associates with MCM complexes are not well understood; in addition, the functional role of MCM-BP remains controversial and may vary between model organisms. The present study aims to elucidate the nature and biological function of the MCM-BP ortholog, Mcb1, in fission yeast. The Mcb1 protein continuously interacts with MCM proteins during the cell cycle in vivo and can interact with any individual MCM subunit in vitro. To understand the detailed characteristics of mcb1(+), two temperature-sensitive mcb1 gene mutants (mcb1(ts)) were isolated. Extensive genetic analysis showed that the mcb1(ts) mutants were suppressed by a mcm5(+) multicopy plasmid and displayed synthetic defects with many S-phase-related gene mutants. Moreover, cyclin-dependent kinase modulation by Cig2 repression or Rum1 overproduction suppressed the mcb1(ts) mutants, suggesting the involvement of Mcb1 in pre-RC formation during DNA replication. These data are consistent with the observation that Mcm7 loading onto replication origins is reduced and S-phase progression is delayed in mcb1(ts) mutants. Furthermore, the mcb1(ts) mutation led to the redistribution of MCM subunits to the cytoplasm, and this redistribution was dependent on an active nuclear export system. These results strongly suggest that Mcb1 promotes efficient pre-RC formation during DNA replication by regulating the MCM complex.
Collapse
Affiliation(s)
- Venny Santosa
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| | | | | | | |
Collapse
|
21
|
Mathematical modeling of fission yeast Schizosaccharomyces pombe cell cycle: exploring the role of multiple phosphatases. SYSTEMS AND SYNTHETIC BIOLOGY 2012. [PMID: 23205155 DOI: 10.1007/s11693-011-9090-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
UNLABELLED Cell cycle is the central process that regulates growth and division in all eukaryotes. Based on the environmental condition sensed, the cell lies in a resting phase G0 or proceeds through the cyclic cell division process (G1→S→G2→M). These series of events and phase transitions are governed mainly by the highly conserved Cyclin dependent kinases (Cdks) and its positive and negative regulators. The cell cycle regulation of fission yeast Schizosaccharomyces pombe is modeled in this study. The study exploits a detailed molecular interaction map compiled based on the published model and experimental data. There are accumulating evidences about the prominent regulatory role of specific phosphatases in cell cycle regulations. The current study emphasizes the possible role of multiple phosphatases that governs the cell cycle regulation in fission yeast S. pombe. The ability of the model to reproduce the reported regulatory profile for the wild-type and various mutants was verified though simulations. ELECTRONIC SUPPLEMENTARY MATERIAL The online version of this article (doi:10.1007/s11693-011-9090-7) contains supplementary material, which is available to authorized users.
Collapse
|
22
|
Abstract
Entry into S phase is carefully regulated and, in most organisms, under the control of a G(1)-S checkpoint. We have previously described a G(1)-S checkpoint in fission yeast that delays formation of the prereplicative complex at chromosomal replication origins after exposure to UV light (UVC). This checkpoint absolutely depends on the Gcn2 kinase. Here, we explore the signal for activation of the Gcn2-dependent G(1)-S checkpoint in fission yeast. If some form of DNA damage can activate the checkpoint, deficient DNA repair should affect the length of the checkpoint-induced delay. We find that the cell-cycle delay differs in repair-deficient mutants from that in wild-type cells. However, the duration of the delay depends not only on the repair capacity of the cells, but also on the nature of the repair deficiency. First, the delay is abolished in cells that are deficient in the early steps of repair. Second, the delay is prolonged in repair mutants that fail to complete repair after the incision stage. We conclude that the G(1)-S delay depends on damage to the DNA and that the activating signal derives not from the initial DNA damage, but from a repair intermediate(s). Surprisingly, we find that activation of Gcn2 does not depend on the processing of DNA damage and that activated Gcn2 alone is not sufficient to delay entry into S phase in UVC-irradiated cells. Thus, the G(1)-S delay depends on at least two different inputs.
Collapse
|
23
|
Girdwood D, Robertson M, Gordon C. Constitutively active Cullin-RING-Ligases fail to rescue loss of NEDD8 conjugation in Schizosaccharomyces pombe. FEBS Lett 2012; 586:1522-8. [PMID: 22673520 DOI: 10.1016/j.febslet.2012.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 04/08/2012] [Accepted: 04/11/2012] [Indexed: 11/30/2022]
Abstract
In fission yeast, the only known essential function of Ned8p is the modification of the cullin, Pcu1p, and subsequent Cullin-RING-Ligase (CRL) activation and substrate ubiquitination. We show here that a functional Pcu1p mutant, deleted for its C-terminal autoinhibitory domain, which negates the requirement of neddylation for ligase activity, is unable to rescue the loss of neddylation. These findings suggest that the neddylation of non-cullin substrate(s) are required for Schizosaccharomyces pombe viability.
Collapse
Affiliation(s)
- David Girdwood
- Medical Research Council Human Genetics Unit, University of Edinburgh, Western General Hospital, Edinburgh, Scotland, United Kingdom.
| | | | | |
Collapse
|
24
|
|
25
|
Coudreuse D, Nurse P. Driving the cell cycle with a minimal CDK control network. Nature 2010; 468:1074-9. [DOI: 10.1038/nature09543] [Citation(s) in RCA: 300] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 09/28/2010] [Indexed: 01/18/2023]
|
26
|
Varedi K. SM, Ventura AC, Merajver SD, Lin XN. Multisite phosphorylation provides an effective and flexible mechanism for switch-like protein degradation. PLoS One 2010; 5:e14029. [PMID: 21179196 PMCID: PMC3001445 DOI: 10.1371/journal.pone.0014029] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 10/20/2010] [Indexed: 12/12/2022] Open
Abstract
Phosphorylation-triggered degradation is a common strategy for elimination of regulatory proteins in many important cell signaling processes. Interesting examples include cyclin-dependent kinase inhibitors such as p27 in human and Sic1 in yeast, which play crucial roles during the G1/S transition in the cell cycle. In this work, we have modeled and analyzed the dynamics of multisite-phosphorylation-triggered protein degradation systematically. Inspired by experimental observations on the Sic1 protein and a previous intriguing theoretical conjecture, we develop a model to examine in detail the degradation dynamics of a protein featuring multiple phosphorylation sites and a threshold site number for elimination in response to a kinase signal. Our model explains the role of multiple phosphorylation sites, compared to a single site, in the regulation of protein degradation. A single-site protein cannot convert a graded input of kinase increase to much sharper output, whereas multisite phosphorylation is capable of generating a highly switch-like temporal profile of the substrate protein with two characteristics: a temporal threshold and rapid decrease beyond the threshold. We introduce a measure termed temporal response coefficient to quantify the extent to which a response in the time domain is switch-like and further investigate how this property is determined by various factors including the kinase input, the total number of sites, the threshold site number for elimination, the order of phosphorylation, the kinetic parameters, and site preference. Some interesting and experimentally verifiable predictions include that the non-degradable fraction of the substrate protein exhibits a more switch-like temporal profile; a sequential system is more switch-like, while a random system has the advantage of increased robustness; all the parameters, including the total number of sites, the threshold site number for elimination and the kinetic parameters synergistically determine the exact extent to which the degradation profile is switch-like. Our results suggest design principles for protein degradation switches which might be a widespread mechanism for precise regulation of cellular processes such as cell cycle progression.
Collapse
Affiliation(s)
- S. Marjan Varedi K.
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Alejandra C. Ventura
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Sofia D. Merajver
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan, United States of America
- Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Xiaoxia Nina Lin
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
- Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
27
|
Lu Z, Hunter T. Ubiquitylation and proteasomal degradation of the p21(Cip1), p27(Kip1) and p57(Kip2) CDK inhibitors. Cell Cycle 2010; 9:2342-52. [PMID: 20519948 DOI: 10.4161/cc.9.12.11988] [Citation(s) in RCA: 185] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The expression levels of the p21(Cip1) family CDK inhibitors (CKIs), p21(Cip1), p27(Kip1) and p57(Kip2), play a pivotal role in the precise regulation of cyclin-dependent kinase (CDK) activity, which is instrumental to proper cell cycle progression. The stabilities of p21(Cip1), p27(Kip1) and p57(Kip2) are all tightly and differentially regulated by ubiquitylation and proteasome-mediated degradation during various stages of the cell cycle, either in steady state or in response to extracellular stimuli, which often elicit site-specific phosphorylation of CKIs triggering their degradation.
Collapse
Affiliation(s)
- Zhimin Lu
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.
| | | |
Collapse
|
28
|
Martín-García R, Mulvihill DP. Myosin V spatially regulates microtubule dynamics and promotes the ubiquitin-dependent degradation of the fission yeast CLIP-170 homologue, Tip1. J Cell Sci 2009; 122:3862-72. [PMID: 19808886 DOI: 10.1242/jcs.054460] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Coordination between microtubule and actin cytoskeletons plays a crucial role during the establishment of cell polarity. In fission yeast, the microtubule cytoskeleton regulates the distribution of actin assembly at the new growing end during the monopolar-to-bipolar growth transition. Here, we describe a novel mechanism in which a myosin V modulates the spatial coordination of proteolysis and microtubule dynamics. In cells lacking a functional copy of the class V myosin, Myo52, the plus ends of microtubules fail to undergo catastrophe on contacting the cell end and continue to grow, curling around the end of the cell. We show that this actin-associated motor regulates the efficient ubiquitin-dependent proteolysis of the Schizosaccharomyces pombe CLIP-170 homologue, Tip1. Myo52 facilitates microtubule catastrophe by enhancing Tip1 removal from the plus end of growing microtubules at the cell tips. There, Myo52 and the ubiquitin receptor, Dph1, work in concert to target Tip1 for degradation.
Collapse
|
29
|
A Cds1-mediated checkpoint protects the MBF activator Rep2 from ubiquitination by anaphase-promoting complex/cyclosome-Ste9 at S-phase arrest in fission yeast. Mol Cell Biol 2009; 29:4959-70. [PMID: 19596787 DOI: 10.1128/mcb.00562-09] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription of the MluI cell cycle box (MCB) motif-containing genes at G(1) phase is regulated by the MCB-binding factors (MBF) (also called DSC1) in Schizosaccharomyces pombe. Upon S-phase arrest, the MBF transcriptional activity is induced through the accumulation of the MBF activator Rep2. In this study, we show that the turnover of Rep2 is attributable to ubiquitin-mediated proteolysis. Levels of Rep2 oscillate during the cell cycle, with a peak at G(1) phase, coincident with the MBF activity. Furthermore, we show that Rep2 ubiquitination requires the function of the E3 ligase anaphase-promoting complex/cyclosome (APC/C). Ste9 can be phosphorylated by the checkpoint kinase Cds1 in vitro, and its inhibition/phosphorylation at S-phase arrest is dependent on the function of Cds1. Our data indicate that the Cds1-dependent stabilization of Rep2 is achieved through the inhibition/phosphorylation of APC/C-Ste9 at the onset of S-phase arrest. Stabilization of Rep2 is important for stimulating transcription of the MBF-dependent genes to ensure a sufficient supply of proteins essential for cell recovery from S-phase arrest. We propose that oscillation of Rep2 plays a role in regulation of periodic transcription of the MBF-dependent genes during cell cycle progression.
Collapse
|
30
|
Intermediate-conductance Ca2+-activated K+ channels (IKCa1) regulate human prostate cancer cell proliferation through a close control of calcium entry. Oncogene 2009; 28:1792-806. [DOI: 10.1038/onc.2009.25] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
31
|
Abstract
The coordination of growth, DNA replication and division in proliferating cells can be adequately explained by a 'clock + checkpoint' model. The clock is an underlying cyclical sequence of states; the checkpoints ensure that the cycle proceeds without mistakes. From the molecular complexities of the control system in modern eukaryotes, we isolate a simple network of positive and negative feedbacks that embodies a 'clock + checkpoints'. The model accounts for the fundamental physiological properties of mitotic cell divisions, evokes a new view of the meiotic program, and suggests how the control system may have evolved in the first place.
Collapse
Affiliation(s)
- John J Tyson
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA.
| | | |
Collapse
|
32
|
Krohn M, Skjølberg HC, Soltani H, Grallert B, Boye E. The G1-S checkpoint in fission yeast is not a general DNA damage checkpoint. J Cell Sci 2008; 121:4047-54. [PMID: 19033384 DOI: 10.1242/jcs.035428] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Inhibitory mechanisms called checkpoints regulate progression of the cell cycle in the presence of DNA damage or when a previous cell-cycle event is not finished. In fission yeast exposed to ultraviolet light the G1-S transition is regulated by a novel checkpoint that depends on the Gcn2 kinase. The molecular mechanisms involved in checkpoint induction and maintenance are not known. Here we characterise the checkpoint further by exposing the cells to a variety of DNA-damaging agents. Exposure to methyl methane sulphonate and hydrogen peroxide induce phosphorylation of eIF2alpha, a known Gcn2 target, and an arrest in G1 phase. By contrast, exposure to psoralen plus long-wavelength ultraviolet light, inducing DNA adducts and crosslinks, or to ionizing radiation induce neither eIF2alpha phosphorylation nor a cell-cycle delay. We conclude that the G1-S checkpoint is not a general DNA-damage checkpoint, in contrast to the one operating at the G2-M transition. The tight correlation between eIF2alpha phosphorylation and the presence of a G1-phase delay suggests that eIF2alpha phosphorylation is required for checkpoint induction. The implications for checkpoint signalling are discussed.
Collapse
Affiliation(s)
- Marit Krohn
- Department of Cell Biology, Institute for Cancer Research, Rikshospitalet Medical Centre, Montebello, 0310 Oslo, Norway
| | | | | | | | | |
Collapse
|
33
|
Trickey M, Grimaldi M, Yamano H. The anaphase-promoting complex/cyclosome controls repair and recombination by ubiquitylating Rhp54 in fission yeast. Mol Cell Biol 2008; 28:3905-16. [PMID: 18426916 PMCID: PMC2423112 DOI: 10.1128/mcb.02116-07] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 01/08/2008] [Accepted: 04/07/2008] [Indexed: 11/20/2022] Open
Abstract
Homologous recombination (HR) is important for maintaining genome integrity and for the process of meiotic chromosome segregation and the generation of variation. HR is regulated throughout the cell cycle, being prevalent in the S and G2 phases and suppressed in the G1 phase. Here we show that the anaphase-promoting complex/cyclosome (APC/C) regulates homologous recombination in the fission yeast Schizosaccharomyces pombe by ubiquitylating Rhp54 (an ortholog of Rad54). We show that Rhp54 is a novel APC/C substrate that is destroyed in G1 phase in a KEN-box- and Ste9/Fizzy-related manner. The biological consequences of failing to temporally regulate HR via Rhp54 degradation are seen in haploid cells only in the absence of antirecombinase Srs2 function and are more extensive in diploid cells, which become sensitive to a range of DNA-damaging agents, including hydroxyurea, methyl methanesulfonate, bleomycin, and UV. During meiosis, expression of nondegradable Rhp54 inhibits interhomolog recombination and stimulates sister chromatid recombination. We thus propose that it is critical to control levels of Rhp54 in G1 to suppress HR repair of double-strand breaks and during meiosis to coordinate interhomolog recombination.
Collapse
Affiliation(s)
- Michelle Trickey
- Cell Cycle Control Laboratory, Marie Curie Research Institute, The Chart, Oxted, Surrey RH8 0TL, United Kingdom
| | | | | |
Collapse
|
34
|
Welcker M, Clurman BE. FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation. Nat Rev Cancer 2008; 8:83-93. [PMID: 18094723 DOI: 10.1038/nrc2290] [Citation(s) in RCA: 851] [Impact Index Per Article: 50.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
FBW7 (F-box and WD repeat domain-containing 7) is the substrate recognition component of an evolutionary conserved SCF (complex of SKP1, CUL1 and F-box protein)-type ubiquitin ligase. SCF(FBW7) degrades several proto-oncogenes that function in cellular growth and division pathways, including MYC, cyclin E, Notch and JUN. FBW7 is also a tumour suppressor, the regulatory network of which is perturbed in many human malignancies. Numerous cancer-associated mutations in FBW7 and its substrates have been identified, and loss of FBW7 function causes chromosomal instability and tumorigenesis. This Review focuses on structural and functional aspects of FBW7 and its role in the development of cancer.
Collapse
Affiliation(s)
- Markus Welcker
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, Washington 98109, USA.
| | | |
Collapse
|
35
|
Tvegård T, Soltani H, Skjølberg HC, Krohn M, Nilssen EA, Kearsey SE, Grallert B, Boye E. A novel checkpoint mechanism regulating the G1/S transition. Genes Dev 2007; 21:649-54. [PMID: 17369398 PMCID: PMC1820939 DOI: 10.1101/gad.421807] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Ultraviolet irradiation of fission yeast cells in G1 phase induced a delay in chromatin binding of replication initiation factors and, consistently, a transient delay in S-phase entry. The cell cycle delay was totally dependent on the Gcn2 kinase, a sensor of the nutritional status, and was accompanied by phosphorylation of the translation initiation factor eIF2alpha and by a general depression of translation. However, the G1-specific synthesis of factors required for DNA replication was not reduced by ultraviolet radiation. The cell cycle delay represents a novel checkpoint with a novel mechanism of action that is not activated by ionizing radiation.
Collapse
Affiliation(s)
- Tonje Tvegård
- Department of Cell Biology, Rikshospitalet-Radiumhospitalet Medical Centre and University of Oslo, Montebello, 0310 Oslo, Norway
| | - Héla Soltani
- Department of Cell Biology, Rikshospitalet-Radiumhospitalet Medical Centre and University of Oslo, Montebello, 0310 Oslo, Norway
| | - Henriette C. Skjølberg
- Department of Cell Biology, Rikshospitalet-Radiumhospitalet Medical Centre and University of Oslo, Montebello, 0310 Oslo, Norway
| | - Marit Krohn
- Department of Cell Biology, Rikshospitalet-Radiumhospitalet Medical Centre and University of Oslo, Montebello, 0310 Oslo, Norway
| | - Esben A. Nilssen
- Department of Cell Biology, Rikshospitalet-Radiumhospitalet Medical Centre and University of Oslo, Montebello, 0310 Oslo, Norway
| | - Stephen E. Kearsey
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom
| | - Beáta Grallert
- Department of Cell Biology, Rikshospitalet-Radiumhospitalet Medical Centre and University of Oslo, Montebello, 0310 Oslo, Norway
| | - Erik Boye
- Department of Cell Biology, Rikshospitalet-Radiumhospitalet Medical Centre and University of Oslo, Montebello, 0310 Oslo, Norway
- Corresponding author.E-MAIL ; FAX 47-22934580
| |
Collapse
|
36
|
Kjærulff S, Andersen NR, Borup MT, Nielsen O. Cdk phosphorylation of the Ste11 transcription factor constrains differentiation-specific transcription to G1. Genes Dev 2007; 21:347-59. [PMID: 17289922 PMCID: PMC1785116 DOI: 10.1101/gad.407107] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Eukaryotic cells normally differentiate from G(1); here we investigate the mechanism preventing expression of differentiation-specific genes outside G(1). In fission yeast, induction of the transcription factor Ste11 triggers sexual differentiation. We find that Ste11 is only active in G(1) when Cdk activity is low. In the remaining part of the cell cycle, Ste11 becomes Cdk-phosphorylated at Thr 82 (T82), which inhibits its DNA-binding activity. Since the ste11 gene is autoregulated and the Ste11 protein is highly unstable, this Cdk switch rapidly extinguishes Ste11 activity when cells enter S phase. When we mutated T82 to aspartic acid, mimicking constant phosphorylation, cells no longer underwent differentiation. Conversely, changing T82 to alanine rendered Ste11-controlled transcription constitutive through the cell cycle, and allowed mating from S phase with increased frequency. Thus, Cdk phosphorylation mediates periodic expression of Ste11 and its target genes, and we suggest this to be part of the mechanism restricting differentiation to G(1).
Collapse
Affiliation(s)
- Søren Kjærulff
- Institute of Molecular Biology and Physiology, University of Copenhagen, DK-1353 Copenhagen K, Denmark
| | - Nicoline Resen Andersen
- Institute of Molecular Biology and Physiology, University of Copenhagen, DK-1353 Copenhagen K, Denmark
| | - Mia Trolle Borup
- Institute of Molecular Biology and Physiology, University of Copenhagen, DK-1353 Copenhagen K, Denmark
| | - Olaf Nielsen
- Institute of Molecular Biology and Physiology, University of Copenhagen, DK-1353 Copenhagen K, Denmark
- Corresponding author.E-MAIL ; FAX 45-35322113
| |
Collapse
|
37
|
Welcker M, Clurman BE. Fbw7/hCDC4 dimerization regulates its substrate interactions. Cell Div 2007; 2:7. [PMID: 17298674 PMCID: PMC1802738 DOI: 10.1186/1747-1028-2-7] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Accepted: 02/13/2007] [Indexed: 11/10/2022] Open
Abstract
Background The Fbw7 ubiquitin ligase promotes the rapid degradation of several important oncogenes, such as cyclin E, c-Myc, c-Jun, and Notch. The two fission yeast homologs of Fbw7, pop1 and pop2, have previously been shown to dimerize. In this study, we asked whether Fbw7 can also dimerize and how dimerization affects Fbw7 function. Results We found that Fbw7 binds efficiently to itself through a domain just upstream of its F-box. We further show that dimerization is essential for the stable interaction of Fbw7 with the cyclin E T380 phospho-degron. Surprisingly, the requirement for dimerization can be suppressed by an additional phosphorylation of this phospho-degron at the +4 position (S384), which creates a binding site with higher affinity for monomeric Fbw7. Conclusion Degradation of cyclin E by the Fbw7 pathway can, thus, be conditionally regulated either by Fbw7 dimerization or by hyperphosphorylation of the T380 phospho-degron. Other substrates, which cannot accommodate an extra phosphate in their phospho-degrons, or which don't provide a negatively charged amino acid in the +4 position, may be absolutely dependent on Fbw7 dimerization for their turnover. Our results point to an additional level of regulation for substrate interaction and turnover by Fbw7.
Collapse
Affiliation(s)
- Markus Welcker
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, Washington, 98109, USA
| | - Bruce E Clurman
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, Washington, 98109, USA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, Washington, 98109, USA
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, 98104, USA
| |
Collapse
|
38
|
De Clercq A, Inzé D. Cyclin-dependent kinase inhibitors in yeast, animals, and plants: a functional comparison. Crit Rev Biochem Mol Biol 2006; 41:293-313. [PMID: 16911957 DOI: 10.1080/10409230600856685] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cell cycle is remarkably conserved in yeast, animals, and plants and is controlled by cyclin-dependent kinases (CDKs). CDK activity can be inhibited by binding of CDK inhibitory proteins, designated CKIs. Numerous studies show that CKIs are essential in orchestrating eukaryotic cell proliferation and differentiation. In yeast, animals, and plants, CKIs act as regulators of the G1 checkpoint in response to environmental and developmental cues and assist during mitotic cell cycles by inhibiting CDK activity required to arrest mitosis. Furthermore, CKIs play an important role in regulating cell cycle exit that precedes differentiation and in promoting differentiation in cooperation with transcription factors. Moreover, CKIs are essential to control CDK activity in endocycling cells. So, in yeast, animals, and plants, CKIs share many functional similarities, but their functions are adapted toward the specific needs of the eukaryote.
Collapse
Affiliation(s)
- Annelies De Clercq
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology (VIB), Ghent University, Ghent, Belgium
| | | |
Collapse
|
39
|
Csikász-Nagy A, Battogtokh D, Chen KC, Novák B, Tyson JJ. Analysis of a generic model of eukaryotic cell-cycle regulation. Biophys J 2006; 90:4361-79. [PMID: 16581849 PMCID: PMC1471857 DOI: 10.1529/biophysj.106.081240] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We propose a protein interaction network for the regulation of DNA synthesis and mitosis that emphasizes the universality of the regulatory system among eukaryotic cells. The idiosyncrasies of cell cycle regulation in particular organisms can be attributed, we claim, to specific settings of rate constants in the dynamic network of chemical reactions. The values of these rate constants are determined ultimately by the genetic makeup of an organism. To support these claims, we convert the reaction mechanism into a set of governing kinetic equations and provide parameter values (specific to budding yeast, fission yeast, frog eggs, and mammalian cells) that account for many curious features of cell cycle regulation in these organisms. Using one-parameter bifurcation diagrams, we show how overall cell growth drives progression through the cell cycle, how cell-size homeostasis can be achieved by two different strategies, and how mutations remodel bifurcation diagrams and create unusual cell-division phenotypes. The relation between gene dosage and phenotype can be summarized compactly in two-parameter bifurcation diagrams. Our approach provides a theoretical framework in which to understand both the universality and particularity of cell cycle regulation, and to construct, in modular fashion, increasingly complex models of the networks controlling cell growth and division.
Collapse
Affiliation(s)
- Attila Csikász-Nagy
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0406, USA
| | | | | | | | | |
Collapse
|
40
|
Petit CS, Mehta S, Roberts RH, Gould KL. Ace2p contributes to fission yeast septin ring assembly by regulating mid2+ expression. J Cell Sci 2005; 118:5731-42. [PMID: 16317047 DOI: 10.1242/jcs.02687] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The fission yeast Schizosaccharomyces pombe divides through constriction of an actomyosin-based contractile ring followed by formation and degradation of a medial septum. Formation of an organized septin ring is also important for the completion of S. pombe cell division and this event relies on the production of Mid2p. mid2+ mRNA and protein accumulate in mitosis. Recent microarray analyses identified mid2+ as a target of the Ace2p transcription factor, and ace2+ as a target of the Sep1p transcription factor. In this study, we find that Mid2p production is controlled by Ace2p functioning downstream of Sep1p. Consequently, both Sep1p and Ace2p are required for septin ring assembly and genetic analyses indicate that septin rings function in parallel with other Ace2p targets to achieve efficient cell division. Conversely, forced overproduction of Sep1p or Ace2p prevents septin ring disassembly. We find that Ace2p levels peak during anaphase and Ace2p is post-translationally modified by phosphorylation and ubiquitylation. Ace2p localizes symmetrically to dividing nuclei and functions independently of the septation initiation network.
Collapse
Affiliation(s)
- Claudia S Petit
- Howard Hughes Medical Institute, and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | |
Collapse
|
41
|
Peng X, Karuturi RKM, Miller LD, Lin K, Jia Y, Kondu P, Wang L, Wong LS, Liu ET, Balasubramanian MK, Liu J. Identification of cell cycle-regulated genes in fission yeast. Mol Biol Cell 2004; 16:1026-42. [PMID: 15616197 PMCID: PMC551471 DOI: 10.1091/mbc.e04-04-0299] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Cell cycle progression is both regulated and accompanied by periodic changes in the expression levels of a large number of genes. To investigate cell cycle-regulated transcriptional programs in the fission yeast Schizosaccharomyces pombe, we developed a whole-genome oligonucleotide-based DNA microarray. Microarray analysis of both wild-type and cdc25 mutant cell cultures was performed to identify transcripts whose levels oscillated during the cell cycle. Using an unsupervised algorithm, we identified 747 genes that met the criteria for cell cycle-regulated expression. Peaks of gene expression were found to be distributed throughout the entire cell cycle. Furthermore, we found that four promoter motifs exhibited strong association with cell cycle phase-specific expression. Examination of the regulation of MCB motif-containing genes through the perturbation of DNA synthesis control/MCB-binding factor (DSC/MBF)-mediated transcription in arrested synchronous cdc10 mutant cell cultures revealed a subset of functional targets of the DSC/MBF transcription factor complex, as well as certain gene promoter requirements. Finally, we compared our data with those for the budding yeast Saccharomyces cerevisiae and found approximately 140 genes that are cell cycle regulated in both yeasts, suggesting that these genes may play an evolutionarily conserved role in regulation of cell cycle-specific processes. Our complete data sets are available at http://giscompute.gis.a-star.edu.sg/~gisljh/CDC.
Collapse
Affiliation(s)
- Xu Peng
- Genome Institute of Singapore, Singapore 138672, Singapore
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Germinating fission yeast spores delay in G1 in response to UV irradiation. BMC Cell Biol 2004; 5:40. [PMID: 15498101 PMCID: PMC528784 DOI: 10.1186/1471-2121-5-40] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2004] [Accepted: 10/21/2004] [Indexed: 12/02/2022] Open
Abstract
Background Checkpoint mechanisms prevent cell cycle transitions until previous events have been completed or damaged DNA has been repaired. In fission yeast, checkpoint mechanisms are known to regulate entry into mitosis, but so far no checkpoint inhibiting S phase entry has been identified. Results We have studied the response of germinating Schizosaccharomyces pombe spores to UV irradiation in G1. When germinating spores are irradiated in early G1 phase, entry into S phase is delayed. We argue that the observed delay is caused by two separate mechanisms. The first takes place before entry into S phase, does not depend on the checkpoint proteins Rad3, Cds1 and Chk1 and is independent of Cdc2 phosphorylation. Furthermore, it is not dependent upon inhibiting the Cdc10-dependent transcription required for S phase entry, unlike a G1/S checkpoint described in budding yeast. We show that expression of Cdt1, a protein essential for initiation of DNA replication, is delayed upon UV irradiation. The second part of the delay occurs after entry into S phase and depends on Rad3 and Cds1 and is probably due to the intra-S checkpoint. If the germinating spores are irradiated in late G1, they enter S phase without delay and arrest in S phase, suggesting that the delay we observe upon UV irradiation in early G1 is not caused by nonspecific effects of UV irradiation. Conclusions We have studied the response of germinating S. pombe spores to UV irradiation in G1 and shown that S phase entry is delayed by a mechanism that is different from classical checkpoint responses. Our results point to a mechanism delaying expression of proteins required for S phase entry.
Collapse
|
43
|
Yamada Y, Nakagawa T, Masukata H. A novel intermediate in initiation complex assembly for fission yeast DNA replication. Mol Biol Cell 2004; 15:3740-50. [PMID: 15194812 PMCID: PMC491833 DOI: 10.1091/mbc.e04-04-0292] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Assembly of initiation factors on individual replication origins at onset of S phase is crucial for regulation of replication timing and repression of initiation by S-phase checkpoint control. We dissected the process of preinitiation complex formation using a point mutation in fission yeast nda4-108/mcm5 that shows tight genetic interactions with sna41(+)/cdc45(+). The mutation does not affect loading of MCM complex onto origins, but impairs Cdc45-loading, presumably because of a defect in interaction of MCM with Cdc45. In the mcm5 mutant, however, Sld3, which is required for Cdc45-loading, proficiently associates with origins. Origin-association of Sld3 without Cdc45 is also observed in the sna41/cdc45 mutant. These results suggest that Sld3-loading is independent of Cdc45-loading, which is different from those observed in budding yeast. Interestingly, returning the arrested mcm5 cells to the permissive temperature results in immediate loading of Cdc45 to the origin and resumption of DNA replication. These results suggest that the complex containing MCM and Sld3 is an intermediate for initiation of DNA replication in fission yeast.
Collapse
Affiliation(s)
- Yoshiki Yamada
- Graduate School of Science, Osaka University, Osaka 560-0043 Japan
| | | | | |
Collapse
|
44
|
Yamano H, Kominami KI, Harrison C, Kitamura K, Katayama S, Dhut S, Hunt T, Toda T. Requirement of the SCF/ Ubiquitin Ligase for Degradation of the Fission Yeast S Phase Cyclin Cig2. J Biol Chem 2004; 279:18974-80. [PMID: 14970237 DOI: 10.1074/jbc.m311060200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two multiprotein E3 (ubiquitin-protein ligase) ubiquitin ligases, the SCF (Skp1-Cullin-1-F-box) and the APC/C (anaphase promoting complex/cyclosome), are vital in ensuring the temporal order of the cell cycle. Particularly, timely destruction of cyclins via these two E3s is essential for down-regulation of cyclin-dependent kinase. In general, G(1) and S phase cyclins are ubiquitylated by the SCF, whereas ubiquitylation of mitotic cyclins is catalyzed by the APC/C. Here we show that fission yeast S phase cyclin Cig2 is ubiquitylated and degraded via both the SCF and the APC/C. Cig2 instability during G(2) and M phase is dependent upon the SCF complex, whereas the APC/C is responsible for Cig2 destruction during anaphase and G(1), thereby ensuring a spike pattern of Cig2 levels, peaking only at S phase. Two F-box/WD proteins Pop1 and Pop2, homologues of budding yeast Cdc4 and human Fbw7, are responsible for Cig2 instability. Pop1 binds Cig2 in vivo. An in vitro binding assay shows that an internal 93 amino acid residues comprising a part of the cyclin box are necessary and sufficient for this binding. Cig2 phosphorylation is also required for interaction with Pop1. We previously showed that transcriptional oscillation of cig2(+) requires Pop1 and Pop2 function. SCF(Pop1/Pop2) therefore regulates Cig2 levels in a dual manner, transcriptionally and post-translationally. Our results also highlight a collaborative action of the APC/C and the SCF toward the common substrate Cig2. This type of composite degradation control may be more general as the regulatory mechanism in other complex systems.
Collapse
Affiliation(s)
- Hiroyuki Yamano
- Laboratory of Cell Regulation, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3PX, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Chibazakura T, McGrew SG, Cooper JA, Yoshikawa H, Roberts JM. Regulation of cyclin-dependent kinase activity during mitotic exit and maintenance of genome stability by p21, p27, and p107. Proc Natl Acad Sci U S A 2004; 101:4465-70. [PMID: 15070741 PMCID: PMC384770 DOI: 10.1073/pnas.0400655101] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To study the regulation of cyclin-dependent kinase (CDK) activity during mitotic exit in mammalian cells, we constructed murine cell lines that constitutively express a stabilized mutant of cyclin A (cyclin A47). Even though cyclin A47 was expressed throughout mitosis and in G1 cells, its associated CDK activity was inactivated after the transition from metaphase to anaphase. Cyclin A47 associated with both p21 and p27 during mitotic exit, implicating these proteins in CDK inactivation. However, cyclin A47 was fully inhibited during the M-to-G1 transition in p21(-/-) p27(-/-) fibroblasts. Also, the CDKs associated with cyclin A47 were not inactivated by phosphorylation at tyrosines. The protein responsible for CDK inactivation during mitotic exit in p21/p27 null cells was the Rb family member, p107. p107 bound to cyclin A47 when p21 and p27 were absent, and cyclin A47-CDK activity was not inactivated during the M-to-G1 transition in p21(-/-) p27(-/-) p107(-/-) null fibroblasts. Enforced expression of cyclin A in cells lacking all three CDK inhibitors induced rapid tetraploidization, indicative of mitotic failure/endoreduplication. We concluded that cyclin proteolysis and CDK inhibitors constitute redundant pathways that control cyclin A-CDK activity during mitotic exit in mammalian cells and that loss of these pathways can cause genetic instability.
Collapse
Affiliation(s)
- Taku Chibazakura
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan.
| | | | | | | | | |
Collapse
|
46
|
Wolfe BA, Gould KL. Fission yeast Clp1p phosphatase affects G2/M transition and mitotic exit through Cdc25p inactivation. EMBO J 2004; 23:919-29. [PMID: 14765109 PMCID: PMC381010 DOI: 10.1038/sj.emboj.7600103] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2003] [Accepted: 01/09/2004] [Indexed: 11/08/2022] Open
Abstract
The Cdc14 family of phosphatases specifically reverses proline-directed phosphorylation events. In Saccharomyces cerevisiae, Cdc14p promotes Cdk1p inactivation at mitotic exit by reversing Cdk1p-dependent phosphorylations. Cdk1p is a proline-directed kinase whose activity is required in all eukaryotes for the transit into mitosis. At mitotic commitment, Cdk1p participates in its own regulation by activating the mitotic inducing phosphatase, Cdc25p, and inhibiting the opposing kinase, Wee1p. We have investigated the ability of Schizosaccharomyces pombe Clp1p, a Cdc14p homolog, to disrupt this auto-amplification loop. We show here that Clp1p is required to dephosphorylate, destabilize, and inactivate Cdc25p at the end of mitosis. Clp1p promotes recognition of Cdc25p by the anaphase-promoting complex/cyclosome, an E3 ubiquitin ligase. Failure to inactivate and destabilize Cdc25p in late mitosis delays progression through anaphase, interferes with septation initiation network signaling, and additionally advances the commitment to mitotic entry in the next cycle. This may be a widely conserved mechanism whereby Cdc14 proteins contribute to Cdk1p inactivation.
Collapse
Affiliation(s)
- Benjamin A Wolfe
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Kathleen L Gould
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- HHMI, Vanderbilt University, Nashville, TN, USA
- Department of Cell and Developmental Biology and HHMI, Vanderbilt University, Nashville, TN 37232, USA. Tel.: +1 615 343 9500; Fax: +1 615 343 0723; E-mail:
| |
Collapse
|
47
|
Uchiki T, Dice LT, Hettich RL, Dealwis C. Identification of phosphorylation sites on the yeast ribonucleotide reductase inhibitor Sml1. J Biol Chem 2003; 279:11293-303. [PMID: 14684746 DOI: 10.1074/jbc.m309751200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sml1 is a small protein in Saccharomyces cerevisiae which inhibits the activity of ribonucleotide reductase (RNR). RNR catalyzes the rate-limiting step of de novo dNTP synthesis. Sml1 is a downstream effector of the Mec1/Rad53 cell cycle checkpoint pathway. The phosphorylation by Dun1 kinase during S phase or in response to DNA damage leads to diminished levels of Sml1. Removal of Sml1 increases the population of active RNR, which raises cellular dNTP levels. In this study using mass spectrometry and site-directed mutagenesis, we have identified the region of Sml1 phosphorylation to be between residues 52 and 64 containing the sequence GSSASASASSLEM. This is the first identification of a phosphorylation sequence of a Dun1 biological substrate. This sequence is quite different from the consensus Dun1 phosphorylation sequence reported previously from peptide library studies. The specific phosphoserines were identified to be Ser(56), Ser(58), and Ser(60) by chemical modification of these residues to S-ethylcysteines followed by collision activated dissociation. To investigate further Sml1 phosphorylation, we constructed the single mutants S56A, S58A, S60A, and the triple mutant S56A/S58A/S60A and compared their degrees of phosphorylation with that of wild type Sml1. We observed a 90% decrease in the relative phosphorylation of S60A compared with that of wild type, a 25% decrease in S58A, and little or no decrease in the S56A mutant. There was no observed phosphate incorporation in the triple mutant, suggesting that Ser(56), Ser(58), and Ser(60) in Sml1 are the sites of phosphorylation. Further mutagenesis studies reveal that Dun1 kinase requires an acidic residue at the +3 position, and there is cooperativity between the phosphorylation sites. These results show that Dun1 has a unique phosphorylation motif.
Collapse
Affiliation(s)
- Tomoaki Uchiki
- Genome Science and Technology Graduate School, University of Tennessee, Knoxville, Tennessee 37996, USA
| | | | | | | |
Collapse
|
48
|
Daga RR, Bolaños P, Moreno S. Regulated mRNA Stability of the Cdk Inhibitor Rum1 Links Nutrient Status to Cell Cycle Progression. Curr Biol 2003; 13:2015-24. [PMID: 14653990 DOI: 10.1016/j.cub.2003.10.061] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND The survival of a cell depends on continuous sensing of the nutritional environment and appropriate coordination of the cell cycle. The fission yeast Schizosaccharomyces pombe is an excellent model system in which to study these processes. In the presence of nutrients, fission yeast cells grow and divide, spending most of their time in G2; when nutrients are limiting, they are promoted into mitosis and arrest the cell cycle in G1. The molecular mechanisms underlying this response are currently unknown. RESULTS Here, we show that expression of the fission yeast Cdk inhibitor Rum1, a key regulator of Cdc2/cyclin B in G1, is subject to regulated mRNA stability in response to nutrient deprivation. In complete minimal medium, rum1 mRNAs are very unstable. Following nitrogen starvation, rum1 mRNAs are rapidly stabilized, allowing the accumulation of Rum1 protein to delay the G1 phase of the subsequent cell cycle. Instability of rum1 mRNAs in complete minimal medium depends on the presence of AU-rich elements in the 3'UTR. We also show that lack of this mechanism has consequences in the mitotic cell cycle, in meiosis, and in the control of ploidy. CONCLUSION We propose that mRNA stability is an important mechanism to fine tune the expression of the rum1 gene, in order to allow the production of appropriate levels of Rum1 protein in response to changes in the nutritional environment.
Collapse
Affiliation(s)
- Rafael R Daga
- Instituto de Microbiología Bioquímica, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | | | | |
Collapse
|
49
|
Geyer R, Wee S, Anderson S, Yates J, Wolf DA. BTB/POZ Domain Proteins Are Putative Substrate Adaptors for Cullin 3 Ubiquitin Ligases. Mol Cell 2003; 12:783-90. [PMID: 14527422 DOI: 10.1016/s1097-2765(03)00341-1] [Citation(s) in RCA: 270] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cullins (CULs) are subunits of a prominent class of RING ubiquitin ligases. Whereas the subunits and substrates of CUL1-associated SCF complexes and CUL2 ubiquitin ligases are well established, they are largely unknown for other cullin family members. We show here that S. pombe CUL3 (Pcu3p) forms a complex with the RING protein Pip1p and all three BTB/POZ domain proteins encoded in the fission yeast genome. The integrity of the BTB/POZ domain, which shows similarity to the cullin binding proteins SKP1 and elongin C, is required for this interaction. Whereas Btb1p and Btb2p are stable proteins, Btb3p is ubiquitylated and degraded in a Pcu3p-dependent manner. Btb3p degradation requires its binding to a conserved N-terminal region of Pcu3p that precisely maps to the equivalent SKP1/F box adaptor binding domain of CUL1. We propose that the BTB/POZ domain defines a recognition motif for the assembly of substrate-specific RING/cullin 3/BTB ubiquitin ligase complexes.
Collapse
Affiliation(s)
- Rory Geyer
- Department of Cancer Cell Biology, Harvard School of Public Health, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
50
|
Tasto JJ, Morrell JL, Gould KL. An anillin homologue, Mid2p, acts during fission yeast cytokinesis to organize the septin ring and promote cell separation. J Cell Biol 2003; 160:1093-103. [PMID: 12668659 PMCID: PMC2172762 DOI: 10.1083/jcb.200211126] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Anillin is a conserved protein required for cell division (Field, C.M., and B.M. Alberts. 1995. J. Cell Biol. 131:165-178; Oegema, K., M.S. Savoian, T.J. Mitchison, and C.M. Field. 2000. J. Cell Biol. 150:539-552). One fission yeast homologue of anillin, Mid1p, is necessary for the proper placement of the division site within the cell (Chang, F., A. Woollard, and P. Nurse. 1996. J. Cell Sci. 109(Pt 1):131-142; Sohrmann, M., C. Fankhauser, C. Brodbeck, and V. Simanis. 1996. Genes Dev. 10:2707-2719). Here, we identify and characterize a second fission yeast anillin homologue, Mid2p, which is not orthologous with Mid1p. Mid2p localizes as a single ring in the middle of the cell after anaphase in a septin- and actin-dependent manner and splits into two rings during septation. Mid2p colocalizes with septins, and mid2 Delta cells display disorganized, diffuse septin rings and a cell separation defect similar to septin deletion strains. mid2 gene expression and protein levels fluctuate during the cell cycle in a sep1- and Skp1/Cdc53/F-box (SCF)-dependent manner, respectively, implying that Mid2p activity must be carefully regulated. Overproduction of Mid2p depolarizes cell growth and affects the organization of both the septin and actin cytoskeletons. In the presence of a nondegradable Mid2p fragment, the septin ring is stabilized and cell cycle progression is delayed. These results suggest that Mid2p influences septin ring organization at the site of cell division and its turnover might normally be required to permit septin ring disassembly.
Collapse
Affiliation(s)
- Joseph J Tasto
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | |
Collapse
|