1
|
Panagi I, Muench JH, Ronneau A, Diaz-Del-Olmo I, Aliyath A, Yu XJ, Mak H, Jin E, Zeng J, Esposito D, Jennings E, Pillay TD, Günster RA, Maslen SL, Rittinger K, Thurston TLM. Bacterial effectors mediate kinase reprogramming through mimicry of conserved eukaryotic motifs. EMBO Rep 2025:10.1038/s44319-025-00472-y. [PMID: 40355646 DOI: 10.1038/s44319-025-00472-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 04/28/2025] [Accepted: 04/29/2025] [Indexed: 05/14/2025] Open
Abstract
Bacteria have evolved numerous biochemical processes that underpin their biology and pathogenesis. The small, non-enzymatic bacterial (Salmonella) effector SteE mediates kinase reprogramming, whereby the canonical serine/threonine host kinase GSK3 gains tyrosine-directed activity towards neosubstrates, promoting Salmonella virulence. Yet, both the mechanism behind the switch in GSK3's activity and the diversity of this phenomenon remain to be determined. Here we show that kinase reprogramming of GSK3 is mediated by putative homologues from diverse Gram-negative pathogens. Next, we identify both the molecular basis of how SteE targets GSK3 and uncover that the SteE-induced tyrosine activity conferred on GSK3 requires an L/xGxP motif. This motif, found in several CMGC kinases that undergo auto-tyrosine phosphorylation, was previously shown to mediate GSK3 autophosphorylation on a tyrosine. Together, we suggest that the SteE family of intrinsically disordered proteins mediates kinase reprogramming via several short linear motifs that each appear to mimic eukaryotic signalling motifs. With this insight comes the potential for the rationale design of synthetic reprogramming proteins.
Collapse
Affiliation(s)
- Ioanna Panagi
- Department of Infectious Disease, Centre for Bacterial Resistance Biology, Imperial College London, London, SW7 2AZ, UK
| | - Janina H Muench
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Alexi Ronneau
- Department of Infectious Disease, Centre for Bacterial Resistance Biology, Imperial College London, London, SW7 2AZ, UK
| | - Ines Diaz-Del-Olmo
- Department of Infectious Disease, Centre for Bacterial Resistance Biology, Imperial College London, London, SW7 2AZ, UK
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
- Bacterial Pathogenesis and Immune Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Agnel Aliyath
- Department of Infectious Disease, Centre for Bacterial Resistance Biology, Imperial College London, London, SW7 2AZ, UK
| | - Xiu-Jun Yu
- Department of Infectious Disease, Centre for Bacterial Resistance Biology, Imperial College London, London, SW7 2AZ, UK
| | - Hazel Mak
- Department of Infectious Disease, Centre for Bacterial Resistance Biology, Imperial College London, London, SW7 2AZ, UK
| | - Enkai Jin
- Department of Infectious Disease, Centre for Bacterial Resistance Biology, Imperial College London, London, SW7 2AZ, UK
| | - Jingkun Zeng
- Department of Infectious Disease, Centre for Bacterial Resistance Biology, Imperial College London, London, SW7 2AZ, UK
| | - Diego Esposito
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Elliott Jennings
- Department of Infectious Disease, Centre for Bacterial Resistance Biology, Imperial College London, London, SW7 2AZ, UK
| | - Timesh D Pillay
- Department of Infectious Disease, Centre for Bacterial Resistance Biology, Imperial College London, London, SW7 2AZ, UK
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Regina A Günster
- Department of Infectious Disease, Centre for Bacterial Resistance Biology, Imperial College London, London, SW7 2AZ, UK
| | - Sarah L Maslen
- Proteomics Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Katrin Rittinger
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| | - Teresa L M Thurston
- Department of Infectious Disease, Centre for Bacterial Resistance Biology, Imperial College London, London, SW7 2AZ, UK.
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK.
- Bacterial Pathogenesis and Immune Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
2
|
Hossain MJ, Romanov KA, Jian J, Swaby LC, Bandyopadhyay S, Guan I, Thomas SM, Olive AJ, O’Connor TJ. Bacterial pathogens hijack host cell peroxisomes for replication vacuole expansion and integrity. SCIENCE ADVANCES 2025; 11:eadr8005. [PMID: 40305606 PMCID: PMC12042894 DOI: 10.1126/sciadv.adr8005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 03/26/2025] [Indexed: 05/02/2025]
Abstract
Pathogens manipulate host cell organelles to establish infection. There is extensive evidence of pathogen modulation of the endoplasmic reticulum, Golgi apparatus, mitochondria, endosomes, lysosomes, and nucleus. However, one organelle that has been largely overlooked in connection with bacterial pathogenesis is peroxisomes. Here, we demonstrate that Legionella actively recruits peroxisomes to its replication vacuole using a secreted bacterial effector protein. Defects in peroxisome metabolic function restrict expansion of the Legionella vacuole membrane and cause rupture of this compartment, inhibiting bacterial replication and leading to bacterial degradation. Similarly, peroxisome dysfunction causes Salmonella replication vacuole destabilization and reduced bacterial burden within host cells. Thus, these two intracellular bacterial pathogens exploit host cell peroxisomes to maintain their replication compartments, establishing a critical role for this organelle in disease.
Collapse
Affiliation(s)
- Mohammad J. Hossain
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Katerina A. Romanov
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jeffrey Jian
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Louis C. Swaby
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Saumya Bandyopadhyay
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ivan Guan
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sean M. Thomas
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Andrew J. Olive
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Tamara J. O’Connor
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
3
|
Li Y, Xu Y, Jin C, Qiu J, Jiao X, Pan Z, Guo Y. Salmonella-NLRP3 Inflammasome Crosstalk: Host Defense Activation Versus Bacterial Immune Evasion Strategies. J Inflamm Res 2025; 18:5133-5148. [PMID: 40255664 PMCID: PMC12009050 DOI: 10.2147/jir.s519902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 04/10/2025] [Indexed: 04/22/2025] Open
Abstract
The innate immune system plays a crucial role in defending against Salmonella infection. Inflammasomes are macromolecular complexes that assemble in response to the recognition of pathogen- or danger-associated molecular patterns. These complexes serve as signaling platforms for the activation of inflammatory Caspases, which subsequently triggers the maturation and secretion of the pro-inflammatory cytokines IL-1β and IL-18. This process also initiates pyroptosis, a highly inflammatory form of programmed cell death characterized by lytic cell lysis. Salmonella are intracellular pathogens that proliferate within epithelial cells and macrophages, posing a significant public health risk in both developed and developing countries. During Salmonella infection, the canonical NLRP3 and NLRC4 inflammasome, as well as non-canonical inflammasome, are activated. Unlike NLRC4 and non-canonical inflammasomes, which play crucial roles during intestinal infection phases, the role of NLRP3 inflammasome in resisting Salmonella infection demonstrates a higher degree of complexity and uncertainty. Nonetheless, the activation of NLRP3 inflammasome, along with the downstream innate and adaptive responses, form a robust host immune barrier against potential pathogens. Therefore, successful pathogens must evolve multiple mechanisms to circumvent or counteract these immune barriers. Here we review and discuss the mechanisms of NLRP3 inflammasome activation triggered by intracellular Salmonella, as well as the multiple strategies employed by Salmonella to avoid or delay NLRP3 inflammasome activation. A deeper understanding of how NLRP3 inflammasomes recognize Salmonella and how pathogens evade NLRP3 activation has the potential to facilitate the development of novel prevention and control measures for Salmonella infection.
Collapse
Affiliation(s)
- Yuxuan Li
- School of Nursing School of Public Health, Yangzhou University, Jiangsu, People’s Republic of China
| | - Ying Xu
- The Department of Economics and Management, Jiangsu College of Tourism, Jiangsu, People’s Republic of China
| | - Cheng Jin
- School of Nursing School of Public Health, Yangzhou University, Jiangsu, People’s Republic of China
| | - Jiayi Qiu
- School of Nursing School of Public Health, Yangzhou University, Jiangsu, People’s Republic of China
| | - Xinan Jiao
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, People’s Republic of China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, People’s Republic of China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Zhiming Pan
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, People’s Republic of China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, People’s Republic of China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Yaxin Guo
- School of Nursing School of Public Health, Yangzhou University, Jiangsu, People’s Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, People’s Republic of China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, People’s Republic of China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| |
Collapse
|
4
|
Nguyen TH, Wang BX, Diaz OR, Rajendram M, McKenna JA, Butler DSC, Hokamp K, Hinton JCD, Monack DM, Huang KC. Profiling Salmonella transcriptional dynamics during macrophage infection using a comprehensive reporter library. Nat Microbiol 2025; 10:1006-1023. [PMID: 40175723 DOI: 10.1038/s41564-025-01953-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 02/07/2025] [Indexed: 04/04/2025]
Abstract
Salmonella enterica serovar Typhimurium must adapt to rapid environmental shifts, including those encountered upon entry and during replication to survive within macrophages during pathogenesis. Despite extensive RNA-seq-based investigations, questions remain regarding the range, timing and magnitude of response dynamics. Here we constructed a comprehensive GFP-reporter strain library representing 2,901 computationally identified Salmonella promoter regions to study time-resolved Salmonella transcriptional responses. Promoter activity was measured during in vitro growth and during intracellular infection of RAW 264.7 macrophages. Using bulk measurements and single-cell imaging, we uncovered condition-specific transcriptional regulation and population-level heterogeneity in SPI2-related promoter activity. We also discovered previously unidentified transcriptional activity from 234 promoters. These analyses revealed metabolic shifts including requirements for mntS expression to support manganese homeostasis and expression of Entner-Doudoroff pathway-associated genes to support growth within macrophages. Our library and datasets, made available through the online tool SalComKinetics, provide resources for systems-level interrogation of Salmonella transcriptional dynamics.
Collapse
Affiliation(s)
- Taylor H Nguyen
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Benjamin X Wang
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Oscar R Diaz
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Joy A McKenna
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel S C Butler
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Karsten Hokamp
- Department of Genetics, School of Genetics and Microbiology, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Jay C D Hinton
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Denise M Monack
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
5
|
Egan MS, O'Rourke EA, Mageswaran SK, Zuo B, Martynyuk I, Demissie T, Hunter EN, Bass AR, Chang YW, Brodsky IE, Shin S. Inflammasomes primarily restrict cytosolic Salmonella replication within human macrophages. eLife 2025; 12:RP90107. [PMID: 40162563 PMCID: PMC11957546 DOI: 10.7554/elife.90107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
Salmonella enterica serovar Typhimurium is a facultative intracellular pathogen that utilizes its type III secretion systems (T3SSs) to inject virulence factors into host cells and colonize the host. In turn, a subset of cytosolic immune receptors respond to T3SS ligands by forming multimeric signaling complexes called inflammasomes, which activate caspases that induce interleukin-1 (IL-1) family cytokine release and an inflammatory form of cell death called pyroptosis. Human macrophages mount a multifaceted inflammasome response to Salmonella infection that ultimately restricts intracellular bacterial replication. However, how inflammasomes restrict Salmonella replication remains unknown. We find that caspase-1 is essential for mediating inflammasome responses to Salmonella and restricting bacterial replication within human macrophages, with caspase-4 contributing as well. We also demonstrate that the downstream pore-forming protein gasdermin D (GSDMD) and Ninjurin-1 (NINJ1), a mediator of terminal cell lysis, play a role in controlling Salmonella replication in human macrophages. Notably, in the absence of inflammasome responses, we observed hyperreplication of Salmonella within the cytosol of infected cells as well as increased bacterial replication within vacuoles, suggesting that inflammasomes control Salmonella replication primarily within the cytosol and also within vacuoles. These findings reveal that inflammatory caspases and pyroptotic factors mediate inflammasome responses that restrict the subcellular localization of intracellular Salmonella replication within human macrophages.
Collapse
Affiliation(s)
- Marisa S Egan
- Department of Microbiology, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Emily A O'Rourke
- Department of Microbiology, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Shrawan Kumar Mageswaran
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Institute of Structural Biology, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Biao Zuo
- Institute of Structural Biology, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Electron Microscopy Resource Laboratory, Department of Biochemistry & Biophysics, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Inna Martynyuk
- Institute of Structural Biology, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Electron Microscopy Resource Laboratory, Department of Biochemistry & Biophysics, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Tabitha Demissie
- Department of Microbiology, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Emma N Hunter
- Department of Microbiology, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Antonia R Bass
- Department of Microbiology, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Yi-Wei Chang
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Institute of Structural Biology, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Igor E Brodsky
- Department of Pathobiology, University of Pennsylvania School of Veterinary MedicinePhiladelphiaUnited States
| | - Sunny Shin
- Department of Microbiology, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
6
|
Roy Chowdhury A, Hajra D, Mukherjee D, Nair AV, Chakravortty D. Functional OmpA of Salmonella Typhimurium Provides Protection From Lysosomal Degradation and Inhibits Autophagic Processes in Macrophages. J Infect Dis 2025; 231:716-728. [PMID: 39078938 DOI: 10.1093/infdis/jiae376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/24/2024] [Indexed: 03/18/2025] Open
Abstract
Our previous study showed that OmpA-deficient Salmonella Typhimurium failed to retain LAMP-1 around the Salmonella-containing vacuoles (SCV), and escaped in to the host cell cytosol. Here we show that the cytosolic population of S. Typhimurium ΔompA sequestered autophagic markers, syntaxin17 and LC3B, in a sseL-dependent manner and initiated lysosomal fusion. Moreover, inhibition of autophagy using bafilomycinA1 restored its intracellular proliferation. Ectopic overexpression of OmpA in S. Typhimurium ΔsifA restored its vacuolar niche and increased its interaction with LAMP-1, suggesting a sifA-independent role of OmpA in maintaining an intact SCV. Mutations in the OmpA extracellular loops impaired the LAMP-1 recruitment to SCV and caused bacterial release into the cytosol of macrophages, but unlike S. Typhimurium ΔompA, they retained their outer membrane stability and did not activate the lysosomal degradation pathway, aiding in their intramacrophage survival. Finally, OmpA extracellular loop mutations protected cytosolic S. Typhimurium ΔsifA from lysosomal surveillance, revealing a unique OmpA-dependent strategy of S. Typhimurium for its intracellular survival.
Collapse
Affiliation(s)
- Atish Roy Chowdhury
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Dipasree Hajra
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Debapriya Mukherjee
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Abhilash Vijay Nair
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| |
Collapse
|
7
|
Worley MJ. Salmonella Type III Secretion System Effectors. Int J Mol Sci 2025; 26:2611. [PMID: 40141253 PMCID: PMC11942329 DOI: 10.3390/ijms26062611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/05/2025] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
Salmonella is estimated to infect between 200 million and over 1 billion people per year. The exact number is not known, as many cases go unreported. Integral to the pathogenesis of Salmonella, as well as numerous other Gram-negative pathogens, is its type III effectors. Salmonella possesses two distinct type III secretion systems, encoded by Salmonella pathogenicity island-1 and Salmonella pathogenicity island-2. Together, they secrete at least 49 type III effectors into host cells that are collectively responsible for many of the virulence attributes of this pathogen. These virulence factors facilitate the invasion of host cells, induce and attenuate inflammation, and change the migratory properties of infected phagocytes, among other things. The effects of all type III effectors on Salmonella virulence are discussed.
Collapse
Affiliation(s)
- Micah J Worley
- Department of Biology, University of Louisville, Louisville, KY 40292, USA
| |
Collapse
|
8
|
Lu J, Wu H, Wu S, Wang S, Fan H, Ruan H, Qiao J, Caiyin Q, Wen M. Salmonella: Infection mechanism and control strategies. Microbiol Res 2025; 292:128013. [PMID: 39675139 DOI: 10.1016/j.micres.2024.128013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
Salmonella is a foodborne pathogen that predominantly resides in the intestinal tract of humans and animals. Infections caused by Salmonella can lead to various illnesses, including gastroenteritis, bacteremia, septicemia, and focal infections, with severe cases potentially resulting in host mortality. The mechanisms by which Salmonella invades host cells and disseminates throughout the body are partly understood, but there are still many scientific questions to be solved. This review aims to synthesize existing research on the interactions between Salmonella and hosts, detailing a comprehensive infection mechanism from adhesion and invasion to intracellular propagation and systemic spread. Overuse of antibiotics contributes to the emergence of drug-resistant Salmonella strains. An in-depth analysis of the mechanism of Salmonella infection will provide a theoretical basis for the development of novel Salmonella control strategies. These innovative control strategies include antibiotic adjuvants, small molecules, phages, attenuated vaccines, and probiotic therapies, which show huge potential in controlling Salmonella infection.
Collapse
Affiliation(s)
- Juane Lu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Hao Wu
- Zhejiang Research Institute of Tianjin University (Shaoxing), Shaoxing 312300, China; School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Shengbo Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Zhejiang Research Institute of Tianjin University (Shaoxing), Shaoxing 312300, China
| | - Shengli Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Zhejiang Research Institute of Tianjin University (Shaoxing), Shaoxing 312300, China
| | - Hongfei Fan
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300072, China
| | - Haihua Ruan
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300072, China
| | - Jianjun Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Zhejiang Research Institute of Tianjin University (Shaoxing), Shaoxing 312300, China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Qinggele Caiyin
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China.
| | - Mingzhang Wen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Zhejiang Research Institute of Tianjin University (Shaoxing), Shaoxing 312300, China; Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China.
| |
Collapse
|
9
|
Zhan L, Ge J, Xia L, Zhang Y. Reciprocal regulation between bacterial secretion systems and host metabolism: Enhancing bacterial intracellular survival capability. Microbiol Res 2025; 292:128025. [PMID: 39705830 DOI: 10.1016/j.micres.2024.128025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/23/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Secretion systems are intricate nanomachines present on many bacterial cell membranes that deliver various bacterially-encoded effector proteins into eukaryotic or prokaryotic cells. They are pivotal in bacterial invasion, host colonization, and pathogenesis. After infection, bacteria employ these machines to deliver toxic effectors to the cytoplasm of host cells that disrupt their metabolic balance, such as interfering with glucose metabolism, promoting lipid droplets formation, altering amino acid profiles and mitochondrial morphology, and reducing ROS levels, to ensure bacterial intracellular survival. Furthermore, metabolites within host cells can modulate the expression and/or function of bacterial secretion systems. This review summarizes recent advancements in understanding the impact of bacterial secretion systems on host cell metabolism and the feedback regulation of host metabolites on these machines, providing novel perspectives on host-pathogen interactions and mechanisms of bacterial pathogenesis.
Collapse
Affiliation(s)
- Lina Zhan
- Department of Biochemistry and Molecular Biology, Jiangsu University School of Medicine, Zhenjiang, Jiangsu 212013, China
| | - Jiongchen Ge
- Department of Biochemistry and Molecular Biology, Jiangsu University School of Medicine, Zhenjiang, Jiangsu 212013, China
| | - Lin Xia
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Ying Zhang
- Department of Biochemistry and Molecular Biology, Jiangsu University School of Medicine, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
10
|
Raman V, Hall CL, Wetherby VE, Whitney SA, Van Dessel N, Forbes NS. Controlling intracellular protein delivery, tumor colonization and tissue distribution using flhDC in clinically relevant ΔsseJ Salmonella. Mol Ther 2025; 33:649-669. [PMID: 39741404 PMCID: PMC11852948 DOI: 10.1016/j.ymthe.2024.12.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/17/2024] [Accepted: 12/27/2024] [Indexed: 01/03/2025] Open
Abstract
Effectively targeting intracellular pathways in cancers requires a system that specifically delivers to tumors and internalizes into cancer cells. To achieve this goal, we developed intracellular-delivering (ID) Salmonella with controllable expression of flhDC to regulate flagella production and cell invasion. We hypothesized that controlling flhDC would overcome the poor colonization seen in prior clinical trials. To test this hypothesis, we incorporated the aspirin-responsive Psal promoter and tuned flhDC expression with ssra degradation tags. In tumor-bearing mice, controlling flhDC increased protein release, tissue dispersion, and tumor colonization more than 10 million times. We discovered that inducing flhDC increases escape from intracellular vacuoles; however, deleting sseJ prevented escape and further increased protein delivery. Delivering constitutively active caspase-3 with ID-f-s Salmonella (ΔsseJ and induced Psal-flhDC) induced cell death in pancreatic, breast, and liver cancer cells and reduced the growth of breast tumors. This clinically ready strain preferentially colonized metastatic breast tissue 280 and 800 times more than surrounding healthy tissue in the lung and liver, respectively. By precisely controlling tumor colonization and cell invasion, this strain overcomes critical limitations of bacterial therapy and will enable treatment of many hard-to-treat cancers.
Collapse
Affiliation(s)
- Vishnu Raman
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, MA 01003, USA; Ernest Pharmaceuticals, Inc., Hadley, MA 01035, USA
| | - Christopher L Hall
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, MA 01003, USA; Ernest Pharmaceuticals, Inc., Hadley, MA 01035, USA
| | | | - Samantha A Whitney
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, MA 01003, USA
| | | | - Neil S Forbes
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, MA 01003, USA; Molecular and Cell Biology Program, University of Massachusetts, Amherst, Amherst, MA 01003, USA; Institute for Applied Life Science, University of Massachusetts, Amherst, Amherst, MA 01003, USA; Department of Microbiology, University of Massachusetts, Amherst, Amherst, MA 01003, USA.
| |
Collapse
|
11
|
Zhou N, Ding Y, He T, Sun Y, Chen H, Huang M, Li T. Characterization and Protective Efficacy of a Salmonella Typhimurium ATCC 14028 sptP Mutant as a Live Attenuated Vaccine Candidate. Vaccines (Basel) 2025; 13:150. [PMID: 40006697 PMCID: PMC11860608 DOI: 10.3390/vaccines13020150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Salmonella Typhimurium poses a substantial health risk to both humans and animals. This study evaluated the potential of using the Salmonella Typhimurium ΔsptP mutant as a live-attenuated vaccine candidate by constructing it through homologous recombination and assessing its key biological properties, including growth characteristics, immunogenicity, and protective efficacy. METHODS We generated the ΔsptP mutant through targeted gene deletion, ensuring the preservation of the bacterial strain's growth and stability. In vitro and in vivo assays were performed to compare the invasive capabilities between the mutant and the wild-type strains. Specifically, we examined the invasion into RAW264.7 murine macrophages and mice. Furthermore, the virulence of the mutant was evaluated by determining the median lethal dose (LD50). To evaluate immunogenicity and protection, mice were immunized with 2 × 104 CFUs of the ΔsptP mutant, followed by a booster immunization, and then challenged with a virulent strain. RESULTS The ΔsptP mutant exhibited no significant changes in growth characteristics or genetic stability compared to the wild-type strain. However, it demonstrated a significantly diminished capacity for invasion in both murine macrophages and mice. The LD50 for the mutant was 39.92-fold higher than that of the wild-type, indicating a marked reduction in virulence. Mice immunized with the ΔsptP mutant and administered a booster immunization exhibited 87.5% protection against challenge with a virulent strain, as compared to the PBS control group. Moreover, the mutant induced IgG antibody levels comparable to those induced by the wild-type strain. CONCLUSIONS The ΔsptP mutant of Salmonella Typhimurium exhibits markedly reduced virulence while retaining robust immunogenicity and protective efficacy. These findings suggest that the ΔsptP mutant is a promising candidate for a live-attenuated vaccine, potentially providing an effective strategy to prevent Salmonella Typhimurium infections.
Collapse
Affiliation(s)
- Nanlong Zhou
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570100, China; (N.Z.)
| | - Yonghui Ding
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570100, China; (N.Z.)
| | - Ting He
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570100, China; (N.Z.)
| | - Yuling Sun
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570100, China; (N.Z.)
| | - Hongfang Chen
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570100, China; (N.Z.)
| | - Meiling Huang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China
| | - Tiansen Li
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570100, China; (N.Z.)
| |
Collapse
|
12
|
Singer ZS, Pabón J, Huang H, Sun W, Luo H, Grant KR, Obi I, Coker C, Rice CM, Danino T. Engineered bacteria launch and control an oncolytic virus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.09.28.559873. [PMID: 37808855 PMCID: PMC10557668 DOI: 10.1101/2023.09.28.559873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The ability of bacteria and viruses to selectively replicate in tumors has led to synthetic engineering of new microbial therapies. Here we design a cooperative strategy whereby S. typhimurium bacteria transcribe and deliver the Senecavirus A RNA genome inside host cells, launching a potent oncolytic viral infection. "Encapsidated" by bacteria, the viral genome can further bypass circulating antiviral antibodies to reach the tumor and initiate replication and spread within immune mice. Finally, we engineer the virus to require a bacterially delivered protease to achieve virion maturation, demonstrating bacterial control over the virus. This work extends bacterially delivered therapeutics to viral genomes, and shows how a consortium of microbes can achieve a cooperative aim.
Collapse
|
13
|
Hayward RJ, Ebbecke T, Fricke H, Nguyen VQ, Barquist L. Micromix: web infrastructure for visualizing and remixing microbial 'omics data. Gigascience 2025; 14:giae120. [PMID: 39898450 PMCID: PMC11788673 DOI: 10.1093/gigascience/giae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/12/2024] [Accepted: 12/18/2024] [Indexed: 02/04/2025] Open
Abstract
Micromix is a flexible web platform for sharing and integrating microbial omics data, including RNA sequencing and transposon-insertion sequencing. Currently, the lack of solutions for making data web-accessible results in omics data being fragmented across supplementary spreadsheets or languishing as raw read data in public repositories. Micromix solves this problem and can be easily deployed on a standard web server or using cloud services. It is organism-agnostic, accommodates data and annotations from various sources, and allows filtering based on KEGG pathways, Gene Ontology terms, and curated gene sets. Visualizations are provided through a plug-in system that integrates existing visualization services and allows rapid development of new services, with available plug-ins currently supporting interactive heatmap and clustering functions. Users can upload their own data in a variety of formats to perform integrative analyses in the context of existing datasets. To support collaborative research, Micromix allows sharing of interactive sessions that maintain defined filtering and/or visualization options. We demonstrate the utility of Micromix with case studies focusing on the SPI-2 pathogenicity island in Salmonella enterica and polysaccharide utilization loci in Bacteroides thetaiotaomicron, showcasing the platform's capabilities for integrating, filtering, and visualizing diverse functional genomic datasets. Micromix is available at http://micromix.systems.
Collapse
Affiliation(s)
- Regan J Hayward
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, 97080, Germany
| | - Titus Ebbecke
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, 97080, Germany
| | - Hanna Fricke
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, 97080, Germany
| | - Vo Quang Nguyen
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, 97080, Germany
| | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, 97080, Germany
- Faculty of Medicine, University of Würzburg, Würzburg, 97080, Germany
- Department of Biology, University of Toronto, Mississauga, Ontario, L5L 1C6, Canada
| |
Collapse
|
14
|
Heggie A, Thurston TLM, Ellis T. Microbial messengers: nucleic acid delivery by bacteria. Trends Biotechnol 2025; 43:145-161. [PMID: 39117490 DOI: 10.1016/j.tibtech.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024]
Abstract
The demand for diverse nucleic acid delivery vectors, driven by recent biotechnological breakthroughs, offers opportunities for continuous improvements in efficiency, safety, and delivery capacity. With their enhanced safety and substantial cargo capacity, bacterial vectors offer significant potential across a variety of applications. In this review, we explore methods to engineer bacteria for nucleic acid delivery, including strategies such as engineering attenuated strains, lysis circuits, and conjugation machinery. Moreover, we explore pioneering techniques, such as manipulating nanoparticle (NP) coatings and outer membrane vesicles (OMVs), representing the next frontier in bacterial vector engineering. We foresee these advancements in bacteria-mediated nucleic acid delivery, through combining bacterial pathogenesis with engineering biology techniques, as a pivotal step forward in the evolution of nucleic acid delivery technologies.
Collapse
Affiliation(s)
- Alison Heggie
- Centre for Bacterial Resistance Biology, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK; Imperial College Centre for Synthetic Biology, South Kensington Campus, London, SW7 2AZ, UK; Department of Bioengineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Teresa L M Thurston
- Centre for Bacterial Resistance Biology, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Tom Ellis
- Imperial College Centre for Synthetic Biology, South Kensington Campus, London, SW7 2AZ, UK; Department of Bioengineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| |
Collapse
|
15
|
Li L, McWhorter A, Chousalkar K. Ensuring egg safety: Salmonella survival, control, and virulence in the supply chain. Compr Rev Food Sci Food Saf 2025; 24:e70075. [PMID: 39667949 DOI: 10.1111/1541-4337.70075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/23/2024] [Accepted: 11/13/2024] [Indexed: 12/14/2024]
Abstract
Salmonella contamination of eggs is a global food safety concern, producers, regulatory authorities, and affecting public health. To mitigate Salmonella risks on-farm and along the supply chain, egg producers have adopted various quality assurance, animal husbandry, and biosecurity practices recommended by organizations such as Australian eggs, the European Commission, and the US Department of Agriculture (USDA). However, egg storage requirements vary significantly worldwide. In Australia, most states follow the Food Standards Australia New Zealand, but discrepancies exist. In the United States, the USDA mandates refrigeration of eggs below 7.2°C to prevent Salmonella growth, whereas the European Union requires that eggs must not be refrigerated to avoid condensation, which may promote bacterial growth. Refrigeration of eggs is associated with reduced Salmonella growth and decreased infection risk. Yet, conflicting data regarding the impact of storage temperatures on Salmonella survival may contribute to the disparity between international recommendations for egg storage. Studies indicated better Salmonella survival in egg contents at 5°C due to higher expression levels of survival and stress response-related genes compared to 25°C, yet this may not lead to an increased risk or higher severity of Salmonella infection. Evidence suggests that storing eggs at less than 7°C will influence the virulence of bacteria. Warmer storage temperatures may lead to increased potential of Salmonella multiplication in the nutrient-rich yolk and may cause the expression of certain virulence genes. Eggs can be exposed to various temperatures in the supply chain. Further studies are essential to understand the relationship between the storage temperature on the farm, in the supply chain, and bacterial virulence.
Collapse
Affiliation(s)
- Lingyun Li
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Andrea McWhorter
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Kapil Chousalkar
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
16
|
Abstract
Macrophages, neutrophils, and epithelial cells are pivotal components of the host's immune response against bacterial infections. These cells employ inflammasomes to detect various microbial stimuli during infection, triggering an inflammatory response aimed at eradicating the pathogens. Among these inflammatory responses, pyroptosis, a lytic form of cell death, plays a crucial role in eliminating replicating bacteria and recruiting immune cells to combat the invading pathogen. The immunological function of pyroptosis varies across macrophages, neutrophils, and epithelial cells, aligning with their specific roles within the innate immune system. This review centers on elucidating the role of pyroptosis in resisting gram-negative bacterial infections, with a particular focus on the mechanisms at play in macrophages, neutrophils, and intestinal epithelial cells. Additionally, we underscore the cell type-specific roles of pyroptosis in vivo in these contexts during defense.
Collapse
Affiliation(s)
- Changhoon Oh
- Department of Microbiology and Immunology, Center for Microbial Pathogenesis and Host Responses, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Todd J Spears
- Department of Microbiology and Immunology, Center for Microbial Pathogenesis and Host Responses, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Youssef Aachoui
- Department of Microbiology and Immunology, Center for Microbial Pathogenesis and Host Responses, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
17
|
Egan MS, O’Rourke EA, Mageswaran SK, Zuo B, Martynyuk I, Demissie T, Hunter EN, Bass AR, Chang YW, Brodsky IE, Shin S. Inflammasomes primarily restrict cytosolic Salmonella replication within human macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.17.549348. [PMID: 37503120 PMCID: PMC10370064 DOI: 10.1101/2023.07.17.549348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Salmonella enterica serovar Typhimurium is a facultative intracellular pathogen that utilizes its type III secretion systems (T3SSs) to inject virulence factors into host cells and colonize the host. In turn, a subset of cytosolic immune receptors respond to T3SS ligands by forming multimeric signaling complexes called inflammasomes, which activate caspases that induce interleukin-1 (IL-1) family cytokine release and an inflammatory form of cell death called pyroptosis. Human macrophages mount a multifaceted inflammasome response to Salmonella infection that ultimately restricts intracellular bacterial replication. However, how inflammasomes restrict Salmonella replication remains unknown. We find that caspase-1 is essential for mediating inflammasome responses to Salmonella and restricting bacterial replication within human macrophages, with caspase-4 contributing as well. We also demonstrate that the downstream pore-forming protein gasdermin D (GSDMD) and Ninjurin-1 (NINJ1), a mediator of terminal cell lysis, play a role in controlling Salmonella replication in human macrophages. Notably, in the absence of inflammasome responses, we observed hyperreplication of Salmonella within the cytosol of infected cells as well as increased bacterial replication within vacuoles, suggesting that inflammasomes control Salmonella replication primarily within the cytosol and also within vacuoles. These findings reveal that inflammatory caspases and pyroptotic factors mediate inflammasome responses that restrict the subcellular localization of intracellular Salmonella replication within human macrophages.
Collapse
Affiliation(s)
- Marisa S. Egan
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Emily A. O’Rourke
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Shrawan Kumar Mageswaran
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Biao Zuo
- Electron Microscopy Resource Laboratory, Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Inna Martynyuk
- Electron Microscopy Resource Laboratory, Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Tabitha Demissie
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Emma N. Hunter
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Antonia R. Bass
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Yi-Wei Chang
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Igor E. Brodsky
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA
| | - Sunny Shin
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
18
|
Liu X, Wang C, Gai W, Sun Z, Fang L, Hua Z. Critical role of msgA in invasive capacity and intracellular survivability of Salmonella. Appl Environ Microbiol 2024; 90:e0020124. [PMID: 39136487 PMCID: PMC11409701 DOI: 10.1128/aem.00201-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/04/2024] [Indexed: 09/19/2024] Open
Abstract
Salmonella enterica serovar Typhimurium, which is a common foodborne pathogen, causes both intestinal and systemic infections in hosts. Salmonella has a complex pathogenic mechanism that involves invasive capacity and intracellular survivability, which hampers research on virulence of Salmonella. The virulence of Salmonella is primarily studied through Salmonella pathogenicity islands (SPIs). However, there are also genes outside these SPIs that significantly impact virulence. Macrophage survival gene msgA is positioned at a region independent of the SPIs and conserved in Salmonella. However, there has been limited research on msgA to date. This study aims to investigate the virulent function of msgA to deepen our understanding of Salmonella virulence. Proteomic and RT-qPCR analyses reveal that MsgA influences multiple metabolic pathways and the expression of SPIs. The depletion of msgA led to the significantly reduced invasive capacity and intracellular survivability, and thus the decreased virulence of Salmonella. In conclusion, our study suggests that MsgA is an important regulator that mainly regulates virulence. Further research into the function of MsgA will enhance the understanding of Salmonella pathogenesis and promote the application of Salmonella for medical treatment. IMPORTANCE Salmonella enterica serovar Typhimurium is a common foodborne pathogen, it has a complex pathogenic mechanism that involves invasive capacity and intracellular survivability. The virulence of Salmonella is primarily studied through its pathogenicity islands. In contrast, virulence genes located outside the Salmonella pathogenicity islands (SPIs) have received less attention. Macrophage survival gene (MsgA) is positioned at a region independent of the SPIs and conserved in Salmonella. Our research indicates that MsgA is a novel global regulator influencing the metabolic pathways and SPIs. Further research into the function of MsgA will enhance the understanding of Salmonella pathogenesis and promote the application of Salmonella for medical treatment.
Collapse
Affiliation(s)
- Xinqi Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Chengzhi Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing, China
| | - Wenhua Gai
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Zhaotong Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Lei Fang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing, China
| | - Zichun Hua
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Changzhou High-Tech Research Institute of Nanjing University and Jiangsu Target Pharma Laboratories Inc, Changzhou, China
| |
Collapse
|
19
|
Yu XJ, Xie H, Li Y, Liu M, Hou R, Predeus AV, Perez Sepulveda BM, Hinton JCD, Holden DW, Thurston TLM. Modulation of Salmonella virulence by a novel SPI-2 injectisome effector that interacts with the dystrophin-associated protein complex. mBio 2024; 15:e0112824. [PMID: 38904384 PMCID: PMC11253597 DOI: 10.1128/mbio.01128-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/16/2024] [Indexed: 06/22/2024] Open
Abstract
The injectisome encoded by Salmonella pathogenicity island 2 (SPI-2) had been thought to translocate 28 effectors. Here, we used a proteomic approach to characterize the secretome of a clinical strain of invasive non-typhoidal Salmonella enterica serovar Enteritidis that had been mutated to cause hyper-secretion of the SPI-2 injectisome effectors. Along with many known effectors, we discovered the novel SseM protein. sseM is widely distributed among the five subspecies of Salmonella enterica, is found in many clinically relevant serovars, and is co-transcribed with pipB2, a SPI-2 effector gene. The translocation of SseM required a functional SPI-2 injectisome. Following expression in human cells, SseM interacted with five components of the dystrophin-associated protein complex (DAPC), namely, β-2-syntrophin, utrophin/dystrophin, α-catulin, α-dystrobrevin, and β-dystrobrevin. The interaction between SseM and β-2-syntrophin and α-dystrobrevin was verified in Salmonella Typhimurium-infected cells and relied on the postsynaptic density-95/discs large/zonula occludens-1 (PDZ) domain of β-2-syntrophin and a sequence corresponding to a PDZ-binding motif (PBM) in SseM. A ΔsseM mutant strain had a small competitive advantage over the wild-type strain in the S. Typhimurium/mouse model of systemic disease. This phenotype was complemented by a plasmid expressing wild-type SseM from S. Typhimurium or S. Enteritidis and was dependent on the PBM of SseM. Therefore, a PBM within a Salmonella effector mediates interactions with the DAPC and modulates the systemic growth of bacteria in mice. Furthermore, the ΔsseM mutant strain displayed enhanced replication in bone marrow-derived macrophages, demonstrating that SseM restrains intracellular bacterial growth to modulate Salmonella virulence. IMPORTANCE In Salmonella enterica, the injectisome machinery encoded by Salmonella pathogenicity island 2 (SPI-2) is conserved among the five subspecies and delivers proteins (effectors) into host cells, which are required for Salmonella virulence. The identification and functional characterization of SPI-2 injectisome effectors advance our understanding of the interplay between Salmonella and its host(s). Using an optimized method for preparing secreted proteins and a clinical isolate of the invasive non-typhoidal Salmonella enterica serovar Enteritidis strain D24359, we identified 22 known SPI-2 injectisome effectors and one new effector-SseM. SseM modulates bacterial growth during murine infection and has a sequence corresponding to a postsynaptic density-95/discs large/zonula occludens-1 (PDZ)-binding motif that is essential for interaction with the PDZ-containing host protein β-2-syntrophin and other components of the dystrophin-associated protein complex (DAPC). To our knowledge, SseM is unique among Salmonella effectors in containing a functional PDZ-binding motif and is the first bacterial protein to target the DAPC.
Collapse
Affiliation(s)
- Xiu-Jun Yu
- Department of Infectious Disease, Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Haixia Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Yan Li
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Mei Liu
- Department of Infectious Disease, Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Ruhong Hou
- Department of Infectious Disease, Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Alexander V. Predeus
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Blanca M. Perez Sepulveda
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Jay C. D. Hinton
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - David W. Holden
- Department of Infectious Disease, Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Teresa L. M. Thurston
- Department of Infectious Disease, Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| |
Collapse
|
20
|
Jastrab JB, Kagan JC. Strategies of bacterial detection by inflammasomes. Cell Chem Biol 2024; 31:835-850. [PMID: 38636521 PMCID: PMC11103797 DOI: 10.1016/j.chembiol.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/09/2024] [Accepted: 03/26/2024] [Indexed: 04/20/2024]
Abstract
Mammalian innate immunity is regulated by pattern-recognition receptors (PRRs) and guard proteins, which use distinct strategies to detect infections. PRRs detect bacterial molecules directly, whereas guards detect host cell manipulations by microbial virulence factors. Despite sensing infection through different mechanisms, both classes of innate immune sensors can activate the inflammasome, an immune complex that can mediate cell death and inflammation. Inflammasome-mediated immune responses are crucial for host defense against many bacterial pathogens and prevent invasion by non-pathogenic organisms. In this review, we discuss the mechanisms by which inflammasomes are stimulated by PRRs and guards during bacterial infection, and the strategies used by virulent bacteria to evade inflammasome-mediated immunity.
Collapse
Affiliation(s)
- Jordan B Jastrab
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Jonathan C Kagan
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
21
|
Kim MB, Jung HR, Lee YJ. Emergence of Salmonella Infantis carrying the pESI megaplasmid in commercial farms of five major integrated broiler operations in Korea. Poult Sci 2024; 103:103516. [PMID: 38368739 PMCID: PMC10884471 DOI: 10.1016/j.psj.2024.103516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/20/2024] Open
Abstract
Considering Salmonella transmission occurs through several routes in integrated broiler operations, control of nontyphoidal Salmonella in commercial farms is essential. This study aimed to compare the distribution of persistent Salmonella serovars in environments and dead chickens between 5 major integrated broiler operations in Korea. The prevalence of Salmonella-positive farms in dust prior to placement by operations was 0 to 25%, but the prevalence in dust and feces at the time of depletion was increased to 16.7 to 41.7% and 16.7 to 66.7%, respectively. Moreover, the prevalence of farms with Salmonella in chickens that died within 1 week old and at 4 to 5 weeks old ranged from 8.3 to 58.3% and 16.7 to 41.7%, respectively. The prevalence of Salmonella enterica serovar Infantis-positive farms in dust prior to placement and in chickens that died within 1 week old was 5.2 and 3.4%, respectively, but the prevalence in dust and feces at the time of depletion and in chickens that died at 4 to 5 weeks old was significantly increased to 27.6, 41.4, and 20.7%, respectively (P < 0.05). Interestingly, the plasmid of emerging S. Infantis (pESI) was only identified in S. Infantis, and the prevalence of multidrug-resistance was significantly higher in pESI-positive S. Infantis (99.2%) than in pESI-negative S. Infantis (6.7%) (P < 0.05). The distribution of pulsotypes between pESI-positive and pESI-negative S. Infantis were varied, but a majority of S. Infantis were clustered only 2 pulsotypes. Moreover, pESI-positive S. Infantis harbored more virulence factors than pESI-negative S. Infantis. This study is the first report on characteristics of S. Infantis carrying the pESI plasmid in commercial broiler farms in Korea.
Collapse
Affiliation(s)
- Min Beom Kim
- College of Veterinary Medicine & Institute for Veterinary Biomedical Science, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hye-Ri Jung
- College of Veterinary Medicine & Institute for Veterinary Biomedical Science, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Young Ju Lee
- College of Veterinary Medicine & Institute for Veterinary Biomedical Science, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
22
|
Nasser F, Oke MT, Knezevic S, D'Costa VM. Bacterial Pathogenesis: Assessment of Intracellular Positioning of Pathogen-Containing Vacuoles During Infection. Curr Protoc 2024; 4:e1021. [PMID: 38619090 DOI: 10.1002/cpz1.1021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Intracellular bacterial pathogens implement a diverse array of strategies to target host cells and establish infection. For vacuolar pathogens, the process of pathogen-containing vacuole movement within host cells, termed intracellular trafficking, is central to both pathogen survival and infection progression. Typically a process mediated by secreted virulence factors that manipulate the host cytoskeletal machinery, internalized pathogen-containing vacuoles traffic to the site of replication to establish a unique replicative niche, and if applicable, traffic back toward the host cell periphery for cell-to-cell spread. As such, the intracellular positioning of pathogen-containing vacuoles represents a fundamental measure of infection progression. Here, we describe a fluorescence microscopy-based method to quantitatively assess bacterial intracellular positioning, using Salmonella enterica serovar Typhimurium infection of epithelial cells as a model. This experimental approach can be modified to study infection in diverse host cell types, and with a broad array of pathogens. The system can also be adapted to examine the kinetics of infection, identify secreted virulence factors that mediate host trafficking, investigate host factors that are targeted by the pathogen for trafficking, and assess functional domains within a virulence factor responsible for mediating the phenotype. Collectively, these tools can provide fundamental insight into the pathogenesis of a diverse array of intracellular bacterial pathogens, and new host factors that are hijacked to mediate infection. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Culture and preparation of host cells Alternate Protocol: Culture and preparation of host cells to assess host factor contribution to bacterial positioning Basic Protocol 2: Infection of epithelial cells with S. Typhimurium Basic Protocol 3: Fluorescence staining for analysis of bacterial positioning Basic Protocol 4: Fluorescence microscopy analysis of bacterial positioning.
Collapse
Affiliation(s)
- Farah Nasser
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Canada
| | - Mosopefoluwa T Oke
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Canada
- These authors contributed equally to this work
| | - Sara Knezevic
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Canada
- These authors contributed equally to this work
| | - Vanessa M D'Costa
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Canada
| |
Collapse
|
23
|
Singh MK, Kenney LJ. Visualizing the invisible: novel approaches to visualizing bacterial proteins and host-pathogen interactions. Front Bioeng Biotechnol 2024; 12:1334503. [PMID: 38415188 PMCID: PMC10898356 DOI: 10.3389/fbioe.2024.1334503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/19/2024] [Indexed: 02/29/2024] Open
Abstract
Host-pathogen interactions play a critical role in infectious diseases, and understanding the underlying mechanisms is vital for developing effective therapeutic strategies. The visualization and characterization of bacterial proteins within host cells is key to unraveling the dynamics of these interactions. Various protein labeling strategies have emerged as powerful tools for studying host-pathogen interactions, enabling the tracking, localization, and functional analysis of bacterial proteins in real-time. However, the labeling and localization of Salmonella secreted type III secretion system (T3SS) effectors in host cells poses technical challenges. Conventional methods disrupt effector stoichiometry and often result in non-specific staining. Bulky fluorescent protein fusions interfere with effector secretion, while other tagging systems such as 4Cys-FLaSH/Split-GFP suffer from low labeling specificity and a poor signal-to-noise ratio. Recent advances in state-of-the-art techniques have augmented the existing toolkit for monitoring the translocation and dynamics of bacterial effectors. This comprehensive review delves into the bacterial protein labeling strategies and their application in imaging host-pathogen interactions. Lastly, we explore the obstacles faced and potential pathways forward in the realm of protein labeling strategies for visualizing interactions between hosts and pathogens.
Collapse
Affiliation(s)
- Moirangthem Kiran Singh
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States
| | - Linda J. Kenney
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States
- Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
24
|
Ghosh S, Bandyopadhyay S, Smith DM, Adak S, Semenkovich CF, Nagy L, Wolfgang MJ, O’Connor TJ. Legionella pneumophila usurps host cell lipids for vacuole expansion and bacterial growth. PLoS Pathog 2024; 20:e1011996. [PMID: 38386622 PMCID: PMC10883544 DOI: 10.1371/journal.ppat.1011996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
Vacuolar pathogens reside in membrane-bound compartments within host cells. Maintaining the integrity of this compartment is paramount to bacterial survival and replication as it protects against certain host surveillance mechanisms that function to eradicate invading pathogens. Preserving this compartment during bacterial replication requires expansion of the vacuole membrane to accommodate the increasing number of bacteria, and yet, how this is accomplished remains largely unknown. Here, we show that the vacuolar pathogen Legionella pneumophila exploits multiple sources of host cell fatty acids, including inducing host cell fatty acid scavenging pathways, in order to promote expansion of the replication vacuole and bacteria growth. Conversely, when exogenous lipids are limited, the decrease in host lipid availability restricts expansion of the replication vacuole membrane, resulting in a higher density of bacteria within the vacuole. Modifying the architecture of the vacuole prioritizes bacterial growth by allowing the greatest number of bacteria to remain protected by the vacuole membrane despite limited resources for its expansion. However, this trade-off is not without risk, as it can lead to vacuole destabilization, which is detrimental to the pathogen. However, when host lipid resources become extremely scarce, for example by inhibiting host lipid scavenging, de novo biosynthetic pathways, and/or diverting host fatty acids to storage compartments, bacterial replication becomes severely impaired, indicating that host cell fatty acid availability also directly regulates L. pneumophila growth. Collectively, these data demonstrate dual roles for host cell fatty acids in replication vacuole expansion and bacterial proliferation, revealing the central functions for these molecules and their metabolic pathways in L. pneumophila pathogenesis.
Collapse
Affiliation(s)
- Soma Ghosh
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Saumya Bandyopadhyay
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Danielle M. Smith
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Sangeeta Adak
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Clay F. Semenkovich
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Laszlo Nagy
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, Florida, United States of America
| | - Michael J. Wolfgang
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Tamara J. O’Connor
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
25
|
Bandyopadhyay S, Zhang X, Ascura A, Edelblum KL, Bonder EM, Gao N. Salmonella engages CDC42 effector protein 1 for intracellular invasion. J Cell Physiol 2024; 239:36-50. [PMID: 37877586 PMCID: PMC11730249 DOI: 10.1002/jcp.31142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/25/2023] [Accepted: 10/03/2023] [Indexed: 10/26/2023]
Abstract
Human enterocytes are primary targets of infection by invasive bacterium Salmonella Typhimurium, and studies using nonintestinal epithelial cells established that S. Typhimurium activates Rho family GTPases, primarily CDC42, to modulate the actin cytoskeletal network for invasion. The host intracellular protein network that engages CDC42 and influences the pathogen's invasive capacity are relatively unclear. Here, proteomic analyses of canonical and variant CDC42 interactomes identified a poorly characterized CDC42 interacting protein, CDC42EP1, whose intracellular localization is rapidly redistributed and aggregated around the invading bacteria. CDC42EP1 associates with SEPTIN-7 and Villin, and its relocalization and bacterial engagement depend on host CDC42 and S. Typhimurium's capability of activating CDC42. Unlike CDC42, CDC42EP1 is not required for S. Typhimurium's initial cellular entry but is found to associate with Salmonella-containing vacuoles after long-term infections, indicating a contribution to the pathogen's intracellular growth and replication. These results uncover a new host regulator of enteric Salmonella infections, which may be targeted to restrict bacterial load at the primary site of infection to prevent systemic spread.
Collapse
Affiliation(s)
| | - Xiao Zhang
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | - Andrea Ascura
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | - Karen L. Edelblum
- Department of Pathology, Immunology, and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Edward M. Bonder
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | - Nan Gao
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| |
Collapse
|
26
|
Jiménez-Guerrero I, López-Baena FJ, Medina C. Microscope Subcellular Localization of Plant-Interacting Bacterial Effectors in Animal Cell Cultures. Methods Mol Biol 2024; 2751:165-178. [PMID: 38265716 DOI: 10.1007/978-1-0716-3617-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Eukaryote-interacting bacteria have developed along the evolution of an arsenal of tools to interact with potential hosts and to evade their defensive responses. Among these tools, the effector proteins are gaining a special importance due to the high diversity of molecular actions that they play in the host cell, with the final aim of taking the control over the cell. Bacteria inject these effectors into the cytosol of the host cells through distinct ways, as the type III secretion system. The study of the effectors' molecular roles inside the host cell is challenging, due in part to the lack of traceability of such proteins once they are delivered by the bacteria. Here, we describe in depth a methodology that combines the increase of the bacterial effector concentration by protein expression systems with the use of heterologous hosts to facilitate the visualization of the subcellular targeting of the effector inside the host cell by fluorescence microscopy.
Collapse
Affiliation(s)
| | | | - Carlos Medina
- Department of Microbiology, University of Seville, Seville, Spain.
| |
Collapse
|
27
|
Yang W, Feng Y, Yan J, Kang C, Yao T, Sun H, Cheng Z. Phosphate (Pi) Transporter PIT1 Induces Pi Starvation in Salmonella-Containing Vacuole in HeLa Cells. Int J Mol Sci 2023; 24:17216. [PMID: 38139044 PMCID: PMC10743064 DOI: 10.3390/ijms242417216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium), an important foodborne pathogen, causes diarrheal illness and gastrointestinal diseases. S. Typhimurium survives and replicates in phagocytic and non-phagocytic cells for acute or chronic infections. In these cells, S. Typhimurium resides within Salmonella-containing vacuoles (SCVs), in which the phosphate (Pi) concentration is low. S. Typhimurium senses low Pi and expresses virulence factors to modify host cells. However, the mechanism by which host cells reduce the Pi concentration in SCVs is not clear. In this study, we show that through the TLR4-MyD88-NF-κB signaling pathway, S. Typhimurium upregulates PIT1, which in turn transports Pi from SCVs into the cytosol and results in Pi starvation in SCVs. Immunofluorescence and western blotting analysis reveal that after the internalization of S. Typhimurium, PIT1 is located on SCV membranes. Silencing or overexpressing PIT1 inhibits or promotes Pi starvation, Salmonella pathogenicity island-2 (SPI-2) gene expression, and replication in SCVs. The S. Typhimurium ΔmsbB mutant or silenced TLR4-MyD88-NF-κB pathway suppresses the expression of the SPI-2 genes and promotes the fusion of SCVs with lysosomes. Our results illustrate that S. Typhimurium exploits the host innate immune responses as signals to promote intracellular replication, and they provide new insights for the development of broad-spectrum therapeutics to combat bacterial infections.
Collapse
Affiliation(s)
- Wen Yang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300071, China; (W.Y.); (Y.F.); (J.Y.); (C.K.); (T.Y.); (H.S.)
- TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin 300457, China
| | - Yingxing Feng
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300071, China; (W.Y.); (Y.F.); (J.Y.); (C.K.); (T.Y.); (H.S.)
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jun Yan
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300071, China; (W.Y.); (Y.F.); (J.Y.); (C.K.); (T.Y.); (H.S.)
- TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin 300457, China
| | - Chenbo Kang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300071, China; (W.Y.); (Y.F.); (J.Y.); (C.K.); (T.Y.); (H.S.)
- TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin 300457, China
| | - Ting Yao
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300071, China; (W.Y.); (Y.F.); (J.Y.); (C.K.); (T.Y.); (H.S.)
- TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin 300457, China
| | - Hongmin Sun
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300071, China; (W.Y.); (Y.F.); (J.Y.); (C.K.); (T.Y.); (H.S.)
- TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin 300457, China
| | - Zhihui Cheng
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300071, China; (W.Y.); (Y.F.); (J.Y.); (C.K.); (T.Y.); (H.S.)
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
28
|
Pérez Jorge G, Gontijo MTP, Brocchi M. Salmonella enterica and outer membrane vesicles are current and future options for cancer treatment. Front Cell Infect Microbiol 2023; 13:1293351. [PMID: 38116133 PMCID: PMC10728604 DOI: 10.3389/fcimb.2023.1293351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/13/2023] [Indexed: 12/21/2023] Open
Abstract
Conventional cancer therapies have many limitations. In the last decade, it has been suggested that bacteria-mediated immunotherapy may circumvent the restrictions of traditional treatments. For example, Salmonella enterica is the most promising bacteria for treating cancer due to its intrinsic abilities, such as killing tumor cells, targeting, penetrating, and proliferating into the tumor. S. enterica has been genetically modified to ensure safety and increase its intrinsic antitumor efficacy. This bacterium has been used as a vector for delivering anticancer agents and as a combination therapy with chemotherapy, radiotherapy, or photothermic. Recent studies have reported the antitumor efficacy of outer membrane vesicles (OMVs) derived from S. enterica. OMVs are considered safer than attenuated bacteria and can stimulate the immune system as they comprise most of the immunogens found on the surface of their parent bacteria. Furthermore, OMVs can also be used as nanocarriers for antitumor agents. This review describes the advances in S. enterica as immunotherapy against cancer and the mechanisms by which Salmonella fights cancer. We also highlight the use of OMVs as immunotherapy and nanocarriers of anticancer agents. OMVs derived from S. enterica are innovative and promising strategies requiring further investigation.
Collapse
Affiliation(s)
- Genesy Pérez Jorge
- Universidade Estadual de Campinas (UNICAMP), Departamento de Genética, Evolução, Microbiologia e Imunologia, Laboratório de Doenças Tropicais, Instituto de Biologia, Campinas, Brazil
| | - Marco Túlio Pardini Gontijo
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
| | - Marcelo Brocchi
- Universidade Estadual de Campinas (UNICAMP), Departamento de Genética, Evolução, Microbiologia e Imunologia, Laboratório de Doenças Tropicais, Instituto de Biologia, Campinas, Brazil
| |
Collapse
|
29
|
Kirchenwitz M, Halfen J, von Peinen K, Prettin S, Kollasser J, Zur Lage S, Blankenfeldt W, Brakebusch C, Rottner K, Steffen A, Stradal TEB. RhoB promotes Salmonella survival by regulating autophagy. Eur J Cell Biol 2023; 102:151358. [PMID: 37703749 DOI: 10.1016/j.ejcb.2023.151358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/05/2023] [Accepted: 08/29/2023] [Indexed: 09/15/2023] Open
Abstract
Salmonella enterica serovar Typhimurium manipulates cellular Rho GTPases for host cell invasion by effector protein translocation via the Type III Secretion System (T3SS). The two Guanine nucleotide exchange (GEF) mimicking factors SopE and -E2 and the inositol phosphate phosphatase (PiPase) SopB activate the Rho GTPases Rac1, Cdc42 and RhoA, thereby mediating bacterial invasion. S. Typhimurium lacking these three effector proteins are largely invasion-defective. Type III secretion is crucial for both early and later phases of the intracellular life of S. Typhimurium. Here we investigated whether and how the small GTPase RhoB, known to localize on endomembrane vesicles and at the invasion site of S. Typhimurium, contributes to bacterial invasion and to subsequent steps relevant for S. Typhimurium lifestyle. We show that RhoB is significantly upregulated within hours of Salmonella infection. This effect depends on the presence of the bacterial effector SopB, but does not require its phosphatase activity. Our data reveal that SopB and RhoB bind to each other, and that RhoB localizes on early phagosomes of intracellular S. Typhimurium. Whereas both SopB and RhoB promote intracellular survival of Salmonella, RhoB is specifically required for Salmonella-induced upregulation of autophagy. Finally, in the absence of RhoB, vacuolar escape and cytosolic hyper-replication of S. Typhimurium is diminished. Our findings thus uncover a role for RhoB in Salmonella-induced autophagy, which supports intracellular survival of the bacterium and is promoted through a positive feedback loop by the Salmonella effector SopB.
Collapse
Affiliation(s)
- Marco Kirchenwitz
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Jessica Halfen
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Kristin von Peinen
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Silvia Prettin
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Jana Kollasser
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Susanne Zur Lage
- Department Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Wulf Blankenfeldt
- Department Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Cord Brakebusch
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Klemens Rottner
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany; Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | - Anika Steffen
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Theresia E B Stradal
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany.
| |
Collapse
|
30
|
Teixeira SC, Teixeira TL, Tavares PCB, Alves RN, da Silva AA, Borges BC, Martins FA, Dos Santos MA, de Castilhos P, E Silva Brígido RT, Notário AFO, Silveira ACA, da Silva CV. Subversion strategies of lysosomal killing by intracellular pathogens. Microbiol Res 2023; 277:127503. [PMID: 37748260 DOI: 10.1016/j.micres.2023.127503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/08/2023] [Accepted: 09/17/2023] [Indexed: 09/27/2023]
Abstract
Many pathogenic organisms need to reach either an intracellular compartment or the cytoplasm of a target cell for their survival, replication or immune system evasion. Intracellular pathogens frequently penetrate into the cell through the endocytic and phagocytic pathways (clathrin-mediated endocytosis, phagocytosis and macropinocytosis) that culminates in fusion with lysosomes. However, several mechanisms are triggered by pathogenic microorganisms - protozoan, bacteria, virus and fungus - to avoid destruction by lysosome fusion, such as rupture of the phagosome and thereby release into the cytoplasm, avoidance of autophagy, delaying in both phagolysosome biogenesis and phagosomal maturation and survival/replication inside the phagolysosome. Here we reviewed the main data dealing with phagosome maturation and evasion from lysosomal killing by different bacteria, protozoa, fungi and virus.
Collapse
Affiliation(s)
- Samuel Cota Teixeira
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Thaise Lara Teixeira
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | | | | | - Aline Alves da Silva
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Bruna Cristina Borges
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Flávia Alves Martins
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Marlus Alves Dos Santos
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Patrícia de Castilhos
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | | | | | | | - Claudio Vieira da Silva
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil.
| |
Collapse
|
31
|
Anandachar MS, Roy S, Sinha S, Boadi A, Katkar GD, Ghosh P. Diverse gut pathogens exploit the host engulfment pathway via a conserved mechanism. J Biol Chem 2023; 299:105390. [PMID: 37890785 PMCID: PMC10696401 DOI: 10.1016/j.jbc.2023.105390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/22/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
Macrophages clear infections by engulfing and digesting pathogens within phagolysosomes. Pathogens escape this fate by engaging in a molecular arms race; they use WxxxE motif-containing "effector" proteins to subvert the host cells they invade and seek refuge within protective vacuoles. Here, we define the host component of the molecular arms race as an evolutionarily conserved polar "hot spot" on the PH domain of ELMO1 (Engulfment and Cell Motility protein 1), which is targeted by diverse WxxxE effectors. Using homology modeling and site-directed mutagenesis, we show that a lysine triad within the "patch" directly binds all WxxxE effectors tested: SifA (Salmonella), IpgB1 and IpgB2 (Shigella), and Map (enteropathogenic Escherichia coli). Using an integrated SifA-host protein-protein interaction network, in silico network perturbation, and functional studies, we show that the major consequences of preventing SifA-ELMO1 interaction are reduced Rac1 activity and microbial invasion. That multiple effectors of diverse structure, function, and sequence bind the same hot spot on ELMO1 suggests that the WxxxE effector(s)-ELMO1 interface is a convergence point of intrusion detection and/or host vulnerability. We conclude that the interface may represent the fault line in coevolved molecular adaptations between pathogens and the host, and its disruption may serve as a therapeutic strategy.
Collapse
Affiliation(s)
- Mahitha Shree Anandachar
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, California, USA; Department of Pathology, University of California San Diego, San Diego, California, USA
| | - Suchismita Roy
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, California, USA
| | - Saptarshi Sinha
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, California, USA
| | - Agyekum Boadi
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, California, USA
| | - Gajanan D Katkar
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, California, USA.
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, California, USA; Department of Medicine, University of California San Diego, San Diego, California, USA.
| |
Collapse
|
32
|
Fattinger SA, Maurer L, Geiser P, Bernard EM, Enz U, Ganguillet S, Gül E, Kroon S, Demarco B, Mack V, Furter M, Barthel M, Pelczar P, Shao F, Broz P, Sellin ME, Hardt WD. Gasdermin D is the only Gasdermin that provides protection against acute Salmonella gut infection in mice. Proc Natl Acad Sci U S A 2023; 120:e2315503120. [PMID: 37988464 PMCID: PMC10691232 DOI: 10.1073/pnas.2315503120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/05/2023] [Indexed: 11/23/2023] Open
Abstract
Gasdermins (GSDMs) share a common functional domain structure and are best known for their capacity to form membrane pores. These pores are hallmarks of a specific form of cell death called pyroptosis and mediate the secretion of pro-inflammatory cytokines such as interleukin 1β (IL1β) and interleukin 18 (IL18). Thereby, Gasdermins have been implicated in various immune responses against cancer and infectious diseases such as acute Salmonella Typhimurium (S.Tm) gut infection. However, to date, we lack a comprehensive functional assessment of the different Gasdermins (GSDMA-E) during S.Tm infection in vivo. Here, we used epithelium-specific ablation, bone marrow chimeras, and mouse lines lacking individual Gasdermins, combinations of Gasdermins or even all Gasdermins (GSDMA1-3C1-4DE) at once and performed littermate-controlled oral S.Tm infections in streptomycin-pretreated mice to investigate the impact of all murine Gasdermins. While GSDMA, C, and E appear dispensable, we show that GSDMD i) restricts S.Tm loads in the gut tissue and systemic organs, ii) controls gut inflammation kinetics, and iii) prevents epithelium disruption by 72 h of the infection. Full protection requires GSDMD expression by both bone-marrow-derived lamina propria cells and intestinal epithelial cells (IECs). In vivo experiments as well as 3D-, 2D-, and chimeric enteroid infections further show that infected IEC extrusion proceeds also without GSDMD, but that GSDMD controls the permeabilization and morphology of the extruding IECs, affects extrusion kinetics, and promotes overall mucosal barrier capacity. As such, this work identifies a unique multipronged role of GSDMD among the Gasdermins for mucosal tissue defense against a common enteric pathogen.
Collapse
Affiliation(s)
- Stefan A. Fattinger
- Department of Biology, Institute of Microbiology, ETH Zurich, Zurich8093, Switzerland
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala75123, Sweden
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Luca Maurer
- Department of Biology, Institute of Microbiology, ETH Zurich, Zurich8093, Switzerland
| | - Petra Geiser
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala75123, Sweden
| | - Elliott M. Bernard
- Department of Immunobiology, University of Lausanne, Epalinges1066, Switzerland
| | - Ursina Enz
- Department of Biology, Institute of Microbiology, ETH Zurich, Zurich8093, Switzerland
| | - Suwannee Ganguillet
- Department of Biology, Institute of Microbiology, ETH Zurich, Zurich8093, Switzerland
| | - Ersin Gül
- Department of Biology, Institute of Microbiology, ETH Zurich, Zurich8093, Switzerland
| | - Sanne Kroon
- Department of Biology, Institute of Microbiology, ETH Zurich, Zurich8093, Switzerland
| | - Benjamin Demarco
- Department of Immunobiology, University of Lausanne, Epalinges1066, Switzerland
| | - Vanessa Mack
- Department of Immunobiology, University of Lausanne, Epalinges1066, Switzerland
| | - Markus Furter
- Department of Biology, Institute of Microbiology, ETH Zurich, Zurich8093, Switzerland
| | - Manja Barthel
- Department of Biology, Institute of Microbiology, ETH Zurich, Zurich8093, Switzerland
| | - Pawel Pelczar
- Center for Transgenic Models, University of Basel, Basel4002, Switzerland
| | - Feng Shao
- National Institute of Biological Sciences, Beijing102206, China
| | - Petr Broz
- Department of Immunobiology, University of Lausanne, Epalinges1066, Switzerland
| | - Mikael E. Sellin
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala75123, Sweden
| | - Wolf-Dietrich Hardt
- Department of Biology, Institute of Microbiology, ETH Zurich, Zurich8093, Switzerland
| |
Collapse
|
33
|
Yu Y, Zhang Z, Yu Y. Timing of Phagosome Maturation Depends on Their Transport Switching from Actin to Microtubule Tracks. J Phys Chem B 2023; 127:9312-9322. [PMID: 37871280 PMCID: PMC10759163 DOI: 10.1021/acs.jpcb.3c05647] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Phagosomes, specialized membrane compartments responsible for digesting internalized pathogens, undergo sequential dynamic and biochemical changes as they mature from nascent phagosomes to degradative phagolysosomes. Maturation of phagosomes depends on their transport along actin filaments and microtubules. However, the specific quantitative relationship between the biochemical transformation and transport dynamics remains poorly characterized. The autonomous nature of phagosomes, moving and maturing at different rates, makes understanding this relationship challenging. Addressing this challenge, in this study we engineered particle sensors to image and quantify single phagosomes' maturation. We found that as phagosomes move from the actin cortex to microtubule tracks, the timing of their actin-to-microtubule transition governs the duration of the early phagosome stage before acquiring degradative capacities. Prolonged entrapment of phagosomes in the actin cortex extends the early phagosome stage by delaying the dissociation of early endosome markers and phagosome acidification. Conversely, a shortened transition from actin- to microtubule-based movements causes the opposite effect on phagosome maturation. These results suggest that the actin- and microtubule-based transport of phagosomes functions like a "clock" to coordinate the timing of biochemical events during phagosome maturation, which is crucial for effective pathogen degradation.
Collapse
Affiliation(s)
- Yanqi Yu
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Zihan Zhang
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Yan Yu
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| |
Collapse
|
34
|
Li Y, Sun Y, Zhang Y, Li Q, Wang S, Curtiss R, Shi H. A Bacterial mRNA-Lysis-Mediated Cargo Release Vaccine System for Regulated Cytosolic Surveillance and Optimized Antigen Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303568. [PMID: 37867213 PMCID: PMC10667801 DOI: 10.1002/advs.202303568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/14/2023] [Indexed: 10/24/2023]
Abstract
Engineered vector-based in vivo protein delivery platforms have made significant progress for both prophylactic and therapeutic applications. However, the lack of effective release strategies results in foreign cargo being trapped within the vector, restricting the provision of significant performance benefits and enhanced therapeutic results compared to traditional vaccines. Herein, the development of a Salmonella mRNA interferase regulation vector (SIRV) system is reported to overcome this challenge. The genetic circuits are engineered that (1) induce self-lysis to release foreign antigens into target cells and (2) activate the cytosolic surveillance cGAS-STING axis by releasing DNA into the cytoplasm. Delayed synthesis of the MazF interferase regulates differential mRNA cleavage, resulting in a 36-fold increase in the delivery of foreign antigens and modest activation of the inflammasome, which collectively contribute to the marked maturation of antigen-presenting cells (APCs). Bacteria delivering the protective antigen SaoA exhibits excellent immunogenicity and safety in mouse and pig models, significantly improving the survival rate of animals challenged with multiple serotypes of Streptococcus suis. Thus, the SIRV system enables the effective integration of various modular components and antigen cargos, allowing for the generation of an extensive range of intracellular protein delivery systems using multiple bacterial species in a highly efficient manner.
Collapse
Affiliation(s)
- Yu‐an Li
- College of Veterinary MedicineYangzhou UniversityYangzhouJiangsu225000China
- Jiangsu Co‐innovation Center for the Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou225000China
| | - Yanni Sun
- College of Veterinary MedicineYangzhou UniversityYangzhouJiangsu225000China
- Jiangsu Co‐innovation Center for the Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou225000China
| | - Yuqin Zhang
- College of Veterinary MedicineYangzhou UniversityYangzhouJiangsu225000China
- Jiangsu Co‐innovation Center for the Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou225000China
| | - Quan Li
- College of Veterinary MedicineYangzhou UniversityYangzhouJiangsu225000China
- Jiangsu Co‐innovation Center for the Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou225000China
| | - Shifeng Wang
- Department of Infectious Diseases and ImmunologyCollege of Veterinary MedicineUniversity of FloridaGainesvilleFL32611‐0880USA
| | - Roy Curtiss
- Department of Infectious Diseases and ImmunologyCollege of Veterinary MedicineUniversity of FloridaGainesvilleFL32611‐0880USA
| | - Huoying Shi
- College of Veterinary MedicineYangzhou UniversityYangzhouJiangsu225000China
- Jiangsu Co‐innovation Center for the Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou225000China
- Joint International Research Laboratory of Agriculture and Agri‐Product SafetyYangzhou University (JIRLAAPS)Yangzhou225000China
| |
Collapse
|
35
|
Thurston TLM, Holden DW. The Salmonella Typhi SPI-2 injectisome enigma. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001405. [PMID: 37862087 PMCID: PMC10634361 DOI: 10.1099/mic.0.001405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023]
Abstract
The Salmonella pathogenicity island 2 (SPI-2)-encoded type III secretion system (injectisome) is assembled following uptake of bacteria into vacuoles in mammalian cells. The injectisome translocates virulence proteins (effectors) into infected cells. Numerous studies have established the requirement for a functional SPI-2 injectisome for growth of Salmonella Typhimurium in mouse macrophages, but the results of similar studies involving Salmonella Typhi and human-derived macrophages are not consistent. It is important to clarify the functions of the S. Typhi SPI-2 injectisome, not least because an inactivated SPI-2 injectisome forms the basis for live attenuated S. Typhi vaccines that have undergone extensive trials in humans. Intracellular expression of injectisome genes and effector delivery take longer in the S. Typhi/human macrophage model than for S. Typhimurium and we propose that this could explain the conflicting results. Furthermore, strains of both S. Typhimurium and S. Typhi contain intact genes for several 'core' effectors. In S. Typhimurium these cooperate to regulate the vacuole membrane and contribute to intracellular bacterial replication; similar functions are therefore likely in S. Typhi.
Collapse
Affiliation(s)
- Teresa L. M. Thurston
- Department of Infectious Disease, Centre for Bacterial Resistance Biology, Imperial College London, London, SW7 2AZ, UK
| | - David W. Holden
- Department of Infectious Disease, Centre for Bacterial Resistance Biology, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
36
|
Chandrasekhar H, Mohapatra G, Kajal K, Singh M, Walia K, Rana S, Kaur N, Sharma S, Tuli A, Das P, Srikanth CV. SifA SUMOylation governs Salmonella Typhimurium intracellular survival via modulation of lysosomal function. PLoS Pathog 2023; 19:e1011686. [PMID: 37773952 PMCID: PMC10566704 DOI: 10.1371/journal.ppat.1011686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 10/11/2023] [Accepted: 09/14/2023] [Indexed: 10/01/2023] Open
Abstract
One of the mechanisms shaping the pathophysiology during the infection of enteric pathogen Salmonella Typhimurium is host PTM machinery utilization by the pathogen encoded effectors. Salmonella Typhimurium (S. Tm) during infection in host cells thrives in a vacuolated compartment, Salmonella containing vacuole (SCV), which sequentially acquires host endosomal and lysosomal markers. Long tubular structures, called as Salmonella induced filaments (SIFs), are further generated by S. Tm, which are known to be required for SCV's nutrient acquisition, membrane maintenance and stability. A tightly coordinated interaction involving prominent effector SifA and various host adapters PLEKHM1, PLEKHM2 and Rab GTPases govern SCV integrity and SIF formation. Here, we report for the first time that the functional regulation of SifA is modulated by PTM SUMOylation at its 11th lysine. S. Tm expressing SUMOylation deficient lysine 11 mutants of SifA (SifAK11R) is defective in intracellular proliferation due to compromised SIF formation and enhanced lysosomal acidification. Furthermore, murine competitive index experiments reveal defective in vivo proliferation and weakened virulence of SifAK11R mutant. Concisely, our data reveal that SifAK11R mutant nearly behaves like a SifA knockout strain which impacts Rab9-MPR mediated lysosomal acidification pathway, the outcome of which culminates in reduced bacterial load in in vitro and in vivo infection model systems. Our results bring forth a novel pathogen-host crosstalk mechanism where the SUMOylation of effector SifA regulated S. Tm intracellular survival.
Collapse
Affiliation(s)
| | - Gayatree Mohapatra
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Kirti Kajal
- Regional Centre for Biotechnology, Faridabad, India
| | - Mukesh Singh
- All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Kshitiz Walia
- Institute of Microbial Technology, Chandigarh, India
| | - Sarika Rana
- Laboratory of Immunobiology, Universite´ Libre de Bruxelles, Gosselies, Belgium
| | - Navneet Kaur
- Department of Laboratory Medicine, Yale University, New Haven, Connecticut, United States of America
| | | | - Amit Tuli
- Institute of Microbial Technology, Chandigarh, India
| | - Prasenjit Das
- All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | | |
Collapse
|
37
|
Anandachar MS, Roy S, Sinha S, Agyekum B, Ibeawuchi SR, Gementera H, Amamoto A, Katkar GD, Ghosh P. Diverse Gut Pathogens Exploit the Host Engulfment Pathway via a Conserved Mechanism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.09.536168. [PMID: 37066267 PMCID: PMC10104235 DOI: 10.1101/2023.04.09.536168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Macrophages clear infections by engulfing and digesting pathogens within phagolysosomes. Pathogens escape this fate by engaging in a molecular arms race; they use WxxxE motif-containing effector proteins to subvert the host cells they invade and seek refuge within protective vacuoles. Here we define the host component of the molecular arms race as an evolutionarily conserved polar hotspot on the PH-domain of ELMO1 (Engulfment and Cell Motility1), which is targeted by diverse WxxxE-effectors. Using homology modeling and site-directed mutagenesis, we show that a lysine triad within the patch directly binds all WxxxE-effectors tested: SifA (Salmonella), IpgB1 and IpgB2 (Shigella), and Map (enteropathogenic E. coli). Using an integrated SifA-host protein-protein interaction (PPI) network, in-silico network perturbation, and functional studies we show that the major consequences of preventing SifA-ELMO1 interaction are reduced Rac1 activity and microbial invasion. That multiple effectors of diverse structure, function, and sequence bind the same hotpot on ELMO1 suggests that the WxxxE-effector(s)-ELMO1 interface is a convergence point of intrusion detection and/or host vulnerability. We conclude that the interface may represent the fault line in co-evolved molecular adaptations between pathogens and the host and its disruption may serve as a therapeutic strategy.
Collapse
|
38
|
Kim S, Isberg RR. The Sde phosphoribosyl-linked ubiquitin transferases protect the Legionella pneumophila vacuole from degradation by the host. Proc Natl Acad Sci U S A 2023; 120:e2303942120. [PMID: 37549300 PMCID: PMC10437418 DOI: 10.1073/pnas.2303942120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/05/2023] [Indexed: 08/09/2023] Open
Abstract
Legionella pneumophila grows intracellularly within the membrane-bound Legionella-containing vacuole (LCV) established by proteins translocated via the bacterial type IV secretion system (T4SS). The Sde family, one such group of translocated proteins, catalyzes phosphoribosyl-ubiquitin (pR-Ub) modification of target substrates. Mutational loss of the entire Sde family results in small defects in intracellular growth, making it difficult to identify a clear role for this posttranslational modification in supporting the intracellular lifestyle. Therefore, mutations that aggravate the loss of sde genes and caused intracellular growth defects were identified, providing a mechanistic connection between Sde function and vacuole biogenesis. These double mutants drove the formation of LCVs that showed vacuole disintegration within 2 h of bacterial contact. Sde proteins appeared critical for blocking access of membrane-disruptive early endosomal membrane material to the vacuole, as RNAi depletion of endosomal pathway components partially restored LCV integrity. The role of Sde proteins in preventing host degradation of the LCV was limited to the earliest stages of infection. The time that Sde proteins could prevent vacuole disruption, however, was extended by deletion of sidJ, which encodes a translocated protein that inactivates Sde protein active sites. These results indicate that Sde proteins act as temporally regulated vacuole guards during the establishment of the replication niche, possibly by constructing a physical barrier that blocks access of disruptive host compartments during the earliest steps of LCV biogenesis.
Collapse
Affiliation(s)
- Seongok Kim
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA02111
| | - Ralph R. Isberg
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA02111
| |
Collapse
|
39
|
Chatterjee R, Chowdhury AR, Mukherjee D, Chakravortty D. From Eberthella typhi to Salmonella Typhi: The Fascinating Journey of the Virulence and Pathogenicity of Salmonella Typhi. ACS OMEGA 2023; 8:25674-25697. [PMID: 37521659 PMCID: PMC10373206 DOI: 10.1021/acsomega.3c02386] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/30/2023] [Indexed: 08/01/2023]
Abstract
Salmonella Typhi (S. Typhi), the invasive typhoidal serovar of Salmonella enterica that causes typhoid fever in humans, is a severe threat to global health. It is one of the major causes of high morbidity and mortality in developing countries. According to recent WHO estimates, approximately 11-21 million typhoid fever illnesses occur annually worldwide, accounting for 0.12-0.16 million deaths. Salmonella infection can spread to healthy individuals by the consumption of contaminated food and water. Typhoid fever in humans sometimes is accompanied by several other critical extraintestinal complications related to the central nervous system, cardiovascular system, pulmonary system, and hepatobiliary system. Salmonella Pathogenicity Island-1 and Salmonella Pathogenicity Island-2 are the two genomic segments containing genes encoding virulent factors that regulate its invasion and systemic pathogenesis. This Review aims to shed light on a comparative analysis of the virulence and pathogenesis of the typhoidal and nontyphoidal serovars of S. enterica.
Collapse
Affiliation(s)
- Ritika Chatterjee
- Department
of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Atish Roy Chowdhury
- Department
of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Debapriya Mukherjee
- Department
of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Dipshikha Chakravortty
- Department
of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, Karnataka 560012, India
- Centre
for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|
40
|
Heyman O, Yehezkel D, Ciolli Mattioli C, Blumberger N, Rosenberg G, Solomon A, Hoffman D, Bossel Ben-Moshe N, Avraham R. Paired single-cell host profiling with multiplex-tagged bacterial mutants reveals intracellular virulence-immune networks. Proc Natl Acad Sci U S A 2023; 120:e2218812120. [PMID: 37399397 PMCID: PMC10334762 DOI: 10.1073/pnas.2218812120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 05/24/2023] [Indexed: 07/05/2023] Open
Abstract
Encounters between host cells and intracellular bacterial pathogens lead to complex phenotypes that determine the outcome of infection. Single-cell RNA sequencing (scRNA-seq) is increasingly used to study the host factors underlying diverse cellular phenotypes but has limited capacity to analyze the role of bacterial factors. Here, we developed scPAIR-seq, a single-cell approach to analyze infection with a pooled library of multiplex-tagged, barcoded bacterial mutants. Infected host cells and barcodes of intracellular bacterial mutants are both captured by scRNA-seq to functionally analyze mutant-dependent changes in host transcriptomes. We applied scPAIR-seq to macrophages infected with a library of Salmonella Typhimurium secretion system effector mutants. We analyzed redundancy between effectors and mutant-specific unique fingerprints and mapped the global virulence network of each individual effector by its impact on host immune pathways. ScPAIR-seq is a powerful tool to untangle bacterial virulence strategies and their complex interplay with host defense strategies that drive infection outcome.
Collapse
Affiliation(s)
- Ori Heyman
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Dror Yehezkel
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Camilla Ciolli Mattioli
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Neta Blumberger
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Gili Rosenberg
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Aryeh Solomon
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Dotan Hoffman
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Noa Bossel Ben-Moshe
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Roi Avraham
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| |
Collapse
|
41
|
Pillay TD, Hettiarachchi SU, Gan J, Diaz-Del-Olmo I, Yu XJ, Muench JH, Thurston TL, Pearson JS. Speaking the host language: how Salmonella effector proteins manipulate the host. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001342. [PMID: 37279149 PMCID: PMC10333799 DOI: 10.1099/mic.0.001342] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/10/2023] [Indexed: 06/08/2023]
Abstract
Salmonella injects over 40 virulence factors, termed effectors, into host cells to subvert diverse host cellular processes. Of these 40 Salmonella effectors, at least 25 have been described as mediating eukaryotic-like, biochemical post-translational modifications (PTMs) of host proteins, altering the outcome of infection. The downstream changes mediated by an effector's enzymatic activity range from highly specific to multifunctional, and altogether their combined action impacts the function of an impressive array of host cellular processes, including signal transduction, membrane trafficking, and both innate and adaptive immune responses. Salmonella and related Gram-negative pathogens have been a rich resource for the discovery of unique enzymatic activities, expanding our understanding of host signalling networks, bacterial pathogenesis as well as basic biochemistry. In this review, we provide an up-to-date assessment of host manipulation mediated by the Salmonella type III secretion system injectosome, exploring the cellular effects of diverse effector activities with a particular focus on PTMs and the implications for infection outcomes. We also highlight activities and functions of numerous effectors that remain poorly characterized.
Collapse
Affiliation(s)
- Timesh D. Pillay
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College, London SW7 2AZ, UK
- The Francis Crick Institute, London NW1 1AT, UK
| | - Sahampath U. Hettiarachchi
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Jiyao Gan
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Ines Diaz-Del-Olmo
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College, London SW7 2AZ, UK
| | - Xiu-Jun Yu
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College, London SW7 2AZ, UK
| | - Janina H. Muench
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College, London SW7 2AZ, UK
- The Francis Crick Institute, London NW1 1AT, UK
| | - Teresa L.M. Thurston
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College, London SW7 2AZ, UK
- The Francis Crick Institute, London NW1 1AT, UK
| | - Jaclyn S. Pearson
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
42
|
Jiménez-Guerrero I, López-Baena FJ, Medina C. Multitask Approach to Localize Rhizobial Type Three Secretion System Effector Proteins Inside Eukaryotic Cells. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112133. [PMID: 37299112 DOI: 10.3390/plants12112133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/25/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023]
Abstract
Rhizobia can establish mutually beneficial interactions with legume plants by colonizing their roots to induce the formation of a specialized structure known as a nodule, inside of which the bacteria are able to fix atmospheric nitrogen. It is well established that the compatibility of such interactions is mainly determined by the bacterial recognition of flavonoids secreted by the plants, which in response to these flavonoids trigger the synthesis of the bacterial Nod factors that drive the nodulation process. Additionally, other bacterial signals are involved in the recognition and the efficiency of this interaction, such as extracellular polysaccharides or some secreted proteins. Some rhizobial strains inject proteins through the type III secretion system to the cytosol of legume root cells during the nodulation process. Such proteins, called type III-secreted effectors (T3E), exert their function in the host cell and are involved, among other tasks, in the attenuation of host defense responses to facilitate the infection, contributing to the specificity of the process. One of the main challenges of studying rhizobial T3E is the inherent difficulty in localizing them in vivo in the different subcellular compartments within their host cells, since in addition to their low concentration under physiological conditions, it is not always known when or where they are being produced and secreted. In this paper, we use a well-known rhizobial T3E, named NopL, to illustrate by a multitask approach where it localizes in heterologous hosts models, such as tobacco plant leaf cells, and also for the first time in transfected and/or Salmonella-infected animal cells. The consistency of our results serves as an example to study the location inside eukaryotic cells of effectors in distinct hosts with different handling techniques that can be used in almost every research laboratory.
Collapse
Affiliation(s)
- Irene Jiménez-Guerrero
- Departamento de Microbiología, Universidad de Sevilla, Avenida de Reina Mercedes, 6, 41012 Sevilla, Spain
| | | | - Carlos Medina
- Departamento de Microbiología, Universidad de Sevilla, Avenida de Reina Mercedes, 6, 41012 Sevilla, Spain
| |
Collapse
|
43
|
Avraham R. Untangling Cellular Host-Pathogen Encounters at Infection Bottlenecks. Infect Immun 2023; 91:e0043822. [PMID: 36939328 PMCID: PMC10112260 DOI: 10.1128/iai.00438-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
Bacterial pathogens can invade the tissue and establish a protected intracellular niche at the site of invasion that can spread locally (e.g., microcolonies) or to systemic sites (e.g., granulomas). Invasion of the tissue and establishment of intracellular infection are rare events that are difficult to study in the in vivo setting but have critical clinical consequences, such as long-term carriage, reinfections, and emergence of antibiotic resistance. Here, I discuss Salmonella interactions with its host macrophage during early stages of infection and their critical role in determining infection outcome. The dynamics of host-pathogen interactions entail highly heterogenous host immunity, bacterial virulence, and metabolic cross talk, requiring in vivo analysis at single-cell resolution. I discuss models and single-cell approaches that provide a global understanding of the establishment of a protected intracellular niche within the tissue and the host-pathogen landscape at infection bottlenecks during early stages of infection. Studying cellular host-pathogen interactions in vivo can improve our knowledge of the trajectory of infection between the initial inoculation with a dose of pathogens and the appearance of symptoms of disease.
Collapse
Affiliation(s)
- Roi Avraham
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
44
|
Zhou G, Zhao Y, Ma Q, Li Q, Wang S, Shi H. Manipulation of host immune defenses by effector proteins delivered from multiple secretion systems of Salmonella and its application in vaccine research. Front Immunol 2023; 14:1152017. [PMID: 37081875 PMCID: PMC10112668 DOI: 10.3389/fimmu.2023.1152017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/23/2023] [Indexed: 04/07/2023] Open
Abstract
Salmonella is an important zoonotic bacterial species and hazardous for the health of human beings and livestock globally. Depending on the host, Salmonella can cause diseases ranging from gastroenteritis to life-threatening systemic infection. In this review, we discuss the effector proteins used by Salmonella to evade or manipulate four different levels of host immune defenses: commensal flora, intestinal epithelial-mucosal barrier, innate and adaptive immunity. At present, Salmonella has evolved a variety of strategies against host defense mechanisms, among which various effector proteins delivered by the secretory systems play a key role. During its passage through the digestive system, Salmonella has to face the intact intestinal epithelial barrier as well as competition with commensal flora. After invasion of host cells, Salmonella manipulates inflammatory pathways, ubiquitination and autophagy processes with the help of effector proteins. Finally, Salmonella evades the adaptive immune system by interfering the migration of dendritic cells and interacting with T and B lymphocytes. In conclusion, Salmonella can manipulate multiple aspects of host defense to promote its replication in the host.
Collapse
Affiliation(s)
- Guodong Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yuying Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Qifeng Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Quan Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Shifeng Wang
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Huoying Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University (JIRLAAPS), Yangzhou, China
| |
Collapse
|
45
|
Santelices J, Ou M, Maegawa GHB, Hercik K, Edelmann MJ. USP8 inhibition regulates autophagy flux and controls Salmonella infection. Front Cell Infect Microbiol 2023; 13:1070271. [PMID: 37026055 PMCID: PMC10072284 DOI: 10.3389/fcimb.2023.1070271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/13/2023] [Indexed: 04/08/2023] Open
Abstract
Introduction Ubiquitination is an important protein modification that regulates various essential cellular processes, including the functions of innate immune cells. Deubiquitinases are enzymes responsible for removing ubiquitin modification from substrates, and the regulation of deubiquitinases in macrophages during infection with Salmonella Typhimurium and Yersinia enterocolitica remains unknown. Methods To identify deubiquitinases regulated in human macrophages during bacterial infection, an activity-based proteomics screen was conducted. The effects of pharmacological inhibition of the identified deubiquitinase, USP8, were examined, including its impact on bacterial survival within macrophages and its role in autophagy regulation during Salmonella infection. Results Several deubiquiitnases were differentially regulated in infected macrophages. One of the deubiquitinases identified was USP8, which was downregulated upon Salmonella infection. Inhibition of USP8 was associated with a decrease in bacterial survival within macrophages, and it was found to play a distinct role in regulating autophagy during Salmonella infection. The inhibition of USP8 led to the downregulation of the p62 autophagy adaptor. Discussion The findings of this study suggest a novel role of USP8 in regulating autophagy flux, which restricts intracellular bacteria, particularly during Salmonella infection.
Collapse
Affiliation(s)
- John Santelices
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Mark Ou
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Gustavo H. B. Maegawa
- Department of Pediatrics and Genetics, Columbia University Irving Medical Center, Vagelos Physicians and Surgeons College of Medicine, New York, NY, United States
| | - Kamil Hercik
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czechia
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defense, Hradec Kralove, Czechia
| | - Mariola J. Edelmann
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| |
Collapse
|
46
|
Kim S, Isberg RR. The Sde Phosphoribosyl-Linked Ubiquitin Transferases protect the Legionella pneumophila vacuole from degradation by the host. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.19.533379. [PMID: 36993347 PMCID: PMC10055210 DOI: 10.1101/2023.03.19.533379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Legionella pneumophila grows intracellularly within a host membrane-bound vacuole that is formed in response to a bacterial type IV secretion system (T4SS). T4SS translocated Sde proteins promote phosphoribosyl-linked ubiquitination of endoplasmic reticulum protein Rtn4, but the role played by this modification is obscure due to lack of clear growth defects of mutants. To identify the steps in vacuole biogenesis promoted by these proteins, mutations were identified that unmasked growth defects in Δ sde strains. Mutations in the sdhA , ridL and legA3 genes aggravated the Δ sde fitness defect, resulting in disruption of the Legionella -containing vacuole (LCV) membrane within 2 hrs of bacterial contact with host cells. Depletion of Rab5B and sorting nexin 1 partially bypassed loss of Sde proteins, consistent with Sde blocking early endosome and retrograde trafficking, similar to roles previously demonstrated for SdhA and RidL proteins. Sde protein protection of LCV lysis was only observed shortly after infection, presumably because Sde proteins are inactivated by the metaeffector SidJ during the course of infection. Deletion of SidJ extended the time that Sde proteins could prevent vacuole disruption, indicating that Sde proteins are negatively regulated at the posttranslational level and are limited to protecting membrane integrity at the earliest stages of replication. Transcriptional analysis was consistent with this timing model for an early point of execution of Sde protein. Therefore, Sde proteins act as temporally-regulated vacuole guards during establishment of the replication niche, possibly by constructing a physical barrier that blocks access of disruptive host compartments early during biogenesis of the LCV. Significance statement Maintaining replication compartment integrity is critical for growth of intravacuolar pathogens within host cells. By identifying genetically redundant pathways, Legionella pneumophila Sde proteins that promote phosphoribosyl-linked ubiquitination of target eukaryotic proteins are shown to be temporally-regulated vacuole guards, preventing replication vacuole dissolution during early stages of infection. As targeting of reticulon 4 by these proteins leads to tubular endoplasmic reticulum aggregation, Sde proteins are likely to construct a barrier that blocks access of disruptive early endosomal compartments to the replication vacuole. Our study provides a new framework for how vacuole guards function to support biogenesis of the L. pneumophila replicative niche.
Collapse
Affiliation(s)
- Seongok Kim
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 150 Harrison Avenue, Boston, MA 02111, USA
| | - Ralph R Isberg
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 150 Harrison Avenue, Boston, MA 02111, USA
| |
Collapse
|
47
|
Göser V, Sander N, Schulte M, Scharte F, Franzkoch R, Liss V, Psathaki OE, Hensel M. Single molecule analyses reveal dynamics of Salmonella translocated effector proteins in host cell endomembranes. Nat Commun 2023; 14:1240. [PMID: 36870997 PMCID: PMC9985595 DOI: 10.1038/s41467-023-36758-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
The facultative intracellular pathogen Salmonella enterica remodels the host endosomal system for survival and proliferation inside host cells. Salmonella resides within the Salmonella-containing vacuole (SCV) and by Salmonella-induced fusions of host endomembranes, the SCV is connected with extensive tubular structures termed Salmonella-induced filaments (SIF). The intracellular lifestyle of Salmonella critically depends on effector proteins translocated into host cells. A subset of effectors is associated with, or integral in SCV and SIF membranes. How effectors reach their subcellular destination, and how they interact with endomembranes remodeled by Salmonella remains to be determined. We deployed self-labeling enzyme tags to label translocated effectors in living host cells, and analyzed their single molecule dynamics. Translocated effectors diffuse in membranes of SIF with mobility comparable to membrane-integral host proteins in endomembranes. Dynamics differ between various effectors investigated and is dependent on membrane architecture of SIF. In the early infection, host endosomal vesicles are associated with Salmonella effectors. Effector-positive vesicles continuously fuse with SCV and SIF membranes, providing a route of effector delivery by translocation, interaction with endosomal vesicles, and ultimately fusion with the continuum of SCV/SIF membranes. This mechanism controls membrane deformation and vesicular fusion to generate the specific intracellular niche for bacterial survival and proliferation.
Collapse
Affiliation(s)
- Vera Göser
- Abt. Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
| | - Nathalie Sander
- Abt. Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
| | - Marc Schulte
- Abt. Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
| | - Felix Scharte
- Abt. Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
| | - Rico Franzkoch
- Abt. Mikrobiologie, Universität Osnabrück, Osnabrück, Germany.,iBiOs - Integrated Bioimaging Facility Osnabrück, Osnabrück, Germany
| | - Viktoria Liss
- iBiOs - Integrated Bioimaging Facility Osnabrück, Osnabrück, Germany
| | - Olympia E Psathaki
- iBiOs - Integrated Bioimaging Facility Osnabrück, Osnabrück, Germany.,CellNanOs - Center of Cellular Nanoanalytics Osnabrück, Osnabrück, Germany
| | - Michael Hensel
- Abt. Mikrobiologie, Universität Osnabrück, Osnabrück, Germany. .,CellNanOs - Center of Cellular Nanoanalytics Osnabrück, Osnabrück, Germany.
| |
Collapse
|
48
|
Meng K, Zhu P, Shi L, Li S. Determination of the Salmonella intracellular lifestyle by the diversified interaction of Type III secretion system effectors and host GTPases. WIREs Mech Dis 2023; 15:e1587. [PMID: 36250298 DOI: 10.1002/wsbm.1587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/03/2022] [Accepted: 09/03/2022] [Indexed: 11/06/2022]
Abstract
Intracellular bacteria have developed sophisticated strategies to subvert the host endomembrane system to establish a stable replication niche. Small GTPases are critical players in regulating each step of membrane trafficking events, such as vesicle biogenesis, cargo transport, tethering, and fusion events. Salmonella is a widely studied facultative intracellular bacteria. Salmonella delivers several virulence proteins, termed effectors, to regulate GTPase dynamics and subvert host trafficking for their benefit. In this review, we summarize an updated and systematic understanding of the interactions between bacterial effectors and host GTPases in determining the intracellular lifestyle of Salmonella. This article is categorized under: Infectious Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Kun Meng
- Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Ping Zhu
- Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Liuliu Shi
- School of Basic Medical Science, Hubei University of Medicine, Shiyan, Hubei, China
| | - Shan Li
- Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China.,College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.,College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
49
|
Claviere M, Lavedrine A, Lamiral G, Bonnet M, Verlhac P, Petkova DS, Espert L, Duclaux-Loras R, Lucifora J, Rivoire M, Boschetti G, Nancey S, Rozières A, Viret C, Faure M. Measles virus-imposed remodeling of the autophagy machinery determines the outcome of bacterial coinfection. Autophagy 2023; 19:858-872. [PMID: 35900944 PMCID: PMC9980578 DOI: 10.1080/15548627.2022.2107309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 01/18/2023] Open
Abstract
Although it is admitted that secondary infection can complicate viral diseases, the consequences of viral infection on cell susceptibility to other infections remain underexplored at the cellular level. We though to examine whether the sustained macroautophagy/autophagy associated with measles virus (MeV) infection could help cells oppose invasion by Salmonella Typhimurium, a bacterium sensitive to autophagic restriction. We report here the unexpected finding that Salmonella markedly replicated in MeV-infected cultures due to selective growth within multinucleated cells. Hyper-replicating Salmonella localized outside of LAMP1-positive compartments to an extent that equaled that of the predominantly cytosolic sifA mutant Salmonella. Bacteria were subjected to effective ubiquitination but failed to be targeted by LC3 despite an ongoing productive autophagy. Such a phenotype could not be further aggravated upon silencing of the selective autophagy regulator TBK1 or core autophagy factors ATG5 or ATG7. MeV infection also conditioned primary human epithelial cells for augmented Salmonella replication. The analysis of selective autophagy receptors able to target Salmonella revealed that a lowered expression level of SQSTM1/p62 and TAX1BP1/T6BP autophagy receptors prevented effective anti-Salmonella autophagy in MeV-induced syncytia. Conversely, as SQSTM1/p62 is promoting the cytosolic growth of Shigella flexneri, MeV infection led to reduced Shigella replication. The results indicate that the rarefaction of dedicated autophagy receptors associated with MeV infection differentially affects the outcome of bacterial coinfection depending on the nature of the functional relationship between bacteria and such receptors. Thus, virus-imposed reconfiguration of the autophagy machinery can be instrumental in determining the fate of bacterial coinfection.Abbreviations: ACTB/β-ACTIN: actin beta; ATG: autophagy related; BAFA1: bafilomycin A1; CFU: colony-forming units; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; FIP: fusion inhibitory peptide; GFP: green fluorescent protein; LAMP1: lysosomal associated membrane protein 1; LIR: MAP1LC3/LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MeV: measles virus; MOI: multiplicity of infection; OPTN: optineurin; PHH: primary human hepatocyte; SCV: Salmonella-containing vacuoles; SQSTM1/p62: sequestosome 1; S. flexneri: Shigella flexneri; S. Typhimurium: Salmonella enterica serovar Typhimurium; TAX1BP1/T6BP: Tax1 binding protein 1; TBK1: TANK binding kinase 1.
Collapse
Affiliation(s)
- Mathieu Claviere
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Aude Lavedrine
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Guénaëlle Lamiral
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Mariette Bonnet
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Pauline Verlhac
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Denitsa S. Petkova
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Lucile Espert
- IRIM, University of Montpellier, UMR 9004 CNRS, Montpellier, France
| | - Rémi Duclaux-Loras
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- Department of Pediatric Hepatology, Gastroenterology and Nutrition, Femme-Mère-Enfant Hospital, Hospices Civils de Lyon, Bron, France
| | - Julie Lucifora
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | | | - Gilles Boschetti
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- Department of Gastroenterology, Lyon-Sud university hospital, Hospices Civils de Lyon, Lyon, France
| | - Stéphane Nancey
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- Department of Gastroenterology, Lyon-Sud university hospital, Hospices Civils de Lyon, Lyon, France
| | - Aurore Rozières
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Christophe Viret
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Mathias Faure
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- Equipe Labellisée par la Fondation pour la Recherche Médicale, FRM, France
| |
Collapse
|
50
|
Achi SC, Karimilangi S, Lie D, Sayed IM, Das S. The WxxxE proteins in microbial pathogenesis. Crit Rev Microbiol 2023; 49:197-213. [PMID: 35287539 PMCID: PMC9737147 DOI: 10.1080/1040841x.2022.2046546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 02/10/2022] [Accepted: 02/19/2022] [Indexed: 12/14/2022]
Abstract
Effector proteins secreted by pathogens modulate various host cellular processes and help in bacterial pathogenesis. Some of these proteins, injected by enteric pathogens via Type Three Secretion System (T3SS) were grouped together based on a conserved signature motif (WxxxE) present in them. The presence of WxxxE motif is not limited to effectors released by enteric pathogens or the T3SS but has been detected in non-enteric pathogens, plant pathogens and in association with Type II and Type IV secretion systems. WxxxE effectors are involved in actin organization, inflammation regulation, vacuole or tubule formation, endolysosomal signalling regulation, tight junction disruption, and apoptosis. The WxxxE sequence has also been identified in TIR [Toll/interleukin-1 (IL-1) receptor] domains of bacteria and host. In the present review, we have focussed on the established and predicted functions of WxxxE effectors secreted by several pathogens, including enteric, non-enteric, and plant pathogens.
Collapse
Affiliation(s)
| | - Sareh Karimilangi
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Dominique Lie
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Ibrahim M. Sayed
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Soumita Das
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|