1
|
Mamar H, Fajka-Boja R, Mórocz M, Jurado E, Zentout S, Mihuţ A, Kopasz AG, Mérey M, Smith R, Sharma AB, Lakin N, Bowman A, Haracska L, Huet S, Timinszky G. The loss of DNA polymerase epsilon accessory subunits POLE3-POLE4 leads to BRCA1-independent PARP inhibitor sensitivity. Nucleic Acids Res 2024; 52:6994-7011. [PMID: 38828775 PMCID: PMC11229324 DOI: 10.1093/nar/gkae439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 06/05/2024] Open
Abstract
The clinical success of PARP1/2 inhibitors (PARPi) prompts the expansion of their applicability beyond homologous recombination deficiency. Here, we demonstrate that the loss of the accessory subunits of DNA polymerase epsilon, POLE3 and POLE4, sensitizes cells to PARPi. We show that the sensitivity of POLE4 knockouts is not due to compromised response to DNA damage or homologous recombination deficiency. Instead, POLE4 loss affects replication speed leading to the accumulation of single-stranded DNA gaps behind replication forks upon PARPi treatment, due to impaired post-replicative repair. POLE4 knockouts elicit elevated replication stress signaling involving ATR and DNA-PK. We find POLE4 to act parallel to BRCA1 in inducing sensitivity to PARPi and counteracts acquired resistance associated with restoration of homologous recombination. Altogether, our findings establish POLE4 as a promising target to improve PARPi driven therapies and hamper acquired PARPi resistance.
Collapse
Affiliation(s)
- Hasan Mamar
- Laboratory of DNA Damage and Nuclear Dynamics, Institute of Genetics, HUN-REN Biological Research Centre, 6276 Szeged, Hungary
- Doctoral School of Biology, University of Szeged, 6720 Szeged, Hungary
| | - Roberta Fajka-Boja
- Laboratory of DNA Damage and Nuclear Dynamics, Institute of Genetics, HUN-REN Biological Research Centre, 6276 Szeged, Hungary
- Department of Immunology, Albert Szent-Györgyi Medical School, Faculty of Science and Informatics, University of Szeged, 6720 Szeged, Hungary
| | - Mónika Mórocz
- HCEMM-BRC Mutagenesis and Carcinogenesis Research Group, Institute of Genetics, HUN-REN Biological Research Centre, 6276 Szeged, Hungary
| | - Eva Pinto Jurado
- Laboratory of DNA Damage and Nuclear Dynamics, Institute of Genetics, HUN-REN Biological Research Centre, 6276 Szeged, Hungary
- Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, Szeged, Hungary
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, BIOSITUMS 3480 Rennes, France
| | - Siham Zentout
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, BIOSITUMS 3480 Rennes, France
| | - Alexandra Mihuţ
- Laboratory of DNA Damage and Nuclear Dynamics, Institute of Genetics, HUN-REN Biological Research Centre, 6276 Szeged, Hungary
- Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, Szeged, Hungary
| | - Anna Georgina Kopasz
- Laboratory of DNA Damage and Nuclear Dynamics, Institute of Genetics, HUN-REN Biological Research Centre, 6276 Szeged, Hungary
- Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, Szeged, Hungary
| | - Mihály Mérey
- Laboratory of DNA Damage and Nuclear Dynamics, Institute of Genetics, HUN-REN Biological Research Centre, 6276 Szeged, Hungary
- Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, Szeged, Hungary
| | - Rebecca Smith
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, BIOSITUMS 3480 Rennes, France
| | | | - Nicholas D Lakin
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, UK
| | - Andrew James Bowman
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, UK
| | - Lajos Haracska
- HCEMM-BRC Mutagenesis and Carcinogenesis Research Group, Institute of Genetics, HUN-REN Biological Research Centre, 6276 Szeged, Hungary
| | - Sébastien Huet
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, BIOSITUMS 3480 Rennes, France
| | - Gyula Timinszky
- Laboratory of DNA Damage and Nuclear Dynamics, Institute of Genetics, HUN-REN Biological Research Centre, 6276 Szeged, Hungary
| |
Collapse
|
2
|
Iurlaro M, Masoni F, Flyamer IM, Wirbelauer C, Iskar M, Burger L, Giorgetti L, Schübeler D. Systematic assessment of ISWI subunits shows that NURF creates local accessibility for CTCF. Nat Genet 2024; 56:1203-1212. [PMID: 38816647 PMCID: PMC11176080 DOI: 10.1038/s41588-024-01767-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 04/23/2024] [Indexed: 06/01/2024]
Abstract
Catalytic activity of the imitation switch (ISWI) family of remodelers is critical for nucleosomal organization and DNA binding of certain transcription factors, including the insulator protein CTCF. Here we define the contribution of individual subcomplexes by deriving a panel of isogenic mouse stem cell lines, each lacking one of six ISWI accessory subunits. Individual deletions of subunits of either CERF, RSF, ACF, WICH or NoRC subcomplexes only moderately affect the chromatin landscape, while removal of the NURF-specific subunit BPTF leads to a strong reduction in chromatin accessibility and SNF2H ATPase localization around CTCF sites. This affects adjacent nucleosome occupancy and CTCF binding. At a group of sites with reduced chromatin accessibility, CTCF binding persists but cohesin occupancy is reduced, resulting in decreased insulation. These results suggest that CTCF binding can be separated from its function as an insulator in nuclear organization and identify a specific role for NURF in mediating SNF2H localization and chromatin opening at bound CTCF sites.
Collapse
Affiliation(s)
- Mario Iurlaro
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Disease Area Oncology, Novartis Biomedical Research, Basel, Switzerland
| | - Francesca Masoni
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Faculty of Science, University of Basel, Basel, Switzerland
| | - Ilya M Flyamer
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | | | - Murat Iskar
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Lukas Burger
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Luca Giorgetti
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Dirk Schübeler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
- Faculty of Science, University of Basel, Basel, Switzerland.
| |
Collapse
|
3
|
Hill BR, Ozgencil M, Buckley-Benbow L, Skingsley SLP, Tomlinson D, Eizmendi CO, Agnarelli A, Bellelli R. Loss of POLE3-POLE4 unleashes replicative gap accumulation upon treatment with PARP inhibitors. Cell Rep 2024; 43:114205. [PMID: 38753485 DOI: 10.1016/j.celrep.2024.114205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/06/2024] [Accepted: 04/23/2024] [Indexed: 05/18/2024] Open
Abstract
The advent of PARP inhibitors (PARPis) has profoundly changed the treatment landscape of BRCA1/BRCA2-mutated cancers. Despite this, the development of resistance to these compounds has become a major challenge. Hence, a detailed understanding of the mechanisms underlying PARPi sensitivity is crucially needed. Here, we show that loss of the POLE3-POLE4 subunits of DNA polymerase epsilon (Polε) strongly sensitizes cancer cells to PARPis in a Polε level-independent manner. Loss of POLE3-POLE4 is not associated with defective RAD51 foci formation, excluding a major defect in homologous recombination. On the contrary, treatment with PARPis triggers replicative gap accumulation in POLE3-POLE4 knockout (KO) cells in a PRIMPOL-dependent manner. In addition to this, the loss of POLE3-POLE4 further sensitizes BRCA1-silenced cells to PARPis. Importantly, the knockdown of 53BP1 does not rescue PARPi sensitivity in POLE3-POLE4 KO cells, bypassing a common PARPi resistance mechanism and outlining a potential strategy to sensitize cancer cells to PARPis.
Collapse
Affiliation(s)
- Bethany Rebekah Hill
- Centre for Cancer Cell & Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, EC1M 6BQ London, UK
| | - Meryem Ozgencil
- Centre for Cancer Cell & Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, EC1M 6BQ London, UK
| | - Lauryn Buckley-Benbow
- Centre for Cancer Cell & Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, EC1M 6BQ London, UK
| | - Sophie Louise Pamela Skingsley
- Centre for Cancer Cell & Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, EC1M 6BQ London, UK
| | - Danielle Tomlinson
- Centre for Cancer Cell & Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, EC1M 6BQ London, UK
| | - Carmen Ortueta Eizmendi
- Centre for Cancer Cell & Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, EC1M 6BQ London, UK
| | - Alessandro Agnarelli
- Centre for Cancer Cell & Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, EC1M 6BQ London, UK
| | - Roberto Bellelli
- Centre for Cancer Cell & Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, EC1M 6BQ London, UK.
| |
Collapse
|
4
|
Li S, Wang L, Shi J, Chen Y, Xiao A, Huo B, Tian W, Zhang S, Yang G, Gong W, Zhang H. Chromatin accessibility complex subunit 1 enhances tumor growth by regulating the oncogenic transcription of YAP in breast and cervical cancer. PeerJ 2024; 12:e16752. [PMID: 38223760 PMCID: PMC10787542 DOI: 10.7717/peerj.16752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/13/2023] [Indexed: 01/16/2024] Open
Abstract
Background As a component of chromatin remodeling complex, chromatin accessibility complex subunit 1 (CHRAC1) is critical in transcription and DNA replication. However, the significance of CHRAC1 in cancer progression has not been investigated extensively. This research aimed to determine the function of CHRAC1 in breast and cervical cancer and elucidate the molecular mechanism. Methods The Bio-ID method was used to identify the interactome of transcriptional activator Yes-associated protein (YAP) and the binding between YAP and CHRAC1 was verified by immunofluorescence. CCK8, colony formation and subcutaneous xenograft assays were conducted to explore the function of CHRAC1 in cancer cell proliferation. RNA-seq analysis and RT-PCR were used to analyze the transcription program change after CHRAC1 ablation. The diagnostic value of CHRAC1 was analyzed by TCGA database and further validated by immunohistochemistry staining. Results In the current study, we found that the chromatin remodeler CHRAC1 was a potential YAP interactor. CHRAC1 depletion suppressed breast and cervical cancer cell proliferation and tumor growth. The potential mechanism may be that CHRAC1 interacts with YAP to facilitate oncogenic transcription of YAP target genes in Hippo pathway, thereby promoting tumorigenesis. CHRAC1 was elevated in cervical and breast cancer biopsies and the upregulation correlated with shorter survival, poor pathological stages and metastasis of cancer patients. Moreover, CHRAC1 expression was statistically associated with YAP in breast and cervical cancer biopsies. Conclusions These findings highlight that CHRAC1 contributes to cancer progression through regulating the oncogenic transcription of YAP, which makes it a potential therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Shasha Li
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lulu Wang
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Shi
- Xiangyang Center for Disease Control and Prevention, Xiangyang, China
| | - Yi Chen
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ang Xiao
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bingyue Huo
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjing Tian
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shilu Zhang
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Yang
- Xiangyang Center for Disease Control and Prevention, Xiangyang, China
| | - Wensheng Gong
- Xiangyang Center for Disease Control and Prevention, Xiangyang, China
| | - Huixia Zhang
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Thenin-Houssier S, Machida S, Jahan C, Bonnet-Madin L, Abbou S, Chen HC, Tesfaye R, Cuvier O, Benkirane M. POLE3 is a repressor of unintegrated HIV-1 DNA required for efficient virus integration and escape from innate immune sensing. SCIENCE ADVANCES 2023; 9:eadh3642. [PMID: 37922361 PMCID: PMC10624344 DOI: 10.1126/sciadv.adh3642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 10/03/2023] [Indexed: 11/05/2023]
Abstract
Unintegrated retroviral DNA is transcriptionally silenced by host chromatin silencing factors. Here, we used the proteomics of isolated chromatin segments method to reveal viral and host factors associated with unintegrated HIV-1DNA involved in its silencing. By gene silencing using siRNAs, 46 factors were identified as potential repressors of unintegrated HIV-1DNA. Knockdown and knockout experiments revealed POLE3 as a transcriptional repressor of unintegrated HIV-1DNA. POLE3 maintains unintegrated HIV-1DNA in a repressive chromatin state, preventing RNAPII recruitment to the viral promoter. POLE3 and the recently identified host factors mediating unintegrated HIV-1 DNA silencing, CAF1 and SMC5/SMC6/SLF2, show specificity toward different forms of unintegrated HIV-1DNA. Loss of POLE3 impaired HIV-1 replication, suggesting that repression of unintegrated HIV-1DNA is important for optimal viral replication. POLE3 depletion reduces the integration efficiency of HIV-1. POLE3, by maintaining a repressive chromatin structure of unintegrated HIV-1DNA, ensures HIV-1 escape from innate immune sensing in primary CD4+ T cells.
Collapse
Affiliation(s)
- Suzie Thenin-Houssier
- Institut de Génétique Humaine. Laboratoire de Virologie Moléculaire, CNRS Université de Montpellier. Montpellier. France
| | - Shinichi Machida
- Institut de Génétique Humaine. Laboratoire de Virologie Moléculaire, CNRS Université de Montpellier. Montpellier. France
- Department of Structural Virology, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Cyprien Jahan
- Institut de Génétique Humaine. Laboratoire de Virologie Moléculaire, CNRS Université de Montpellier. Montpellier. France
| | - Lucie Bonnet-Madin
- Institut de Génétique Humaine. Laboratoire de Virologie Moléculaire, CNRS Université de Montpellier. Montpellier. France
| | - Scarlette Abbou
- Institut de Génétique Humaine. Laboratoire de Virologie Moléculaire, CNRS Université de Montpellier. Montpellier. France
| | - Heng-Chang Chen
- Institut de Génétique Humaine. Laboratoire de Virologie Moléculaire, CNRS Université de Montpellier. Montpellier. France
| | - Robel Tesfaye
- Laboratory of Chromatin Dynamics, Centre de Biologie Intégrative (CBI), MCD Unit (UMR5077), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Olivier Cuvier
- Laboratory of Chromatin Dynamics, Centre de Biologie Intégrative (CBI), MCD Unit (UMR5077), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Monsef Benkirane
- Institut de Génétique Humaine. Laboratoire de Virologie Moléculaire, CNRS Université de Montpellier. Montpellier. France
| |
Collapse
|
6
|
Mao X, Wu J, Zhang Q, Zhang S, Chen X, Liu X, Wei M, Wan X, Qiu L, Zeng M, Lei X, Liu C, Han J. Requirement of WDR70 for POLE3-mediated DNA double-strand breaks repair. SCIENCE ADVANCES 2023; 9:eadh2358. [PMID: 37682991 PMCID: PMC10491287 DOI: 10.1126/sciadv.adh2358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 08/08/2023] [Indexed: 09/10/2023]
Abstract
H2BK120ub1 triggers several prominent downstream histone modification pathways and changes in chromatin structure, therefore involving it into multiple critical cellular processes including DNA transcription and DNA damage repair. Although it has been reported that H2BK120ub1 is mediated by RNF20/40 and CRL4WDR70, less is known about the underlying regulation mechanism for H2BK120ub1 by WDR70. By using a series of biochemical and cell-based studies, we find that WDR70 promotes H2BK120ub1 by interacting with RNF20/40 complex, and deposition of H2BK120ub1 and H3K79me2 in POLE3 loci is highly sensitive to POLE3 transcription. Moreover, we demonstrate that POLE3 interacts CHRAC1 to promote DNA repair by regulation on the expression of homology-directed repair proteins and KU80 recruitment and identify CHRAC1 D121Y mutation in colorectal cancer, which leads to the defect in DNA repair due to attenuated the interaction with POLE3. These findings highlight a previously unknown role for WDR70 in maintenance of genomic stability and imply POLE3 and CHRAC1 as potential therapeutic targets in cancer.
Collapse
Affiliation(s)
- Xiaobing Mao
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jian Wu
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qin Zhang
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Su Zhang
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoshuang Chen
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xueqin Liu
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mingtian Wei
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaowen Wan
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lei Qiu
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ming Zeng
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University hospital, Sichuan University, Chengdu 610041, China
| | - Xue Lei
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Cong Liu
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University hospital, Sichuan University, Chengdu 610041, China
| | - Junhong Han
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
7
|
Qu Y, Zhou N, Zhang X, Li Y, Xu XF. Chromatin Remodeling Factor SMARCA5 is Essential for Hippocampal Memory Maintenance via Metabolic Pathways in Mice. Neurosci Bull 2023; 39:1087-1104. [PMID: 36807260 PMCID: PMC10313638 DOI: 10.1007/s12264-023-01032-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/27/2022] [Indexed: 02/21/2023] Open
Abstract
Gene transcription and new protein synthesis regulated by epigenetics play integral roles in the formation of new memories. However, as an important part of epigenetics, the function of chromatin remodeling in learning and memory has been less studied. Here, we showed that SMARCA5 (SWI/SNF related, matrix-associated, actin-dependent regulator of chromatin, subfamily A, member 5), a critical chromatin remodeler, was responsible for hippocampus-dependent memory maintenance and neurogenesis. Using proteomics analysis, we found protein expression changes in the hippocampal dentate gyrus (DG) after the knockdown of SMARCA5 during contextual fear conditioning (CFC) memory maintenance in mice. Moreover, SMARCA5 was revealed to participate in CFC memory maintenance via modulating the proteins of metabolic pathways such as nucleoside diphosphate kinase-3 (NME3) and aminoacylase 1 (ACY1). This work is the first to describe the role of SMARCA5 in memory maintenance and to demonstrate the involvement of metabolic pathways regulated by SMARCA5 in learning and memory.
Collapse
Affiliation(s)
- Yu Qu
- Institute of Neuropsychiatric Diseases, Qingdao University, Qingdao, 266001, China
| | - Nan Zhou
- Department of Urology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Xia Zhang
- Institute of Neuropsychiatric Diseases, Qingdao University, Qingdao, 266001, China
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, K1Z7K4, Canada
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
- Key Laboratory of Modern Teaching Technology & College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Yan Li
- Department of Urology, Qilu Hospital of Shandong University, Jinan, 250012, China.
| | - Xu-Feng Xu
- Institute of Neuropsychiatric Diseases, Qingdao University, Qingdao, 266001, China.
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, K1Z7K4, Canada.
| |
Collapse
|
8
|
Kuzelova A, Dupacova N, Antosova B, Sunny SS, Kozmik Z, Paces J, Skoultchi AI, Stopka T, Kozmik Z. Chromatin Remodeling Enzyme Snf2h Is Essential for Retinal Cell Proliferation and Photoreceptor Maintenance. Cells 2023; 12:1035. [PMID: 37048108 PMCID: PMC10093269 DOI: 10.3390/cells12071035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
Chromatin remodeling complexes are required for many distinct nuclear processes such as transcription, DNA replication, and DNA repair. However, the contribution of these complexes to the development of complex tissues within an organism is poorly characterized. Imitation switch (ISWI) proteins are among the most evolutionarily conserved ATP-dependent chromatin remodeling factors and are represented by yeast Isw1/Isw2, and their vertebrate counterparts Snf2h (Smarca5) and Snf2l (Smarca1). In this study, we focused on the role of the Snf2h gene during the development of the mammalian retina. We show that Snf2h is expressed in both retinal progenitors and post-mitotic retinal cells. Using Snf2h conditional knockout mice (Snf2h cKO), we found that when Snf2h is deleted, the laminar structure of the adult retina is not retained, the overall thickness of the retina is significantly reduced compared with controls, and the outer nuclear layer (ONL) is completely missing. The depletion of Snf2h did not influence the ability of retinal progenitors to generate all the differentiated retinal cell types. Instead, the Snf2h function is critical for the proliferation of retinal progenitor cells. Cells lacking Snf2h have a defective S-phase, leading to the entire cell division process impairments. Although all retinal cell types appear to be specified in the absence of the Snf2h function, cell-cycle defects and concomitantly increased apoptosis in Snf2h cKO result in abnormal retina lamination, complete destruction of the photoreceptor layer, and consequently, a physiologically non-functional retina.
Collapse
Affiliation(s)
- Andrea Kuzelova
- Laboratory of Transcriptional Regulation, Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Naoko Dupacova
- Laboratory of Transcriptional Regulation, Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Barbora Antosova
- Laboratory of Transcriptional Regulation, Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Sweetu Susan Sunny
- Laboratory of Transcriptional Regulation, Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Zbynek Kozmik
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Jan Paces
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Arthur I. Skoultchi
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | - Tomas Stopka
- Biocev, First Faculty of Medicine, Charles University, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Zbynek Kozmik
- Laboratory of Transcriptional Regulation, Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
- Research Unit for Rare Diseases, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 08 Prague, Czech Republic
| |
Collapse
|
9
|
Bomber ML, Wang J, Liu Q, Barnett KR, Layden HM, Hodges E, Stengel KR, Hiebert SW. Human SMARCA5 is continuously required to maintain nucleosome spacing. Mol Cell 2023; 83:507-522.e6. [PMID: 36630954 PMCID: PMC9974918 DOI: 10.1016/j.molcel.2022.12.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 12/07/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023]
Abstract
Genetic models suggested that SMARCA5 was required for DNA-templated events including transcription, DNA replication, and DNA repair. We engineered a degron tag into the endogenous alleles of SMARCA5, a catalytic component of the imitation switch complexes in three different human cell lines to define the effects of rapid degradation of this key regulator. Degradation of SMARCA5 was associated with a rapid increase in global nucleosome repeat length, which may allow greater chromatin compaction. However, there were few changes in nascent transcription within the first 6 h of degradation. Nevertheless, we demonstrated a requirement for SMARCA5 to control nucleosome repeat length at G1/S and during the S phase. SMARCA5 co-localized with CTCF and H2A.Z, and we found a rapid loss of CTCF DNA binding and disruption of nucleosomal phasing around CTCF binding sites. This spatiotemporal analysis indicates that SMARCA5 is continuously required for maintaining nucleosomal spacing.
Collapse
Affiliation(s)
- Monica L Bomber
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jing Wang
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, TN 37203, USA; Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Qi Liu
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, TN 37203, USA; Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kelly R Barnett
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Hillary M Layden
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Emily Hodges
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Kristy R Stengel
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA.
| | - Scott W Hiebert
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
10
|
Kuzelova A, Dupacova N, Antosova B, Sunny SS, Kozmik Z, Paces J, Skoultchi AI, Stopka T, Kozmik Z. Chromatin remodeling enzyme Snf2h is essential for retinal cell proliferation and photoreceptor maintenance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.13.528323. [PMID: 36824843 PMCID: PMC9948993 DOI: 10.1101/2023.02.13.528323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Chromatin remodeling complexes are required for many distinct nuclear processes such as transcription, DNA replication and DNA repair. However, how these complexes contribute to the development of complex tissues within an organism is poorly characterized. Imitation switch (ISWI) proteins are among the most evolutionarily conserved ATP-dependent chromatin remodeling factors and are represented by yeast Isw1/Isw2, and their vertebrate counterparts Snf2h (Smarca5) and Snf2l (Smarca1). In this study, we focused on the role of the Snf2h gene during development of the mammalian retina. We show that Snf2h is expressed in both retinal progenitors and post-mitotic retinal cells. Using Snf2h conditional knockout mice ( Snf2h cKO), we found that when Snf2h is deleted the laminar structure of the adult retina is not retained, the overall thickness of the retina is significantly reduced compared with controls, and the outer nuclear layer (ONL) is completely missing. Depletion of Snf2h did not influence the ability of retinal progenitors to generate all of the differentiated retinal cell types. Instead, Snf2h function is critical for proliferation of retinal progenitor cells. Cells lacking Snf2h have a defective S-phase, leading to the entire cell division process impairments. Although, all retinal cell types appear to be specified in the absence of Snf2h function, cell cycle defects and concomitantly increased apoptosis in Snf2h cKO result in abnormal retina lamination, complete destruction of the photoreceptor layer and, consequently, in a physiologically non-functional retina.
Collapse
|
11
|
The Plant Homeodomain Protein Clp1 Regulates Fungal Development, Virulence, and Autophagy Homeostasis in Magnaporthe oryzae. Microbiol Spectr 2022; 10:e0102122. [PMID: 36036638 PMCID: PMC9602895 DOI: 10.1128/spectrum.01021-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Rice blast disease caused by Magnaporthe oryzae is a serious threat to global grain yield and food security. Cti6 is a nuclear protein containing a plant homeodomain (PHD) that is involved in transcriptional regulation in Saccharomyces cerevisiae. The biological function of its homologous protein in M. oryzae has been elusive. Here, we report Clp1 with a PHD domain in M. oryzae, a homologous protein of the yeast Cti6. Clp1 was mainly located in the nucleus and partly in the vesicles. Clp1 colocalized and interacted with the autophagy-related proteins Atg5, Atg7, Atg16, Atg24, and Atg28 at preautophagosomal structures (PAS) and autophagosomes, and the loss of Clp1 increased the fungal background autophagy level. Δclp1 displayed reduced hyphal growth and hyperbranching, abnormal fungal morphology (including colony, spore, and appressorium), hindered appressorial glycogen metabolism and turgor production, weakened plant infection, and decreased virulence. The PHD is indispensable for the function of Clp1. Therefore, this study revealed that Clp1 regulates development and pathogenicity by maintaining autophagy homeostasis and affecting gene transcription in M. oryzae. IMPORTANCE The fungal pathogen Magnaporthe oryzae causes serious diseases of grasses such as rice and wheat. Autophagy plays an indispensable role in the pathogenic process of M. oryzae. Here, we report a Cti6-like protein, Clp1, that is involved in fungal development and infection of plants through controlling autophagy homeostasis in the cytoplasm and gene transcription in the nucleus in M. oryzae. This study will help us to understand an elaborated molecular mechanism of autophagy, gene transcription, and virulence in the rice blast fungus.
Collapse
|
12
|
Zhang J, Li Y, Fan TY, Liu D, Zou WD, Li H, Li YK. Identification of bromodomain-containing proteins prognostic value and expression significance based on a genomic landscape analysis of ovarian serous cystadenocarcinoma. Front Oncol 2022; 12:1021558. [PMID: 36276071 PMCID: PMC9579433 DOI: 10.3389/fonc.2022.1021558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/15/2022] [Indexed: 12/24/2022] Open
Abstract
BackgroundOvarian serous cystadenocarcinoma (OSC), a common gynecologic tumor, is characterized by high mortality worldwide. Bromodomain (BRD)-containing proteins are a series of evolutionarily conserved proteins that bind to acetylated Lys residues of histones to regulate the transcription of multiple genes. The ectopic expression of BRDs is often observed in multiple cancer types, but the role of BRDs in OSC is still unclear.MethodsWe performed the differential expression, GO enrichment, GSEA, immune infiltration, risk model, subtype classification, stemness feature, DNA alteration, and epigenetic modification analysis for these BRDs based on multiple public databases.ResultsMost BRDs were dysregulated in OSC tissues compared to normal ovary tissues. These BRDs were positively correlated with each other in OSC patients. Gene alteration and epigenetic modification were significant for the dysregulation of BRDs in OSC patients. GO enrichment suggested that BRDs played key roles in histone acetylation, viral carcinogenesis, and transcription coactivator activity. Two molecular subtypes were classified by BRDs for OSC, which were significantly correlated with stemness features, m6A methylation, ferroptosis, drug sensitivity, and immune infiltration. The risk model constructed by LASSO regression with BRDs performed moderately well in prognostic predictions for OSC patients. Moreover, BRPF1 plays a significant role in these BRDs for the development and progression of OSC patients.ConclusionBRDs are potential targets and biomarkers for OSC patients, especially BRPF1.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, China
| | - Yan Li
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, China
| | - Ting-yu Fan
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, China
| | - Dan Liu
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, China
| | - Wen-da Zou
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, China
| | - Hui Li
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, China
- *Correspondence: Hui Li, ; Yu-kun Li,
| | - Yu-kun Li
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, China
- *Correspondence: Hui Li, ; Yu-kun Li,
| |
Collapse
|
13
|
Yellapu NK, Ly T, Sardiu ME, Pei D, Welch DR, Thompson JA, Koestler DC. Synergistic anti-proliferative activity of JQ1 and GSK2801 in triple-negative breast cancer. BMC Cancer 2022; 22:627. [PMID: 35672711 PMCID: PMC9173973 DOI: 10.1186/s12885-022-09690-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) constitutes 10-20% of breast cancers and is challenging to treat due to a lack of effective targeted therapies. Previous studies in TNBC cell lines showed in vitro growth inhibition when JQ1 or GSK2801 were administered alone, and enhanced activity when co-administered. Given their respective mechanisms of actions, we hypothesized the combinatorial effect could be due to the target genes affected. Hence the target genes were characterized for their expression in the TNBC cell lines to prove the combinatorial effect of JQ1 and GSK2801. METHODS RNASeq data sets of TNBC cell lines (MDA-MB-231, HCC-1806 and SUM-159) were analyzed to identify the differentially expressed genes in single and combined treatments. The topmost downregulated genes were characterized for their downregulated expression in the TNBC cell lines treated with JQ1 and GSK2801 under different dose concentrations and combinations. The optimal lethal doses were determined by cytotoxicity assays. The inhibitory activity of the drugs was further characterized by molecular modelling studies. RESULTS Global expression profiling of TNBC cell lines using RNASeq revealed different expression patterns when JQ1 and GSK2801 were co-administered. Functional enrichment analyses identified several metabolic pathways (i.e., systemic lupus erythematosus, PI3K-Akt, TNF, JAK-STAT, IL-17, MAPK, Rap1 and signaling pathways) enriched with upregulated and downregulated genes when combined JQ1 and GSK2801 treatment was administered. RNASeq identified downregulation of PTPRC, MUC19, RNA5-8S5, KCNB1, RMRP, KISS1 and TAGLN (validated by RT-qPCR) and upregulation of GPR146, SCARA5, HIST2H4A, CDRT4, AQP3, MSH5-SAPCD1, SENP3-EIF4A1, CTAGE4 and RNASEK-C17orf49 when cells received both drugs. In addition to differential gene regulation, molecular modelling predicted binding of JQ1 and GSK2801 with PTPRC, MUC19, KCNB1, TAGLN and KISS1 proteins, adding another mechanism by which JQ1 and GSK2801 could elicit changes in metabolism and proliferation. CONCLUSION JQ1-GSK2801 synergistically inhibits proliferation and results in selective gene regulation. Besides suggesting that combinatorial use could be useful therapeutics for the treatment of TNBC, the findings provide a glimpse into potential mechanisms of action for this combination therapy approach.
Collapse
Affiliation(s)
- Nanda Kumar Yellapu
- Department of Biostatistics & Data Science, University of Kansas, Medical Center, KS, Kansas City, USA
- The University of Kansas Cancer Center, Kansas City, KS, USA
| | - Thuc Ly
- The University of Kansas Cancer Center, Kansas City, KS, USA
- Department of Cancer Biology, University of Kansas, Medical Center, KS, Kansas City, USA
| | - Mihaela E Sardiu
- Department of Biostatistics & Data Science, University of Kansas, Medical Center, KS, Kansas City, USA
- The University of Kansas Cancer Center, Kansas City, KS, USA
| | - Dong Pei
- Department of Biostatistics & Data Science, University of Kansas, Medical Center, KS, Kansas City, USA
- The University of Kansas Cancer Center, Kansas City, KS, USA
| | - Danny R Welch
- The University of Kansas Cancer Center, Kansas City, KS, USA
- Department of Cancer Biology, University of Kansas, Medical Center, KS, Kansas City, USA
- Departments of Molecular & Integrative Physiology and Internal Medicine, University of Kansas, Medical Center, KS, Kansas City, USA
| | - Jeffery A Thompson
- Department of Biostatistics & Data Science, University of Kansas, Medical Center, KS, Kansas City, USA.
- The University of Kansas Cancer Center, Kansas City, KS, USA.
| | - Devin C Koestler
- Department of Biostatistics & Data Science, University of Kansas, Medical Center, KS, Kansas City, USA.
- The University of Kansas Cancer Center, Kansas City, KS, USA.
| |
Collapse
|
14
|
Chen S, Zhou M, Dong A, Loppnau P, Wang M, Min J, Liu K. Structural basis of the TAM domain of BAZ2A in binding to DNA or RNA independent of methylation status. J Biol Chem 2021; 297:101351. [PMID: 34715126 PMCID: PMC8600091 DOI: 10.1016/j.jbc.2021.101351] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 11/26/2022] Open
Abstract
Bromodomain adjacent to zinc finger domain protein 2A (BAZ2A) (also called transcription termination factor-1 interacting protein 5), a key component of the nucleolar remodeling complex, recruits the nucleolar remodeling complex to ribosomal RNA genes, leading to their transcriptional repression. In addition to its tandem plant homeodomain-bromodomain that is involved in binding to acetylated histone H4, BAZ2A also contains a methyl-CpG-binding domain (MBD)-like Tip5/ARBP/MBD (TAM) domain that shares sequence homology with the MBD. In contrast with the methyl-CpG-binding ability of the canonical MBD, the BAZ2A TAM domain has been shown to bind to promoter-associated RNAs of ribosomal RNA genes and promoter DNAs of other genes independent of DNA methylation. Nevertheless, how the TAM domain binds to RNA/DNA mechanistically remains elusive. Here, we characterized the DNA-/RNA-binding basis of the BAZ2A TAM domain by EMSAs, isothermal titration calorimetry binding assays, mutagenesis analysis, and X-ray crystallography. Our results showed that the TAM domain of BAZ2A selectively binds to dsDNA and dsRNA and that it binds to the backbone of dsDNA in a sequence nonspecific manner, which is distinct from the base-specific binding of the canonical MBD. Thus, our results explain why the TAM domain of BAZ2A does not specifically bind to mCG or TG dsDNA like the canonical MBD and also provide insights for further biological study of BAZ2A acting as a transcription factor in the future.
Collapse
Affiliation(s)
- Sizhuo Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, PR China
| | - Mengqi Zhou
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, PR China
| | - Aiping Dong
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Peter Loppnau
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Min Wang
- Testing & Analysis Center, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, PR China
| | - Jinrong Min
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, PR China; Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, Canada.
| | - Ke Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, PR China.
| |
Collapse
|
15
|
Sharif SB, Zamani N, Chadwick BP. BAZ1B the Protean Protein. Genes (Basel) 2021; 12:genes12101541. [PMID: 34680936 PMCID: PMC8536118 DOI: 10.3390/genes12101541] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 02/02/2023] Open
Abstract
The bromodomain adjacent to the zinc finger domain 1B (BAZ1B) or Williams syndrome transcription factor (WSTF) are just two of the names referring the same protein that is encoded by the WBSCR9 gene and is among the 26-28 genes that are lost from one copy of 7q11.23 in Williams syndrome (WS: OMIM 194050). Patients afflicted by this contiguous gene deletion disorder present with a range of symptoms including cardiovascular complications, developmental defects as well as a characteristic cognitive and behavioral profile. Studies in patients with atypical deletions and mouse models support BAZ1B hemizygosity as a contributing factor to some of the phenotypes. Focused analysis on BAZ1B has revealed this to be a versatile nuclear protein with a central role in chromatin remodeling through two distinct complexes as well as being involved in the replication and repair of DNA, transcriptional processes involving RNA Polymerases I, II, and III as well as possessing kinase activity. Here, we provide a comprehensive review to summarize the many aspects of BAZ1B function including its recent link to cancer.
Collapse
Affiliation(s)
- Shahin Behrouz Sharif
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA;
| | - Nina Zamani
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA;
| | - Brian P. Chadwick
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA;
- Correspondence:
| |
Collapse
|
16
|
Casari E, Gobbini E, Gnugnoli M, Mangiagalli M, Clerici M, Longhese MP. Dpb4 promotes resection of DNA double-strand breaks and checkpoint activation by acting in two different protein complexes. Nat Commun 2021; 12:4750. [PMID: 34362907 PMCID: PMC8346560 DOI: 10.1038/s41467-021-25090-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 07/20/2021] [Indexed: 12/24/2022] Open
Abstract
Budding yeast Dpb4 (POLE3/CHRAC17 in mammals) is a highly conserved histone fold protein that is shared by two protein complexes: the chromatin remodeler ISW2/hCHRAC and the DNA polymerase ε (Pol ε) holoenzyme. In Saccharomyces cerevisiae, Dpb4 forms histone-like dimers with Dls1 in the ISW2 complex and with Dpb3 in the Pol ε complex. Here, we show that Dpb4 plays two functions in sensing and processing DNA double-strand breaks (DSBs). Dpb4 promotes histone removal and DSB resection by interacting with Dls1 to facilitate the association of the Isw2 ATPase to DSBs. Furthermore, it promotes checkpoint activation by interacting with Dpb3 to facilitate the association of the checkpoint protein Rad9 to DSBs. Persistence of both Isw2 and Rad9 at DSBs is enhanced by the A62S mutation that is located in the Dpb4 histone fold domain and increases Dpb4 association at DSBs. Thus, Dpb4 exerts two distinct functions at DSBs depending on its interactors. The histone folding protein Dpb4 forms histone-like dimers within the ISW2 complex and the Pol ε complex in S. cerevisiae. Here the authors reveal insights into two distinct functions that Dpb4 exerts at DSBs depending on its interactors.
Collapse
Affiliation(s)
- Erika Casari
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milano, Italy
| | - Elisa Gobbini
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milano, Italy
| | - Marco Gnugnoli
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milano, Italy
| | - Marco Mangiagalli
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milano, Italy
| | - Michela Clerici
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milano, Italy
| | - Maria Pia Longhese
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milano, Italy.
| |
Collapse
|
17
|
Li D, Wang Q, Gong NN, Kurolap A, Feldman HB, Boy N, Brugger M, Grand K, McWalter K, Guillen Sacoto MJ, Wakeling E, Hurst J, March ME, Bhoj EJ, Nowaczyk MJM, Gonzaga-Jauregui C, Mathew M, Dava-Wala A, Siemon A, Bartholomew D, Huang Y, Lee H, Martinez-Agosto JA, Schwaibold EMC, Brunet T, Choukair D, Pais LS, White SM, Christodoulou J, Brown D, Lindstrom K, Grebe T, Tiosano D, Kayser MS, Tan TY, Deardorff MA, Song Y, Hakonarson H. Pathogenic variants in SMARCA5, a chromatin remodeler, cause a range of syndromic neurodevelopmental features. SCIENCE ADVANCES 2021; 7:eabf2066. [PMID: 33980485 PMCID: PMC8115915 DOI: 10.1126/sciadv.abf2066] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/23/2021] [Indexed: 05/17/2023]
Abstract
Intellectual disability encompasses a wide spectrum of neurodevelopmental disorders, with many linked genetic loci. However, the underlying molecular mechanism for more than 50% of the patients remains elusive. We describe pathogenic variants in SMARCA5, encoding the ATPase motor of the ISWI chromatin remodeler, as a cause of a previously unidentified neurodevelopmental disorder, identifying 12 individuals with de novo or dominantly segregating rare heterozygous variants. Accompanying phenotypes include mild developmental delay, frequent postnatal short stature and microcephaly, and recurrent dysmorphic features. Loss of function of the SMARCA5 Drosophila ortholog Iswi led to smaller body size, reduced sensory dendrite complexity, and tiling defects in larvae. In adult flies, Iswi neural knockdown caused decreased brain size, aberrant mushroom body morphology, and abnormal locomotor function. Iswi loss of function was rescued by wild-type but not mutant SMARCA5. Our results demonstrate that SMARCA5 pathogenic variants cause a neurodevelopmental syndrome with mild facial dysmorphia.
Collapse
Affiliation(s)
- Dong Li
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - Qin Wang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Naihua N Gong
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Alina Kurolap
- The Genetics Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Hagit Baris Feldman
- The Genetics Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nikolas Boy
- Division of Child Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Melanie Brugger
- Institute of Human Genetics, Technical University Munich, Munich, Germany
- Institute of Human Genetics, University Hospital LMU Munich, Goethestr. 29, Munich, Germany
| | - Katheryn Grand
- Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | | | - Emma Wakeling
- North East Thames Regional Genetic Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Jane Hurst
- North East Thames Regional Genetic Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Michael E March
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Elizabeth J Bhoj
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Małgorzata J M Nowaczyk
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | - Mariam Mathew
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Ashita Dava-Wala
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Amy Siemon
- Department of Pediatrics and Clinical Genetics, Nationwide Children's Hospital, Columbus, OH, USA
| | - Dennis Bartholomew
- Department of Pediatrics and Clinical Genetics, Nationwide Children's Hospital, Columbus, OH, USA
| | - Yue Huang
- Department of Human Genetics; Division of Medical Genetics, Department of Pediatrics; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Hane Lee
- Department of Pathology and Laboratory Medicine; Department of Human Genetics; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Julian A Martinez-Agosto
- Department of Human Genetics; Division of Medical Genetics, Department of Pediatrics; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Eva M C Schwaibold
- Department of Pathology and Laboratory Medicine; Department of Human Genetics; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Theresa Brunet
- Institute of Human Genetics, Technical University Munich, Munich, Germany
| | - Daniela Choukair
- Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics, University Hospital Heidelberg, Heidelberg, Germany
| | - Lynn S Pais
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Susan M White
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - John Christodoulou
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Dana Brown
- Division of Genetics and Metabolism, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Kristin Lindstrom
- Division of Genetics and Metabolism, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Theresa Grebe
- Division of Genetics and Metabolism, Phoenix Children's Hospital, Phoenix, AZ, USA
- College of Medicine, University of Arizona, Phoenix, 475 N. 5th Street, Phoenix, AZ, USA
| | - Dov Tiosano
- Pediatric Endocrinology Unit, Ruth Rappaport Children's Hospital, Rambam Healthcare Campus, Haifa, Israel
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Matthew S Kayser
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Tiong Yang Tan
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Matthew A Deardorff
- Departments of Pathology and Pediatrics, Children's Hospital Los Angeles, and University of Southern California, Los Angeles, CA, USA
| | - Yuanquan Song
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
18
|
Guo M, Wang J, Zhang Y, Zhang L. Increased WD40 motifs in Planctomycete bacteria and their evolutionary relevance. Mol Phylogenet Evol 2020; 155:107018. [PMID: 33242584 DOI: 10.1016/j.ympev.2020.107018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 10/05/2020] [Accepted: 11/17/2020] [Indexed: 10/22/2022]
Abstract
Species of the family Planctomycetes have a complex intracellular structure, which is distinct from that of the majority of non-Planctomycetes bacteria. At present, genomic evidence of the evolution of intracellular complexity is lacking, cognitions of Planctomycetes's intracellular structure mainly rely on electron microscope observation. As the presence of WD40 motifs in eukaryotic proteins probably links to intracellular complexity, bioinformatic studies were conducted to detect and enumerate WD40 motifs, WD40 domains, and WD40 motif-bearing proteins in the genomes of 11 Planctomycetes species, 2775 non-Planctomycetes bacteria, and 63 representative eukaryotes. Compared to non-Planctomycetes bacteria (average 5 WD40 motifs and 1 WD40 motif-bearing protein per genome), a large increase in the number of WD40 motifs in Planctomycetes species (average 116 WD40 motifs and 26 WD40 motif-bearing proteins per genome) was observed. However, the average number of WD40 motifs in Planctomycetes species was significantly lower than that of eukaryotes (average 584 WD40 motifs and 193 WD40 motif-bearing proteins per genome). The number of WD40 motif-bearing proteins was found to correlate with genome size and gene number. Most WD40 motif-bearing proteins of Planctomycetes species belonged to the categories of 'ribosome assembly protein 4' and 'eukaryotic-like serine/threonine protein kinase.' Collinearity analysis of amino acid compositions of Planctomycetes and eukaryotic WD40 motifs revealed that the sequences of the four anti-parallel β-sheets of WD40 motifs were conserved. However, a number of Planctomycetes WD40 motifs had increased size of the interval region of β-sheets D and A. Taken together, results of this study suggest a positive correlation between the number of WD40 motif-bearing proteins and the evolution of Planctomycetes species toward a complex intracellular structure similar to that of eukaryotes.
Collapse
Affiliation(s)
- Min Guo
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Junhua Wang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yuzhi Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Libiao Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China.
| |
Collapse
|
19
|
Gu BW, Tan LM, Zhang CJ, Hou XM, Cai XW, Chen S, He XJ. FHA2 is a plant-specific ISWI subunit responsible for stamen development and plant fertility. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1703-1716. [PMID: 32396248 DOI: 10.1111/jipb.12945] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/08/2020] [Indexed: 06/11/2023]
Abstract
Imitation Switch (ISWI) chromatin remodelers are known to function in diverse multi-subunit complexes in yeast and animals. However, the constitution and function of ISWI complexes in Arabidopsis thaliana remain unclear. In this study, we identified forkhead-associated domain 2 (FHA2) as a plant-specific subunit of an ISWI chromatin-remodeling complex in Arabidopsis. By in vivo and in vitro analyses, we demonstrated that FHA2 directly binds to RLT1 and RLT2, two redundant subunits of the ISWI complex in Arabidopsis. The stamen filament is shorter in the fha2 and rlt1/2 mutants than in the wild type, whereas their pistil lengths are comparable. The shorter filament, which is due to reduced cell size, results in insufficient pollination and reduced fertility. The rlt1/2 mutant shows an early-flowering phenotype, whereas the phenotype is not shared by the fha2 mutant. Consistent with the functional specificity of FHA2, our RNA-seq analysis indicated that the fha2 mutant affects a subset of RLT1/2-regulated genes that does not include genes involved in the regulation of flowering time. This study demonstrates that FHA2 functions as a previously uncharacterized subunit of the Arabidopsis ISWI complex and is exclusively involved in regulating stamen development and plant fertility.
Collapse
Affiliation(s)
- Bo-Wen Gu
- College of Life Sciences, Beijing Normal University, Beijing, 100875, China
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Lian-Mei Tan
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Cui-Jun Zhang
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Xiao-Mei Hou
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Xue-Wei Cai
- National Institute of Biological Sciences, Beijing, 102206, China
| | - She Chen
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 10084, China
| | - Xin-Jian He
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 10084, China
| |
Collapse
|
20
|
Scacchetti A, Becker PB. Loss of nucleosome remodelers CHRAC/ACF does not sensitize early Drosophila embryos to X-rays. MICROPUBLICATION BIOLOGY 2020; 2020:10.17912/micropub.biology.000287. [PMID: 32760884 PMCID: PMC7396160 DOI: 10.17912/micropub.biology.000287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Alessandro Scacchetti
- Molecular Biology Division, Biomedical Center, Ludwig-Maximilians-University, Munich, Germany
| | - Peter B. Becker
- Molecular Biology Division, Biomedical Center, Ludwig-Maximilians-University, Munich, Germany,
Correspondence to: Peter B. Becker ()
| |
Collapse
|
21
|
Siamishi I, Iwanami N, Clapes T, Trompouki E, O'Meara CP, Boehm T. Lymphocyte-Specific Function of the DNA Polymerase Epsilon Subunit Pole3 Revealed by Neomorphic Alleles. Cell Rep 2020; 31:107756. [PMID: 32553171 DOI: 10.1016/j.celrep.2020.107756] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 04/06/2020] [Accepted: 05/20/2020] [Indexed: 11/17/2022] Open
Abstract
Immunodeficiencies are typically caused by loss-of-function mutations in lymphocyte-specific genes. Occasionally, mutations in ubiquitous general-purpose factors, including those affecting essential components of the DNA polymerase epsilon (POLE) holoenzyme, have cell-type-specific consequences. POLE3, one of the four components of the POLE holoenzyme, features a histone fold domain and a unique acidic C terminus, making it a particularly attractive candidate mediating cell type-specific activities of POLE. Mice lacking Pole3 survive up to late embryonic stages, indicating that this subunit is dispensable for DNA replication. The phenotypes of viable hypomorphic and neomorphic alleles are surprisingly tissue restricted and reveal a stage-specific function of the histone fold domain of Pole3 during T and B cell development. Gradual introduction of positively charged residues into the acidic C terminus leads to peripheral lymphopenia of increasing severity. Our findings serve as a paradigm to understand the molecular basis of cell-type-specific non-replicative functions of the ubiquitous POLE complex.
Collapse
Affiliation(s)
- Iliana Siamishi
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79108 Freiburg, Germany
| | - Norimasa Iwanami
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Thomas Clapes
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Eirini Trompouki
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Connor P O'Meara
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Thomas Boehm
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany.
| |
Collapse
|
22
|
Acharya N, Khandagale P, Thakur S, Sahu JK, Utkalaja BG. Quaternary structural diversity in eukaryotic DNA polymerases: monomeric to multimeric form. Curr Genet 2020; 66:635-655. [PMID: 32236653 DOI: 10.1007/s00294-020-01071-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/13/2020] [Accepted: 03/24/2020] [Indexed: 12/14/2022]
Abstract
Sixteen eukaryotic DNA polymerases have been identified and studied so far. Based on the sequence similarity of the catalytic subunits of DNA polymerases, these have been classified into four A, B, X and Y families except PrimPol, which belongs to the AEP family. The quaternary structure of these polymerases also varies depending upon whether they are composed of one or more subunits. Therefore, in this review, we used a quaternary structure-based classification approach to group DNA polymerases as either monomeric or multimeric and highlighted functional significance of their accessory subunits. Additionally, we have briefly summarized various DNA polymerase discoveries from a historical perspective, emphasized unique catalytic mechanism of each DNA polymerase and highlighted recent advances in understanding their cellular functions.
Collapse
Affiliation(s)
- Narottam Acharya
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, India.
| | - Prashant Khandagale
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, India
| | - Shweta Thakur
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, India
| | - Jugal Kishor Sahu
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, India
| | - Bhabasha Gyanadeep Utkalaja
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, India
| |
Collapse
|
23
|
Ai C, Ma G, Deng Y, Zheng Q, Gen Y, Li W, Li Y, Zu L, Zhou Q. Nm23-H1 inhibits lung cancer bone-specific metastasis by upregulating miR-660-5p targeted SMARCA5. Thorac Cancer 2020; 11:640-650. [PMID: 32022430 PMCID: PMC7049508 DOI: 10.1111/1759-7714.13308] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/23/2019] [Accepted: 12/27/2019] [Indexed: 02/05/2023] Open
Abstract
Background Nm23‐H1 gene has been found to be an inhibitor of tumor metastasis in lung cancer. MicroRNAs (miRNAs) play key roles in tumor metastasis through multiple signaling pathways. This study explored whether the nm23‐H1 gene could inhibit invasion and metastasis of lung cancer cells by regulating miRNA‐660‐5p targets. Methods Quantitative real‐time PCR (qRT‐PCR) and western blots were used to measure the expression of nm23‐H1 and miR‐660‐5p of various human lung cancer cell lines. Cell counting kit‐8 (CCK‐8), wound‐healing and transwell assay were carried out to assess cell proliferation, migration and invasion of each cell line. Xenograft were applied to determine in vivo effects of miR‐660‐5p among nude mice. Luciferase assay and western blot were performed to determine the target gene of miR‐660‐5p. Results We found that high expression of nm23‐H1 correlated with decreased miRNA‐660‐5p expression. Inhibiting miR‐660‐5p suppressed lung cancer cells progression significantly in vitro, whereas overexpression of miR‐660‐5p facilitated tumor growth and bone metastasis in vivo. In addition, as the potential target gene of miR‐660‐5p, SMARCA5 overexpression in vitro suppressed tumor progression and osteolytic metastasis associated RANKL signaling, which is congruent with the effect of nm23‐H1 on the lung cancer cells. Conclusion Nm23‐H1 inhibits tumor progression and bone‐specific metastasis of lung cancer by regulating miR‐660‐5p/SMARCA5/RANKL axis, which indicates the related genes may serve as potential targets for the treatment of human lung cancer. Key points Significant findings of the study High expression of nm23‐H1 correlated with decreased miRNA‐660‐5p expression. Further, downregulation of miR‐660‐5p significantly suppressed the tumor progression and bone‐specific metastasis of lung cancer cells. What this study adds This is the first study to show an inverse association between nm23‐H1 and miR‐660‐5p, and confirm that nm23‐H1 inhibits tumor progression and bone‐specific metastasis of lung cancer by regulating miR‐660‐5p/SMARCA5/RANKL axis.
Collapse
Affiliation(s)
- Cheng Ai
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China.,Department of Cardiothoracic Surgery, Panzhihua Central Hospital of Sichuan, Panzhihua, China
| | - Guangzhi Ma
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yunfu Deng
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qiangqiang Zheng
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yingcai Gen
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wen Li
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Lingling Zu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Qinghua Zhou
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China.,Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
24
|
Dao HT, Dul BE, Dann GP, Liszczak GP, Muir TW. A basic motif anchoring ISWI to nucleosome acidic patch regulates nucleosome spacing. Nat Chem Biol 2020; 16:134-142. [PMID: 31819269 PMCID: PMC6982587 DOI: 10.1038/s41589-019-0413-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 10/22/2019] [Indexed: 12/15/2022]
Abstract
Recent studies have implicated the nucleosome acidic patch in the activity of ATP-dependent chromatin remodeling machines. We used a photocrosslinking-based nucleosome profiling technology (photoscanning) to identify a conserved basic motif within the catalytic subunit of ISWI remodelers, SNF2h, which engages this nucleosomal epitope. This region of SNF2h is essential for chromatin remodeling activity in a reconstituted biochemical system and in cells. Our studies suggest that the basic motif in SNF2h plays a critical role in anchoring the remodeler to the nucleosomal surface. We also examine the functional consequences of several cancer-associated histone mutations that map to the nucleosome acidic patch. Kinetic studies using physiologically relevant heterotypic nucleosomal substrates ('Janus' nucleosomes) indicate that these cancer-associated mutations can disrupt regularly spaced chromatin structure by inducing ISWI-mediated unidirectional nucleosome sliding. These results indicate a potential mechanistic link between oncogenic histones and alterations to the chromatin landscape.
Collapse
Affiliation(s)
- Hai T Dao
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Barbara E Dul
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Geoffrey P Dann
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Department of Biochemistry and Biophysics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Glen P Liszczak
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Tom W Muir
- Department of Chemistry, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
25
|
Bechter O, Schöffski P. Make your best BET: The emerging role of BET inhibitor treatment in malignant tumors. Pharmacol Ther 2020; 208:107479. [PMID: 31931101 DOI: 10.1016/j.pharmthera.2020.107479] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/15/2019] [Indexed: 12/17/2022]
Abstract
Bromodomains are protein-protein interaction modules with a great diversity in terms of number of proteins and their function. The bromodomain and extraterminal protein (BET) represents a distinct subclass of bromodomain proteins mainly involved in transcriptional regulation via their interaction with acetylated chromatin. In cancer cells BET proteins are found to be altered in many ways such as overexpression, mutations and fusions of BET proteins or their interference with cancer relevant signaling pathways and transcriptional programs in order to sustain cancer growth and viability. Blocking BET protein function with small molecules is associated with therapeutic activity. Consequently, a variety of small molecules have been developed and a number of phase I clinical trials have explored their tolerability and efficacy in patients with solid tumors and hematological malignancies. We will review the rational for applying BET inhibitors in the clinic and we will discuss the toxicity profile as well as efficacy of this new class of protein inhibitors. We will also highlight the emerging problem of treatment resistance and the potential these drugs might have when combined with other anti-cancer therapies.
Collapse
Affiliation(s)
- Oliver Bechter
- Leuven Cancer Institute, Department of General Medical Oncology, University Hospitals Leuven, Belgium; Department of Oncology, KU, Leuven, Belgium.
| | - Patrick Schöffski
- Leuven Cancer Institute, Department of General Medical Oncology, University Hospitals Leuven, Belgium; Department of Oncology, KU, Leuven, Belgium.
| |
Collapse
|
26
|
Park VS, Pursell ZF. POLE proofreading defects: Contributions to mutagenesis and cancer. DNA Repair (Amst) 2019; 76:50-59. [PMID: 30818169 PMCID: PMC6467506 DOI: 10.1016/j.dnarep.2019.02.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 12/14/2022]
Abstract
DNA polymerases are uniquely poised to contribute to the elevated mutation burdens seen in many human tumors. These mutations can arise through a number of different polymerase-dependent mechanisms, including intrinsic errors made using template DNA and precursor dNTPs free from chemical modifications, misinsertion events opposite chemically damaged template DNA or insertion events using modified nucleotides. While specific DNA repair polymerases have been known to contribute to tumorigenesis, the role of replication polymerases in mutagenesis in human disease has come into sharp focus over the last decade. This review describes how mutations in these replication DNA polymerases help to drive mutagenesis and tumor development, with particular attention to DNA polymerase epsilon. Recent studies using cancer genome sequencing, mutational signature analyses, yeast and mouse models, and the influence of mismatch repair on tumors with DNA polymerase mutations are discussed.
Collapse
Affiliation(s)
- Vivian S Park
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Zachary F Pursell
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA; Tulane Cancer Center, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA, USA.
| |
Collapse
|
27
|
Bellelli R, Belan O, Pye VE, Clement C, Maslen SL, Skehel JM, Cherepanov P, Almouzni G, Boulton SJ. POLE3-POLE4 Is a Histone H3-H4 Chaperone that Maintains Chromatin Integrity during DNA Replication. Mol Cell 2018; 72:112-126.e5. [PMID: 30217558 PMCID: PMC6179962 DOI: 10.1016/j.molcel.2018.08.043] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/17/2018] [Accepted: 08/26/2018] [Indexed: 01/01/2023]
Abstract
Maintenance of epigenetic integrity relies on coordinated recycling and partitioning of parental histones and deposition of newly synthesized histones during DNA replication. This process depends upon a poorly characterized network of histone chaperones, remodelers, and binding proteins. Here we implicate the POLE3-POLE4 subcomplex of the leading-strand polymerase, Polε, in replication-coupled nucleosome assembly through its ability to selectively bind to histones H3-H4. Using hydrogen/deuterium exchange mass spectrometry and physical mapping, we define minimal domains necessary for interaction between POLE3-POLE4 and histones H3-H4. Biochemical analyses establish that POLE3-POLE4 is a histone chaperone that promotes tetrasome formation and DNA supercoiling in vitro. In cells, POLE3-POLE4 binds both newly synthesized and parental histones, and its depletion hinders helicase unwinding and chromatin PCNA unloading and compromises coordinated parental histone retention and new histone deposition. Collectively, our study reveals that POLE3-POLE4 possesses intrinsic H3-H4 chaperone activity, which facilitates faithful nucleosome dynamics at the replication fork.
Collapse
Affiliation(s)
| | - Ondrej Belan
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Valerie E Pye
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Camille Clement
- Institut Curie, PSL Research University, CNRS, UMR3664, Equipe Labellisée Ligue contre le Cancer, Paris, France; Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR3664, Paris, France
| | - Sarah L Maslen
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - J Mark Skehel
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | | | - Genevieve Almouzni
- Institut Curie, PSL Research University, CNRS, UMR3664, Equipe Labellisée Ligue contre le Cancer, Paris, France; Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR3664, Paris, France
| | - Simon J Boulton
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
28
|
Bellelli R, Borel V, Logan C, Svendsen J, Cox DE, Nye E, Metcalfe K, O'Connell SM, Stamp G, Flynn HR, Snijders AP, Lassailly F, Jackson A, Boulton SJ. Polε Instability Drives Replication Stress, Abnormal Development, and Tumorigenesis. Mol Cell 2018; 70:707-721.e7. [PMID: 29754823 PMCID: PMC5972231 DOI: 10.1016/j.molcel.2018.04.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/28/2018] [Accepted: 04/03/2018] [Indexed: 01/08/2023]
Abstract
DNA polymerase ε (POLE) is a four-subunit complex and the major leading strand polymerase in eukaryotes. Budding yeast orthologs of POLE3 and POLE4 promote Polε processivity in vitro but are dispensable for viability in vivo. Here, we report that POLE4 deficiency in mice destabilizes the entire Polε complex, leading to embryonic lethality in inbred strains and extensive developmental abnormalities, leukopenia, and tumor predisposition in outbred strains. Comparable phenotypes of growth retardation and immunodeficiency are also observed in human patients harboring destabilizing mutations in POLE1. In both Pole4-/- mouse and POLE1 mutant human cells, Polε hypomorphy is associated with replication stress and p53 activation, which we attribute to inefficient replication origin firing. Strikingly, removing p53 is sufficient to rescue embryonic lethality and all developmental abnormalities in Pole4 null mice. However, Pole4-/-p53+/- mice exhibit accelerated tumorigenesis, revealing an important role for controlled CMG and origin activation in normal development and tumor prevention.
Collapse
Affiliation(s)
| | - Valerie Borel
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Clare Logan
- MRC Institute of Genetics & Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | | | - Danielle E Cox
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Emma Nye
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Kay Metcalfe
- Department of Genetic Medicine, St Mary's Hospital, Oxford Road, Manchester, M13 OJH, UK
| | - Susan M O'Connell
- Department of Paediatrics, Cork University Hospital, Wilton, Cork T12 DC4A, Ireland
| | - Gordon Stamp
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Helen R Flynn
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | | | | | - Andrew Jackson
- MRC Institute of Genetics & Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | - Simon J Boulton
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
29
|
Sokpor G, Castro-Hernandez R, Rosenbusch J, Staiger JF, Tuoc T. ATP-Dependent Chromatin Remodeling During Cortical Neurogenesis. Front Neurosci 2018; 12:226. [PMID: 29686607 PMCID: PMC5900035 DOI: 10.3389/fnins.2018.00226] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/22/2018] [Indexed: 12/20/2022] Open
Abstract
The generation of individual neurons (neurogenesis) during cortical development occurs in discrete steps that are subtly regulated and orchestrated to ensure normal histogenesis and function of the cortex. Notably, various gene expression programs are known to critically drive many facets of neurogenesis with a high level of specificity during brain development. Typically, precise regulation of gene expression patterns ensures that key events like proliferation and differentiation of neural progenitors, specification of neuronal subtypes, as well as migration and maturation of neurons in the developing cortex occur properly. ATP-dependent chromatin remodeling complexes regulate gene expression through utilization of energy from ATP hydrolysis to reorganize chromatin structure. These chromatin remodeling complexes are characteristically multimeric, with some capable of adopting functionally distinct conformations via subunit reconstitution to perform specific roles in major aspects of cortical neurogenesis. In this review, we highlight the functions of such chromatin remodelers during cortical development. We also bring together various proposed mechanisms by which ATP-dependent chromatin remodelers function individually or in concert, to specifically modulate vital steps in cortical neurogenesis.
Collapse
Affiliation(s)
- Godwin Sokpor
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany
| | - Ricardo Castro-Hernandez
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany
| | - Joachim Rosenbusch
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany
| | - Jochen F Staiger
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany.,DFG Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Goettingen, Germany
| | - Tran Tuoc
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany.,DFG Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Goettingen, Germany
| |
Collapse
|
30
|
Ali I, Conrad RJ, Verdin E, Ott M. Lysine Acetylation Goes Global: From Epigenetics to Metabolism and Therapeutics. Chem Rev 2018; 118:1216-1252. [PMID: 29405707 PMCID: PMC6609103 DOI: 10.1021/acs.chemrev.7b00181] [Citation(s) in RCA: 257] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Post-translational acetylation of lysine residues has emerged as a key regulatory mechanism in all eukaryotic organisms. Originally discovered in 1963 as a unique modification of histones, acetylation marks are now found on thousands of nonhistone proteins located in virtually every cellular compartment. Here we summarize key findings in the field of protein acetylation over the past 20 years with a focus on recent discoveries in nuclear, cytoplasmic, and mitochondrial compartments. Collectively, these findings have elevated protein acetylation as a major post-translational modification, underscoring its physiological relevance in gene regulation, cell signaling, metabolism, and disease.
Collapse
Affiliation(s)
- Ibraheem Ali
- Gladstone Institute of Virology and Immunology, San Francisco, California 94158, United States
- University of California, San Francisco, Department of Medicine, San Francisco, California 94158, United States
| | - Ryan J. Conrad
- Gladstone Institute of Virology and Immunology, San Francisco, California 94158, United States
- University of California, San Francisco, Department of Medicine, San Francisco, California 94158, United States
| | - Eric Verdin
- Buck Institute for Research on Aging, Novato, California 94945, United States
| | - Melanie Ott
- Gladstone Institute of Virology and Immunology, San Francisco, California 94158, United States
- University of California, San Francisco, Department of Medicine, San Francisco, California 94158, United States
| |
Collapse
|
31
|
Goodwin LR, Picketts DJ. The role of ISWI chromatin remodeling complexes in brain development and neurodevelopmental disorders. Mol Cell Neurosci 2017; 87:55-64. [PMID: 29249292 DOI: 10.1016/j.mcn.2017.10.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/04/2017] [Accepted: 10/26/2017] [Indexed: 10/18/2022] Open
Abstract
The mammalian ISWI (Imitation Switch) genes SMARCA1 and SMARCA5 encode the ATP-dependent chromatin remodeling proteins SNF2L and SNF2H. The ISWI proteins interact with BAZ (bromodomain adjacent to PHD zinc finger) domain containing proteins to generate eight distinct remodeling complexes. ISWI complex-mediated nucleosome positioning within genes and gene regulatory elements is proving important for the transition from a committed progenitor state to a differentiated cell state. Genetic studies have implicated the involvement of many ATP-dependent chromatin remodeling proteins in neurodevelopmental disorders (NDDs), including SMARCA1. Here we review the characterization of mice inactivated for ISWI and their interacting proteins, as it pertains to brain development and disease. A better understanding of chromatin dynamics during neural development is a prerequisite to understanding disease pathologies and the development of therapeutics for these complex disorders.
Collapse
Affiliation(s)
- Laura R Goodwin
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology & Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - David J Picketts
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology & Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; Department of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
32
|
Hoffmeister H, Fuchs A, Erdel F, Pinz S, Gröbner-Ferreira R, Bruckmann A, Deutzmann R, Schwartz U, Maldonado R, Huber C, Dendorfer AS, Rippe K, Längst G. CHD3 and CHD4 form distinct NuRD complexes with different yet overlapping functionality. Nucleic Acids Res 2017; 45:10534-10554. [PMID: 28977666 PMCID: PMC5737555 DOI: 10.1093/nar/gkx711] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/08/2017] [Indexed: 12/22/2022] Open
Abstract
CHD3 and CHD4 (Chromodomain Helicase DNA binding protein), two highly similar representatives of the Mi-2 subfamily of SF2 helicases, are coexpressed in many cell lines and tissues and have been reported to act as the motor subunit of the NuRD complex (nucleosome remodeling and deacetylase activities). Besides CHD proteins, NuRD contains several repressors like HDAC1/2, MTA2/3 and MBD2/3, arguing for a role as a transcriptional repressor. However, the subunit composition varies among cell- and tissue types and physiological conditions. In particular, it is unclear if CHD3 and CHD4 coexist in the same NuRD complex or whether they form distinct NuRD complexes with specific functions. We mapped the CHD composition of NuRD complexes in mammalian cells and discovered that they are isoform-specific, containing either the monomeric CHD3 or CHD4 ATPase. Both types of complexes exhibit similar intranuclear mobility, interact with HP1 and rapidly accumulate at UV-induced DNA repair sites. But, CHD3 and CHD4 exhibit distinct nuclear localization patterns in unperturbed cells, revealing a subset of specific target genes. Furthermore, CHD3 and CHD4 differ in their nucleosome remodeling and positioning behaviour in vitro. The proteins form distinct CHD3- and CHD4-NuRD complexes that do not only repress, but can just as well activate gene transcription of overlapping and specific target genes.
Collapse
Affiliation(s)
- Helen Hoffmeister
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, 93053 Regensburg, Germany
| | - Andreas Fuchs
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, 93053 Regensburg, Germany
| | - Fabian Erdel
- BioQuant, University of Heidelberg, 69120 Heidelberg, Germany
| | - Sophia Pinz
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, 93053 Regensburg, Germany
| | - Regina Gröbner-Ferreira
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, 93053 Regensburg, Germany
| | - Astrid Bruckmann
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, 93053 Regensburg, Germany
| | - Rainer Deutzmann
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, 93053 Regensburg, Germany
| | - Uwe Schwartz
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, 93053 Regensburg, Germany
| | - Rodrigo Maldonado
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, 93053 Regensburg, Germany
| | - Claudia Huber
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, 93053 Regensburg, Germany
| | - Anne-Sarah Dendorfer
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, 93053 Regensburg, Germany
| | - Karsten Rippe
- BioQuant, University of Heidelberg, 69120 Heidelberg, Germany
| | - Gernot Längst
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
33
|
Agudelo Garcia PA, Hoover ME, Zhang P, Nagarajan P, Freitas MA, Parthun MR. Identification of multiple roles for histone acetyltransferase 1 in replication-coupled chromatin assembly. Nucleic Acids Res 2017; 45:9319-9335. [PMID: 28666361 PMCID: PMC5766187 DOI: 10.1093/nar/gkx545] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 06/12/2017] [Indexed: 12/16/2022] Open
Abstract
Histone acetyltransferase 1 (Hat1) catalyzes the acetylation of newly synthesized histone H4 at lysines 5 and 12 that accompanies replication-coupled chromatin assembly. The acetylation of newly synthesized H4 occurs in the cytoplasm and the function of this acetylation is typically ascribed to roles in either histone nuclear import or deposition. Using cell lines from Hat1+/+ and Hat1−/− mouse embryos, we demonstrate that Hat1 is not required for either histone nuclear import or deposition. We employed quantitative proteomics to characterize Hat1-dependent changes in the composition of nascent chromatin structure. Among the proteins depleted from nascent chromatin isolated from Hat1−/− cells are several bromodomain-containing proteins, including Brg1, Baz1A and Brd3. Analysis of the binding specificity of their bromodomains suggests that Hat1-dependent acetylation of H4 is directly involved in their recruitment. Hat1−/− nascent chromatin is enriched for topoisomerase 2α and 2β. The enrichment of topoisomerase 2 is functionally relevant as Hat1−/− cells are hyper-sensitive to topoisomerase 2 inhibition suggesting that Hat1 is required for proper chromatin topology. In addition, our results indicate that Hat1 is transiently recruited to sites of chromatin assembly, dissociating prior to the maturation of chromatin structure.
Collapse
Affiliation(s)
- Paula A Agudelo Garcia
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Michael E Hoover
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Pei Zhang
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Prabakaran Nagarajan
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Michael A Freitas
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Mark R Parthun
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
34
|
Oppikofer M, Bai T, Gan Y, Haley B, Liu P, Sandoval W, Ciferri C, Cochran AG. Expansion of the ISWI chromatin remodeler family with new active complexes. EMBO Rep 2017; 18:1697-1706. [PMID: 28801535 DOI: 10.15252/embr.201744011] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 06/28/2017] [Accepted: 06/30/2017] [Indexed: 02/01/2023] Open
Abstract
ISWI chromatin remodelers mobilize nucleosomes to control DNA accessibility. Complexes isolated to date pair one of six regulatory subunits with one of two highly similar ATPases. However, we find that each endogenously expressed ATPase co-purifies with every regulatory subunit, substantially increasing the diversity of ISWI complexes, and we additionally identify BAZ2B as a novel, seventh regulatory subunit. Through reconstitution of catalytically active human ISWI complexes, we demonstrate that the new interactions described here are stable and direct. Finally, we profile the nucleosome remodeling functions of the now expanded family of ISWI chromatin remodelers. By revealing the combinatorial nature of ISWI complexes, we provide a basis for better understanding ISWI function in normal settings and disease.
Collapse
Affiliation(s)
- Mariano Oppikofer
- Department of Early Discovery Biochemistry, Genentech, Inc., South San Francisco, CA, USA
| | - Tianyi Bai
- Department of Structural Biology, Genentech, Inc., South San Francisco, CA, USA
| | - Yutian Gan
- Department of Protein Chemistry, Genentech, Inc., South San Francisco, CA, USA
| | - Benjamin Haley
- Department of Molecular Biology, Genentech, Inc., South San Francisco, CA, USA
| | - Peter Liu
- Department of Protein Chemistry, Genentech, Inc., South San Francisco, CA, USA
| | - Wendy Sandoval
- Department of Protein Chemistry, Genentech, Inc., South San Francisco, CA, USA
| | - Claudio Ciferri
- Department of Structural Biology, Genentech, Inc., South San Francisco, CA, USA
| | - Andrea G Cochran
- Department of Early Discovery Biochemistry, Genentech, Inc., South San Francisco, CA, USA
| |
Collapse
|
35
|
Fan K, Chen S, Ge Y, Ye K, Yao Q, Jing J, Zhang J, Tu X, Yao B. Backbone and side-chain NMR assignments for the bromodomain of mouse BAZ1A (ACF1). BIOMOLECULAR NMR ASSIGNMENTS 2016; 10:131-134. [PMID: 26542424 DOI: 10.1007/s12104-015-9651-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/16/2015] [Indexed: 06/05/2023]
Abstract
BAZ1A, a non-catalytic subunit of the chromatin remodeler complexes ACF and CHRAC, is thought to modulate the ATPase's activity of the complexes and participate in gene transcription, DNA damage checkpoint and double-strand break repair. Recently, the essential role of BAZ1A in mouse male fertility has also been reported. BAZ1A contains one C-terminal bromodomain, which specifically recognizes acetylation of lysine. Here, we report the backbone and side chain (1)H, (13)C and (15)N resonance assignment of the mouse BAZ1A-bromodomain, as a basis for further functional studies and structure determination.
Collapse
Affiliation(s)
- Kai Fan
- Center of Reproductive Medicine, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, People's Republic of China
| | - Shengrong Chen
- Center of Reproductive Medicine, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, People's Republic of China
| | - Yifeng Ge
- Center of Reproductive Medicine, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, People's Republic of China
| | - Kaiqin Ye
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Science, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Qi Yao
- Center of Reproductive Medicine, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, People's Republic of China
| | - Jun Jing
- Center of Reproductive Medicine, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, People's Republic of China
| | - Jiahai Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Science, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Xiaoming Tu
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Science, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Bing Yao
- Center of Reproductive Medicine, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, People's Republic of China.
| |
Collapse
|
36
|
Epigenomic regulation of oncogenesis by chromatin remodeling. Oncogene 2016; 35:4423-36. [PMID: 26804164 DOI: 10.1038/onc.2015.513] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/27/2015] [Accepted: 12/07/2015] [Indexed: 02/08/2023]
Abstract
Disruption of the intricate gene expression program represents one of major driving factors for the development, progression and maintenance of human cancer, and is often associated with acquired therapeutic resistance. At the molecular level, cancerous phenotypes are the outcome of cellular functions of critical genes, regulatory interactions of histones and chromatin remodeling complexes in response to dynamic and persistent upstream signals. A large body of genetic and biochemical evidence suggests that the chromatin remodelers integrate the extracellular and cytoplasmic signals to control gene activity. Consequently, widespread dysregulation of chromatin remodelers and the resulting inappropriate expression of regulatory genes, together, lead to oncogenesis. We summarize the recent developments and current state of the dysregulation of the chromatin remodeling components as the driving mechanism underlying the growth and progression of human tumors. Because chromatin remodelers, modifying enzymes and protein-protein interactions participate in interpreting the epigenetic code, selective chromatin remodelers and bromodomains have emerged as new frontiers for pharmacological intervention to develop future anti-cancer strategies to be used either as single-agent or in combination therapies with chemotherapeutics or radiotherapy.
Collapse
|
37
|
Zhao XC, An P, Wu XY, Zhang LM, Long B, Tian Y, Chi XY, Tong DY. Overexpression of hSNF2H in glioma promotes cell proliferation, invasion, and chemoresistance through its interaction with Rsf-1. Tumour Biol 2015; 37:7203-12. [PMID: 26666816 DOI: 10.1007/s13277-015-4579-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 12/02/2015] [Indexed: 12/30/2022] Open
Abstract
hSNF2H partners with Rsf-1 to compose the Rsf complex to regulate gene expression. Recent studies indicated that hSNF2H was overexpressed in several human cancers. However, its expression pattern and biological mechanism in glioma remain unexplored. In this study, we found that hSNF2H was overexpressed in 32 % of glioma specimens. hSNF2H overexpression correlated with advanced tumor grade (p = 0.0338) and Rsf-1 positivity in glioma tissues (p = 0.016). Small interfering RNA (siRNA) knockdown was performed in A172 and U87 cell lines. MTT, colony formation assay, and cell cycle analysis showed that knockdown of hSNF2H inhibited cell proliferation, colony formation ability, and cell cycle transition. Matrigel invasion assay showed that hSNF2H depletion inhibited invasive ability of glioma cells. In addition, we demonstrated that hSNF2H depletion decreased temozolomide resistance of A172 and U87 cell lines and increased temozolomide induced apoptosis. Furthermore, hSNF2H depletion decreased cyclin D1, cyclin E, p-Rb, MMP2, cIAP1, Bcl-2 expression, and phosphorylation of IκBα and p65, suggesting hSNF2H regulates apoptosis through NF-κB pathway. Immunoprecipitation showed that hSNF2H could interact with Rsf-1 in both cell lines. To validate the involvement of Rsf-1, we checked the change of its downstream targets in Rsf-1 depleted cells. In Rsf-1 depleted cells, changes of cyclin E, Bcl-2, and p-IκBα were not significant using hSNF2H siRNA treatment. In conclusion, our study demonstrated that hSNF2H was overexpressed in human gliomas and contributed to glioma proliferation, invasion, and chemoresistance through regulation of cyclin E and NF-κB pathway, which is dependent on its interaction with Rsf-1.
Collapse
Affiliation(s)
- Xiao-Chun Zhao
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Ping An
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, China.
| | - Xiu-Ying Wu
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China.
| | - Li-Min Zhang
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| | - Bo Long
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Yue Tian
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Xiao-Ying Chi
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dong-Yi Tong
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China
| |
Collapse
|
38
|
Chromatin Remodelers: From Function to Dysfunction. Genes (Basel) 2015; 6:299-324. [PMID: 26075616 PMCID: PMC4488666 DOI: 10.3390/genes6020299] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/01/2015] [Accepted: 06/03/2015] [Indexed: 12/20/2022] Open
Abstract
Chromatin remodelers are key players in the regulation of chromatin accessibility and nucleosome positioning on the eukaryotic DNA, thereby essential for all DNA dependent biological processes. Thus, it is not surprising that upon of deregulation of those molecular machines healthy cells can turn into cancerous cells. Even though the remodeling enzymes are very abundant and a multitude of different enzymes and chromatin remodeling complexes exist in the cell, the particular remodeling complex with its specific nucleosome positioning features must be at the right place at the right time in order to ensure the proper regulation of the DNA dependent processes. To achieve this, chromatin remodeling complexes harbor protein domains that specifically read chromatin targeting signals, such as histone modifications, DNA sequence/structure, non-coding RNAs, histone variants or DNA bound interacting proteins. Recent studies reveal the interaction between non-coding RNAs and chromatin remodeling complexes showing importance of RNA in remodeling enzyme targeting, scaffolding and regulation. In this review, we summarize current understanding of chromatin remodeling enzyme targeting to chromatin and their role in cancer development.
Collapse
|
39
|
Mayes K, Qiu Z, Alhazmi A, Landry JW. ATP-dependent chromatin remodeling complexes as novel targets for cancer therapy. Adv Cancer Res 2015; 121:183-233. [PMID: 24889532 DOI: 10.1016/b978-0-12-800249-0.00005-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The progression to advanced stage cancer requires changes in many characteristics of a cell. These changes are usually initiated through spontaneous mutation. As a result of these mutations, gene expression is almost invariably altered allowing the cell to acquire tumor-promoting characteristics. These abnormal gene expression patterns are in part enabled by the posttranslational modification and remodeling of nucleosomes in chromatin. These chromatin modifications are established by a functionally diverse family of enzymes including histone and DNA-modifying complexes, histone deposition pathways, and chromatin remodeling complexes. Because the modifications these enzymes deposit are essential for maintaining tumor-promoting gene expression, they have recently attracted much interest as novel therapeutic targets. One class of enzyme that has not generated much interest is the chromatin remodeling complexes. In this review, we will present evidence from the literature that these enzymes have both causal and enabling roles in the transition to advanced stage cancers; as such, they should be seriously considered as high-value therapeutic targets. Previously published strategies for discovering small molecule regulators to these complexes are described. We close with thoughts on future research, the field should perform to further develop this potentially novel class of therapeutic target.
Collapse
Affiliation(s)
- Kimberly Mayes
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Zhijun Qiu
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Aiman Alhazmi
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Joseph W Landry
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA.
| |
Collapse
|
40
|
|
41
|
Sato H, Mizoi J, Tanaka H, Maruyama K, Qin F, Osakabe Y, Morimoto K, Ohori T, Kusakabe K, Nagata M, Shinozaki K, Yamaguchi-Shinozaki K. Arabidopsis DPB3-1, a DREB2A interactor, specifically enhances heat stress-induced gene expression by forming a heat stress-specific transcriptional complex with NF-Y subunits. THE PLANT CELL 2014; 26:4954-73. [PMID: 25490919 PMCID: PMC4311209 DOI: 10.1105/tpc.114.132928] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 10/08/2014] [Accepted: 11/17/2014] [Indexed: 05/18/2023]
Abstract
DEHYDRATION-RESPONSIVE ELEMENT BINDING PROTEIN2A (DREB2A) is a key transcription factor for drought and heat stress tolerance in Arabidopsis thaliana. DREB2A induces the expression of dehydration- and heat stress-inducible genes under the corresponding stress conditions. Target gene selectivity is assumed to require stress-specific posttranslational regulation, but the mechanisms of this process are not yet understood. Here, we identified DNA POLYMERASE II SUBUNIT B3-1 (DPB3-1), which was previously annotated as NUCLEAR FACTOR Y, SUBUNIT C10 (NF-YC10), as a DREB2A interactor, through a yeast two-hybrid screen. The overexpression of DPB3-1 in Arabidopsis enhanced the expression of a subset of heat stress-inducible DREB2A target genes but did not affect dehydration-inducible genes. Similarly, the depletion of DPB3-1 expression resulted in reduced expression of heat stress-inducible genes. Interaction and expression pattern analyses suggested the existence of a trimer comprising NF-YA2, NF-YB3, and DPB3-1 that could synergistically activate a promoter of the heat stress-inducible gene with DREB2A in protoplasts. These results suggest that DPB3-1 could form a transcriptional complex with NF-YA and NF-YB subunits and that the identified trimer enhances heat stress-inducible gene expression during heat stress responses in cooperation with DREB2A. We propose that the identified trimer contributes to the target gene selectivity of DREB2A under heat stress conditions.
Collapse
Affiliation(s)
- Hikaru Sato
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Junya Mizoi
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Hidenori Tanaka
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Kyonosin Maruyama
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences, Tsukuba 305-8686, Japan
| | - Feng Qin
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences, Tsukuba 305-8686, Japan
| | - Yuriko Osakabe
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Kyoko Morimoto
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Teppei Ohori
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Kazuya Kusakabe
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Maika Nagata
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Kazuo Shinozaki
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama 230-0045, Japan
| | | |
Collapse
|
42
|
Overexpression of SMARCA5 correlates with cell proliferation and migration in breast cancer. Tumour Biol 2014; 36:1895-902. [PMID: 25377162 DOI: 10.1007/s13277-014-2791-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 10/29/2014] [Indexed: 12/26/2022] Open
Abstract
SMARCA5 partners with RSF-1 to compose the RSF complex, which belongs to the ISWI family of chromatin remodelers. Recent studies referred that SMARCA5 was overexpressed in some malignant tumors. However, expression pattern and biological roles of SMARCA5 in breast cancer have not been examined. In the present study, we found that SMARCA5 was overexpressed in breast cancer specimens by immunohistochemistry. Significant association was observed between SMARCA5 overexpression and TNM stage (p = 0.0199), tumor size (p = 0.0066), high proliferation index (p = 0.0366), and poor overall survival (p = 0.0141). SMARCA5 overexpression also correlated with Rsf-1 expression levels (p = 0.0120). Furthermore, colony formation assay and Matrigel invasion assay showed that knockdown of SMARCA5 expression in MDA-MB-231 and MDA-MB-435s cell lines with high endogenous expression decreased cell proliferation and cell invasion. Flow cytometry showed knockdown of SMARCA5-arrested cell cycle. Further analysis of cell cycle and invasion-related molecules showed that SMARCA5 downregulated cyclin A, MMP2 expression and upregulated p21 expression. In conclusion, our study demonstrated that SMARCA5 was overexpressed in human breast cancers and correlated with poor prognosis. SMARCA5 contributes to breast cancer cell proliferation and invasion.
Collapse
|
43
|
Aydin ÖZ, Marteijn JA, Ribeiro-Silva C, Rodríguez López A, Wijgers N, Smeenk G, van Attikum H, Poot RA, Vermeulen W, Lans H. Human ISWI complexes are targeted by SMARCA5 ATPase and SLIDE domains to help resolve lesion-stalled transcription. Nucleic Acids Res 2014; 42:8473-85. [PMID: 24990377 PMCID: PMC4117783 DOI: 10.1093/nar/gku565] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chromatin compaction of deoxyribonucleic acid (DNA) presents a major challenge to the detection and removal of DNA damage. Helix-distorting DNA lesions that block transcription are specifically repaired by transcription-coupled nucleotide excision repair, which is initiated by binding of the CSB protein to lesion-stalled RNA polymerase II. Using live cell imaging, we identify a novel function for two distinct mammalian ISWI adenosine triphosphate (ATP)-dependent chromatin remodeling complexes in resolving lesion-stalled transcription. Human ISWI isoform SMARCA5/SNF2H and its binding partners ACF1 and WSTF are rapidly recruited to UV-C induced DNA damage to specifically facilitate CSB binding and to promote transcription recovery. SMARCA5 targeting to UV-C damage depends on transcription and histone modifications and requires functional SWI2/SNF2-ATPase and SLIDE domains. After initial recruitment to UV damage, SMARCA5 re-localizes away from the center of DNA damage, requiring its HAND domain. Our studies support a model in which SMARCA5 targeting to DNA damage-stalled transcription sites is controlled by an ATP-hydrolysis-dependent scanning and proofreading mechanism, highlighting how SWI2/SNF2 chromatin remodelers identify and bind nucleosomes containing damaged DNA.
Collapse
Affiliation(s)
- Özge Z Aydin
- Department of Genetics, Medical Genetics Cluster, Cancer Genomics Netherlands, Erasmus MC, Rotterdam, 3015 GE, The Netherlands
| | - Jurgen A Marteijn
- Department of Genetics, Medical Genetics Cluster, Cancer Genomics Netherlands, Erasmus MC, Rotterdam, 3015 GE, The Netherlands
| | - Cristina Ribeiro-Silva
- Department of Genetics, Medical Genetics Cluster, Cancer Genomics Netherlands, Erasmus MC, Rotterdam, 3015 GE, The Netherlands
| | - Aida Rodríguez López
- Department of Genetics, Medical Genetics Cluster, Cancer Genomics Netherlands, Erasmus MC, Rotterdam, 3015 GE, The Netherlands
| | - Nils Wijgers
- Department of Genetics, Medical Genetics Cluster, Cancer Genomics Netherlands, Erasmus MC, Rotterdam, 3015 GE, The Netherlands
| | - Godelieve Smeenk
- Department of Toxicogenetics, Leiden University Medical Center, Leiden, 2333 ZC, The Netherlands
| | - Haico van Attikum
- Department of Toxicogenetics, Leiden University Medical Center, Leiden, 2333 ZC, The Netherlands
| | - Raymond A Poot
- Department of Cell Biology, Medical Genetics Cluster, Erasmus MC, Rotterdam, 3015 GE, The Netherlands
| | - Wim Vermeulen
- Department of Genetics, Medical Genetics Cluster, Cancer Genomics Netherlands, Erasmus MC, Rotterdam, 3015 GE, The Netherlands
| | - Hannes Lans
- Department of Genetics, Medical Genetics Cluster, Cancer Genomics Netherlands, Erasmus MC, Rotterdam, 3015 GE, The Netherlands
| |
Collapse
|
44
|
Al-Ani G, Briggs K, Malik SS, Conner M, Azuma Y, Fischer CJ. Quantitative determination of binding of ISWI to nucleosomes and DNA shows allosteric regulation of DNA binding by nucleotides. Biochemistry 2014; 53:4334-45. [PMID: 24898734 PMCID: PMC4100786 DOI: 10.1021/bi500224t] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The
regulation of chromatin structure is controlled by a family
of molecular motors called chromatin remodelers. The ability of these
enzymes to remodel chromatin structure is dependent on their ability
to couple ATP binding and hydrolysis into the mechanical work that
drives nucleosome repositioning. The necessary first step in determining
how these essential enzymes perform this function is to characterize
both how they bind nucleosomes and how this interaction is regulated
by ATP binding and hydrolysis. With this goal in mind, we monitored
the interaction of the chromatin remodeler ISWI with fluorophore-labeled
nucleosomes and DNA through associated changes in fluorescence anisotropy
of the fluorophore upon binding of ISWI to these substrates. We determined
that one ISWI molecule binds to a 20 bp double-stranded DNA substrate
with an affinity of 18 ± 2 nM. In contrast, two ISWI molecules
can bind to the core nucleosome with short linker DNA with stoichiometric
macroscopic equilibrium constants: 1/β1 = 1.3 ±
0.6 nM, and 1/β2 = 13 ± 7 nM2. Furthermore,
to improve our understanding of the mechanism of DNA translocation
by ISWI, and hence nucleosome repositioning, we determined the effect
of nucleotide analogues on substrate binding by ISWI. While the affinity
of ISWI for the nucleosome substrate with short lengths of flanking
DNA was not affected by the presence of nucleotides, the affinity
of ISWI for the DNA substrate is weakened in the presence of nonhydrolyzable
ATP analogues but not by ADP.
Collapse
Affiliation(s)
- Gada Al-Ani
- Department of Molecular Biosciences, University of Kansas , 2034 Haworth Hall, 1200 Sunnyside Avenue, Lawrence, Kansas 66045, United States
| | | | | | | | | | | |
Collapse
|
45
|
Hwang WL, Deindl S, Harada BT, Zhuang X. Histone H4 tail mediates allosteric regulation of nucleosome remodelling by linker DNA. Nature 2014; 512:213-7. [PMID: 25043036 PMCID: PMC4134374 DOI: 10.1038/nature13380] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 04/14/2014] [Indexed: 12/05/2022]
Abstract
ISWI-family remodelling enzymes regulate access to genomic DNA by mobilizing nucleosomes1. These ATP-dependent chromatin remodellers promote heterochromatin formation and transcriptional silencing1 by generating regularly-spaced nucleosome arrays2-5. The nucleosome-spacing activity arises from regulation of nucleosome translocation by the length of extranucleosomal linker DNA6-10, but the underlying mechanism remains unclear. Here, we studied nucleosome remodelling by human ACF, an ISWI enzyme comprised of a catalytic subunit, Snf2h, and an accessory subunit, Acf12,11-13. We found that ACF senses linker DNA length through an interplay between its accessory and catalytic subunits mediated by the histone H4 tail of the nucleosome. Mutation of AutoN, an auto-inhibitory domain within Snf2h that bears sequence homology to the H4 tail14, abolished the linker-length sensitivity in remodelling. Addition of exogenous H4-tail peptide or deletion of the nucleosomal H4 tail also diminished the linker-length sensitivity. Moreover, the accessory subunit Acf1 bound the H4-tail peptide and DNA in a manner that depended on its N-terminal domain, and lengthening the linker DNA in the nucleosome reduced the proximity between Acf1 and the H4 tail. Deletion of the N-terminal portion of Acf1 (or its homologue in yeast) abolished linker-length sensitivity in nucleosome remodeling and led to severe growth defects in vivo. Taken together, our results suggest a mechanism for nucleosome spacing where linker DNA sensing by Acf1 is allosterically transmitted to Snf2h through the H4 tail of the nucleosome. For nucleosomes with short linker DNA, Acf1 preferentially binds to the H4 tail, allowing AutoN to inhibit the ATPase activity of Snf2h. As the linker DNA lengthens, Acf1 shifts its binding preference to the linker DNA, freeing the H4 tail to compete AutoN off the ATPase and thereby activating ACF.
Collapse
Affiliation(s)
- William L Hwang
- 1] Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, USA [2] Graduate Program in Biophysics, Harvard University, Cambridge, Massachusetts 02138, USA [3] Harvard/MIT MD-PhD Program, Harvard Medical School, Boston, Massachusetts 02115, USA [4]
| | - Sebastian Deindl
- 1] Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, USA [2] Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA [3]
| | - Bryan T Harada
- 1] Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, USA [2] Graduate Program in Biophysics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Xiaowei Zhuang
- 1] Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, USA [2] Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA [3] Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
46
|
Alvarez-Saavedra M, De Repentigny Y, Lagali PS, Raghu Ram EVS, Yan K, Hashem E, Ivanochko D, Huh MS, Yang D, Mears AJ, Todd MAM, Corcoran CP, Bassett EA, Tokarew NJA, Kokavec J, Majumder R, Ioshikhes I, Wallace VA, Kothary R, Meshorer E, Stopka T, Skoultchi AI, Picketts DJ. Snf2h-mediated chromatin organization and histone H1 dynamics govern cerebellar morphogenesis and neural maturation. Nat Commun 2014; 5:4181. [PMID: 24946904 PMCID: PMC4083431 DOI: 10.1038/ncomms5181] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 05/15/2014] [Indexed: 12/28/2022] Open
Abstract
Chromatin compaction mediates progenitor to post-mitotic cell transitions and modulates gene expression programs, yet the mechanisms are poorly defined. Snf2h and Snf2l are ATP-dependent chromatin remodelling proteins that assemble, reposition and space nucleosomes, and are robustly expressed in the brain. Here we show that mice conditionally inactivated for Snf2h in neural progenitors have reduced levels of histone H1 and H2A variants that compromise chromatin fluidity and transcriptional programs within the developing cerebellum. Disorganized chromatin limits Purkinje and granule neuron progenitor expansion, resulting in abnormal post-natal foliation, while deregulated transcriptional programs contribute to altered neural maturation, motor dysfunction and death. However, mice survive to young adulthood, in part from Snf2l compensation that restores Engrailed-1 expression. Similarly, Purkinje-specific Snf2h ablation affects chromatin ultrastructure and dendritic arborization, but alters cognitive skills rather than motor control. Our studies reveal that Snf2h controls chromatin organization and histone H1 dynamics for the establishment of gene expression programs underlying cerebellar morphogenesis and neural maturation.
Collapse
Affiliation(s)
- Matías Alvarez-Saavedra
- 1] Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6 [2] Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | - Yves De Repentigny
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6
| | - Pamela S Lagali
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6
| | - Edupuganti V S Raghu Ram
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Keqin Yan
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6
| | - Emile Hashem
- 1] Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6 [2] Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | - Danton Ivanochko
- 1] Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6 [2] Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | - Michael S Huh
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6
| | - Doo Yang
- 1] Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5 [2] Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | - Alan J Mears
- Vision Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6
| | - Matthew A M Todd
- 1] Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6 [2] Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | - Chelsea P Corcoran
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6
| | - Erin A Bassett
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | - Nicholas J A Tokarew
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | - Juraj Kokavec
- Institute of Pathologic Physiology, First Faculty of Medicine, Charles University in Prague, Prague 12853, Czech Republic
| | - Romit Majumder
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Ilya Ioshikhes
- 1] Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5 [2] Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | - Valerie A Wallace
- 1] Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5 [2] Vision Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6
| | - Rashmi Kothary
- 1] Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6 [2] Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | - Eran Meshorer
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Tomas Stopka
- Institute of Pathologic Physiology, First Faculty of Medicine, Charles University in Prague, Prague 12853, Czech Republic
| | - Arthur I Skoultchi
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - David J Picketts
- 1] Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6 [2] Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5 [3] Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| |
Collapse
|
47
|
Henninger EE, Pursell ZF. DNA polymerase ε and its roles in genome stability. IUBMB Life 2014; 66:339-51. [PMID: 24861832 DOI: 10.1002/iub.1276] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 05/02/2014] [Indexed: 12/14/2022]
Abstract
DNA Polymerase Epsilon (Pol ε) is one of three DNA Polymerases (along with Pol δ and Pol α) required for nuclear DNA replication in eukaryotes. Pol ε is comprised of four subunits, the largest of which is encoded by the POLE gene and contains the catalytic polymerase and exonuclease activities. The 3'-5' exonuclease proofreading activity is able to correct DNA synthesis errors and helps protect against genome instability. Recent cancer genome sequencing efforts have shown that 3% of colorectal and 7% of endometrial cancers contain mutations within the exonuclease domain of POLE and are associated with significantly elevated levels of single nucleotide substitutions (15-500 per Mb) and microsatellite stability. POLE mutations have also been found in other tumor types, though at lower frequency, suggesting roles in tumorigenesis more broadly in different tissue types. In addition to its proofreading activity, Pol ε contributes to genome stability through multiple mechanisms that are discussed in this review.
Collapse
Affiliation(s)
- Erin E Henninger
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | | |
Collapse
|
48
|
Pessina F, Lowndes NF. The RSF1 histone-remodelling factor facilitates DNA double-strand break repair by recruiting centromeric and Fanconi Anaemia proteins. PLoS Biol 2014; 12:e1001856. [PMID: 24800743 PMCID: PMC4011676 DOI: 10.1371/journal.pbio.1001856] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 03/28/2014] [Indexed: 01/18/2023] Open
Abstract
ATM is a central regulator of the cellular responses to DNA double-strand breaks (DSBs). Here we identify a biochemical interaction between ATM and RSF1 and we characterise the role of RSF1 in this response. The ATM-RSF1 interaction is dependent upon both DSBs and ATM kinase activity. Together with SNF2H/SMARCA5, RSF1 forms the RSF chromatin-remodelling complex. Although RSF1 is specific to the RSF complex, SNF2H/SMARCA5 is a catalytic subunit of several other chromatin-remodelling complexes. Although not required for checkpoint signalling, RSF1 is required for efficient repair of DSBs via both end-joining and homology-directed repair. Specifically, the ATM-dependent recruitment to sites of DSBs of the histone fold proteins CENPS/MHF1 and CENPX/MHF2, previously identified at centromeres, is RSF1-dependent. In turn these proteins recruit and regulate the mono-ubiquitination of the Fanconi Anaemia proteins FANCD2 and FANCI. We propose that by depositing CENPS/MHF1 and CENPX/MHF2, the RSF complex either directly or indirectly contributes to the reorganisation of chromatin around DSBs that is required for efficient DNA repair.
Collapse
Affiliation(s)
- Fabio Pessina
- Genome Stability Laboratory, Centre for Chromosome Biology, School of Natural Science, National University of Ireland Galway, Ireland
| | - Noel F. Lowndes
- Genome Stability Laboratory, Centre for Chromosome Biology, School of Natural Science, National University of Ireland Galway, Ireland
| |
Collapse
|
49
|
Mathew V, Pauleau AL, Steffen N, Bergner A, Becker P, Erhardt S. The Histone-Fold Protein CHRAC14 Influences Chromatin Composition in Response to DNA Damage. Cell Rep 2014; 7:321-330. [DOI: 10.1016/j.celrep.2014.03.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 02/03/2014] [Accepted: 03/04/2014] [Indexed: 01/16/2023] Open
|
50
|
Bartholomew B. ISWI chromatin remodeling: one primary actor or a coordinated effort? Curr Opin Struct Biol 2014; 24:150-5. [PMID: 24561830 DOI: 10.1016/j.sbi.2014.01.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 01/14/2014] [Accepted: 01/16/2014] [Indexed: 01/20/2023]
Abstract
The ISWI family of ATP-dependent chromatin remodelers regulates transcription of coding and noncoding RNA by mobilizing nucleosomes and controlling the length of linker DNA separating nucleosomes (spacing). Nucleosome movement is tightly coupled to the DNA translocation activity of the helicase domain in the catalytic subunit. There may be other domains besides the helicase domain needed to move DNA in and out of nucleosomes. The C terminus of the ISWI catalytic subunit with the conserved HAND, SANT, and SLIDE domains may be involved in nucleosome spacing. There are several models of how the C terminus may facilitate in ISWI remodeling such as regulating the activity of the helicase domain and causing the helicase domain to translocate more efficiently on DNA or to enhance its selectivity for nucleosomes. Another possibility is that domains like SLIDE promote linker DNA entering into nucleosomes in a coordinated manner with the helicase domain.
Collapse
Affiliation(s)
- Blaine Bartholomew
- The University of Texas MD Anderson Cancer Center, Department of Molecular Carcinogenesis, Smithville, TX 78957, United States.
| |
Collapse
|