1
|
Zhang X, Wang G, Zhang P, Chen C, Zhang J, Bian Y, Liu M, Niu C, Sun F, Wang Y, Liu G, Wang Z, Ma F, Bao Z. Plant cell-cycle regulators control the nuclear environment for viral pathogenesis. Cell Host Microbe 2025; 33:420-435.e14. [PMID: 40043702 DOI: 10.1016/j.chom.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/15/2024] [Accepted: 02/10/2025] [Indexed: 03/15/2025]
Abstract
The proper regulation of cell-cycle regulators is curial for both viral replication and host-plant adaptive growth during the viral pathogenesis. Mechanisms on reorchestrating RETINOBLASTOMA-RELATED 1 (RBR1), repressor of E2F transcription factor, and downstream genes in host-virus interactions are unclear. Here, we discover that anaphase-promoting complex/cyclosome (APC/C) E3 ligase activator cell division cycle 20 (CDC20) in tomato binds RBR1 or mediates cyclin D1 depletion to preserve RBR1-E2F complexes, while geminivirus or crinivirus repurposes APC/CCDC20 activities to liberate E2Fs in two ways: activating APC/CCDC20 to deplete RBR1 or blocking APC/CCDC20 to stimulate cyclin-D1-mediated RBR1 depletion. The liberated E2Fs activate DNA polymerase or heat shock protein 70 gene transcription to favor virus propagation. The improper disruption of RBR1-E2F complexes via hijacking APC/CCDC20 causes the host growth repression. We uncover a scenario in which the virus co-opts host APC/CCDC20 to reprogram RBR1-E2F complex to favor its propagation while dampening host vitality.
Collapse
Affiliation(s)
- Xu Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Ge Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Peng Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Chunyan Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Jiucheng Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Yumei Bian
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Minmin Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Chenxu Niu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Fengze Sun
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Yahui Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Genzhong Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Zhimin Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Fangfang Ma
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China.
| | - Zhilong Bao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China.
| |
Collapse
|
2
|
Simonini S. Regulation of cell cycle in plant gametes: when is the right time to divide? Development 2025; 152:dev204217. [PMID: 39831611 PMCID: PMC11829769 DOI: 10.1242/dev.204217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Cell division is a fundamental process shared across diverse life forms, from yeast to humans and plants. Multicellular organisms reproduce through the formation of specialized types of cells, the gametes, which at maturity enter a quiescent state that can last decades. At the point of fertilization, signalling lifts the quiescent state and triggers cell cycle reactivation. Studying how the cell cycle is regulated during plant gamete development and fertilization is challenging, and decades of research have provided valuable, yet sometimes contradictory, insights. This Review summarizes the current understanding of plant cell cycle regulation, gamete development, quiescence, and fertilization-triggered reactivation.
Collapse
Affiliation(s)
- Sara Simonini
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, CH8008, Zurich, Switzerland
| |
Collapse
|
3
|
de Queiroz-Ferreira MS, dos Reis LDNA, de Noronha Fonseca ME, Melo FFS, Reis A, Boiteux LS, Pereira-Carvalho RDC. Reexamination of the Sida Micrantha Mosaic Virus and Sida Mottle Virus Complexes: Classification Status, Diversity, Cognate DNA-B Components, and Host Spectrum. Viruses 2024; 16:1796. [PMID: 39599910 PMCID: PMC11599112 DOI: 10.3390/v16111796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/08/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
Sida mottle virus (SiMoV) and Sida micrantha mosaic virus (SiMMV) are major Brazilian begomoviruses (Geminiviridae). However, the range of DNA-A identity of isolates of these viruses (81-100%) is not in agreement with the current criteria for Begomovirus species demarcation (<91%). To clarify this putative classification problem, we performed a comprehensive set of molecular analyses with all 53 publicly available isolates (with complete DNA-A genomes) designated as either SiMoV or SiMMV (including novel isolates obtained herein from nationwide metagenomics-based studies). Two well-defined phylogenetic clusters were identified. The SiMMV complex (n = 47) comprises a wide range of strains (with a continuum variation of 88.8-100% identity) infecting members of five botanical families (Malvaceae, Solanaceae, Fabaceae, Oxalidaceae, and Passifloraceae). The SiMoV group now comprises eight isolates (90-100% identity) restricted to Malvaceae hosts, including one former reference SiMMV isolate (gb|NC_077711) and SP77 (gb|FN557522; erroneously named as "true SiMMV"). Iteron analyses of metagenomics-derived information allowed for the discovery of the missing DNA-B cognate of SiMoV (93.5% intergenic region identity), confirming its bipartite nature. Henceforth, the correct identification of SiMoV and SiMMV isolates will be a crucial element for effective classical and biotech resistance breeding of the viral host species.
Collapse
Affiliation(s)
- Marcos Silva de Queiroz-Ferreira
- Department of Plant Pathology, University of Brasília (UnB), Brasília 70910-900, DF, Brazil; (M.S.d.Q.-F.); (L.d.N.A.d.R.); (F.F.S.M.); (L.S.B.)
| | - Luciane de Nazaré Almeida dos Reis
- Department of Plant Pathology, University of Brasília (UnB), Brasília 70910-900, DF, Brazil; (M.S.d.Q.-F.); (L.d.N.A.d.R.); (F.F.S.M.); (L.S.B.)
| | - Maria Esther de Noronha Fonseca
- Embrapa Vegetable Crops (Hortaliças), National Center for Vegetable Crops Research (CNPH), Brasília 70351-970, DF, Brazil; (M.E.d.N.F.); (A.R.)
| | - Felipe Fochat Silva Melo
- Department of Plant Pathology, University of Brasília (UnB), Brasília 70910-900, DF, Brazil; (M.S.d.Q.-F.); (L.d.N.A.d.R.); (F.F.S.M.); (L.S.B.)
| | - Ailton Reis
- Embrapa Vegetable Crops (Hortaliças), National Center for Vegetable Crops Research (CNPH), Brasília 70351-970, DF, Brazil; (M.E.d.N.F.); (A.R.)
| | - Leonardo Silva Boiteux
- Department of Plant Pathology, University of Brasília (UnB), Brasília 70910-900, DF, Brazil; (M.S.d.Q.-F.); (L.d.N.A.d.R.); (F.F.S.M.); (L.S.B.)
- Embrapa Vegetable Crops (Hortaliças), National Center for Vegetable Crops Research (CNPH), Brasília 70351-970, DF, Brazil; (M.E.d.N.F.); (A.R.)
| | - Rita de Cássia Pereira-Carvalho
- Department of Plant Pathology, University of Brasília (UnB), Brasília 70910-900, DF, Brazil; (M.S.d.Q.-F.); (L.d.N.A.d.R.); (F.F.S.M.); (L.S.B.)
| |
Collapse
|
4
|
Kamal H, Zafar MM, Razzaq A, Parvaiz A, Ercisli S, Qiao F, Jiang X. Functional role of geminivirus encoded proteins in the host: Past and present. Biotechnol J 2024; 19:e2300736. [PMID: 38900041 DOI: 10.1002/biot.202300736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/19/2024] [Accepted: 04/16/2024] [Indexed: 06/21/2024]
Abstract
During plant-pathogen interaction, plant exhibits a strong defense system utilizing diverse groups of proteins to suppress the infection and subsequent establishment of the pathogen. However, in response, pathogens trigger an anti-silencing mechanism to overcome the host defense machinery. Among plant viruses, geminiviruses are the second largest virus family with a worldwide distribution and continue to be production constraints to food, feed, and fiber crops. These viruses are spread by a diverse group of insects, predominantly by whiteflies, and are characterized by a single-stranded DNA (ssDNA) genome coding for four to eight proteins that facilitate viral infection. The most effective means to managing these viruses is through an integrated disease management strategy that includes virus-resistant cultivars, vector management, and cultural practices. Dynamic changes in this virus family enable the species to manipulate their genome organization to respond to external changes in the environment. Therefore, the evolutionary nature of geminiviruses leads to new and novel approaches for developing virus-resistant cultivars and it is essential to study molecular ecology and evolution of geminiviruses. This review summarizes the multifunctionality of each geminivirus-encoded protein. These protein-based interactions trigger the abrupt changes in the host methyl cycle and signaling pathways that turn over protein normal production and impair the plant antiviral defense system. Studying these geminivirus interactions localized at cytoplasm-nucleus could reveal a more clear picture of host-pathogen relation. Data collected from this antagonistic relationship among geminivirus, vector, and its host, will provide extensive knowledge on their virulence mode and diversity with climate change.
Collapse
Affiliation(s)
- Hira Kamal
- Department of Plant Pathology, Washington State University, Pullman, Washington, USA
| | - Muhammad Mubashar Zafar
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, China
| | - Abdul Razzaq
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Aqsa Parvaiz
- Department of Biochemistry and Biotechnology, The Women University Multan, Multan, Pakistan
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, Erzurum, Turkey
| | - Fei Qiao
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, China
| | - Xuefei Jiang
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, China
| |
Collapse
|
5
|
Simonini S, Bencivenga S, Grossniklaus U. A paternal signal induces endosperm proliferation upon fertilization in Arabidopsis. Science 2024; 383:646-653. [PMID: 38330116 DOI: 10.1126/science.adj4996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/04/2024] [Indexed: 02/10/2024]
Abstract
In multicellular organisms, sexual reproduction relies on the formation of highly differentiated cells, the gametes, which await fertilization in a quiescent state. Upon fertilization, the cell cycle resumes. Successful development requires that male and female gametes are in the same phase of the cell cycle. The molecular mechanisms that reinstate cell division in a fertilization-dependent manner are poorly understood in both animals and plants. Using Arabidopsis, we show that a sperm-derived signal induces the proliferation of a female gamete, the central cell, precisely upon fertilization. The central cell is arrested in S phase by the activity of the RETINOBLASTOMA RELATED1 (RBR1) protein. Upon fertilization, delivery of the core cell cycle component CYCD7;1 causes RBR1 degradation and thus S phase progression, ensuring the formation of functional endosperm and, consequently, viable seeds.
Collapse
Affiliation(s)
- Sara Simonini
- Institute of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, CH-8008 Zurich, Switzerland
| | - Stefano Bencivenga
- Institute of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, CH-8008 Zurich, Switzerland
| | - Ueli Grossniklaus
- Institute of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, CH-8008 Zurich, Switzerland
| |
Collapse
|
6
|
Prasad A, Sharma S, Prasad M. Post translational modifications at the verge of plant-geminivirus interaction. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194983. [PMID: 37717937 DOI: 10.1016/j.bbagrm.2023.194983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023]
Abstract
Plant-virus interaction is a complex phenomenon and involves the communication between plant and viral factors. Viruses have very limited coding ability yet, they are able to cause infection which results in huge agro-economic losses throughout the globe each year. Post-translational modifications (PTMs) are covalent modifications of proteins that have a drastic effect on their conformation, stability and function. Like the host proteins, geminiviral proteins are also subject to PTMs and these modifications greatly expand the diversity of their functions. Additionally, these viral proteins can also interact with the components of PTM pathways and modulate them. Several studies have highlighted the importance of PTMs such as phosphorylation, ubiquitination, SUMOylation, myristoylation, S-acylation, acetylation and methylation in plant-geminivirus interaction. PTMs also regulate epigenetic modifications during geminivirus infection which determines viral gene expression. In this review, we have summarized the role of PTMs in regulating geminiviral protein function, influence of PTMs on viral gene expression and how geminiviral proteins interact with the components of PTM pathways to modulate their function.
Collapse
Affiliation(s)
- Ashish Prasad
- Department of Botany, Kurukshetra University, Kurukshetra, India.
| | | | - Manoj Prasad
- National Institute of Plant Genome Research, New Delhi, India; Department of Plant Sciences, University of Hyderabad, Hyderabad, India.
| |
Collapse
|
7
|
Bonnamy M, Blanc S, Michalakis Y. Replication mechanisms of circular ssDNA plant viruses and their potential implication in viral gene expression regulation. mBio 2023; 14:e0169223. [PMID: 37695133 PMCID: PMC10653810 DOI: 10.1128/mbio.01692-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023] Open
Abstract
The replication of members of the two circular single-stranded DNA (ssDNA) virus families Geminiviridae and Nanoviridae, the only ssDNA viruses infecting plants, is believed to be processed by rolling-circle replication (RCR) and recombination-dependent replication (RDR) mechanisms. RCR is a ubiquitous replication mode for circular ssDNA viruses and involves a virus-encoded Replication-associated protein (Rep) which fulfills multiple functions in the replication mechanism. Two key genomic elements have been identified for RCR in Geminiviridae and Nanoviridae: (i) short iterative sequences called iterons which determine the specific recognition of the viral DNA by the Rep and (ii) a sequence enabling the formation of a stem-loop structure which contains a conserved motif and constitutes the origin of replication. In addition, studies in Geminiviridae provided evidence for a second replication mode, RDR, which has also been documented in some double-stranded DNA viruses. Here, we provide a synthesis of the current understanding of the two presumed replication modes of Geminiviridae and Nanoviridae, and we identify knowledge gaps and discuss the possibility that these replication mechanisms could regulate viral gene expression through modulation of gene copy number.
Collapse
Affiliation(s)
- Mélia Bonnamy
- PHIM, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
- MIVEGEC, CNRS, IRD, Univ Montpellier, Montpellier, France
| | - Stéphane Blanc
- PHIM, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | | |
Collapse
|
8
|
Shakir S, Mubin M, Nahid N, Serfraz S, Qureshi MA, Lee TK, Liaqat I, Lee S, Nawaz-ul-Rehman MS. REPercussions: how geminiviruses recruit host factors for replication. Front Microbiol 2023; 14:1224221. [PMID: 37799604 PMCID: PMC10548238 DOI: 10.3389/fmicb.2023.1224221] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/21/2023] [Indexed: 10/07/2023] Open
Abstract
Circular single-stranded DNA viruses of the family Geminiviridae encode replication-associated protein (Rep), which is a multifunctional protein involved in virus DNA replication, transcription of virus genes, and suppression of host defense responses. Geminivirus genomes are replicated through the interaction between virus Rep and several host proteins. The Rep also interacts with itself and the virus replication enhancer protein (REn), which is another essential component of the geminivirus replicase complex that interacts with host DNA polymerases α and δ. Recent studies revealed the structural and functional complexities of geminivirus Rep, which is believed to have evolved from plasmids containing a signature domain (HUH) for single-stranded DNA binding with nuclease activity. The Rep coding sequence encompasses the entire coding sequence for AC4, which is intricately embedded within it, and performs several overlapping functions like Rep, supporting virus infection. This review investigated the structural and functional diversity of the geminivirus Rep.
Collapse
Affiliation(s)
- Sara Shakir
- Plant Genetics Lab, Gembloux Agro-Bio Tech, University of Liѐge, Gembloux, Belgium
| | - Muhammad Mubin
- Virology Lab, Center for Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Faisalabad, Pakistan
| | - Nazia Nahid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Saad Serfraz
- Virology Lab, Center for Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Faisalabad, Pakistan
| | - Muhammad Amir Qureshi
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Taek-Kyun Lee
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje, Republic of Korea
| | - Iram Liaqat
- Microbiology Lab, Department of Zoology, Government College University, Lahore, Pakistan
| | - Sukchan Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Muhammad Shah Nawaz-ul-Rehman
- Virology Lab, Center for Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
9
|
Jiang T, Zhou T. Unraveling the Mechanisms of Virus-Induced Symptom Development in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:2830. [PMID: 37570983 PMCID: PMC10421249 DOI: 10.3390/plants12152830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/22/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
Plant viruses, as obligate intracellular parasites, induce significant changes in the cellular physiology of host cells to facilitate their multiplication. These alterations often lead to the development of symptoms that interfere with normal growth and development, causing USD 60 billion worth of losses per year, worldwide, in both agricultural and horticultural crops. However, existing literature often lacks a clear and concise presentation of the key information regarding the mechanisms underlying plant virus-induced symptoms. To address this, we conducted a comprehensive review to highlight the crucial interactions between plant viruses and host factors, discussing key genes that increase viral virulence and their roles in influencing cellular processes such as dysfunction of chloroplast proteins, hormone manipulation, reactive oxidative species accumulation, and cell cycle control, which are critical for symptom development. Moreover, we explore the alterations in host metabolism and gene expression that are associated with virus-induced symptoms. In addition, the influence of environmental factors on virus-induced symptom development is discussed. By integrating these various aspects, this review provides valuable insights into the complex mechanisms underlying virus-induced symptoms in plants, and emphasizes the urgency of addressing viral diseases to ensure sustainable agriculture and food production.
Collapse
Affiliation(s)
| | - Tao Zhou
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
10
|
Gnanasekaran P, Gupta N, Ponnusamy K, Devendran R, George B, Chakraborty S. Betasatellite-encoded βC1 protein regulates helper virus accumulation by interfering with the ATP hydrolysis activity of geminivirus-encoded replication initiator protein. J Gen Virol 2023; 104. [PMID: 37326617 DOI: 10.1099/jgv.0.001866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023] Open
Abstract
Geminivirus-betasatellite disease complexes are an epidemic threat to the majority of economically important crops across the world. Plant virus satellites including betasatellites are maintained by their associated helper virus. Geminivirus-betasatellites influence viral pathogenesis by substantially increasing or decreasing their helper virus accumulation. In the present study, we attempted to understand the mechanistic details of the geminivirus-betasatellite interaction. Here, we used tomato leaf curl Gujarat virus (ToLCGV) and tomato leaf curl Patna betasatellite (ToLCPaB) as a model system. This study reveals that ToLCGV can efficiently trans-replicate ToLCPaB in Nicotiana benthamiana plants, but ToLCPaB greatly reduced the accumulation of its helper virus DNA. For the first time, we have identified that the ToLCPaB-encoded βC1 protein is able to interact with ToLCGV-encoded replication initiator protein (Rep). In addition, we demonstrate that the C-terminal region of βC1 interacts with the C-terminus of Rep (RepC) protein. Our previous study had established that βC1 proteins encoded by diverse betasatellites possess a novel ATP hydrolysis activity and the conserved lysine/arginine residues at positions 49 and 91 are necessary for this function. Here, we show that mutating lysine at positions 49 to alanine of βC1 (βC1K49A) protein did not affect its ability to interact with RepC protein. Biochemical studies performed with ATP hydrolysis activity-deficient K49A mutated βC1 (βC1K49A) and RepC proteins revealed that Rep-βC1 interaction interferes with the ATP hydrolysis activity of Rep protein. Further, we demonstrate that βC1 protein is able to interact with D227A and D289A mutated RepC proteins but not with D262A, K272A or D286A mutated RepC proteins, suggesting that the βC1-interacting region of Rep protein encompasses its Walker-B and B' motifs. The results of docking studies supported that the βC1-interacting region of Rep protein encompasses its motifs associated with ATP binding and ATP hydrolysis activities. Docking studies also provided evidence that the Rep-βC1 interaction interferes with the ATP binding activity of Rep protein. Together, our findings suggest that βC1 protein regulates helper virus accumulation by interfering with the ATP hydrolysis activity of helper virus Rep protein.
Collapse
Affiliation(s)
- Prabu Gnanasekaran
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi-110 067, India
| | - Neha Gupta
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi-110 067, India
| | - Kalaiarasan Ponnusamy
- Biotechnology Division, National Centre for Disease Control, New Delhi-110 054, India
| | - Ragunathan Devendran
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi-110 067, India
| | - Biju George
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi-110 067, India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi-110 067, India
| |
Collapse
|
11
|
Malavika M, Prakash V, Chakraborty S. Recovery from virus infection: plant's armory in action. PLANTA 2023; 257:103. [PMID: 37115475 DOI: 10.1007/s00425-023-04137-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/14/2023] [Indexed: 05/26/2023]
Abstract
MAIN CONCLUSION This review focuses on different factors involved in promoting symptom recovery in plants post-virus infection such as epigenetics, transcriptional reprogramming, phytohormones with an emphasis on RNA silencing as well as role of abiotic factors such as temperature on symptom recovery. Plants utilize several different strategies to defend themselves in the battle against invading viruses. Most of the viral proteins interact with plant proteins and interfere with molecular dynamics in a cell which eventually results in symptom development. This initial symptom development is countered by the plant utilizing various factors including the plant's adaptive immunity to develop a virus tolerant state. Infected plants can specifically target and impede the transcription of viral genes as well as degrade the viral transcripts to restrict their proliferation by the production of small-interfering RNA (siRNA) generated from the viral nucleic acid, known as virus-derived siRNA (vsiRNA). To further escalate the degradation of viral nucleic acid, secondary siRNAs are generated. The production of virus-activated siRNA (vasiRNA) from the host genome causes differential regulation of the host transcriptome which plays a major role in establishing a virus tolerant state within the infected plant. The systemic action of vsiRNAs, vasiRNA, and secondary siRNAs with the help of defense hormones like salicylic acid can curb viral proliferation, and thus the newly emerged leaves develop fewer symptoms, maintaining a state of tolerance.
Collapse
Affiliation(s)
- M Malavika
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ved Prakash
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
12
|
Wang X, Wang B, Zhu X, Zhao Y, Jin B, Wei X. Exogenous Nitric Oxide Alleviates the Damage Caused by Tomato Yellow Leaf Curl Virus in Tomato through Regulation of Peptidase Inhibitor Genes. Int J Mol Sci 2022; 23:ijms232012542. [PMID: 36293408 PMCID: PMC9604136 DOI: 10.3390/ijms232012542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
The tomato yellow leaf curl virus (TYLCV) is the causal agent of one of the most severe diseases affecting tomato growth; however, nitric oxide (NO) can mediate plant resistance. This study investigated the molecular mechanism of exogenous NO donor-mediated disease resistance in tomato seedlings. Tomato seedlings were treated with sodium nitroprusside and TYLCV and subjected to phenotypic, transcriptomic, and physiological analyses. The results show that exogenous NO significantly reduced disease index, MDA content, and virus content (71.4%), significantly increased stem length and fresh weight of diseased plants (p < 0.05), and improved photosynthesis with an induction effect of up to 44.0%. In this study, it was found that the reduction in virus content caused by the increased expression of peptidase inhibitor genes was the main reason for the increased resistance in tomatoes. The peptidase inhibitor inhibited protease activity and restrained virus synthesis, while the significant reduction in virus content inevitably caused a partial weakening or shutdown of the disease response process in the diseased plant. In addition, exogenous NO also induces superoxide dismutase, peroxidase activity, fatty acid elongation, resistance protein, lignin, and monoterpene synthesis to improve resistance. In summary, exogenous NO enhances resistance in tomatoes mainly by regulating peptidase inhibitor genes.
Collapse
Affiliation(s)
- Xian Wang
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China
- Gansu Key Lab of Crop Genetic & Germplasm Enhancement, Lanzhou 730070, China
| | - Baoqiang Wang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China
- Gansu Key Lab of Crop Genetic & Germplasm Enhancement, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaolin Zhu
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China
- Gansu Key Lab of Crop Genetic & Germplasm Enhancement, Lanzhou 730070, China
| | - Ying Zhao
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China
- Gansu Key Lab of Crop Genetic & Germplasm Enhancement, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Baoxia Jin
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China
- Gansu Key Lab of Crop Genetic & Germplasm Enhancement, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaohong Wei
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China
- Gansu Key Lab of Crop Genetic & Germplasm Enhancement, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Correspondence: ; Tel.: +86-138-9331-7951
| |
Collapse
|
13
|
The Rep and C1 of Beet curly top Iran virus represent pathogenicity factors and induce hypersensitive response in Nicotiana benthamiana plants. Virus Genes 2022; 58:550-559. [PMID: 35960462 DOI: 10.1007/s11262-022-01927-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 07/26/2022] [Indexed: 10/15/2022]
Abstract
Beet curly top Iran virus (BCTIV) is a member of the genus Becurtovirus (Family Geminiviridae) with a circular single-strand DNA genome. BCTIV causes leaf curling and vein swelling symptoms in plants. However, the potential pathogenicity factor/s in BCTIV is/are not known. This study presents characterization of complementary-sense transcripts of BCTIV and the viral factors in directing the pathogenicity and hypersensitive response (HR) in Nicotiana benthamiana plants. In both local and systemic infection, splicing of the complementary transcripts of BCTIV was observed. Notably, a small number (8.3%) of transcripts were spliced to produce Rep (C1:C2) transcripts after deletion of 155 nt (position 1892-2046 from BCTIV). Expression of BCTIV genes in N. benthamiana using tobacco rattle virus (TRV)-based vector showed that Rep together with C1 are the main pathogenicity factors which cause typical viral leaf curling symptoms. In addition, the V2 caused a mild leaf curling, thickening, and asymmetric leaves, while the V1, V3, and C2 had no clear effect on the plant phenotype. Transient expression of individual viral genes showed that both the C1 and Rep trigger a HR response in N. benthamiana. The higher expression of HR marker genes, harpin-induced 1 (Hin1) and hypersensitivity-related (Hsr203JI), supported the role of C1 and Rep in HR response in plants. It is concluded that Rep and C1 are the main pathogenicity factors that also trigger HR response in plants.
Collapse
|
14
|
Gutierrez C. A Journey to the Core of the Plant Cell Cycle. Int J Mol Sci 2022; 23:8154. [PMID: 35897730 PMCID: PMC9330084 DOI: 10.3390/ijms23158154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/16/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023] Open
Abstract
Production of new cells as a result of progression through the cell division cycle is a fundamental biological process for the perpetuation of both unicellular and multicellular organisms. In the case of plants, their developmental strategies and their largely sessile nature has imposed a series of evolutionary trends. Studies of the plant cell division cycle began with cytological and physiological approaches in the 1950s and 1960s. The decade of 1990 marked a turn point with the increasing development of novel cellular and molecular protocols combined with advances in genetics and, later, genomics, leading to an exponential growth of the field. In this article, I review the current status of plant cell cycle studies but also discuss early studies and the relevance of a multidisciplinary background as a source of innovative questions and answers. In addition to advances in a deeper understanding of the plant cell cycle machinery, current studies focus on the intimate interaction of cell cycle components with almost every aspect of plant biology.
Collapse
Affiliation(s)
- Crisanto Gutierrez
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
15
|
Hinge VR, Chavhan RL, Kale SP, Suprasanna P, Kadam US. Engineering Resistance Against Viruses in Field Crops Using CRISPR- Cas9. Curr Genomics 2021; 22:214-231. [PMID: 34975291 PMCID: PMC8640848 DOI: 10.2174/1389202922666210412102214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/29/2021] [Accepted: 02/24/2021] [Indexed: 12/26/2022] Open
Abstract
Food security is threatened by various biotic stresses that affect the growth and production of agricultural crops. Viral diseases have become a serious concern for crop plants as they incur huge yield losses. The enhancement of host resistance against plant viruses is a priority for the effective management of plant viral diseases. However, in the present context of the climate change scenario, plant viruses are rapidly evolving, resulting in the loss of the host resistance mechanism. Advances in genome editing techniques, such as CRISPR-Cas9 [clustered regularly interspaced palindromic repeats-CRISPR-associated 9], have been recognized as promising tools for the development of plant virus resistance. CRISPR-Cas9 genome editing tool is widely preferred due to high target specificity, simplicity, efficiency, and reproducibility. CRISPR-Cas9 based virus resistance in plants has been successfully achieved by gene targeting and cleaving the viral genome or altering the plant genome to enhance plant innate immunity. In this article, we have described the CRISPR-Cas9 system, mechanism of plant immunity against viruses and highlighted the use of the CRISPR-Cas9 system to engineer virus resistance in plants. We also discussed prospects and challenges on the use of CRISPR-Cas9-mediated plant virus resistance in crop improvement.
Collapse
Affiliation(s)
| | | | | | | | - Ulhas S. Kadam
- Address correspondenceto this author at the Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany; E-mail: ,
‡Present Address: Division of Life Sciences, Plant Molecular Biology and Biotechnology Research Center, Gyenongsang National University, Jinju-si, Republic of Korea; E-mail:
| |
Collapse
|
16
|
Aimone CD, De León L, Dallas MM, Ndunguru J, Ascencio-Ibáñez JT, Hanley-Bowdoin L. A New Type of Satellite Associated with Cassava Mosaic Begomoviruses. J Virol 2021; 95:e0043221. [PMID: 34406866 PMCID: PMC8513466 DOI: 10.1128/jvi.00432-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 08/10/2021] [Indexed: 12/29/2022] Open
Abstract
Cassava mosaic disease (CMD), which is caused by single-stranded DNA begomoviruses, severely limits cassava production across Africa. A previous study showed that CMD symptom severity and viral DNA accumulation increase in cassava in the presence of a DNA sequence designated SEGS-2 (sequence enhancing geminivirus symptoms). We report here that when SEGS-2 is coinoculated with African cassava mosaic virus (ACMV) onto Arabidopsis thaliana, viral symptoms increase. Transgenic Arabidopsis with an integrated copy of SEGS-2 inoculated with ACMV also display increased symptom severity and viral DNA levels. Moreover, SEGS-2 enables Cabbage leaf curl virus (CaLCuV) to infect a geminivirus-resistant Arabidopsis thaliana accession. Although SEGS-2 is related to cassava genomic sequences, an earlier study showed that it occurs as episomes and is packaged into virions in CMD-infected cassava and viruliferous whiteflies. We identified SEGS-2 episomes in SEGS-2 transgenic Arabidopsis. The episomes occur as both double-stranded and single-stranded DNA, with the single-stranded form packaged into virions. In addition, SEGS-2 episomes replicate in tobacco protoplasts in the presence, but not the absence, of ACMV DNA-A. SEGS-2 episomes contain a SEGS-2 derived promoter and an open reading frame with the potential to encode a 75-amino acid protein. An ATG mutation at the beginning of the SEGS-2 coding region does not enhance ACMV infection in A. thaliana. Together, the results established that SEGS-2 is a new type of begomovirus satellite that enhances viral disease through the action of an SEGS-2-encoded protein that may also be encoded by the cassava genome. IMPORTANCE Cassava is an important root crop in the developing world and a food and income crop for more than 300 million African farmers. Cassava is rising in global importance and trade as the demands for biofuels and commercial starch increase. More than half of the world's cassava is produced in Africa, where it is primarily grown by smallholder farmers, many of whom are from the poorest villages. Although cassava can grow under high temperature, drought, and poor soil conditions, its production is severely limited by viral diseases. Cassava mosaic disease (CMD) is one of the most important viral diseases of cassava and can cause up to 100% yield losses. We provide evidence that SEGS-2, which was originally isolated from cassava crops displaying severe and atypical CMD symptoms in Tanzanian fields, is a novel begomovirus satellite that can compromise the development of durable CMD resistance.
Collapse
Affiliation(s)
- Catherine D. Aimone
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Leandro De León
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina, USA
| | - Mary M. Dallas
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | | | - José T. Ascencio-Ibáñez
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina, USA
| | - Linda Hanley-Bowdoin
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
17
|
Ascencio-Ibáñez JT, Bobay BG. Conserved Structural Motif Identified in Peptides That Bind to Geminivirus Replication Protein Rep. Biochemistry 2021; 60:2795-2809. [PMID: 34464102 DOI: 10.1021/acs.biochem.1c00408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The geminivirus replication protein, Rep, has long been recognized as a high-value target for control of geminivirus infections as this protein is highly conserved and essential for viral replication and proliferation. In addition, inhibition of viral replication has been pursued through various antiviral strategies with varying degrees of success, including inhibitory peptides that target Rep. While much effort has centered around sequence characterization of the Rep protein and inhibitory peptides, detailed structural analysis has been missing. This study computationally investigated the presence of common structural features within these inhibitory peptides and if these features could inform if a particular peptide will bind Rep and/or interfere with viral replication. Molecular dynamics simulations of the inhibitory peptide library showed that simply possessing stable structural features does not inform interference of viral replication regardless of the binding of Rep. Additionally, nearly all known Rep inhibitory peptides sample a conserved β-sheet structural motif, possibly informing structure-function relationships in binding Rep. In particular, two peptides (A22 and A64) characterized by this structural motif were computationally docked against a wide variety of geminivirus Rep proteins to determine a mechanism of action. Computational docking revealed these peptides utilize a common Rep protein sequence motif for binding, HHN-x1/2-Q. The results identified residues in both Rep and the inhibitory peptides that play a significant role in the interaction, establishing the foundation for a rational structure-based design approach for the construction of both broadly reactive and geminivirus species-specific inhibitors.
Collapse
Affiliation(s)
- J Trinidad Ascencio-Ibáñez
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Benjamin G Bobay
- Department of Biochemistry, Duke University, Durham, North Carolina 27710, United States.,Department of Radiology, Duke University, Durham, North Carolina 27710, United States.,Duke University NMR Center, Duke University Medical Center, Durham, North Carolina 27710, United States
| |
Collapse
|
18
|
Shakir S, Jander G, Nahid N, Mubin M, Younus A, Nawaz-Ul-Rehman MS. Interaction of eukaryotic proliferating cell nuclear antigen (PCNA) with the replication-associated protein (Rep) of cotton leaf curl Multan virus and pedilanthus leaf curl virus. 3 Biotech 2021; 11:14. [PMID: 33442513 DOI: 10.1007/s13205-020-02499-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 10/19/2020] [Indexed: 11/28/2022] Open
Abstract
The replication-associated (Rep) proteins of pathogenic begomoviruses, including cotton leaf curl Multan virus (CLCuMuV) and pedilanthus leaf curl virus (PeLCV), interact with the DNA replication machinery of their eukaryotic hosts. The analysis of Rep protein sequences showed that there is 13-28% sequence variation among CLCuMuV and PeLCV isolates, with phylogenetic clusters that can separated at least in part based on the country of origin of the respective viruses. To identify specific host factors involved in the virus replication cycle, we conducted yeast two-hybrid assays to detect possible interactions between the CLCuMuV and PeLCV Rep proteins and 30 protein components of the Saccharomyces cerevisiae DNA replication machinery. This showed that the proliferating cell nuclear antigen (PCNA) protein of S. cerevisiae interacts with Rep proteins from both CLCuMuV and PeLCV. We used the yeast PCNA sequence in BLAST comparisons to identify two PCNA orthologs each in Gossypium hirsutum (cotton), Arabidopsis thaliana (Arabidopsis), and Nicotiana benthamiana (tobacco). Sequence comparisons showed 38-40% identity between the yeast and plant PCNA proteins, and > 91% identity among the plant PCNA proteins, which clustered together in one phylogenetic group. The expression of the six plant PCNA proteins in the yeast two-hybrid system confirmed interactions with the CLCuMuV and PeLCV Rep proteins. Our results demonstrate that the interaction of begomovirus Rep proteins with eukaryotic PCNA proteins is strongly conserved, despite significant evolutionary variation in the protein sequences of both of the interacting partners.
Collapse
Affiliation(s)
- Sara Shakir
- Virology Lab, Center for Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, 38000 Pakistan
- Boyce Thompson Institutute, Ithaca, NY 14853 USA
- Present Address: Plant Genetics, Lab, Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Georg Jander
- Boyce Thompson Institutute, Ithaca, NY 14853 USA
| | - Nazia Nahid
- Department of Bioinformatics and Biotechnology, GC University, Faisalabad, Pakistan
| | - Muhammad Mubin
- Virology Lab, Center for Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, 38000 Pakistan
| | - Ayesha Younus
- Laser Matter Interaction and Nano-Sciences Lab, Department of Physics, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Shah Nawaz-Ul-Rehman
- Virology Lab, Center for Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, 38000 Pakistan
| |
Collapse
|
19
|
Beam K, Ascencio-Ibáñez JT. Geminivirus Resistance: A Minireview. FRONTIERS IN PLANT SCIENCE 2020; 11:1131. [PMID: 32849693 PMCID: PMC7396689 DOI: 10.3389/fpls.2020.01131] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/10/2020] [Indexed: 05/04/2023]
Abstract
A continuing challenge to crop production worldwide is the spectrum of diseases caused by geminiviruses, a large family of small circular single-stranded DNA viruses. These viruses are quite diverse, some containing mono- or bi-partite genomes, and infecting a multitude of monocot and dicot plants. There are currently many efforts directed at controlling these diseases. While some of the methods include controlling the insect vector using pesticides or genetic insect resistance (Rodríguez-López et al., 2011), this review will focus on the generation of plants that are resistant to geminiviruses themselves. Genetic resistance was traditionally found by surveying the wild relatives of modern crops for resistance loci; this method is still widely used and successful. However, the quick rate of virus evolution demands a rapid turnover of resistance genes. With better information about virus-host interactions, scientists are now able to target early stages of geminivirus infection in the host, preventing symptom development and viral DNA accumulation.
Collapse
|
20
|
Maio F, Helderman TA, Arroyo-Mateos M, van der Wolf M, Boeren S, Prins M, van den Burg HA. Identification of Tomato Proteins That Interact With Replication Initiator Protein (Rep) of the Geminivirus TYLCV. FRONTIERS IN PLANT SCIENCE 2020; 11:1069. [PMID: 32760417 PMCID: PMC7373745 DOI: 10.3389/fpls.2020.01069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/29/2020] [Indexed: 05/23/2023]
Abstract
Geminiviruses are plant-infecting DNA viruses that reshape the intracellular environment of their host in order to create favorable conditions for viral replication and propagation. Viral manipulation is largely mediated via interactions between viral and host proteins. Identification of this protein network helps us to understand how these viruses manipulate their host and therefore provides us potentially with novel leads for resistance against this class of pathogens, as genetic variation in the corresponding plant genes could subvert viral manipulation. Different studies have already yielded a list of host proteins that interact with one of the geminiviral proteins. Here, we use affinity purification followed by mass spectrometry (AP-MS) to further expand this list of interacting proteins, focusing on an important host (tomato) and the Replication initiator protein (Rep, AL1, C1) from Tomato yellow leaf curl virus (TYLCV). Rep is the only geminiviral protein proven to be essential for geminiviral replication and it forms an integral part of viral replisomes, a protein complex that consists of plant and viral proteins that allows for viral DNA replication. Using AP-MS, fifty-four 'high confidence' tomato proteins were identified that specifically co-purified with Rep. For two of them, an unknown EWS-like RNA-binding protein (called Geminivirus Rep interacting EWS-like protein 1 or GRIEP1) and an isoform of the THO complex subunit 4A (ALY1), we were able to confirm this interaction with Rep in planta using a second method, bimolecular fluorescence complementation (BiFC). The THO subunit 4 is part of the THO/TREX (TRanscription-EXport) complex, which controls RNA splicing and nuclear export of mRNA to the cytoplasm and is also connected to plant disease resistance. This work represents the first step towards characterization of novel host factors with a putative role in the life cycle of TYLCV and possibly other geminiviruses.
Collapse
Affiliation(s)
- Francesca Maio
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, Netherlands
| | - Tieme A. Helderman
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, Netherlands
| | - Manuel Arroyo-Mateos
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, Netherlands
| | - Miguel van der Wolf
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University, Wageningen, Netherlands
| | - Marcel Prins
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, Netherlands
- Keygene N.V., Wageningen, Netherlands
| | - Harrold A. van den Burg
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
21
|
Zluhan-Martínez E, Pérez-Koldenkova V, Ponce-Castañeda MV, Sánchez MDLP, García-Ponce B, Miguel-Hernández S, Álvarez-Buylla ER, Garay-Arroyo A. Beyond What Your Retina Can See: Similarities of Retinoblastoma Function between Plants and Animals, from Developmental Processes to Epigenetic Regulation. Int J Mol Sci 2020; 21:E4925. [PMID: 32664691 PMCID: PMC7404004 DOI: 10.3390/ijms21144925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/29/2020] [Accepted: 07/07/2020] [Indexed: 12/15/2022] Open
Abstract
The Retinoblastoma protein (pRb) is a key cell cycle regulator conserved in a wide variety of organisms. Experimental analysis of pRb's functions in animals and plants has revealed that this protein participates in cell proliferation and differentiation processes. In addition, pRb in animals and its orthologs in plants (RBR), are part of highly conserved protein complexes which suggest the possibility that analogies exist not only between functions carried out by pRb orthologs themselves, but also in the structure and roles of the protein networks where these proteins are involved. Here, we present examples of pRb/RBR participation in cell cycle control, cell differentiation, and in the regulation of epigenetic changes and chromatin remodeling machinery, highlighting the similarities that exist between the composition of such networks in plants and animals.
Collapse
Affiliation(s)
- Estephania Zluhan-Martínez
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM 04510, Mexico; (E.Z.-M.); (M.d.l.P.S.); (B.G.-P.)
- Posgrado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, Coyoacán 04510, Mexico
| | - Vadim Pérez-Koldenkova
- Laboratorio Nacional de Microscopía Avanzada, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc, 330. Col. Doctores, Alc. Cuauhtémoc 06720, Mexico;
| | - Martha Verónica Ponce-Castañeda
- Unidad de Investigación Médica en Enfermedades Infecciosas, Centro Médico Nacional SXXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico;
| | - María de la Paz Sánchez
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM 04510, Mexico; (E.Z.-M.); (M.d.l.P.S.); (B.G.-P.)
| | - Berenice García-Ponce
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM 04510, Mexico; (E.Z.-M.); (M.d.l.P.S.); (B.G.-P.)
| | - Sergio Miguel-Hernández
- Laboratorio de Citopatología Ambiental, Departamento de Morfología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Campus Zacatenco, Calle Wilfrido Massieu Esquina Cda, Manuel Stampa 07738, Mexico;
| | - Elena R. Álvarez-Buylla
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM 04510, Mexico; (E.Z.-M.); (M.d.l.P.S.); (B.G.-P.)
| | - Adriana Garay-Arroyo
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM 04510, Mexico; (E.Z.-M.); (M.d.l.P.S.); (B.G.-P.)
| |
Collapse
|
22
|
A plant DNA virus replicates in the salivary glands of its insect vector via recruitment of host DNA synthesis machinery. Proc Natl Acad Sci U S A 2020; 117:16928-16937. [PMID: 32636269 PMCID: PMC7382290 DOI: 10.1073/pnas.1820132117] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Viruses pose a great threat to animal and plant health worldwide. Whereas most plant viruses only replicate in plant hosts, some also replicate in their animal (insect) vector. A detailed knowledge of host expansion will give a better understanding of virus evolution, and identification of virus and host components involved in this process can lead to new strategies to combat virus spread. Here, we reveal that a plant DNA virus has evolved to induce and recruit insect DNA synthesis machinery to support its replication in vector salivary glands. Our study sheds light on the understanding of TYLCV–whitefly interactions and provides insights into how a plant virus may evolve to infect and replicate in an insect vector. Whereas most of the arthropod-borne animal viruses replicate in their vectors, this is less common for plant viruses. So far, only some plant RNA viruses have been demonstrated to replicate in insect vectors and plant hosts. How plant viruses evolved to replicate in the animal kingdom remains largely unknown. Geminiviruses comprise a large family of plant-infecting, single-stranded DNA viruses that cause serious crop losses worldwide. Here, we report evidence and insight into the replication of the geminivirus tomato yellow leaf curl virus (TYLCV) in the whitefly (Bemisia tabaci) vector and that replication is mainly in the salivary glands. We found that TYLCV induces DNA synthesis machinery, proliferating cell nuclear antigen (PCNA) and DNA polymerase δ (Polδ), to establish a replication-competent environment in whiteflies. TYLCV replication-associated protein (Rep) interacts with whitefly PCNA, which recruits DNA Polδ for virus replication. In contrast, another geminivirus, papaya leaf curl China virus (PaLCuCNV), does not replicate in the whitefly vector. PaLCuCNV does not induce DNA-synthesis machinery, and the Rep does not interact with whitefly PCNA. Our findings reveal important mechanisms by which a plant DNA virus replicates across the kingdom barrier in an insect and may help to explain the global spread of this devastating pathogen.
Collapse
|
23
|
Li H, Li F, Zhang M, Gong P, Zhou X. Dynamic Subcellular Localization, Accumulation, and Interactions of Proteins From Tomato Yellow Leaf Curl China Virus and Its Associated Betasatellite. FRONTIERS IN PLANT SCIENCE 2020; 11:840. [PMID: 32612626 PMCID: PMC7308551 DOI: 10.3389/fpls.2020.00840] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 05/26/2020] [Indexed: 05/30/2023]
Abstract
Geminiviruses contain the largest number of species of plant viruses, and cause devastating crop diseases worldwide. The development of resistance to these viruses will require a clear understanding of viral protein function and interactions. Tomato yellow leaf curl China virus (TYLCCNV) is a typical monopartite geminivirus, which is associated with a tomato yellow leaf curl China betasatellite (TYLCCNB) in the field; the complex infection of TYLCCNV/TYLCCNB leads to serious economic losses in solanaceous plants. The functions of each protein encoded by the TYLCCNV/TYLCCNB complex have not yet been examined in a targeted manner. Here, we show the dynamic subcellular localization and accumulation of six viral proteins encoded by TYLCCNV and the βC1 protein encoded by TYLCCNB in plants over time, and analyzed the effect of TYLCCNV or TYLCCNV/TYLCCNB infection on these parameters. The interaction among the seven viral proteins was also tested in this study: C2 acts as a central player in the viral protein interaction network, since it interacts with C3, C4, V2, and βC1. Self-interactions were also found for C1, C2, and V2. Together, the data presented here provide a template for investigating the function of viral proteins with or without viral infection over time, and points at C2 as a pivotal protein potentially playing a central role in the coordination of the viral life cycle.
Collapse
Affiliation(s)
- Hao Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mingzhen Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Pan Gong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
24
|
Dodueva IE, Lebedeva MA, Kuznetsova KA, Gancheva MS, Paponova SS, Lutova LL. Plant tumors: a hundred years of study. PLANTA 2020; 251:82. [PMID: 32189080 DOI: 10.1007/s00425-020-03375-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/11/2020] [Indexed: 05/21/2023]
Abstract
The review provides information on the mechanisms underlying the development of spontaneous and pathogen-induced tumors in higher plants. The activation of meristem-specific regulators in plant tumors of various origins suggests the meristem-like nature of abnormal plant hyperplasia. Plant tumor formation has more than a century of research history. The study of this phenomenon has led to a number of important discoveries, including the development of the Agrobacterium-mediated transformation technique and the discovery of horizontal gene transfer from bacteria to plants. There are two main groups of plant tumors: pathogen-induced tumors (e.g., tumors induced by bacteria, viruses, fungi, insects, etc.), and spontaneous ones, which are formed in the absence of any pathogen in plants with certain genotypes (e.g., interspecific hybrids, inbred lines, and mutants). The causes of the transition of plant cells to tumor growth are different from those in animals, and they include the disturbance of phytohormonal balance and the acquisition of meristematic characteristics by differentiated cells. The aim of this review is to discuss the mechanisms underlying the development of most known examples of plant tumors.
Collapse
Affiliation(s)
- Irina E Dodueva
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia.
| | - Maria A Lebedeva
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Kseniya A Kuznetsova
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Maria S Gancheva
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Svetlana S Paponova
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Ludmila L Lutova
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
| |
Collapse
|
25
|
Mauck KE, Kenney J, Chesnais Q. Progress and challenges in identifying molecular mechanisms underlying host and vector manipulation by plant viruses. CURRENT OPINION IN INSECT SCIENCE 2019; 33:7-18. [PMID: 31358199 DOI: 10.1016/j.cois.2019.01.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/28/2018] [Accepted: 01/05/2019] [Indexed: 06/10/2023]
Abstract
Plant virus infection fundamentally alters chemical and behavioral phenotypes of hosts and vectors. These alterations often enhance virus transmission, leading researchers to surmise that such effects are manipulations caused by virus adaptations and not just by-products of pathology. But identification of the virus components behind manipulation is missing from most studies performed to date. Here, we evaluate causative empirical evidence that virus components are the drivers of manipulated host and vector phenotypes. To do so, we link findings and methodologies on virus pathology with observational and functional genomics studies on virus manipulation. Our synthesis provides an overview of progress, areas of synergy, and new approaches that will lead to an improved mechanistic understanding of host and vector manipulation by plant viruses.
Collapse
Affiliation(s)
- Kerry E Mauck
- Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA.
| | - Jaimie Kenney
- Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA
| | - Quentin Chesnais
- Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA
| |
Collapse
|
26
|
Maio F, Arroyo-Mateos M, Bobay BG, Bejarano ER, Prins M, van den Burg HA. A Lysine Residue Essential for Geminivirus Replication Also Controls Nuclear Localization of the Tomato Yellow Leaf Curl Virus Rep Protein. J Virol 2019; 93:e01910-18. [PMID: 30842320 PMCID: PMC6498046 DOI: 10.1128/jvi.01910-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/20/2019] [Indexed: 02/07/2023] Open
Abstract
Geminiviruses are single-stranded DNA (ssDNA) viruses that infect a wide range of plants. To promote viral replication, geminiviruses manipulate the host cell cycle. The viral protein Rep is essential to reprogram the cell cycle and then initiate viral DNA replication by interacting with a plethora of nuclear host factors. Even though many protein domains of Rep have been characterized, little is known about its nuclear targeting. Here, we show that one conserved lysine in the N-terminal part of Rep is pivotal for nuclear localization of the Rep protein from Tomato yellow leaf curl virus (TYLCV), with two other lysines also contributing to its nuclear import. Previous work had identified that these residues are essential for Rep from Tomato golden mosaic virus (TGMV) to interact with the E2 SUMO-conjugating enzyme (SCE1). We here show that mutating these lysines leads to nuclear exclusion of TYLCV Rep without compromising its interaction with SCE1. Moreover, the ability of TYLCV Rep to promote viral DNA replication also depends on this highly conserved lysine independently of its role in nuclear import of Rep. Our data thus reveal that this lysine potentially has a broad role in geminivirus replication, but its role in nuclear import and SCE1 binding differs depending on the Rep protein examined.IMPORTANCE Nuclear activity of the replication initiator protein (Rep) of geminiviruses is essential for viral replication. We now define that one highly conserved lysine is important for nuclear import of Rep from three different begomoviruses. To our knowledge, this is the first time that nuclear localization has been mapped for any geminiviral Rep protein. Our data add another key function to this lysine residue, besides its roles in viral DNA replication and interaction with host factors, such as the SUMO E2-conjugating enzyme.
Collapse
Affiliation(s)
- Francesca Maio
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Manuel Arroyo-Mateos
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Teatinos, Málaga, Spain
| | - Benjamin G Bobay
- Duke University NMR Center, Duke University Medical Center, Durham, North Carolina, USA
- Department of Biochemistry, Duke University, Durham, North Carolina, USA
- Department of Radiology, Duke University, Durham, North Carolina, USA
| | - Eduardo R Bejarano
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Teatinos, Málaga, Spain
| | - Marcel Prins
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
- Keygene N.V., Wageningen, the Netherlands
| | - Harrold A van den Burg
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
27
|
Venkataraman S, Selvarajan R. Recent advances in understanding the replication initiator protein of the ssDNA plant viruses of the family Nanoviridae. Virusdisease 2019; 30:22-31. [PMID: 31143829 PMCID: PMC6517469 DOI: 10.1007/s13337-019-00514-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 02/13/2019] [Indexed: 12/20/2022] Open
Abstract
The families of viruses possessing single-stranded (ss) circular genome employ a dedicated replication initiator protein (Rep) for making copies of their genome through the process of rolling circle replication. The replication begins at conserved nonanucleotide sequence at the intergenic region. The Rep protein seems to be the most conserved amongst the available proteins of the nanovirids and comprises of the N-terminal endonuclease domain and the C-terminal helicase domain. The structural studies of Faba bean necrotic yellows virus endonuclease domain suggests a α + β fold comprising of central β sheet built from five antiparallel β strands surrounded by outer short α helices. The catalysis is mediated by a conserved Tyr residue and employs divalent metal ions (Mn2+). On one hand, the Reps associate with each other and oligomerize and on the other hand interact with varied host and vector associated proteins for successful infection. The sequence analysis of Reps from previously known nanovirids and the newly found ones from metagenomics data shed light on the evolutionary pattern of nanovirids in comparison to other plant infecting ssDNA viruses.
Collapse
Affiliation(s)
- Sangita Venkataraman
- Department of Biotechnology, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur, 522510 India
| | - R. Selvarajan
- ICAR National Research Centre for Banana, Thayanur Post, Tiruchirapalli, 620102 India
| |
Collapse
|
28
|
Li F, Xu X, Yang X, Li Z, Zhou X. Identification of a cis-Acting Element Derived from Tomato Leaf Curl Yunnan Virus that Mediates the Replication of a Deficient Yeast Plasmid in Saccharomyces cerevisiae. Viruses 2018; 10:v10100536. [PMID: 30274361 PMCID: PMC6213642 DOI: 10.3390/v10100536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 09/27/2018] [Accepted: 09/29/2018] [Indexed: 12/03/2022] Open
Abstract
Geminiviruses are a group of small single-stranded DNA viruses that replicate in the host cell nucleus. It has been reported that the viral replication initiator protein (Rep) and the conserved common region (CR) are required for rolling circle replication (RCR)-dependent geminivirus replication, but the detailed mechanisms of geminivirus replication are still obscure owing to a lack of a eukaryotic model system. In this study, we constructed a bacterial–yeast shuttle plasmid with the autonomous replication sequence (ARS) deleted, which failed to replicate in Saccharomyces cerevisiae cells and could not survive in selective media either. Tandemly repeated copies of 10 geminivirus genomic DNAs were inserted into this deficient plasmid to test whether they were able to replace the ARS to execute genomic DNA replication in yeast cells. We found that yeast cells consisting of the recombinant plasmid with 1.9 tandemly repeated copies of tomato leaf curl Yunnan virus isolate Y194 (TLCYnV-Y194, hereafter referred to as Y194) can replicate well and survive in selective plates. Furthermore, we showed that the recombinant plasmid harboring the Y194 genome with the mutation of the viral Rep or CR was still able to replicate in yeast cells, indicating the existence of a non-canonic RCR model. By a series of mutations, we mapped a short fragment of 174 nucleotides (nts) between the V1 and C3 open reading frames (ORFs), including an ARS-like element that can substitute the function of the ARS responsible for stable replication of extrachromosomal DNAs in yeast. The results of this study established a geminivirus replication system in yeast cells and revealed that Y194 consisting of an ARS-like element was able to support the replication a bacterial–yeast shuttle plasmid in yeast cells.
Collapse
Affiliation(s)
- Fangfang Li
- State Key Laboratory for Biology of Plant Disease and Insect Pest, Institute of Plant Protection, China Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xiongbiao Xu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Xiuling Yang
- State Key Laboratory for Biology of Plant Disease and Insect Pest, Institute of Plant Protection, China Academy of Agricultural Sciences, Beijing 100193, China.
| | - Zhenghe Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Disease and Insect Pest, Institute of Plant Protection, China Academy of Agricultural Sciences, Beijing 100193, China.
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
29
|
Shen W, Bobay BG, Greeley LA, Reyes MI, Rajabu CA, Blackburn RK, Dallas MB, Goshe MB, Ascencio-Ibáñez JT, Hanley-Bowdoin L. Sucrose Nonfermenting 1-Related Protein Kinase 1 Phosphorylates a Geminivirus Rep Protein to Impair Viral Replication and Infection. PLANT PHYSIOLOGY 2018; 178:372-389. [PMID: 30006378 PMCID: PMC6130039 DOI: 10.1104/pp.18.00268] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/29/2018] [Indexed: 05/17/2023]
Abstract
Geminiviruses are single-stranded DNA viruses that infect a wide variety of plants and cause severe crop losses worldwide. The geminivirus replication initiator protein (Rep) binds to the viral replication origin and catalyzes DNA cleavage and ligation to initiate rolling circle replication. In this study, we found that the Tomato golden mosaic virus (TGMV) Rep is phosphorylated at serine-97 by sucrose nonfermenting 1-related protein kinase 1 (SnRK1), a master regulator of plant energy homeostasis and metabolism. Phosphorylation of Rep or the phosphomimic S97D mutation impaired Rep binding to viral DNA. A TGMV DNA-A replicon containing the Rep S97D mutation replicated less efficiently in tobacco (Nicotiana tabacum) protoplasts than in wild-type or Rep phosphorylation-deficient replicons. The TGMV Rep-S97D mutant also was less infectious than the wild-type virus in Nicotiana benthamiana and was unable to infect tomato (Solanum lycopersicum). Nearly all geminivirus Rep proteins have a serine residue at the position equivalent to TGMV Rep serine-97. SnRK1 phosphorylated the equivalent serines in the Rep proteins of Tomato mottle virus and Tomato yellow leaf curl virus and reduced DNA binding, suggesting that SnRK1 plays a key role in combating geminivirus infection. These results established that SnRK1 phosphorylates Rep and interferes with geminivirus replication and infection, underscoring the emerging role for SnRK1 in the host defense response against plant pathogens.
Collapse
Affiliation(s)
- Wei Shen
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695-7651
| | - Benjamin G Bobay
- Duke University NMR Center, Duke University Medical Center, Duke University, Durham, North Carolina 27708
| | - Laura A Greeley
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695-7622
| | - Maria I Reyes
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695-7651
| | - Cyprian A Rajabu
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695-7651
- Department of Horticulture, Jomo Kenyatta University of Agriculture and Technology, 00200 Nairobi, Kenya
| | - R Kevin Blackburn
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695-7622
| | - Mary Beth Dallas
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695-7651
| | - Michael B Goshe
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695-7622
| | - Jose T Ascencio-Ibáñez
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695-7622
| | - Linda Hanley-Bowdoin
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695-7651
| |
Collapse
|
30
|
Munganyinka E, Margaria P, Sheat S, Ateka EM, Tairo F, Ndunguru J, Winter S. Localization of cassava brown streak virus in Nicotiana rustica and cassava Manihot esculenta (Crantz) using RNAscope® in situ hybridization. Virol J 2018; 15:128. [PMID: 30107851 PMCID: PMC6092782 DOI: 10.1186/s12985-018-1038-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/02/2018] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Cassava brown streak disease (CBSD) has a viral aetiology and is caused by viruses belonging to the genus Ipomovirus (family Potyviridae), Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV). Molecular and serological methods are available for detection, discrimination and quantification of cassava brown streak viruses (CBSVs) in infected plants. However, precise determination of the viral RNA localization in infected host tissues is still not possible pending appropriate methods. RESULTS We have developed an in situ hybridization (ISH) assay based on RNAscope® technology that allows the sensitive detection and localization of CBSV RNA in plant tissues. The method was initially developed in the experimental host Nicotiana rustica and was then further adapted to cassava. Highly sensitive and specific detection of CBSV RNA was achieved without background and hybridization signals in sections prepared from non-infected tissues. The tissue tropism of CBSV RNAs appeared different between N. rustica and cassava. CONCLUSIONS This study provides a robust method for CBSV detection in the experimental host and in cassava. The protocol will be used to study CBSV tropism in various cassava genotypes, as well as CBSVs/cassava interactions in single and mixed infections.
Collapse
Affiliation(s)
- Esperance Munganyinka
- Rwanda Agriculture Board, P.O. Box 5016, Kigali, Rwanda
- Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi, Kenya
| | - Paolo Margaria
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Plant Virus Department, Messeweg 11/12, 38104 Braunschweig, Germany
| | - Samar Sheat
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Plant Virus Department, Messeweg 11/12, 38104 Braunschweig, Germany
| | - Elijah M. Ateka
- Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi, Kenya
| | - Fred Tairo
- Mikocheni Agricultural Research Institute, P.O. Box 6226, Dar es Salaam, Tanzania
| | - Joseph Ndunguru
- Mikocheni Agricultural Research Institute, P.O. Box 6226, Dar es Salaam, Tanzania
| | - Stephan Winter
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Plant Virus Department, Messeweg 11/12, 38104 Braunschweig, Germany
| |
Collapse
|
31
|
Ruhel R, Chakraborty S. Multifunctional roles of geminivirus encoded replication initiator protein. Virusdisease 2018; 30:66-73. [PMID: 31143833 DOI: 10.1007/s13337-018-0458-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 05/28/2018] [Indexed: 12/31/2022] Open
Abstract
Geminivirus infection has been a threat to cultivation worldwide by causing huge losses to the crop. The single-stranded DNA genome of a geminivirus possesses a limited coding potential and many of the open reading frames (ORFs) are overlapping. Out of 5-7 ORFs that a geminivirus genome codes for, the AC1 ORF encodes for the replication initiator protein (Rep) which is involved in the replication of virus within the infected plant cell. Rep is the only viral protein absolutely required for the in planta viral replication. Across different genera of the Geminiviridae family, the AC1 ORF exhibits a high degree of sequence conservation thus it has been used as an effective target for developing broad spectrum resistance against the invading geminiviruses. This multifunctional protein is required for initiation, elongation as well as termination of the viral replication process. Rep is also involved in stimulation of viral transcription. In addition, it also functions as suppressor of gene silencing and is involved in the process of transcription by regulating the expression of certain viral genes. Rep protein also interacts with few viral proteins such as coat protein, replication enhancer protein and with several host factors involved in different pathways and processes for its replication and efficient infection. This review will summarise our current understanding about the role of this early viral protein in viral propagation as well as in establishment of pathogenesis in a permissive host.
Collapse
Affiliation(s)
- Rajrani Ruhel
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| |
Collapse
|
32
|
Ahmad A, Zia-Ur-Rehman M, Hameed U, Qayyum Rao A, Ahad A, Yasmeen A, Akram F, Bajwa KS, Scheffler J, Nasir IA, Shahid AA, Iqbal MJ, Husnain T, Haider MS, Brown JK. Engineered Disease Resistance in Cotton Using RNA-Interference to Knock down Cotton leaf curl Kokhran virus-Burewala and Cotton leaf curl Multan betasatellite Expression. Viruses 2017; 9:E257. [PMID: 28906473 PMCID: PMC5618023 DOI: 10.3390/v9090257] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/08/2017] [Accepted: 08/30/2017] [Indexed: 01/09/2023] Open
Abstract
Cotton leaf curl virus disease (CLCuD) is caused by a suite of whitefly-transmitted begomovirus species and strains, resulting in extensive losses annually in India and Pakistan. RNA-interference (RNAi) is a proven technology used for knockdown of gene expression in higher organisms and viruses. In this study, a small interfering RNA (siRNA) construct was designed to target the AC1 gene of Cotton leaf curl Kokhran virus-Burewala (CLCuKoV-Bu) and the βC1 gene and satellite conserved region of the Cotton leaf curl Multan betasatellite (CLCuMB). The AC1 gene and CLCuMB coding and non-coding regions function in replication initiation and suppression of the plant host defense pathway, respectively. The construct, Vβ, was transformed into cotton plants using the Agrobacterium-mediated embryo shoot apex cut method. Results from fluorescence in situ hybridization and karyotyping assays indicated that six of the 11 T₁ plants harbored a single copy of the Vβ transgene. Transgenic cotton plants and non-transgenic (susceptible) test plants included as the positive control were challenge-inoculated using the viruliferous whitefly vector to transmit the CLCuKoV-Bu/CLCuMB complex. Among the test plants, plant Vβ-6 was asymptomatic, had the lowest amount of detectable virus, and harbored a single copy of the transgene on chromosome six. Absence of characteristic leaf curl symptom development in transgenic Vβ-6 cotton plants, and significantly reduced begomoviral-betasatellite accumulation based on real-time polymerase chain reaction, indicated the successful knockdown of CLCuKoV-Bu and CLCuMB expression, resulting in leaf curl resistant plants.
Collapse
Affiliation(s)
- Aftab Ahmad
- Center of Excellence in Molecular Biology, University of the Punjab, 87 W Canal Bank Road, Thokar Niaz Baig, Lahore 53700, Pakistan.
| | - Muhammad Zia-Ur-Rehman
- Institute of Agricultural Sciences (IAGS), University of the Punjab, Lahore 54590, Pakistan.
| | - Usman Hameed
- Institute of Agricultural Sciences (IAGS), University of the Punjab, Lahore 54590, Pakistan.
| | - Abdul Qayyum Rao
- Center of Excellence in Molecular Biology, University of the Punjab, 87 W Canal Bank Road, Thokar Niaz Baig, Lahore 53700, Pakistan.
| | - Ammara Ahad
- Center of Excellence in Molecular Biology, University of the Punjab, 87 W Canal Bank Road, Thokar Niaz Baig, Lahore 53700, Pakistan.
| | - Aneela Yasmeen
- Center of Excellence in Molecular Biology, University of the Punjab, 87 W Canal Bank Road, Thokar Niaz Baig, Lahore 53700, Pakistan.
| | - Faheem Akram
- Center of Excellence in Molecular Biology, University of the Punjab, 87 W Canal Bank Road, Thokar Niaz Baig, Lahore 53700, Pakistan.
| | - Kamran Shahzad Bajwa
- Center of Excellence in Molecular Biology, University of the Punjab, 87 W Canal Bank Road, Thokar Niaz Baig, Lahore 53700, Pakistan.
| | - Jodi Scheffler
- Jamie Whitten Delta States Research Center, United States Department of Agriculture (USDA), Stoneville, MS 38776, USA.
| | - Idrees Ahmad Nasir
- Center of Excellence in Molecular Biology, University of the Punjab, 87 W Canal Bank Road, Thokar Niaz Baig, Lahore 53700, Pakistan.
| | - Ahmad Ali Shahid
- Center of Excellence in Molecular Biology, University of the Punjab, 87 W Canal Bank Road, Thokar Niaz Baig, Lahore 53700, Pakistan.
| | - Muhammad Javed Iqbal
- Institute of Agricultural Sciences (IAGS), University of the Punjab, Lahore 54590, Pakistan.
| | - Tayyab Husnain
- Center of Excellence in Molecular Biology, University of the Punjab, 87 W Canal Bank Road, Thokar Niaz Baig, Lahore 53700, Pakistan.
| | - Muhammad Saleem Haider
- Institute of Agricultural Sciences (IAGS), University of the Punjab, Lahore 54590, Pakistan.
| | - Judith K Brown
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
33
|
Wildermuth MC, Steinwand MA, McRae AG, Jaenisch J, Chandran D. Adapted Biotroph Manipulation of Plant Cell Ploidy. ANNUAL REVIEW OF PHYTOPATHOLOGY 2017; 55:537-564. [PMID: 28617655 DOI: 10.1146/annurev-phyto-080516-035458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Diverse plant biotrophs that establish a sustained site of nutrient acquisition induce localized host endoreduplication. Endoreduplication is a process by which cells successively replicate their genomes without mitosis, resulting in an increase in nuclear DNA ploidy. Elevated ploidy is associated with enhanced cell size, metabolic capacity, and the capacity to differentiate. Localized host endoreduplication induced by adapted plant biotrophs promotes biotroph colonization, development, and/or proliferation. When induced host endoreduplication is limited, biotroph growth and/or development are compromised. Herein, we examine a diverse set of plant-biotroph interactions to identify (a) common host components manipulated to promote induced host endoreduplication and (b) biotroph effectors that facilitate this induced host process. Shared mechanisms to promote host endoreduplication and development of nutrient exchange/feeding sites include manipulation centered on endocycle entry at the G2-M transition as well as yet undefined roles for differentiation regulators (e.g., CLE peptides) and pectin/cell wall modification.
Collapse
Affiliation(s)
- Mary C Wildermuth
- Department of Plant & Microbial Biology, University of California, Berkeley, California 94720;
| | - Michael A Steinwand
- Department of Plant & Microbial Biology, University of California, Berkeley, California 94720;
| | - Amanda G McRae
- Department of Plant & Microbial Biology, University of California, Berkeley, California 94720;
| | - Johan Jaenisch
- Department of Plant & Microbial Biology, University of California, Berkeley, California 94720;
| | - Divya Chandran
- Regional Center for Biotechnology, NCR Biotech Science Cluster, Faridabad, India 121001
| |
Collapse
|
34
|
Kushwaha NK, Bhardwaj M, Chakraborty S. The replication initiator protein of a geminivirus interacts with host monoubiquitination machinery and stimulates transcription of the viral genome. PLoS Pathog 2017; 13:e1006587. [PMID: 28859169 PMCID: PMC5597257 DOI: 10.1371/journal.ppat.1006587] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 09/13/2017] [Accepted: 08/16/2017] [Indexed: 12/13/2022] Open
Abstract
Geminiviruses constitute a group of plant viruses, with a ssDNA genome, whose replication in the nucleus of an infected cell requires the function of geminivirus-encoded replication initiator protein (Rep). Our results suggest that monoubiquitinated histone 2B (H2B-ub) promotes tri-methylation of histone 3 at lysine 4 (H3-K4me3) on the promoter of Chilli leaf curl virus (ChiLCV). We isolated homologues of two major components of the monoubiquitination machinery: UBIQUITIN-CONJUGATING ENZYME2 (NbUBC2) and HISTONE MONOUBIQUITINATION1 (NbHUB1) from N. benthamiana. ChiLCV failed to cause disease in NbUBC2-, and NbHUB1-silenced plants, at the same time, H2B-ub and H3-K4me3 modifications were decreased, and the occupancy of RNA polymerase II on the viral promoter was reduced as well. In further investigations, Rep protein of ChiLCV was found to re-localize NbUBC2 from the cytoplasm to the nucleoplasm, like NbHUB1, the cognate partner of NbUBC2. Rep was observed to interact and co-localize with NbHUB1 and NbUBC2 in the nuclei of the infected cells. In summary, the current study reveals that the ChiLCV Rep protein binds the viral genome and interacts with NbUBC2 and NbHUB1 for the monoubiquitination of histone 2B that subsequently promotes trimethylation of histone 3 at lysine 4 on ChiLCV mini-chromosomes and enhances transcription of the viral genes.
Collapse
Affiliation(s)
- Nirbhay Kumar Kushwaha
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Mansi Bhardwaj
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
35
|
Krenz B, Schießl I, Greiner E, Krapp S. Analyses of pea necrotic yellow dwarf virus-encoded proteins. Virus Genes 2017; 53:454-463. [PMID: 28238159 DOI: 10.1007/s11262-017-1439-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 02/17/2017] [Indexed: 10/20/2022]
Abstract
Pea necrotic yellow dwarf virus (PNYDV) is a multipartite, circular, single-stranded DNA plant virus. PNYDV encodes eight proteins and the function of three of which remains unknown-U1, U2, and U4. PNYDV proteins cellular localization was analyzed by GFP tagging and bimolecular fluorescence complementation (BiFC) studies. The interactions of all eight PNYDV proteins were tested pairwise in planta (36 combinations in total). Seven interactions were identified and two (M-Rep with CP and MP with U4) were characterized further. MP and U4 complexes appeared as vesicle-like spots and were localized at the nuclear envelope and cell periphery. These vesicle-like spots were associated with the endoplasmatic reticulum. In addition, a nuclear localization signal (NLS) was mapped for U1, and a mutated U1 with NLS disrupted localized at plasmodesmata and therefore might also have a role in movement. Taken together, this study provides evidence for previously undescribed nanovirus protein-protein interactions and their cellular localization with novel findings not only for those proteins with unknown function, but also for characterized proteins such as the CP.
Collapse
Affiliation(s)
- Björn Krenz
- Lehrstuhl für Biochemie, Department Biologie, Universität Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany.
| | - Ingrid Schießl
- Lehrstuhl für Biochemie, Department Biologie, Universität Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany
| | - Eva Greiner
- Lehrstuhl für Biochemie, Department Biologie, Universität Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany
| | - Susanna Krapp
- Lehrstuhl für Biochemie, Department Biologie, Universität Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany
| |
Collapse
|
36
|
Jeevalatha A, Siddappa S, Kumar A, Kaundal P, Guleria A, Sharma S, Nagesh M, Singh BP. An insight into differentially regulated genes in resistant and susceptible genotypes of potato in response to tomato leaf curl New Delhi virus-[potato] infection. Virus Res 2017; 232:22-33. [PMID: 28115198 DOI: 10.1016/j.virusres.2017.01.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 01/04/2017] [Accepted: 01/08/2017] [Indexed: 12/13/2022]
Abstract
Apical leaf curl disease, caused by tomato leaf curl New Delhi virus-[potato] (ToLCNDV-[potato]) is one of the most important viral diseases of potato in India. Genetic resistance source for ToLCNDV in potato is not identified so far. However, the cultivar Kufri Bahar is known to show lowest seed degeneration even under high vector levels. Hence, microarray analysis was performed to identify differentially regulated genes during ToLCNDV-[potato] infection in a resistant (Kufri Bahar) and a susceptible cultivar (Kufri Pukhraj). Under artificial inoculation conditions, in Kufri Pukhraj, symptom expressions started at 15days after inoculation (DAI) and then progressed to severe symptoms, whereas no or only very mild symptoms were observed in Kufri Bahar up to 35 DAI. Correspondingly, qPCR assay indicated a high viral load in Kufri Pukhraj and a very low viral load in Kufri Bahar. Microarray analysis showed that a total of 1111 genes and 2588 genes were differentially regulated (|log2 (Fold Change)|>2) in Kufri Bahar and Kufri Pukhraj, respectively, following ToLCNDV-[potato] infection. Gene ontology and mapman analyses revealed that these altered transcripts were involved in various biological & metabolic processes. Several genes with unknown functions were 5 to 100 fold expressed after virus infection and further experiments are necessary to ascertain their role in disease resistance or susceptibility. This study gives an insight into differentially regulated genes in response to ToLCNDV-[potato] infection in resistant and susceptible cultivars and could serve as the basis for the development of new strategies for disease management.
Collapse
Affiliation(s)
- Arjunan Jeevalatha
- ICAR-Central Potato Research Institute, Shimla 171 001, Himachal Pradesh, India.
| | - Sundaresha Siddappa
- ICAR-Central Potato Research Institute, Shimla 171 001, Himachal Pradesh, India
| | - Ashwani Kumar
- ICAR-Central Potato Research Institute, Shimla 171 001, Himachal Pradesh, India
| | - Priyanka Kaundal
- ICAR-Central Potato Research Institute, Shimla 171 001, Himachal Pradesh, India
| | - Anupama Guleria
- ICAR-Central Potato Research Institute, Shimla 171 001, Himachal Pradesh, India
| | - Sanjeev Sharma
- ICAR-Central Potato Research Institute, Shimla 171 001, Himachal Pradesh, India
| | - Mandadi Nagesh
- ICAR-Central Potato Research Institute, Shimla 171 001, Himachal Pradesh, India
| | - Bir Pal Singh
- ICAR-Central Potato Research Institute, Shimla 171 001, Himachal Pradesh, India
| |
Collapse
|
37
|
A phloem-limited fijivirus induces the formation of neoplastic phloem tissues that house virus multiplication in the host plant. Sci Rep 2016; 6:29848. [PMID: 27432466 PMCID: PMC4949464 DOI: 10.1038/srep29848] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/24/2016] [Indexed: 11/26/2022] Open
Abstract
A number of phloem-limited viruses induce the development of tumours (enations) in the veins of host plants, but the relevance of tumour induction to the life cycle of those viruses is unclear. In this study, we performed molecular and structural analyses of tumours induced by rice black-streaked dwarf virus (RBSDV, genus Fijivirus) infection in maize plants. The transcript level of the maize cdc2 gene, which regulates the cell cycle, was highly elevated in tumour tissues. Two-dimensional electrophoresis identified 25 cellular proteins with altered accumulation in the tumour tissues. These proteins are involved in various metabolic pathways, including photosynthesis, redox, energy pathways and amino acid synthesis. Histological analysis indicated that the tumours predominantly originated from hyperplastic growth of phloem, but those neoplastic tissues have irregular structures and cell arrangements. Immunodetection assays and electron microscopy observations indicated that in the shoots, RBSDV is confined to phloem and tumour regions and that virus multiplication actively occurs in the tumour tissue, as indicated by the high accumulation of non-structural proteins and formation of viroplasms in the tumour cells. Thus, the induction of tumours by RBSDV infection provides a larger environment that is favourable for virus propagation in the host plant.
Collapse
|
38
|
Shen Q, Hu T, Bao M, Cao L, Zhang H, Song F, Xie Q, Zhou X. Tobacco RING E3 Ligase NtRFP1 Mediates Ubiquitination and Proteasomal Degradation of a Geminivirus-Encoded βC1. MOLECULAR PLANT 2016; 9:911-25. [PMID: 27018391 DOI: 10.1016/j.molp.2016.03.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 02/17/2016] [Accepted: 03/03/2016] [Indexed: 05/19/2023]
Abstract
The βC1 protein encoded by the Tomato yellow leaf curl China virus-associated betasatellite functions as a pathogenicity determinant. To better understand the molecular basis whereby βC1 functions in pathogenicity, a yeast two-hybrid screen of a tobacco cDNA library was carried out using βC1 as the bait. The screen revealed that βC1 interacts with a tobacco RING-finger protein designated NtRFP1, which was further confirmed by the bimolecular fluorescence complementation and co-immunoprecipitation assays in Nicotiana benthamiana cells. Expression of NtRFP1 was induced by βC1, and in vitro ubiquitination assays showed that NtRFP1 is a functional E3 ubiquitin ligase that mediates βC1 ubiquitination. In addition, βC1 was shown to be ubiquitinated in vivo and degraded by the plant 26S proteasome. After viral infection, plants overexpressing NtRFP1 developed attenuated symptoms, whereas plants with silenced expression of NtRFP1 showed severe symptoms. Other lines of evidence showed that NtRFP1 attenuates βC1-induced symptoms through promoting its degradation by the 26S proteasome. Taken together, our results suggest that tobacco RING E3 ligase NtRFP1 attenuates disease symptoms by interacting with βC1 to mediate its ubiquitination and degradation via the ubiquitin/26S proteasome system.
Collapse
Affiliation(s)
- Qingtang Shen
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Tao Hu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Min Bao
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Linge Cao
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Huawei Zhang
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Fengmin Song
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
39
|
Lucioli A, Perla C, Berardi A, Gatti F, Spanò L, Tavazza M. Transcriptomics of tomato plants infected with TYLCSV or expressing the central TYLCSV Rep protein domain uncover changes impacting pathogen response and senescence. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 103:61-70. [PMID: 26966899 DOI: 10.1016/j.plaphy.2016.02.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 01/26/2016] [Accepted: 02/25/2016] [Indexed: 05/20/2023]
Abstract
To establish a successful infection viruses need to overcome plant innate immune responses and redirect host gene expression for their multiplication and diffusion. Tomato yellow leaf curl Sardinia virus (TYLCSV) is a geminivirus, which causes significant economic losses in tomato. The multifunctional replication associated geminivirus protein (Rep) has an important role during viral infection. In particular, the Rep central domain spanning from aa 120 to 180 is known to interact with viral and host factors. In this study, we used long serial analysis of gene expression to analyse the transcriptional profiles of transgenic tomato plants expressing the first 210 amino acids of TYLCSV Rep (Rep210) and TYLCSV-infected wild-type tomato plants (Wt-Ty). Also, we compared these profiles with those of transgenic Rep130 tomatoes. Comparison of Wt-Ty and Rep210 libraries with the wild-type one identified 118 and 203 differentially expressed genes (DEGs), respectively. Importantly, 55% of Wt-Ty DEGs were in common with Rep210, and no ones showed opposite expression. Conversely, a negligible overlap was found between Rep130 DEGs and Wt-Ty and Rep210 ones. TYLCSV- and Rep210-repressed genes, but not induced ones, overlapped with the leaf senescence process. Interestingly, TYLCSV upregulates expression of genes involved in the negative regulation of programmed cell death (PCD), several of which were also regulated by the abscisic acid. Rep210 upregulated genes related to defence response, immune system processes and negative regulation of PCD. Collectively, our results support a model in which the Rep central domain has a pivotal role in redirecting host plant gene expression.
Collapse
Affiliation(s)
- Alessandra Lucioli
- Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile (ENEA), C.R. Casaccia, Via Anguillarese 301, 00123 Rome, Italy
| | - Carlo Perla
- Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile (ENEA), C.R. Casaccia, Via Anguillarese 301, 00123 Rome, Italy; Università degli Studi dell'Aquila, Department of Physical and Chemical Sciences, Via Giovanni di Vincenzo, 67100 L'Aquila, Italy
| | - Alessandra Berardi
- Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile (ENEA), C.R. Casaccia, Via Anguillarese 301, 00123 Rome, Italy
| | - Francesca Gatti
- Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile (ENEA), C.R. Casaccia, Via Anguillarese 301, 00123 Rome, Italy
| | - Laura Spanò
- Università degli Studi dell'Aquila, Department of Physical and Chemical Sciences, Via Giovanni di Vincenzo, 67100 L'Aquila, Italy
| | - Mario Tavazza
- Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile (ENEA), C.R. Casaccia, Via Anguillarese 301, 00123 Rome, Italy.
| |
Collapse
|
40
|
Richter KS, Serra H, White CI, Jeske H. The recombination mediator RAD51D promotes geminiviral infection. Virology 2016; 493:113-27. [PMID: 27018825 DOI: 10.1016/j.virol.2016.03.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/15/2016] [Accepted: 03/18/2016] [Indexed: 11/28/2022]
Abstract
To study a possible role for homologous recombination in geminivirus replication, we challenged Arabidopsis recombination gene knockouts by Euphorbia yellow mosaic virus infection. Our results show that the RAD51 paralog RAD51D, rather than RAD51 itself, promotes viral replication at early stages of infection. Blot hybridization analyses of replicative intermediates using one- and two-dimensional gels and deep sequencing point to an unexpected facet of recombination-dependent replication, the repair by single-strand annealing (SSA) during complementary strand replication. A significant decrease of both intramolecular, yielding defective DNAs and intermolecular recombinant molecules between the two geminiviral DNA components (A, B) were observed in the absence of RAD51D. By contrast, DNA A and B reacted differentially with the generation of inversions. A model to implicate single-strand annealing recombination in geminiviral recombination-dependent replication is proposed.
Collapse
Affiliation(s)
- Kathrin S Richter
- Institute of Biomaterials and Biomolecular Systems, Department of Molecular Biology and Plant Virology, University of Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany
| | - Heϊdi Serra
- Génétique, Reproduction et Développement, UMR CNRS 6293-Clermont Université- INSERM U1103 Aubière, France
| | - Charles I White
- Génétique, Reproduction et Développement, UMR CNRS 6293-Clermont Université- INSERM U1103 Aubière, France
| | - Holger Jeske
- Institute of Biomaterials and Biomolecular Systems, Department of Molecular Biology and Plant Virology, University of Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany.
| |
Collapse
|
41
|
Harashima H, Sugimoto K. Integration of developmental and environmental signals into cell proliferation and differentiation through RETINOBLASTOMA-RELATED 1. CURRENT OPINION IN PLANT BIOLOGY 2016; 29:95-103. [PMID: 26799131 DOI: 10.1016/j.pbi.2015.12.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/03/2015] [Accepted: 12/06/2015] [Indexed: 05/23/2023]
Abstract
Plants continuously form new organs during post-embryonic development, thus progression of the proliferative cell cycle and subsequent transition into differentiation must be tightly controlled by developmental and environmental cues. Recent studies have begun to uncover how cell proliferation and cell differentiation are coordinated at the molecular level through tight transcriptional regulation of cell cycle and/or developmental regulators. Accumulating evidence suggests that RETINOBLASTOMA-RELATED 1 (RBR1), the Arabidopsis homolog of the human tumor suppressor Retinoblastoma (Rb), functions as a molecular hub linking cell proliferation, differentiation, and environmental response. In this review we will discuss recent findings on cell cycle regulation, highlighting the emerging roles of RBR1 as a key integrator of internal differentiation cues and external stimuli into the cell cycle machinery.
Collapse
Affiliation(s)
- Hirofumi Harashima
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
42
|
Richter KS, Götz M, Winter S, Jeske H. The contribution of translesion synthesis polymerases on geminiviral replication. Virology 2015; 488:137-48. [PMID: 26638018 DOI: 10.1016/j.virol.2015.10.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/26/2015] [Accepted: 10/28/2015] [Indexed: 12/25/2022]
Abstract
Geminiviruses multiply primarily in the plant phloem, but never in meristems. Their Rep protein can activate DNA synthesis in differentiated cells. However, when their single-stranded DNA is injected into the phloem by insects, no Rep is present for inducing initial complementary strand replication. Considering a contribution of translesion synthesis (TLS) polymerases in plants, four of them (Polη, Polζ, Polκ, Rev1) are highly and constitutively expressed in differentiated tissues like the phloem. Two geminiviruses (Euphorbia yellow mosaic virus, Cleome leaf crumple virus), inoculated either biolistically or by whiteflies, replicated in Arabidopsis thaliana mutant lines of these genes to the same extent as in wild type plants. Comparative deep sequencing of geminiviral DNAs, however, showed a high exchange rate (10(-4)-10(-3)) similar to the phylogenetic variation described before and a significant difference in nucleotide substation rates if Polη and Polζ were absent, with a differential response to the viral DNA components.
Collapse
Affiliation(s)
- Kathrin S Richter
- Institute of Biomaterials and Biomolecular Systems, Department of Molecular Biology and Plant Virology, University of Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany
| | - Monika Götz
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Messeweg 11-12, D-38104 Braunschweig, Germany
| | - Stephan Winter
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Messeweg 11-12, D-38104 Braunschweig, Germany
| | - Holger Jeske
- Institute of Biomaterials and Biomolecular Systems, Department of Molecular Biology and Plant Virology, University of Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany.
| |
Collapse
|
43
|
Involvement of host regulatory pathways during geminivirus infection: a novel platform for generating durable resistance. Funct Integr Genomics 2015; 14:47-58. [PMID: 24233104 DOI: 10.1007/s10142-013-0346-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 10/04/2013] [Accepted: 10/21/2013] [Indexed: 12/20/2022]
Abstract
Geminiviruses are widely distributed throughout the world and cause devastating yield losses in almost all the economically important crops. In this review, the newly identified roles of various novel plant factors and pathways participating in plant–virus interaction are summarized with a particular focus on the exploitation of various pathways involving ubiquitin/26S proteasome pathway, small RNA pathways, cell division cycle components, and the epigenetic mechanism as defense responses during plant–pathogen interactions. Capturing the information on these pathways for the development of strategies against geminivirus infection is argued to provide the basis for new genetic approaches to resistance.
Collapse
|
44
|
Richter KS, Ende L, Jeske H. Rad54 is not essential for any geminiviral replication mode in planta. PLANT MOLECULAR BIOLOGY 2015; 87:193-202. [PMID: 25492528 DOI: 10.1007/s11103-014-0270-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 12/02/2014] [Indexed: 06/04/2023]
Abstract
The circular single-stranded DNA of phytopathogenic geminiviruses is propagated by three modes: complementary strand replication (CSR), rolling circle replication (RCR) and recombination-dependent replication (RDR), which need host plant factors to be carried out. In addition to necessary host polymerases, proteins of the homologous recombination repair pathway may be considered essential, since geminiviruses are particularly prone to recombination. Among several others, Rad54 was suggested to be necessary for the RCR of Mungbean yellow mosaic India virus. This enzyme is a double-stranded DNA-dependent ATPase and chromatin remodeller and was found to bind and modulate the viral replication-initiator protein in vitro and in Saccharomyces cerevisiae. In contrast to the previous report, we scrutinized the requirement of Rad54 in planta for two distinct fully infectious geminiviruses with respect to the three replication modes. Euphorbia yellow mosaic virus and Cleome leaf crumple virus were inoculated into Rad54-deficient and wildtype Arabidopsis thaliana plant lines to compare the occurrence of viral DNA forms. Replication intermediates were displayed in the time course of infection by one and two-dimensional agarose gel electrophoresis and Southern hybridization. The experiments showed that Rad54 was neither essential for CSR, RCR nor RDR, and it had no significant influence on virus titers during systemic infection.
Collapse
Affiliation(s)
- Kathrin S Richter
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, 70550, Stuttgart, Germany
| | | | | |
Collapse
|
45
|
Insights into the functional characteristics of geminivirus rolling-circle replication initiator protein and its interaction with host factors affecting viral DNA replication. Arch Virol 2014; 160:375-87. [PMID: 25449306 DOI: 10.1007/s00705-014-2297-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 11/24/2014] [Indexed: 10/24/2022]
Abstract
Geminiviruses are DNA viruses that infect several economically important crops, resulting in a reduction in their overall yield. These plant viruses have circular, single-stranded DNA genomes that replicate mainly by a rolling-circle mechanism. Geminivirus infection results in crosstalk between viral and cellular factors to complete the viral life cycle or counteract the infection as part of defense mechanisms of host plants. The geminiviral replication initiator protein Rep is the only essential viral factor required for replication. It is multifunctional and is known to interact with a number of host factors to modulate the cellular environment or to function as a part of the replication machinery. This review provides a holistic view of the research related to the viral Rep protein and various host factors involved in geminiviral DNA replication. Studies on the promiscuous nature of geminiviral satellite DNAs are also reviewed.
Collapse
|
46
|
Resmi TR, Nivedhitha S, Karthikeyan C, Veluthambi K. Sri Lankan cassava mosaic virusreplication associated protein (Rep) triggers transposition of IS426inAgrobacterium. FEMS Microbiol Lett 2014; 360:42-50. [DOI: 10.1111/1574-6968.12584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 08/10/2014] [Accepted: 08/15/2014] [Indexed: 10/24/2022] Open
Affiliation(s)
- Thulasi R. Resmi
- Department of Plant Biotechnology; School of Biotechnology; Madurai Kamaraj University; Madurai Tamil Nadu India
| | - Sivarajan Nivedhitha
- Department of Plant Biotechnology; School of Biotechnology; Madurai Kamaraj University; Madurai Tamil Nadu India
| | - Chockalingam Karthikeyan
- Department of Plant Biotechnology; School of Biotechnology; Madurai Kamaraj University; Madurai Tamil Nadu India
| | - Karuppannan Veluthambi
- Department of Plant Biotechnology; School of Biotechnology; Madurai Kamaraj University; Madurai Tamil Nadu India
| |
Collapse
|
47
|
Son S, Oh CJ, An CS. Arabidopsis thaliana Remorins Interact with SnRK1 and Play a Role in Susceptibility to Beet Curly Top Virus and Beet Severe Curly Top Virus. THE PLANT PATHOLOGY JOURNAL 2014; 30:269-78. [PMID: 25289013 PMCID: PMC4181108 DOI: 10.5423/ppj.oa.06.2014.0061] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 07/22/2014] [Accepted: 07/22/2014] [Indexed: 05/19/2023]
Abstract
Remorins, a family of plant-specific proteins containing a variable N-terminal region and conserved C-terminal domain, play a role in various biotic and abiotic stresses, including host-microbe interactions. However, their functions remain to be completely elucidated, especially for the Arabidopsis thaliana remorin group 4 (AtREM4). To elucidate the role of remorins in Arabidopsis, we first showed that AtREM4s have typical molecular characteristics of the remorins, such as induction by various types of biotic and abiotic stresses, localization in plasma membrane and homo- and hetero-oligomeric interaction. Next, we showed that their loss-of-function mutants displayed reduced susceptibility to geminiviruses, Beet Curly Top Virus and Beet Severe Curly Top Virus, while overexpressors enhanced susceptibility. Moreover, we found that they interacted with SnRK1, which phosphorylated AtREM4.1, and were degraded by the 26S proteasome pathway. These results suggest that AtREM4s may be involved in the SnRK1-mediated signaling pathway and play a role as positive regulators of the cell cycle during geminivirus infection.
Collapse
Affiliation(s)
| | | | - Chung Sun An
- Corresponding author. Phone) +82-2-880-6678, FAX) +82-2-872-1993 E-mail)
| |
Collapse
|
48
|
Hipp K, Rau P, Schäfer B, Gronenborn B, Jeske H. The RXL motif of the African cassava mosaic virus Rep protein is necessary for rereplication of yeast DNA and viral infection in plants. Virology 2014; 462-463:189-98. [PMID: 24999043 DOI: 10.1016/j.virol.2014.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 06/02/2014] [Accepted: 06/04/2014] [Indexed: 01/17/2023]
Abstract
Geminiviruses, single-stranded DNA plant viruses, encode a replication-initiator protein (Rep) that is indispensable for virus replication. A potential cyclin interaction motif (RXL) in the sequence of African cassava mosaic virus Rep may be an alternative link to cell cycle controls to the known interaction with plant homologs of retinoblastoma protein (pRBR). Mutation of this motif abrogated rereplication in fission yeast induced by expression of wildtype Rep suggesting that Rep interacts via its RXL motif with one or several yeast proteins. The RXL motif is essential for viral infection of Nicotiana benthamiana plants, since mutation of this motif in infectious clones prevented any symptomatic infection. The cell-cycle link (Clink) protein of a nanovirus (faba bean necrotic yellows virus) was investigated that activates the cell cycle by binding via its LXCXE motif to pRBR. Expression of wildtype Clink and a Clink mutant deficient in pRBR-binding did not trigger rereplication in fission yeast.
Collapse
Affiliation(s)
- Katharina Hipp
- Institut für Biomaterialien und biomolekulare Systeme, Abteilung für Molekularbiologie und Virologie der Pflanzen, Universität Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany
| | - Peter Rau
- Institut für Biomaterialien und biomolekulare Systeme, Abteilung für Molekularbiologie und Virologie der Pflanzen, Universität Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany
| | - Benjamin Schäfer
- Institut für Biomaterialien und biomolekulare Systeme, Abteilung für Molekularbiologie und Virologie der Pflanzen, Universität Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany
| | - Bruno Gronenborn
- Institut des Sciences du Végétal, CNRS, 91198 Gif-sur-Yvette, France
| | - Holger Jeske
- Institut für Biomaterialien und biomolekulare Systeme, Abteilung für Molekularbiologie und Virologie der Pflanzen, Universität Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany.
| |
Collapse
|
49
|
Desvoyes B, de Mendoza A, Ruiz-Trillo I, Gutierrez C. Novel roles of plant RETINOBLASTOMA-RELATED (RBR) protein in cell proliferation and asymmetric cell division. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2657-66. [PMID: 24323507 PMCID: PMC4557542 DOI: 10.1093/jxb/ert411] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The retinoblastoma (Rb) protein was identified as a human tumour suppressor protein that controls various stages of cell proliferation through the interaction with members of the E2F family of transcription factors. It was originally thought to be specific to animals but plants contain homologues of Rb, called RETINOBLASTOMA-RELATED (RBR). In fact, the Rb-E2F module seems to be a very early acquisition of eukaryotes. The activity of RBR depends on phosphorylation of certain amino acid residues, which in most cases are well conserved between plant and animal proteins. In addition to its role in cell-cycle progression, RBR has been shown to participate in various cellular processes such as endoreplication, transcriptional regulation, chromatin remodelling, cell growth, stem cell biology, and differentiation. Here, we discuss the most recent advances to define the role of RBR in cell proliferation and asymmetric cell division. These and other reports clearly support the idea that RBR is used as a landing platform of a plethora of cellular proteins and complexes to control various aspects of cell physiology and plant development.
Collapse
Affiliation(s)
- Bénédicte Desvoyes
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, Nicolas Cabrera 1, 28049 Madrid, Spain
| | - Alex de Mendoza
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Catalonia, Spain
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Catalonia, Spain
| | - Crisanto Gutierrez
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, Nicolas Cabrera 1, 28049 Madrid, Spain
| |
Collapse
|
50
|
Arabidopsis thaliana NAC083 protein interacts with Mungbean yellow mosaic India virus (MYMIV) Rep protein. Virus Genes 2014; 48:486-93. [PMID: 24442717 DOI: 10.1007/s11262-013-1028-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 12/17/2013] [Indexed: 02/06/2023]
Abstract
Geminiviral replication initiator protein (Rep) is a key player in geminiviral rolling circle mode of replication. However, the virus exploits various host cellular machineries for its replication. Study of these host factors is important to understand the geminiviral DNA replication in greater details. With this view, we screened for the peptides interacting with the Rep protein of a representative of geminivirus, namely, Mungbean yellow mosaic India virus (MYMIV), employing phage display technique. Through this screen, we have identified a host transcription factor, NAC083, as a potential MYMIV-Rep-binding partner. In silico docking studies also suggested possible binding of NAC083 peptide to MYMIV-Rep. We validated the interaction between MYMIV-Rep and Arabidopsis thaliana full-length NAC083 protein using in vitro pull-down assay and yeast two-hybrid analysis. NAC proteins are well-known transcription factors belonging to the largest gene families in plants. This study demonstrates for the first time the interaction of NAC083, a member of NAC transcription factor family, with MYMIV-Rep protein thereby indicating its possible role in MYMIV DNA replication.
Collapse
|