1
|
Vassallo N. Poration of mitochondrial membranes by amyloidogenic peptides and other biological toxins. J Neurochem 2025; 169:e16213. [PMID: 39213385 DOI: 10.1111/jnc.16213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
Mitochondria are essential organelles known to serve broad functions, including in cellular metabolism, calcium buffering, signaling pathways and the regulation of apoptotic cell death. Maintaining the integrity of the outer (OMM) and inner mitochondrial membranes (IMM) is vital for mitochondrial health. Cardiolipin (CL), a unique dimeric glycerophospholipid, is the signature lipid of energy-converting membranes. It plays a significant role in maintaining mitochondrial architecture and function, stabilizing protein complexes and facilitating efficient oxidative phosphorylation (OXPHOS) whilst regulating cytochrome c release from mitochondria. CL is especially enriched in the IMM and at sites of contact between the OMM and IMM. Disorders of protein misfolding, such as Alzheimer's and Parkinson's diseases, involve amyloidogenic peptides like amyloid-β, tau and α-synuclein, which form metastable toxic oligomeric species that interact with biological membranes. Electrophysiological studies have shown that these oligomers form ion-conducting nanopores in membranes mimicking the IMM's phospholipid composition. Poration of mitochondrial membranes disrupts the ionic balance, causing osmotic swelling, loss of the voltage potential across the IMM, release of pro-apoptogenic factors, and leads to cell death. The interaction between CL and amyloid oligomers appears to favour their membrane insertion and pore formation, directly implicating CL in amyloid toxicity. Additionally, pore formation in mitochondrial membranes is not limited to amyloid proteins and peptides; other biological peptides, as diverse as the pro-apoptotic Bcl-2 family members, gasdermin proteins, cobra venom cardiotoxins and bacterial pathogenic toxins, have all been described to punch holes in mitochondria, contributing to cell death processes. Collectively, these findings underscore the vulnerability of mitochondria and the involvement of CL in various pathogenic mechanisms, emphasizing the need for further research on targeting CL-amyloid interactions to mitigate mitochondrial dysfunction.
Collapse
Affiliation(s)
- Neville Vassallo
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Tal-Qroqq, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, Tal-Qroqq, Malta
| |
Collapse
|
2
|
Holland RL, Bosi KD, Seeger AY, Blanke SR. Restoration of mitochondrial structure and function within Helicobacter pylori VacA intoxicated cells. ADVANCES IN MICROBIOLOGY 2023; 13:399-419. [PMID: 37654621 PMCID: PMC10470862 DOI: 10.4236/aim.2023.138026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The Helicobacter pylori vacuolating cytotoxin (VacA) is an intracellular, mitochondrial-targeting exotoxin that rapidly causes mitochondrial dysfunction and fragmentation. Although VacA targeting of mitochondria has been reported to alter overall cellular metabolism, there is little known about the consequences of extended exposure to the toxin. Here, we describe studies to address this gap in knowledge, which have revealed that mitochondrial dysfunction and fragmentation are followed by a time-dependent recovery of mitochondrial structure, mitochondrial transmembrane potential, and cellular ATP levels. Cells exposed to VacA also initially demonstrated a reduction in oxidative phosphorylation, as well as increase in compensatory aerobic glycolysis. These metabolic alterations were reversed in cells with limited toxin exposure, congruent with the recovery of mitochondrial transmembrane potential and the absence of cytochrome c release from the mitochondria. Taken together, these results are consistent with a model that mitochondrial structure and function are restored in VacA-intoxicated cells.
Collapse
Affiliation(s)
- Robin L. Holland
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801
| | - Kristopher D. Bosi
- Department of Microbiology, School of Molecular and Cellular Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801
| | - Ami Y. Seeger
- Department of Microbiology, School of Molecular and Cellular Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801
| | - Steven R. Blanke
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801
- Department of Microbiology, School of Molecular and Cellular Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801
- Biomedical and Translational Sciences Department, Carle Illinois College of Medicine, University of Illinois, Urbana, Illinois 61801
| |
Collapse
|
3
|
Maurice NM, Sadikot RT. Mitochondrial Dysfunction in Bacterial Infections. Pathogens 2023; 12:1005. [PMID: 37623965 PMCID: PMC10458073 DOI: 10.3390/pathogens12081005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023] Open
Abstract
Mitochondria are critical in numerous cellular processes, including energy generation. Bacterial pathogens target host cell mitochondria through various mechanisms to disturb the host response and improve bacterial survival. We review recent advances in the understanding of how bacteria cause mitochondrial dysfunction through perturbations in mitochondrial cell-death pathways, energy production, mitochondrial dynamics, mitochondrial quality control, DNA repair, and the mitochondrial unfolded protein response. We also briefly highlight possible therapeutic approaches aimed at restoring the host mitochondrial function as a novel strategy to enhance the host response to bacterial infection.
Collapse
Affiliation(s)
- Nicholas M. Maurice
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
- Atlanta Veterans Affairs Health Care System, Decatur, GA 30033, USA
| | - Ruxana T. Sadikot
- VA Nebraska Western Iowa Health Care System, Omaha, NE 68105, USA
- Division of Pulmonary, Critical Care & Sleep, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
4
|
Walker E, van Niekerk S, Hanning K, Kelton W, Hicks J. Mechanisms of host manipulation by Neisseria gonorrhoeae. Front Microbiol 2023; 14:1119834. [PMID: 36819065 PMCID: PMC9935845 DOI: 10.3389/fmicb.2023.1119834] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Neisseria gonorrhoeae (also known as gonococcus) has been causing gonorrhoea in humans since ancient Egyptian times. Today, global gonorrhoea infections are rising at an alarming rate, in concert with an increasing number of antimicrobial-resistant strains. The gonococcus has concurrently evolved several intricate mechanisms that promote pathogenesis by evading both host immunity and defeating common therapeutic interventions. Central to these adaptations is the ability of the gonococcus to manipulate various host microenvironments upon infection. For example, the gonococcus can survive within neutrophils through direct regulation of both the oxidative burst response and maturation of the phagosome; a concerning trait given the important role neutrophils have in defending against invading pathogens. Hence, a detailed understanding of how N. gonorrhoeae exploits the human host to establish and maintain infection is crucial for combating this pathogen. This review summarizes the mechanisms behind host manipulation, with a central focus on the exploitation of host epithelial cell signaling to promote colonization and invasion of the epithelial lining, the modulation of the host immune response to evade both innate and adaptive defenses, and the manipulation of host cell death pathways to both assist colonization and combat antimicrobial activities of innate immune cells. Collectively, these pathways act in concert to enable N. gonorrhoeae to colonize and invade a wide array of host tissues, both establishing and disseminating gonococcal infection.
Collapse
Affiliation(s)
- Emma Walker
- Te Huataki Waiora, School of Health, University of Waikato, Hamilton, New Zealand
| | - Stacy van Niekerk
- Te Huataki Waiora, School of Health, University of Waikato, Hamilton, New Zealand
| | - Kyrin Hanning
- Te Huataki Waiora, School of Health, University of Waikato, Hamilton, New Zealand
| | - William Kelton
- Te Huataki Waiora, School of Health, University of Waikato, Hamilton, New Zealand
- Te Aka Mātuatua School of Science, University of Waikato, Hamilton, New Zealand
| | - Joanna Hicks
- Te Huataki Waiora, School of Health, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
5
|
Onorini D, Borel N, Schoborg RV, Leonard CA. Neisseria gonorrhoeae Limits Chlamydia trachomatis Inclusion Development and Infectivity in a Novel In Vitro Co-Infection Model. Front Cell Infect Microbiol 2022; 12:911818. [PMID: 35873141 PMCID: PMC9300984 DOI: 10.3389/fcimb.2022.911818] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Chlamydia trachomatis (Ct) and Neisseria gonorrhoeae (Ng) are the most common bacterial sexually transmitted infections (STIs) worldwide. The primary site of infection for both bacteria is the epithelium of the endocervix in women and the urethra in men; both can also infect the rectum, pharynx and conjunctiva. Ct/Ng co-infections are more common than expected by chance, suggesting Ct/Ng interactions increase susceptibility and/or transmissibility. To date, studies have largely focused on each pathogen individually and models exploring co-infection are limited. We aimed to determine if Ng co-infection influences chlamydial infection and development and we hypothesized that Ng-infected cells are more susceptible to chlamydial infection than uninfected cells. To address this hypothesis, we established an in vitro model of Ct/Ng co-infection in cultured human cervical epithelial cells. Our data show that Ng co-infection elicits an anti-chlamydial effect by reducing chlamydial infection, inclusion size, and subsequent infectivity. Notably, the anti-chlamydial effect is dependent on Ng viability but not extracellular nutrient depletion or pH modulation. Though this finding is not consistent with our hypothesis, it provides evidence that interaction of these bacteria in vitro influences chlamydial infection and development. This Ct/Ng co-infection model, established in an epithelial cell line, will facilitate further exploration into the pathogenic interplay between Ct and Ng.
Collapse
Affiliation(s)
- Delia Onorini
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Nicole Borel
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Robert V. Schoborg
- Department of Medical Education, Center for Infectious Disease, Inflammation and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Cory Ann Leonard
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- *Correspondence: Cory Ann Leonard,
| |
Collapse
|
6
|
Sharma A, Yadav SP, Sarma D, Mukhopadhaya A. Modulation of host cellular responses by gram-negative bacterial porins. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 128:35-77. [PMID: 35034723 DOI: 10.1016/bs.apcsb.2021.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The outer membrane of a gram-negative bacteria encapsulates the plasma membrane thereby protecting it from the harsh external environment. This membrane acts as a sieving barrier due to the presence of special membrane-spanning proteins called "porins." These porins are β-barrel channel proteins that allow the passive transport of hydrophilic molecules and are impermeable to large and charged molecules. Many porins form trimers in the outer membrane. They are abundantly present on the bacterial surface and therefore play various significant roles in the host-bacteria interactions. These include the roles of porins in the adhesion and virulence mechanisms necessary for the pathogenesis, along with providing resistance to the bacteria against the antimicrobial substances. They also act as the receptors for phage and complement proteins and are involved in modulating the host cellular responses. In addition, the potential use of porins as adjuvants, vaccine candidates, therapeutic targets, and biomarkers is now being exploited. In this review, we focus briefly on the structure of the porins along with their important functions and roles in the host-bacteria interactions.
Collapse
Affiliation(s)
- Arpita Sharma
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Shashi Prakash Yadav
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Dwipjyoti Sarma
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Arunika Mukhopadhaya
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India.
| |
Collapse
|
7
|
Selvaraj C, Vierra M, Dinesh DC, Abhirami R, Singh SK. Structural insights of macromolecules involved in bacteria-induced apoptosis in the pathogenesis of human diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 126:1-38. [PMID: 34090612 DOI: 10.1016/bs.apcsb.2021.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Numbers of pathogenic bacteria can induce apoptosis in human host cells and modulate the cellular pathways responsible for inducing or inhibiting apoptosis. These pathogens are significantly recognized by host proteins and provoke the multitude of several signaling pathways and alter the cellular apoptotic stimuli. This process leads the bacterial entry into the mammalian cells and evokes a variety of responses like phagocytosis, release of mitochondrial cytochrome c, secretion of bacterial effectors, release of both apoptotic and inflammatory cytokines, and the triggering of apoptosis. Several mechanisms are involved in bacteria-induced apoptosis including, initiation of the endogenous death machinery, pore-forming proteins, and secretion of superantigens. Either small molecules or proteins may act as a binding partner responsible for forming the protein complexes and regulate enzymatic activity via protein-protein interactions. The bacteria induce apoptosis, attack the human cell and gain control over various types of cells and tissue. Since these processes are intricate in the defense mechanisms of host organisms against pathogenic bacteria and play an important function in host-pathogen interactions. In this chapter, we focus on the various bacterial-induced apoptosis mechanisms in host cells and discuss the important proteins and bacterial effectors that trigger the host cell apoptosis. The structural characterization of bacterial effector proteins and their interaction with human host cells are also considered.
Collapse
Affiliation(s)
- Chandrabose Selvaraj
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, Tamil Nadu, India.
| | - Marisol Vierra
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, United States
| | | | - Rajaram Abhirami
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Sanjeev Kumar Singh
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, Tamil Nadu, India.
| |
Collapse
|
8
|
Portnyagina O, Chistyulin D, Dyshlovoy S, Davidova V, Khomenko V, Shevchenko L, Novikova O. OmpF porin from Yersinia ruckeri as pathogenic factor: Surface antigenic sites and biological properties. Microb Pathog 2020; 150:104694. [PMID: 33359075 DOI: 10.1016/j.micpath.2020.104694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 10/22/2022]
Abstract
Bacterium Yersinia ruckeri as a pathogen induces causative agent of intestinal fish disease called enteric redmouth disease (ERM) is known. In this study, outer membrane OmpF porin from the Y. ruckeri (YrOmpF) has been identified as a pathogenic factor which affects host macrophage activation and life cycle of eukaryotic cells. Using synthetic peptides corresponding to the sequences of the outer loops of YrOmpF L1 loop of the porin is most involved in the structure of B epitopes on the surface of the microbial cell it was found. T epitopes of the isolated YrOmpF trimer not only by linear, but also by discontinuous determinants, which is due to the secondary structure of the protein are represented. It was shown that YrOmpF was twice more cytotoxic to THP-1 cells (human monocytes, cancer cells) in comparison with CHH-1 cells (Oncorhynchus keta cardiac muscle cell, non-cancer cells). It was found YrOmpF induce cell cycle S-phase arrest in both normal CHH-1 and cancer THP-1 cells. In the cancer cells observed effect was most pronounce. In addition, we have observed an induction of apoptosis in THP-1 cell line treated with YrOmpF for 48 h at IC50 (48.6 μg/ml). Significant cytotoxic effect of YrOmpF on primary mouse peritoneal macrophages been detected as well. Of note, co-incubation of macrophages with anti-YrOmpF antibodies could decrease the amount of lactate dehydrogenase, while the number of living cells significantly increased. YrOmpF stimulates the activity of the phagocytic bactericidal systems especially of the oxygen-independent subsystem it was found. Antibodies against YrOmpF decreased MPO release and CP synthesis by peritoneal macrophages and increased their viability.
Collapse
Affiliation(s)
- Olga Portnyagina
- G.B Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, 159, Prosp. 100 Let Vladivostoku, Vladivostok, 690022, Russian Federation; School of Natural Sciences, Far Eastern Federal University, 8 Sukhanova St., Vladivostok, 690090, Russian Federation.
| | - Dmitry Chistyulin
- G.B Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, 159, Prosp. 100 Let Vladivostoku, Vladivostok, 690022, Russian Federation
| | - Sergey Dyshlovoy
- School of Natural Sciences, Far Eastern Federal University, 8 Sukhanova St., Vladivostok, 690090, Russian Federation; University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Viktoriya Davidova
- G.B Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, 159, Prosp. 100 Let Vladivostoku, Vladivostok, 690022, Russian Federation
| | - Valentina Khomenko
- G.B Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, 159, Prosp. 100 Let Vladivostoku, Vladivostok, 690022, Russian Federation
| | - Ludmila Shevchenko
- G.B Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, 159, Prosp. 100 Let Vladivostoku, Vladivostok, 690022, Russian Federation
| | - Olga Novikova
- G.B Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, 159, Prosp. 100 Let Vladivostoku, Vladivostok, 690022, Russian Federation
| |
Collapse
|
9
|
Fielden LF, Scott NE, Palmer CS, Khoo CA, Newton HJ, Stojanovski D. Proteomic Identification of Coxiella burnetii Effector Proteins Targeted to the Host Cell Mitochondria During Infection. Mol Cell Proteomics 2020; 20:100005. [PMID: 33177156 PMCID: PMC7950127 DOI: 10.1074/mcp.ra120.002370] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/11/2020] [Indexed: 11/06/2022] Open
Abstract
Modulation of the host cell is integral to the survival and replication of microbial pathogens. Several intracellular bacterial pathogens deliver bacterial proteins, termed "effector proteins" into the host cell during infection by sophisticated protein translocation systems, which manipulate cellular processes and functions. The functional contribution of individual effectors is poorly characterized, particularly in intracellular bacterial pathogens with large effector protein repertoires. Technical caveats have limited the capacity to study these proteins during a native infection, with many effector proteins having only been demonstrated to be translocated during over-expression of tagged versions. Here, we developed a novel strategy to examine effector proteins in the context of infection. We coupled a broad, unbiased proteomics-based screen with organelle purification to study the host-pathogen interactions occurring between the host cell mitochondrion and the Gram-negative, Q fever pathogen Coxiella burnetii. We identify four novel mitochondrially-targeted C. burnetii effector proteins, renamed Mitochondrial Coxiella effector protein (Mce) B to E. Examination of the subcellular localization of ectopically expressed proteins confirmed their mitochondrial localization, demonstrating the robustness of our approach. Subsequent biochemical analysis and affinity enrichment proteomics of one of these effector proteins, MceC, revealed the protein localizes to the inner membrane and can interact with components of the mitochondrial quality control machinery. Our study adapts high-sensitivity proteomics to study intracellular host-pathogen interactions, providing a robust strategy to examine the subcellular localization of effector proteins during native infection. This approach could be applied to a range of pathogens and host cell compartments to provide a rich map of effector dynamics throughout infection.
Collapse
Affiliation(s)
- Laura F Fielden
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Nichollas E Scott
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Catherine S Palmer
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Chen Ai Khoo
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Hayley J Newton
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.
| | - Diana Stojanovski
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
10
|
Abstract
The bacterium Neisseria gonorrhoeae causes the sexually transmitted infection (STI) gonorrhoea, which has an estimated global annual incidence of 86.9 million adults. Gonorrhoea can present as urethritis in men, cervicitis or urethritis in women, and in extragenital sites (pharynx, rectum, conjunctiva and, rarely, systemically) in both sexes. Confirmation of diagnosis requires microscopy of Gram-stained samples, bacterial culture or nucleic acid amplification tests. As no gonococcal vaccine is available, prevention relies on promoting safe sexual behaviours and reducing STI-associated stigma, which hinders timely diagnosis and treatment thereby increasing transmission. Single-dose systemic therapy (usually injectable ceftriaxone plus oral azithromycin) is the recommended first-line treatment. However, a major public health concern globally is that N. gonorrhoeae is evolving high levels of antimicrobial resistance (AMR), which threatens the effectiveness of the available gonorrhoea treatments. Improved global surveillance of the emergence, evolution, fitness, and geographical and temporal spread of AMR in N. gonorrhoeae, and improved understanding of the pharmacokinetics and pharmacodynamics for current and future antimicrobials in the treatment of urogenital and extragenital gonorrhoea, are essential to inform treatment guidelines. Key priorities for gonorrhoea control include strengthening prevention, early diagnosis, and treatment of patients and their partners; decreasing stigma; expanding surveillance of AMR and treatment failures; and promoting responsible antimicrobial use and stewardship. To achieve these goals, the development of rapid and affordable point-of-care diagnostic tests that can simultaneously detect AMR, novel therapeutic antimicrobials and gonococcal vaccine(s) in particular is crucial.
Collapse
|
11
|
Ramond E, Jamet A, Coureuil M, Charbit A. Pivotal Role of Mitochondria in Macrophage Response to Bacterial Pathogens. Front Immunol 2019; 10:2461. [PMID: 31708919 PMCID: PMC6819784 DOI: 10.3389/fimmu.2019.02461] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/02/2019] [Indexed: 12/23/2022] Open
Abstract
Mitochondria are essential organelles that act as metabolic hubs and signaling platforms within the cell. Numerous mitochondrial functions, including energy metabolism, lipid synthesis, and autophagy regulation, are intimately linked to mitochondrial dynamics, which is shaped by ongoing fusion and fission events. Recently, several intracellular bacterial pathogens have been shown to modulate mitochondrial functions to maintain their replicative niche. Through selected examples of human bacterial pathogens, we will discuss how infection induces mitochondrial changes in infected macrophages, triggering modifications of the host metabolism that lead to important immunological reprogramming.
Collapse
Affiliation(s)
- Elodie Ramond
- Université de Paris, Paris, France.,INSERM U1151, Institut Necker-Enfants Malades, Team 7, Pathogenesis of Systemic Infections, Paris, France.,CNRS UMR 8253, Paris, France
| | - Anne Jamet
- Université de Paris, Paris, France.,INSERM U1151, Institut Necker-Enfants Malades, Team 7, Pathogenesis of Systemic Infections, Paris, France.,CNRS UMR 8253, Paris, France
| | - Mathieu Coureuil
- Université de Paris, Paris, France.,INSERM U1151, Institut Necker-Enfants Malades, Team 7, Pathogenesis of Systemic Infections, Paris, France.,CNRS UMR 8253, Paris, France
| | - Alain Charbit
- Université de Paris, Paris, France.,INSERM U1151, Institut Necker-Enfants Malades, Team 7, Pathogenesis of Systemic Infections, Paris, France.,CNRS UMR 8253, Paris, France
| |
Collapse
|
12
|
Hu X, Peng X, Lu C, Zhang X, Gan L, Gao Y, Yang S, Xu W, Wang J, Yin Y, Wang H. Type I
IFN
expression is stimulated by cytosolic Mt
DNA
released from pneumolysin‐damaged mitochondria via the
STING
signaling pathway in macrophages. FEBS J 2019; 286:4754-4768. [DOI: 10.1111/febs.15001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 03/08/2019] [Accepted: 07/13/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Xuexue Hu
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education Chongqing Medical University China
- School of Laboratory Medicine Chongqing Medical University China
| | - Xiaoqiong Peng
- Department of Ultrasound The First Affiliated Hospital of Chongqing Medical University China
| | - Chang Lu
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education Chongqing Medical University China
- School of Laboratory Medicine Chongqing Medical University China
| | - Xuemei Zhang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education Chongqing Medical University China
- School of Laboratory Medicine Chongqing Medical University China
| | - Lingling Gan
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education Chongqing Medical University China
- School of Laboratory Medicine Chongqing Medical University China
| | - Yue Gao
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education Chongqing Medical University China
- School of Laboratory Medicine Chongqing Medical University China
| | - Shenghui Yang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education Chongqing Medical University China
- School of Laboratory Medicine Chongqing Medical University China
| | - Wenchun Xu
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education Chongqing Medical University China
- School of Laboratory Medicine Chongqing Medical University China
| | - Jian Wang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education Chongqing Medical University China
- School of Laboratory Medicine Chongqing Medical University China
| | - Yibing Yin
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education Chongqing Medical University China
- School of Laboratory Medicine Chongqing Medical University China
| | - Hong Wang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education Chongqing Medical University China
- School of Laboratory Medicine Chongqing Medical University China
| |
Collapse
|
13
|
An Z, Su J. Acinetobacter baumannii outer membrane protein 34 elicits NLRP3 inflammasome activation via mitochondria-derived reactive oxygen species in RAW264.7 macrophages. Microbes Infect 2018; 21:143-153. [PMID: 30439507 DOI: 10.1016/j.micinf.2018.10.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 10/19/2018] [Accepted: 10/26/2018] [Indexed: 12/21/2022]
Abstract
Acinetobacter baumannii (A. baumannii) is a Gram-negative bacterium, which acts as an opportunistic pathogen and causes hospital-acquired pneumonia and bacteremia by infecting the alveoli of epithelial cells and macrophages. Evidence reveals that A. baumannii outer membrane protein 34 (Omp34) elicits cellular immune responses and inflammation. The innate immunity NOD-like receptor 3 (NLRP3) inflammasome exerts critical function against pneumonia caused by A. baumannii infection, however, the role of Omp34 in the activation of the NLRP3 inflammasome and its corresponding regulatory mechanism are not clearly elucidated. The present study aimed to investigate whether Omp34 elicited NLRP3 inflammasome activation through the mitochondria-derived reactive oxygen species (ROS). Our results showed that Omp34 triggered cell pyroptosis by up-regulating the expression of NLRP3 inflammasome-associated proteins and IL-1β release in a time- and dose-dependent manner. Omp34 induced the expression of caspase-1-p10 and IL-1β, which was significantly attenuated by NLRP3 gene silencing in RAW264.7 mouse macrophage cells. Additionally, Omp34 stimulated RAW264.7 mitochondria to generate ROS, while the ROS scavenger Mito-TEMPO inhibited the Omp34-triggered expression of NLRP3 inflammasome-associated proteins and IL-1β synthesis. The above findings indicate that mitochondria-derived ROS play an important role in the process of NLRP3 inflammasome activation. In summary, our study demonstrates that the A. baumannii pathogen pattern recognition receptor Omp34 activates NLRP3 inflammasome via mitochondria-derived ROS in RAW264.7 cells. Accordingly, down-regulating the mitochondria-derived ROS prevents the severe infection consequences caused by A. baumannii-induced NLRP3 inflammasome hyper-activation.
Collapse
Affiliation(s)
- Zhiyuan An
- Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Jianrong Su
- Clinical Laboratory Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| |
Collapse
|
14
|
Palmer A, Criss AK. Gonococcal Defenses against Antimicrobial Activities of Neutrophils. Trends Microbiol 2018; 26:1022-1034. [PMID: 30115561 DOI: 10.1016/j.tim.2018.07.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/09/2018] [Accepted: 07/20/2018] [Indexed: 01/05/2023]
Abstract
Neisseria gonorrhoeae initiates a strong local immune response that is characterized by copious recruitment of neutrophils to the site of infection. Neutrophils neutralize microbes by mechanisms that include phagocytosis, extracellular trap formation, production of reactive oxygen species, and the delivery of antimicrobial granular contents. However, neutrophils do not clear infection with N. gonorrhoeae. N. gonorrhoeae not only expresses factors that defend against neutrophil bactericidal components, but it also manipulates neutrophil production and release of these components. In this review, we highlight the numerous approaches used by N. gonorrhoeae to survive exposure to neutrophils both intracellularly and extracellularly. These approaches reflect the exquisite adaptation of N. gonorrhoeae to its obligate human host.
Collapse
Affiliation(s)
- Allison Palmer
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908-0734, USA
| | - Alison K Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908-0734, USA.
| |
Collapse
|
15
|
Younas F, Soltanmohammadi N, Knapp O, Benz R. The major outer membrane protein of Legionella pneumophila Lpg1974 shows pore-forming characteristics similar to the human mitochondrial outer membrane pore, hVDAC1. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1544-1553. [PMID: 29787733 DOI: 10.1016/j.bbamem.2018.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 05/17/2018] [Accepted: 05/18/2018] [Indexed: 10/16/2022]
Abstract
Legionella pneumophila is an aerobic and nonspore-forming pathogenic Gram-negative bacterium of the genus Legionella. It is the causative agent of Legionnaires' disease, also known as Legionellosis. The hosts of this organism are diverse, ranging from simple water borne protozoans such as amoebae to more complex hosts such as macrophages in humans. Genome analyses have shown the presence of genes coding for eukaryotic like proteins in several Legionella species. The presence of these proteins may assist L. pneumophila in its adaptation to the eukaryotic host. We studied the characteristics of a protein (Lpg1974) of L. pneumophila that shows remarkable homologies in length of the primary sequence and for the identity/homology of many amino acids to the voltage dependent anion channel (human VDAC1, Porin 31HL) of human mitochondria. Two different forms of Lpg1974 were overexpressed in Escherichia coli and purified to homogeneity: the one containing a putative N-terminal signal sequence and one without it. Reconstituted protein containing the signal sequence formed ion-permeable pores in lipid bilayer membranes with a conductance of approximately 5.4 nS in 1 M KCl. When the predicted N-terminal signal peptide of Lpg1974 comprising an α-helical structure similar to that at the N-terminus of hVDAC1 was removed, the channels formed in reconstitution experiments had a conductance of 7.6 nS in 1 M KCl. Both Lpg1974 proteins formed pores that were voltage-dependent and anion-selective similar to the pores formed by hVDAC1. These results suggest that Lpg1974 of L. pneumophila is indeed a structural and functional homologue to hVDAC1.
Collapse
Affiliation(s)
- Farhan Younas
- Department of Life Sciences and Chemistry, Jacobs University, Campusring 1, 28759 Bremen, Germany
| | - Nafiseh Soltanmohammadi
- Department of Life Sciences and Chemistry, Jacobs University, Campusring 1, 28759 Bremen, Germany
| | - Oliver Knapp
- Department of Life Sciences and Chemistry, Jacobs University, Campusring 1, 28759 Bremen, Germany
| | - Roland Benz
- Department of Life Sciences and Chemistry, Jacobs University, Campusring 1, 28759 Bremen, Germany.
| |
Collapse
|
16
|
Deo P, Chow SH, Hay ID, Kleifeld O, Costin A, Elgass KD, Jiang JH, Ramm G, Gabriel K, Dougan G, Lithgow T, Heinz E, Naderer T. Outer membrane vesicles from Neisseria gonorrhoeae target PorB to mitochondria and induce apoptosis. PLoS Pathog 2018; 14:e1006945. [PMID: 29601598 PMCID: PMC5877877 DOI: 10.1371/journal.ppat.1006945] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 02/21/2018] [Indexed: 01/31/2023] Open
Abstract
Neisseria gonorrhoeae causes the sexually transmitted disease gonorrhoea by evading innate immunity. Colonizing the mucosa of the reproductive tract depends on the bacterial outer membrane porin, PorB, which is essential for ion and nutrient uptake. PorB is also targeted to host mitochondria and regulates apoptosis pathways to promote infections. How PorB traffics from the outer membrane of N. gonorrhoeae to mitochondria and whether it modulates innate immune cells, such as macrophages, remains unclear. Here, we show that N. gonorrhoeae secretes PorB via outer membrane vesicles (OMVs). Purified OMVs contained primarily outer membrane proteins including oligomeric PorB. The porin was targeted to mitochondria of macrophages after exposure to purified OMVs and wild type N. gonorrhoeae. This was associated with loss of mitochondrial membrane potential, release of cytochrome c, activation of apoptotic caspases and cell death in a time-dependent manner. Consistent with this, OMV-induced macrophage death was prevented with the pan-caspase inhibitor, Q-VD-PH. This shows that N. gonorrhoeae utilizes OMVs to target PorB to mitochondria and to induce apoptosis in macrophages, thus affecting innate immunity. Neisseria gonorrhoeae causes the sexually transmitted disease gonorrhoea in more than 100 million people worldwide every year. The bacteria replicate in the reproductive tract by evading innate and adaptive immunity. In the absence of effective vaccines and the rise of antibiotic resistance, understanding the molecular interactions between innate immune cells and N. gonorrhoeae may lead to new strategies to combat bacterial growth and the symptoms of gonorrhoea. It has long been known that the N. gonorrhoeae porin, PorB, promotes bacterial survival but also targets host mitochondria in infections. The mechanism by which PorB traffics form the bacterial outer membrane to host mitochondria remains unclear. Here, we utilized proteomics and super-resolution microscopy to show that N. gonorrhoeae secretes PorB via outer membrane vesicles. These vesicles are taken up by macrophages and deliver PorB to mitochondria. Macrophages treated with N. gonorrhoeae vesicles contained damaged mitochondria and active caspase-3. A caspase inhibitor prevented apoptosis of macrophages treated with N. gonorrhoeae vesicles. This suggests that N. gonorrhoeae secretes membrane vesicles, which are readily detectable in gonorrhoea patients, to target macrophages and to promote infections.
Collapse
Affiliation(s)
- Pankaj Deo
- Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Seong H Chow
- Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Iain D Hay
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Oded Kleifeld
- Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Adam Costin
- Monash Ramaciotti Centre for Cryo Electron Microscopy, Monash University, Clayton, Victoria, Australia
| | - Kirstin D Elgass
- Monash Micro Imaging, Monash University, Clayton, Victoria, Australia
| | - Jhih-Hang Jiang
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Georg Ramm
- Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria, Australia.,Monash Ramaciotti Centre for Cryo Electron Microscopy, Monash University, Clayton, Victoria, Australia
| | - Kipros Gabriel
- Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Gordon Dougan
- Infection Genomics Program, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Trevor Lithgow
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Eva Heinz
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia.,Infection Genomics Program, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Thomas Naderer
- Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
17
|
Fielden LF, Kang Y, Newton HJ, Stojanovski D. Targeting mitochondria: how intravacuolar bacterial pathogens manipulate mitochondria. Cell Tissue Res 2016; 367:141-154. [PMID: 27515462 DOI: 10.1007/s00441-016-2475-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 07/07/2016] [Indexed: 02/07/2023]
Abstract
Manipulation of host cell function by bacterial pathogens is paramount for successful invasion and creation of a niche conducive to bacterial replication. Mitochondria play a role in many important cellular processes including energy production, cellular calcium homeostasis, lipid metabolism, haeme biosynthesis, immune signalling and apoptosis. The sophisticated integration of host cell processes by the mitochondrion have seen it emerge as a key target during bacterial infection of human host cells. This review highlights the targeting and interaction of this dynamic organelle by intravacuolar bacterial pathogens and the way that the modulation of mitochondrial function might contribute to pathogenesis.
Collapse
Affiliation(s)
- Laura F Fielden
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Yilin Kang
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Hayley J Newton
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, 3000, Australia.
| | - Diana Stojanovski
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
18
|
Peak IR, Chen A, Jen FEC, Jennings C, Schulz BL, Saunders NJ, Khan A, Seifert HS, Jennings MP. Neisseria meningitidis Lacking the Major Porins PorA and PorB Is Viable and Modulates Apoptosis and the Oxidative Burst of Neutrophils. J Proteome Res 2016; 15:2356-65. [PMID: 26562068 DOI: 10.1021/acs.jproteome.5b00938] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The bacterial pathogen Neisseria meningitidis expresses two major outer-membrane porins. PorA expression is subject to phase-variation (high frequency, random, on-off switching), and both PorA and PorB are antigenically variable between strains. PorA expression is variable and not correlated with meningococcal colonisation or invasive disease, whereas all naturally-occurring strains express PorB suggesting strong selection for expression. We have generated N. meningitidis strains lacking expression of both major porins, demonstrating that they are dispensable for bacterial growth in vitro. The porAB mutant strain has an exponential growth rate similar to the parental strain, as do the single porA or porB mutants, but the porAB mutant strain does not reach the same cell density in stationary phase. Proteomic analysis suggests that the double mutant strain exhibits compensatory expression changes in proteins associated with cellular redox state, energy/nutrient metabolism, and membrane stability. On solid media, there is obvious growth impairment that is rescued by addition of blood or serum from mammalian species, particularly heme. These porin mutants are not impaired in their capacity to inhibit both staurosporine-induced apoptosis and a phorbol 12-myristate 13-acetate-induced oxidative burst in human neutrophils suggesting that the porins are not the only bacterial factors that can modulate these processes in host cells.
Collapse
Affiliation(s)
- Ian R Peak
- School of Medical Science, Gold Coast Campus, Griffith University , Southport, QLD 4222, Australia.,Institute for Glycomics, Gold Coast Campus, Griffith University , Southport, QLD 4222, Australia
| | - Adrienne Chen
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University , 303 East Chicago Avenue, Chicago, Illinois 60611, United States
| | - Freda E-C Jen
- Institute for Glycomics, Gold Coast Campus, Griffith University , Southport, QLD 4222, Australia
| | - Courtney Jennings
- Institute for Glycomics, Gold Coast Campus, Griffith University , Southport, QLD 4222, Australia
| | - Benjamin L Schulz
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland , St. Lucia, Brisbane, QLD 4072, Australia
| | - Nigel J Saunders
- Centre for Systems and Synthetic Biology, Brunel University , Uxbridge, Middlesex UB8 3PH, U.K
| | - Arshad Khan
- Centre for Systems and Synthetic Biology, Brunel University , Uxbridge, Middlesex UB8 3PH, U.K
| | - H Steven Seifert
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University , 303 East Chicago Avenue, Chicago, Illinois 60611, United States
| | - Michael P Jennings
- Institute for Glycomics, Gold Coast Campus, Griffith University , Southport, QLD 4222, Australia
| |
Collapse
|
19
|
Château A, Seifert HS. Neisseria gonorrhoeae survives within and modulates apoptosis and inflammatory cytokine production of human macrophages. Cell Microbiol 2016; 18:546-60. [PMID: 26426083 PMCID: PMC5240846 DOI: 10.1111/cmi.12529] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 09/17/2015] [Accepted: 09/28/2015] [Indexed: 12/28/2022]
Abstract
The human-adapted organism Neisseria gonorrhoeae is the causative agent of gonorrhoea, a sexually transmitted infection. It readily colonizes the genital, rectal and nasalpharyngeal mucosa during infection. While it is well established that N. gonorrhoeae recruits and modulates the functions of polymorphonuclear leukocytes during infection, how N. gonorrhoeae interacts with macrophages present in infected tissue is not fully defined. We studied the interactions of N. gonorrhoeae with two human monocytic cell lines, THP-1 and U937, and primary monocytes, all differentiated into macrophages. Most engulfed bacteria were killed in the phagolysosome, but a subset of bacteria was able to survive and replicate inside the macrophages suggesting that those cells may be an unexplored cellular reservoir for N. gonorrhoeae during infection. N. gonorrhoeae was able to modulate macrophage apoptosis: N. gonorrhoeae induced apoptosis in THP-1 cells whereas it inhibited induced apoptosis in U937 cells and primary human macrophages. Furthermore, N. gonorrhoeae induced expression of inflammatory cytokines in macrophages, suggesting a role for macrophages in recruiting polymorphonuclear leukocytes to the site of infection. These results indicate macrophages may serve as a significant replicative niche for N. gonorrhoeae and play an important role in gonorrheal pathogenesis.
Collapse
Affiliation(s)
- Alice Château
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - H. Steven Seifert
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| |
Collapse
|
20
|
Chow SH, Deo P, Naderer T. Macrophage cell death in microbial infections. Cell Microbiol 2016; 18:466-74. [PMID: 26833712 DOI: 10.1111/cmi.12573] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/21/2016] [Accepted: 01/27/2016] [Indexed: 12/26/2022]
Abstract
Macrophages can respond to microbial infections with programmed cell death. The major cell death pathways of apoptosis, pyroptosis and necroptosis are tightly regulated to ensure adequate immune reactions to virulent and persistent invaders. Macrophage death eliminates the replicative niche of intracellular pathogens and induces immune attack. Not surprisingly, successful pathogens have evolved strategies to modulate macrophage cell death pathways to enable microbial survival and replication. Uncontrolled macrophage death can also lead to tissue damage, which may augment bacterial dissemination and pathology. In this review, we highlight how pathogens hijack macrophage cell death signals to promote microbial survival and immune evasion.
Collapse
Affiliation(s)
- Seong H Chow
- Department of Biochemistry and Molecular Biology and the Biomedicine Discovery Institute, Monash University, Clayton, 3800, VIC, Australia
| | - Pankaj Deo
- Department of Biochemistry and Molecular Biology and the Biomedicine Discovery Institute, Monash University, Clayton, 3800, VIC, Australia
| | - Thomas Naderer
- Department of Biochemistry and Molecular Biology and the Biomedicine Discovery Institute, Monash University, Clayton, 3800, VIC, Australia
| |
Collapse
|
21
|
Gupta S, Prasad GVRK, Mukhopadhaya A. Vibrio cholerae Porin OmpU Induces Caspase-independent Programmed Cell Death upon Translocation to the Host Cell Mitochondria. J Biol Chem 2015; 290:31051-68. [PMID: 26559970 DOI: 10.1074/jbc.m115.670182] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Indexed: 12/11/2022] Open
Abstract
Porins, a major class of outer membrane proteins in Gram-negative bacteria, primarily act as transport channels. OmpU is one of the major porins of human pathogen, Vibrio cholerae. In the present study, we show that V. cholerae OmpU has the ability to induce target cell death. Although OmpU-mediated cell death shows some characteristics of apoptosis, such as flipping of phosphatidylserine in the membrane as well as cell size shrinkage and increased cell granularity, it does not show the caspase-3 activation and DNA laddering pattern typical of apoptotic cells. Increased release of lactate dehydrogenase in OmpU-treated cells indicates that the OmpU-mediated cell death also has characteristics of necrosis. Further, we show that the mechanism of OmpU-mediated cell death involves major mitochondrial changes in the target cells. We observe that OmpU treatment leads to the disruption of mitochondrial membrane potential, resulting in the release of cytochrome c and apoptosis-inducing factor (AIF). AIF translocates to the host cell nucleus, implying that it has a crucial role in OmpU-mediated cell death. Finally, we observe that OmpU translocates to the target cell mitochondria, where it directly initiates mitochondrial changes leading to mitochondrial membrane permeability transition and AIF release. Partial blocking of AIF release by cyclosporine A in OmpU-treated cells further suggests that OmpU may be inducing the opening of the mitochondrial permeability transition pore. All of these results lead us to the conclusion that OmpU induces cell death in target cells in a programmed manner in which mitochondria play a central role.
Collapse
Affiliation(s)
- Shelly Gupta
- From the Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali 140306, Punjab, India
| | - G V R Krishna Prasad
- From the Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali 140306, Punjab, India
| | - Arunika Mukhopadhaya
- From the Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali 140306, Punjab, India
| |
Collapse
|
22
|
IL-4 Protects the Mitochondria Against TNFα and IFNγ Induced Insult During Clearance of Infection with Citrobacter rodentium and Escherichia coli. Sci Rep 2015; 5:15434. [PMID: 26481427 PMCID: PMC4613366 DOI: 10.1038/srep15434] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 09/24/2015] [Indexed: 11/08/2022] Open
Abstract
Citrobacter rodentium is a murine pathogen that serves as a model for enteropathogenic Escherichia coli. C. rodentium infection reduced the quantity and activity of mitochondrial respiratory complexes I and IV, as well as phosphorylation capacity, mitochondrial transmembrane potential and ATP generation at day 10, 14 and 19 post infection. Cytokine mRNA quantification showed increased levels of IFNγ, TNFα, IL-4, IL-6, and IL-12 during infection. The effects of adding these cytokines, C. rodentium and E. coli were hence elucidated using an in vitro colonic mucosa. Both infection and TNFα, individually and combined with IFNγ, decreased complex I and IV enzyme levels and mitochondrial function. However, IL-4 reversed these effects, and IL-6 protected against loss of complex IV. Both in vivo and in vitro, the dysfunction appeared caused by nitric oxide-generation, and was alleviated by an antioxidant targeting mitochondria. IFNγ −/− mice, containing a similar pathogen burden but higher IL-4 and IL-6, displayed no loss of any of the four complexes. Thus, the cytokine environment appears to be a more important determinant of mitochondrial function than direct actions of the pathogen. As IFNγ and TNFα levels increase during clearance of infection, the concomitant increase in IL-4 and IL-6 protects mitochondrial function.
Collapse
|
23
|
Lysinibacillus sphaericus binary toxin induces apoptosis in susceptible Culex quinquefasciatus larvae. J Invertebr Pathol 2015; 128:57-63. [PMID: 25958262 DOI: 10.1016/j.jip.2015.04.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 04/29/2015] [Accepted: 04/30/2015] [Indexed: 11/20/2022]
Abstract
During sporulation, a Gram-positive bacterium Lysinibacillus sphaericus (Ls) produces the mosquito larvicidal binary toxin composed of 2 subunits, BinA and BinB. Full toxicity against Culex and Anopheles mosquito larvae is achieved when both subunits are administered together at equimolar amounts. Although cellular responses to Bin toxin have been reported in previous studies, it remains essential to extensively examine the cytopathic effects in vivo to define the underlying mechanism of larval death. In this study, 4th instar Culex quinquefasciatus larvae fed with different doses of Bin toxin were analyzed both for ultrastructural as well as biochemical effects. Typical morphological changes consistent with apoptosis were observed in mosquito larvae exposed to Bin toxin, including mitochondrial swelling, chromatin condensation, cytoplasmic vacuolization and apoptotic cell formation. Bin toxin also induced the activation of caspase-9 and caspase-3 in larval midgut cells. Our current observations thus suggest that Bin toxin triggers apoptosis via an intrinsic or mitochondrial pathway in vivo, possibly contributing to larval death.
Collapse
|
24
|
Immuno-Modulatory Role of Porins: Host Immune Responses, Signaling Mechanisms and Vaccine Potential. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 842:79-108. [DOI: 10.1007/978-3-319-11280-0_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
25
|
Zielke RA, Wierzbicki IH, Weber JV, Gafken PR, Sikora AE. Quantitative proteomics of the Neisseria gonorrhoeae cell envelope and membrane vesicles for the discovery of potential therapeutic targets. Mol Cell Proteomics 2014; 13:1299-317. [PMID: 24607996 PMCID: PMC4014286 DOI: 10.1074/mcp.m113.029538] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 02/28/2014] [Indexed: 01/29/2023] Open
Abstract
Neisseria gonorrhoeae (GC) is a human-specific pathogen, and the agent of a sexually transmitted disease, gonorrhea. There is a critical need for new approaches to study and treat GC infections because of the growing threat of multidrug-resistant isolates and the lack of a vaccine. Despite the implied role of the GC cell envelope and membrane vesicles in colonization and infection of human tissues and cell lines, comprehensive studies have not been undertaken to elucidate their constituents. Accordingly, in pursuit of novel molecular therapeutic targets, we have applied isobaric tagging for absolute quantification coupled with liquid chromatography and mass spectrometry for proteome quantitative analyses. Mining the proteome of cell envelopes and native membrane vesicles revealed 533 and 168 common proteins, respectively, in analyzed GC strains FA1090, F62, MS11, and 1291. A total of 22 differentially abundant proteins were discovered including previously unknown proteins. Among those proteins that displayed similar abundance in four GC strains, 34 were found in both cell envelopes and membrane vesicles fractions. Focusing on one of them, a homolog of an outer membrane protein LptD, we demonstrated that its depletion caused loss of GC viability. In addition, we selected for initial characterization six predicted outer membrane proteins with unknown function, which were identified as ubiquitous in the cell envelopes derived from examined GC isolates. These studies entitled a construction of deletion mutants and analyses of their resistance to different chemical probes. Loss of NGO1985, in particular, resulted in dramatically decreased GC viability upon treatment with detergents, polymyxin B, and chloramphenicol, suggesting that this protein functions in the maintenance of the cell envelope permeability barrier. Together, these findings underscore the concept that the cell envelope and membrane vesicles contain crucial, yet under-explored determinants of GC physiology, which may represent promising targets for designing new therapeutic interventions.
Collapse
Affiliation(s)
- Ryszard A. Zielke
- From the ‡Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331
| | - Igor H. Wierzbicki
- From the ‡Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331
| | - Jacob V. Weber
- From the ‡Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331
| | - Philip R. Gafken
- §Proteomics Facility, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024
| | - Aleksandra E. Sikora
- From the ‡Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331
| |
Collapse
|
26
|
Saturating mutagenesis of an essential gene: a majority of the Neisseria gonorrhoeae major outer membrane porin (PorB) is mutable. J Bacteriol 2013; 196:540-7. [PMID: 24244002 DOI: 10.1128/jb.01073-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The major outer membrane porin (PorB) of Neisseria gonorrhoeae is an essential protein that mediates ion exchange between the organism and its environment and also plays multiple roles in human host pathogenesis. To facilitate structure-function studies of porin's multiple roles, we performed saturating mutagenesis at the porB locus and used deep sequencing to identify essential versus mutable residues. Random mutations in porB were generated in a plasmid vector, and mutant gene pools were transformed into N. gonorrhoeae to select for alleles that maintained bacterial viability. Deep sequencing of the input plasmid pools and the output N. gonorrhoeae genomic DNA pools identified mutations present in each, and the mutations in both pools were compared to determine which changes could be tolerated by the organism. We examined the mutability of 328 amino acids in the mature PorB protein and found that 308 of them were likely to be mutable and that 20 amino acids were likely to be nonmutable. A subset of these predictions was validated experimentally. This approach to identifying essential amino acids in a protein of interest introduces an additional application for next-generation sequencing technology and provides a template for future studies of both porin and other essential bacterial genes.
Collapse
|
27
|
Structure-function studies of the Neisseria gonorrhoeae major outer membrane porin. Infect Immun 2013; 81:4383-91. [PMID: 24042111 DOI: 10.1128/iai.00367-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The major outer membrane porin (PorB) expressed by Neisseria gonorrhoeae plays multiple roles during infection, in addition to its function as an outer membrane pore. We have generated a panel of mutants of N. gonorrhoeae strain FA1090 expressing a variety of mutant porB genes that all function as porins. We identified multiple regions of porin that are involved in its binding to the complement regulatory factors C4b-binding protein and factor H and confirmed that the ability to bind at least one factor is required for FA1090 to survive the bactericidal effects of human serum. We tested the ability of these mutants to inhibit both apoptosis and the oxidative burst in polymorphonuclear leukocytes but were unable to identify the porin domains required for either function. This study has identified nonessential porin domains and some potentially essential portions of the protein and has further expanded our understanding of the contribution of the porin domains required for complement regulation.
Collapse
|
28
|
Camilleri A, Zarb C, Caruana M, Ostermeier U, Ghio S, Högen T, Schmidt F, Giese A, Vassallo N. Mitochondrial membrane permeabilisation by amyloid aggregates and protection by polyphenols. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2532-43. [PMID: 23817009 DOI: 10.1016/j.bbamem.2013.06.026] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 06/17/2013] [Accepted: 06/19/2013] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease and Parkinson's disease are neurodegenerative disorders characterised by the misfolding of proteins into soluble prefibrillar aggregates. These aggregate complexes disrupt mitochondrial function, initiating a pathophysiological cascade leading to synaptic and neuronal degeneration. In order to explore the interaction of amyloid aggregates with mitochondrial membranes, we made use of two in vitro model systems, namely: (i) lipid vesicles with defined membrane compositions that mimic those of mitochondrial membranes, and (ii) respiring mitochondria isolated from neuronal SH-SY5Y cells. External application of soluble prefibrillar forms, but not monomers, of amyloid-beta (Aβ42 peptide), wild-type α-synuclein (α-syn), mutant α-syn (A30P and A53T) and tau-441 proteins induced a robust permeabilisation of mitochondrial-like vesicles, and triggered cytochrome c release (CCR) from isolated mitochondrial organelles. Importantly, the effect on mitochondria was shown to be dependent upon cardiolipin, an anionic phospholipid unique to mitochondria and a well-known key player in mitochondrial apoptosis. Pharmacological modulators of mitochondrial ion channels failed to inhibit CCR. Thus, we propose a generic mechanism of thrilling mitochondria in which soluble amyloid aggregates have the intrinsic capacity to permeabilise mitochondrial membranes, without the need of any other protein. Finally, six small-molecule compounds and black tea extract were tested for their ability to inhibit permeation of mitochondrial membranes by Aβ42, α-syn and tau aggregate complexes. We found that black tea extract and rosmarinic acid were the most potent mito-protectants, and may thus represent important drug leads to alleviate mitochondrial dysfunction in neurodegenerative diseases.
Collapse
Affiliation(s)
- Angelique Camilleri
- Department of Physiology and Biochemistry, University of Malta, Msida, Malta
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
The outer membrane of Gram-negative bacteria contains a large number of channel-forming proteins, porins, for the uptake of small nutrient molecules. Neisseria gonorrhoeae PorBIA (PorB of serotype A) are associated with disseminating diseases and mediate a rapid bacterial invasion into host cells in a phosphate-sensitive manner. To gain insights into this structure-function relationship we analysed PorBIA by X-ray crystallography in the presence of phosphate and ATP. The structure of PorBIA in the complex solved at a resolution of 3.3 Å (1 Å=0.1 nm) displays a surplus of positive charges inside the channel. ATP ligand-binding in the channel is co-ordinated by the positively charged residues of the channel interior. These residues ligate the aromatic, sugar and pyrophosphate moieties of the ligand. Two phosphate ions were observed in the structure, one of which clamped by two arginine residues (Arg92 and Arg124) localized at the extraplasmic channel exit. A short β-bulge in β2-strand together with the long L3 loop narrow the barrel diameter significantly and further support substrate specificity through hydrogen bond interactions. Interestingly the structure also comprised a small peptide as a remnant of a periplasmic protein which physically links porin molecules to the peptidoglycan network. To test the importance of Arg92 on bacterial invasion the residue was mutated. In vivo assays of bacteria carrying a R92S mutation confirmed the importance of this residue for host-cell invasion. Furthermore systematic sequence and structure comparisons of PorBIA from Neisseriaceae indicated Arg92 to be unique in disseminating N. gonorrhoeae thereby possibly distinguishing invasion-promoting porins from other neisserial porins.
Collapse
|
30
|
Kattner C, Zaucha J, Jaenecke F, Zachariae U, Tanabe M. Identification of a cation transport pathway in Neisseria meningitidis PorB. Proteins 2013; 81:830-40. [PMID: 23255122 DOI: 10.1002/prot.24241] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 12/06/2012] [Accepted: 12/08/2012] [Indexed: 11/10/2022]
Abstract
Neisseria meningitidis is the main causative agent of bacterial meningitis. In its outer membrane, the trimeric Neisserial porin PorB is responsible for the diffusive transport of essential hydrophilic solutes across the bilayer. Previous molecular dynamics simulations based on the recent crystal structure of PorB have suggested the presence of distinct solute translocation pathways through this channel. Although PorB has been electrophysiologically characterized as anion-selective, cation translocation through nucleotide-bound PorB during pathogenesis is thought to be instrumental for host cell death. As a result, we were particularly interested in further characterizing cation transport through the pore. We combined a structural approach with additional computational analysis. Here, we present two crystal structures of PorB at 2.1 and 2.65 Å resolution. The new structures display additional electron densities around the protruding loop 3 (L3) inside the pore. We show that these electron densities can be identified as monovalent cations, in our case Cs(+), which are tightly bound to the inner channel. Molecular dynamics simulations reveal further ion interactions and the free energy landscape for ions inside PorB. Our results suggest that the crystallographically identified locations of Cs(+) form a cation transport pathway inside the pore. This finding suggests how positively charged ions are translocated through PorB when the channel is inserted into mitochondrial membranes during Neisserial infection, a process which is considered to dissipate the mitochondrial transmembrane potential gradient and thereby induce apoptosis.
Collapse
Affiliation(s)
- Christof Kattner
- HALOmem, Institut für Biochemie und Biotechnologie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | | | | | | | | |
Collapse
|
31
|
From evolution to pathogenesis: the link between β-barrel assembly machineries in the outer membrane of mitochondria and gram-negative bacteria. Int J Mol Sci 2012; 13:8038-8050. [PMID: 22942688 PMCID: PMC3430219 DOI: 10.3390/ijms13078038] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 06/21/2012] [Accepted: 06/21/2012] [Indexed: 01/29/2023] Open
Abstract
β-barrel proteins are the highly abundant in the outer membranes of Gram-negative bacteria and the mitochondria in eukaryotes. The assembly of β-barrels is mediated by two evolutionary conserved machineries; the β-barrel Assembly Machinery (BAM) in Gram-negative bacteria; and the Sorting and Assembly Machinery (SAM) in mitochondria. Although the BAM and SAM have functionally conserved roles in the membrane integration and folding of β-barrel proteins, apart from the central BamA and Sam50 proteins, the remaining components of each of the complexes have diverged remarkably. For example all of the accessory components of the BAM complex characterized to date are located in the bacterial periplasm, on the same side as the N-terminal domain of BamA. This is the same side of the membrane as the substrates that are delivered to the BAM. On the other hand, all of the accessory components of the SAM complex are located on the cytosolic side of the membrane, the opposite side of the membrane to the N-terminus of Sam50 and the substrate receiving side of the membrane. Despite the accessory subunits being located on opposite sides of the membrane in each system, it is clear that each system is functionally equivalent with bacterial proteins having the ability to use the eukaryotic SAM and vice versa. In this review, we summarize the similarities and differences between the BAM and SAM complexes, highlighting the possible selecting pressures on bacteria and eukaryotes during evolution. It is also now emerging that bacterial pathogens utilize the SAM to target toxins and effector proteins to host mitochondria and this will also be discussed from an evolutionary perspective.
Collapse
|
32
|
Jiang JH, Tong J, Gabriel K. Hijacking Mitochondria: Bacterial Toxins that Modulate Mitochondrial Function. IUBMB Life 2012; 64:397-401. [DOI: 10.1002/iub.1021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
33
|
A bacterial siren song: intimate interactions between Neisseria and neutrophils. Nat Rev Microbiol 2012; 10:178-90. [PMID: 22290508 DOI: 10.1038/nrmicro2713] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Neisseria gonorrhoeae and Neisseria meningitidis are Gram-negative bacterial pathogens that are exquisitely adapted for growth at human mucosal surfaces and for efficient transmission between hosts. One factor that is essential to neisserial pathogenesis is the interaction between the bacteria and neutrophils, which are recruited in high numbers during infection. Although this vigorous host response could simply reflect effective immune recognition of the bacteria, there is mounting evidence that in fact these obligate human pathogens manipulate the innate immune response to promote infectious processes. This Review summarizes the mechanisms used by pathogenic neisseriae to resist and modulate the antimicrobial activities of neutrophils. It also details some of the major outstanding questions about the Neisseria-neutrophil relationship and proposes potential benefits of this relationship for the pathogen.
Collapse
|
34
|
Meningococcal outer membrane protein NhhA triggers apoptosis in macrophages. PLoS One 2012; 7:e29586. [PMID: 22238624 PMCID: PMC3251587 DOI: 10.1371/journal.pone.0029586] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 12/01/2011] [Indexed: 11/19/2022] Open
Abstract
Phagocytotic cells play a fundamental role in the defense against bacterial pathogens. One mechanism whereby bacteria evade phagocytosis is to produce factors that trigger apoptosis. Here we identify for the first time a meningococcal protein capable of inducing macrophage apoptosis. The conserved meningococcal outer membrane protein NhhA (Neisseria hia/hsf homologue A, also known as Hsf) mediates bacterial adhesion and interacts with extracellular matrix components heparan sulphate and laminin. Meningococci lacking NhhA fail to colonise nasal mucosa in a mouse model of meningococcal disease. We found that exposure of macrophages to NhhA resulted in a highly increased rate of apoptosis that proceeded through caspase activation. Exposure of macrophages to NhhA also led to iNOS induction and nitric oxide production. However, neither nitric oxide production nor TNF-α signaling was found to be a prerequisite for NhhA-induced apoptosis. Macrophages exposed to wildtype NhhA-expressing meningococci were also found to undergo apoptosis whereas NhhA-deficient meningococci had a markedly decreased capacity to induce macrophage apoptosis. These data provide new insights on the role of NhhA in meningococcal disease. NhhA-induced macrophage apoptosis could be a mechanism whereby meningococci evade immunoregulatory and phagocytotic actions of macrophages.
Collapse
|
35
|
Jiang JH, Davies JK, Lithgow T, Strugnell RA, Gabriel K. Targeting of Neisserial PorB to the mitochondrial outer membrane: an insight on the evolution of β-barrel protein assembly machines. Mol Microbiol 2011; 82:976-87. [DOI: 10.1111/j.1365-2958.2011.07880.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
36
|
Neisseria gonorrhoeae-mediated inhibition of apoptotic signalling in polymorphonuclear leukocytes. Infect Immun 2011; 79:4447-58. [PMID: 21844239 DOI: 10.1128/iai.01267-10] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The human pathogen Neisseria gonorrhoeae recruits and interacts extensively with polymorphonuclear leukocytes (PMNs) during infection. N. gonorrhoeae is able to survive the bactericidal activity of these innate immune cells and can actively modulate PMN functions in vitro. PMNs are short-lived cells which readily undergo apoptosis, and thus the effect of N. gonorrhoeae infection on PMN survival has implications for whether PMNs might serve as an important site of bacterial replication during infection. We developed and validated an HL-60 myeloid leukemia cell culture model for PMN infection and used both these cells and primary PMNs to show that N. gonorrhoeae infection alone does not induce apoptosis and furthermore that N. gonorrhoeae can inhibit both spontaneous apoptosis and apoptosis induced by the intrinsic and extrinsic apoptosis inducers staurosporine (STS) and tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), respectively. N. gonorrhoeae infection also results in the activation of NF-κB signaling in neutrophils and induces secretion of an identical profile of proinflammatory cytokines and chemokines in both HL-60 cells and primary PMNs. Our data show that the HL-60 cell line can be used to effectively model N. gonorrhoeae-PMN interactions and that N. gonorrhoeae actively inhibits apoptosis induced by multiple stimuli to prolong PMN survival and potentially facilitate bacterial survival, replication, and transmission.
Collapse
|
37
|
Karunakaran K, Mehlitz A, Rudel T. Evolutionary conservation of infection-induced cell death inhibition among Chlamydiales. PLoS One 2011; 6:e22528. [PMID: 21799887 PMCID: PMC3142178 DOI: 10.1371/journal.pone.0022528] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Accepted: 06/23/2011] [Indexed: 11/19/2022] Open
Abstract
Control of host cell death is of paramount importance for the survival and replication of obligate intracellular bacteria. Among these, human pathogenic Chlamydia induces the inhibition of apoptosis in a variety of different host cells by directly interfering with cell death signaling. However, the evolutionary conservation of cell death regulation has not been investigated in the order Chlamydiales, which also includes Chlamydia-like organisms with a broader host spectrum. Here, we investigated the apoptotic response of human cells infected with the Chlamydia-like organism Simkania negevensis (Sn). Simkania infected cells exhibited strong resistance to apoptosis induced by intrinsic stress or by the activation of cell death receptors. Apoptotic signaling was blocked upstream of mitochondria since Bax translocation, Bax and Bak oligomerisation and cytochrome c release were absent in these cells. Infected cells turned on pro-survival pathways like cellular Inhibitor of Apoptosis Protein 2 (cIAP-2) and the Akt/PI3K pathway. Blocking any of these inhibitory pathways sensitized infected host cell towards apoptosis induction, demonstrating their role in infection-induced apoptosis resistance. Our data support the hypothesis of evolutionary conserved signaling pathways to apoptosis resistance as common denominators in the order Chlamydiales.
Collapse
Affiliation(s)
- Karthika Karunakaran
- Department of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Adrian Mehlitz
- Department of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Thomas Rudel
- Department of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
- * E-mail:
| |
Collapse
|
38
|
Laloux G, Deghelt M, de Barsy M, Letesson JJ, De Bolle X. Identification of the essential Brucella melitensis porin Omp2b as a suppressor of Bax-induced cell death in yeast in a genome-wide screening. PLoS One 2010; 5:e13274. [PMID: 20949000 PMCID: PMC2952587 DOI: 10.1371/journal.pone.0013274] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 09/09/2010] [Indexed: 01/08/2023] Open
Abstract
Background Inhibition of apoptosis is one of the mechanisms selected by numerous intracellular pathogenic bacteria to control their host cell. Brucellae, which are the causative agent of a worldwide zoonosis, prevent apoptosis of infected cells, probably to support survival of their replication niche. Methodology/Principal Findings In order to identify Brucella melitensis anti-apoptotic effector candidates, we performed a genome-wide functional screening in yeast. The B. melitensis ORFeome was screened to identify inhibitors of Bax-induced cell death in S. cerevisiae. B. melitensis porin Omp2b, here shown to be essential, prevents Bax lethal effect in yeast, unlike its close paralog Omp2a. Our results based on Omp2b size variants characterization suggest that signal peptide processing is required for Omp2b effect in yeast. Conclusion/Significance We report here the first application to a bacterial genome-wide library of coding sequences of this “yeast-rescue” screening strategy, previously used to highlight several new apoptosis regulators. Our work provides B. melitensis proteins that are candidates for an anti-apoptotic function, and can be tested in mammalian cells in the future. Hypotheses on possible molecular mechanisms of Bax inhibition by the B. melitensis porin Omp2b are discussed.
Collapse
Affiliation(s)
- Géraldine Laloux
- Research Unit in Molecular Biology, Department of Biology, University of Namur (FUNDP), Namur, Belgium
| | - Michaël Deghelt
- Research Unit in Molecular Biology, Department of Biology, University of Namur (FUNDP), Namur, Belgium
| | - Marie de Barsy
- Research Unit in Molecular Biology, Department of Biology, University of Namur (FUNDP), Namur, Belgium
| | - Jean-Jacques Letesson
- Research Unit in Molecular Biology, Department of Biology, University of Namur (FUNDP), Namur, Belgium
| | - Xavier De Bolle
- Research Unit in Molecular Biology, Department of Biology, University of Namur (FUNDP), Namur, Belgium
- * E-mail:
| |
Collapse
|
39
|
Interactions between bacterial pathogens and mitochondrial cell death pathways. Nat Rev Microbiol 2010; 8:693-705. [PMID: 20818415 DOI: 10.1038/nrmicro2421] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The modulation of host cell death pathways by bacteria has been recognized as a major pathogenicity mechanism. Among other strategies, bacterial pathogens can hijack the cell death machinery of host cells by influencing the signalling pathways that converge on the mitochondria. In particular, many bacterial proteins have evolved to interact in a highly specific manner with host mitochondria, thereby modulating the decision between cell life and death. In this Review, we explore the intimate interactions between bacterial pathogens and mitochondrial cell death pathways.
Collapse
|
40
|
Acinetobacter baumannii outer membrane protein A induces dendritic cell death through mitochondrial targeting. J Microbiol 2010; 48:387-92. [PMID: 20571958 DOI: 10.1007/s12275-010-0155-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Accepted: 06/08/2010] [Indexed: 10/19/2022]
Abstract
Acinetobacter baumannii outer membrane protein A (AbOmpA) is a potential virulence factor that induces epithelial cell death, but its pathologic effects on the immune system have yet to be determined. The present study investigated the pathologic events occurring in dendritic cells (DCs) exposed to a cytotoxic concentration of AbOmpA. AbOmpA induced early-onset apoptosis and delayed-onset necrosis in DCs. AbOmpA targeted the mitochondria and induced the production of reactive oxygen species (ROS). ROS were directly responsible for both apoptosis and necrosis of AbOmpA-treated DCs. These results demonstrate that the AbOmpA secreted from A. baumannii induces DC death, which may impair T cell biology to induce adaptive immune responses against A. baumannii.
Collapse
|
41
|
Neisseria meningitidis induces brain microvascular endothelial cell detachment from the matrix and cleavage of occludin: a role for MMP-8. PLoS Pathog 2010; 6:e1000874. [PMID: 20442866 PMCID: PMC2861698 DOI: 10.1371/journal.ppat.1000874] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Accepted: 03/24/2010] [Indexed: 02/06/2023] Open
Abstract
Disruption of the blood-brain barrier (BBB) is a hallmark event in the pathophysiology of bacterial meningitis. Several inflammatory mediators, such as tumor necrosis factor alpha (TNF-α), nitric oxide and matrix metalloproteinases (MMPs), contribute to this disruption. Here we show that infection of human brain microvascular endothelial cells (HBMEC) with Neisseria meningitidis induced an increase of permeability at prolonged time of infection. This was paralleled by an increase in MMP-8 activity in supernatants collected from infected cells. A detailed analysis revealed that MMP-8 was involved in the proteolytic cleavage of the tight junction protein occludin, resulting in its disappearance from the cell periphery and cleavage to a lower-sized 50-kDa protein in infected HBMEC. Abrogation of MMP-8 activity by specific inhibitors as well as transfection with MMP-8 siRNA abolished production of the cleavage fragment and occludin remained attached to the cell periphery. In addition, MMP-8 affected cell adherence to the underlying matrix. A similar temporal relationship was observed for MMP activity and cell detachment. Injury of the HBMEC monolayer suggested the requirement of direct cell contact because no detachment was observed when bacteria were placed above a transwell membrane or when bacterial supernatant was directly added to cells. Inhibition of MMP-8 partially prevented detachment of infected HBMEC and restored BBB permeability. Together, we established that MMP-8 activity plays a crucial role in disassembly of cell junction components and cell adhesion during meningococcal infection. A crucial step in the pathogenesis of bacterial meningitis is the disturbance of cerebral microvascular endothelial function, resulting in blood-brain barrier (BBB) breakdown. Matrix metalloproteinases (MMPs) have been implicated in BBB damage in bacterial meningitis in several studies. MMPs are a family of zinc-dependent endopeptidases that catalyze the proteolysis of extracellular matrix proteins, but can also cleave a range of other molecules, including cell adhesion molecules. In this study we showed that brain endothelial cells produced MMPs—in particular MMP-8—upon infection with Neisseria meningitidis, a bacterium that causes meningitis and septic shock. We found that MMP-8 was then involved in disruption of the tight junction protein occludin. In addition to the effect of MMP-8 on the tight junction component, MMP-8 activity also accounted for brain endothelial cell detachment that occurred during prolonged time of infection with N. meningitidis. When we inhibited MMP-8 activity, occludin disruption was completely abolished and cell detachment could be partially prevented, which resulted in restored BBB permeability. Our data reveal a molecular mechanism of cellular dysfunction during meningococcal meningitis that enhances our understanding how MMPs affect cerebral endothelial function and that can aid in our understanding and prevention of this disease.
Collapse
|
42
|
Tanabe M, Nimigean CM, Iverson TM. Structural basis for solute transport, nucleotide regulation, and immunological recognition of Neisseria meningitidis PorB. Proc Natl Acad Sci U S A 2010; 107:6811-6. [PMID: 20351243 PMCID: PMC2872391 DOI: 10.1073/pnas.0912115107] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
PorB is the second most prevalent outer membrane protein in Neisseria meningitidis. PorB is required for neisserial pathogenesis and can elicit a Toll-like receptor mediated host immune response. Here, the x-ray crystal structure of PorB has been determined to 2.3 A resolution. Structural analysis and cocrystallization studies identify three putative solute translocation pathways through the channel pore: One pathway transports anions nonselectively, one transports cations nonselectively, and one facilitates the specific uptake of sugars. During infection, PorB likely binds host mitochondrial ATP, and cocrystallization with the ATP analog AMP-PNP suggests that binding of nucleotides regulates these translocation pathways both by partial occlusion of the pore and by restricting the motion of a putative voltage gating loop. PorB is located on the surface of N. meningitidis and can be recognized by receptors of the host innate immune system. Features of PorB suggest that Toll-like receptor mediated recognition outer membrane proteins may be initiated with a nonspecific electrostatic attraction.
Collapse
Affiliation(s)
- Mikio Tanabe
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232-6600
| | - Crina M. Nimigean
- Departments of Anesthesiology, Physiology and Biophysics, and Biochemistry, Weill Cornell Medical College, New York, NY 10065; and
| | - T. M. Iverson
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232-6600
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, TN 37232-6600
| |
Collapse
|
43
|
Kisiela DI, Aulik NA, Atapattu DN, Czuprynski CJ. N-terminal region of Mannheimia haemolytica leukotoxin serves as a mitochondrial targeting signal in mammalian cells. Cell Microbiol 2010; 12:976-87. [PMID: 20109159 DOI: 10.1111/j.1462-5822.2010.01445.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Mannheimia haemolytica leukotoxin (LktA) is a member of the RTX toxin family that specifically kills ruminant leukocytes. Previous studies have shown that LktA induces apoptosis in susceptible cells via a caspase-9-dependent pathway that involves binding of LktA to mitochondria. In this study, using the bioinformatics tool MitoProt II we identified an N-terminal amino acid sequence of LktA that represents a mitochondrial targeting signal (MTS). We show that expression of this sequence, as a GFP fusion protein within mammalian cells, directs GFP to mitochondria. By immunoprecipitation we demonstrate that LktA interacts with the Tom22 and Tom40 components of the translocase of the outer mitochondrial membrane (TOM), which suggests that import of this toxin into mitochondria involves a classical import pathway for endogenous proteins. We also analysed the amino acid sequences of other RTX toxins and found a MTS in the N-terminal region of Actinobacillus pleuropneumoniae ApxII and enterohaemorrhagic Escherichia coli EhxA, but not in A. pleuropneumoniae ApxI, ApxIII, Aggregatibacter actinomycetemcomitans LtxA or the haemolysin (HlyA) from uropathogenic strains of E. coli. These findings provide a new evidence for the importance of the N-terminal region in addressing certain RTX toxins to mitochondria.
Collapse
Affiliation(s)
- Dagmara I Kisiela
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
44
|
Kozjak-Pavlovic V, Dian-Lothrop EA, Meinecke M, Kepp O, Ross K, Rajalingam K, Harsman A, Hauf E, Brinkmann V, Günther D, Herrmann I, Hurwitz R, Rassow J, Wagner R, Rudel T. Bacterial porin disrupts mitochondrial membrane potential and sensitizes host cells to apoptosis. PLoS Pathog 2009; 5:e1000629. [PMID: 19851451 PMCID: PMC2759283 DOI: 10.1371/journal.ppat.1000629] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 09/24/2009] [Indexed: 11/28/2022] Open
Abstract
The bacterial PorB porin, an ATP-binding β-barrel protein of pathogenic Neisseria gonorrhoeae, triggers host cell apoptosis by an unknown mechanism. PorB is targeted to and imported by host cell mitochondria, causing the breakdown of the mitochondrial membrane potential (ΔΨm). Here, we show that PorB induces the condensation of the mitochondrial matrix and the loss of cristae structures, sensitizing cells to the induction of apoptosis via signaling pathways activated by BH3-only proteins. PorB is imported into mitochondria through the general translocase TOM but, unexpectedly, is not recognized by the SAM sorting machinery, usually required for the assembly of β-barrel proteins in the mitochondrial outer membrane. PorB integrates into the mitochondrial inner membrane, leading to the breakdown of ΔΨm. The PorB channel is regulated by nucleotides and an isogenic PorB mutant defective in ATP-binding failed to induce ΔΨm loss and apoptosis, demonstrating that dissipation of ΔΨm is a requirement for cell death caused by neisserial infection. PorB is a bacterial porin that plays an important role in the pathogenicity of Neisseria gonorrhoeae. Upon infection with these bacteria, PorB is transported into mitochondria of infected cells, causing the loss of mitochondrial membrane potential and eventually leading to apoptotic cell death. Here, we show that PorB enters mitochondria through the TOM complex, similar to other mitochondria-targeted proteins, but then bypasses the SAM complex machinery that assembles all other porin-like proteins into the outer mitochondrial membrane. This leads to the accumulation of PorB in the intermembrane space and the integration of a fraction of PorB into the inner mitochondrial membrane (IMM). In the IMM, ATP-regulated pores are formed, leading to dissipation of membrane potential and the loss of cristae structure in affected mitochondria, the necessary first steps in induction of apoptosis. Our work offers, for the first time, a detailed analysis of the mechanism by which PorB targets and damages host cell mitochondria.
Collapse
Affiliation(s)
- Vera Kozjak-Pavlovic
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
- Biocenter, Chair of Microbiology, University of Würzburg, Würzburg, Germany
| | | | - Michael Meinecke
- Department of Biology/Chemistry, Division of Biophysics, University of Osnabrück, Osnabrück, Germany
| | - Oliver Kepp
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Katharina Ross
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Krishnaraj Rajalingam
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Anke Harsman
- Protein Purification Core Facility, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Eva Hauf
- Microscopy Core Facility, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Volker Brinkmann
- Microscopy Core Facility, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Dirk Günther
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Ines Herrmann
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Robert Hurwitz
- Protein Purification Core Facility, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Joachim Rassow
- Institute for Physiological Chemistry, Ruhr-University Bochum, Bochum, Germany
| | - Richard Wagner
- Department of Biology/Chemistry, Division of Biophysics, University of Osnabrück, Osnabrück, Germany
| | - Thomas Rudel
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
- Biocenter, Chair of Microbiology, University of Würzburg, Würzburg, Germany
- * E-mail:
| |
Collapse
|
45
|
Walther DM, Rapaport D, Tommassen J. Biogenesis of beta-barrel membrane proteins in bacteria and eukaryotes: evolutionary conservation and divergence. Cell Mol Life Sci 2009; 66:2789-804. [PMID: 19399587 PMCID: PMC2724633 DOI: 10.1007/s00018-009-0029-z] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 03/26/2009] [Accepted: 04/01/2009] [Indexed: 01/01/2023]
Abstract
Membrane-embedded beta-barrel proteins span the membrane via multiple amphipathic beta-strands arranged in a cylindrical shape. These proteins are found in the outer membranes of Gram-negative bacteria, mitochondria and chloroplasts. This situation is thought to reflect the evolutionary origin of mitochondria and chloroplasts from Gram-negative bacterial endosymbionts. beta-barrel proteins fulfil a variety of functions; among them are pore-forming proteins that allow the flux of metabolites across the membrane by passive diffusion, active transporters of siderophores, enzymes, structural proteins, and proteins that mediate protein translocation across or insertion into membranes. The biogenesis process of these proteins combines evolutionary conservation of the central elements with some noticeable differences in signals and machineries. This review summarizes our current knowledge of the functions and biogenesis of this special family of proteins.
Collapse
Affiliation(s)
- Dirk M. Walther
- Interfaculty Institute for Biochemistry, University of Tübingen, Hoppe-Seyler-Str. 4, 72076 Tübingen, Germany
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, 82152 Martinsried, Germany
| | - Doron Rapaport
- Interfaculty Institute for Biochemistry, University of Tübingen, Hoppe-Seyler-Str. 4, 72076 Tübingen, Germany
| | - Jan Tommassen
- Department of Molecular Microbiology, Institute of Biomembranes, Utrecht University, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
46
|
Neisseria gonorrhoeae infection protects human endocervical epithelial cells from apoptosis via expression of host antiapoptotic proteins. Infect Immun 2009; 77:3602-10. [PMID: 19546192 DOI: 10.1128/iai.01366-08] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Several microbial pathogens can modulate the host apoptotic response to infection, which may contribute to immune evasion. Various studies have reported that infection with the sexually transmitted disease pathogen Neisseria gonorrhoeae can either inhibit or induce apoptosis. N. gonorrhoeae infection initiates at the mucosal epithelium, and in women, cells from the ectocervix and endocervix are among the first host cells encountered by this pathogen. In this study, we defined the antiapoptotic effect of N. gonorrhoeae infection in human endocervical epithelial cells (End/E6E7 cells). We first established that N. gonorrhoeae strain FA1090B failed to induce cell death in End/E6E7 cells. Subsequently, we demonstrated that stimulation with N. gonorrhoeae protected these cells from staurosporine (STS)-induced apoptosis. Importantly, only End/E6E7 cells incubated with live bacteria and in direct association with N. gonorrhoeae were protected from STS-induced apoptosis, while heat-killed and antibiotic-killed bacteria failed to induce protection. Stimulation of End/E6E7 cells with live N. gonorrhoeae induced NF-kappaB activation and resulted in increased gene expression of the NF-kappaB-regulated antiapoptotic genes bfl-1, cIAP-2, and c-FLIP. Furthermore, cIAP-2 protein levels also increased in End/E6E7 cells incubated with gonococci. Collectively, our results indicate that the antiapoptotic effect of N. gonorrhoeae in human endocervical epithelial cells results from live infection via expression of host antiapoptotic proteins. Securing an intracellular niche through the inhibition of apoptosis may be an important mechanism utilized by N. gonorrhoeae for microbial survival and immune evasion in cervical epithelial cells.
Collapse
|
47
|
Abu-Hamad S, Arbel N, Calo D, Arzoine L, Israelson A, Keinan N, Ben-Romano R, Friedman O, Shoshan-Barmatz V. The VDAC1 N-terminus is essential both for apoptosis and the protective effect of anti-apoptotic proteins. J Cell Sci 2009; 122:1906-16. [DOI: 10.1242/jcs.040188] [Citation(s) in RCA: 180] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The release of mitochondrial-intermembrane-space pro-apoptotic proteins, such as cytochrome c, is a key step in initiating apoptosis. Our study addresses two major questions in apoptosis: how are mitochondrial pro-apoptotic proteins released and how is this process regulated? Accumulating evidence indicates that the voltage-dependent anion channel (VDAC) plays a central role in mitochondria-mediated apoptosis. Here, we demonstrate that the N-terminal domain of VDAC1 controls the release of cytochrome c, apoptosis and the regulation of apoptosis by anti-apoptotic proteins such as hexokinase and Bcl2. Cells expressing N-terminal truncated VDAC1 do not release cytochrome c and are resistant to apoptosis, induced by various stimuli. Employing a variety of experimental approaches, we show that hexokinase and Bcl2 confer protection against apoptosis through interaction with the VDAC1 N-terminal region. We also demonstrate that apoptosis induction is associated with VDAC oligomerization. These results show VDAC1 to be a component of the apoptosis machinery and offer new insight into the mechanism of cytochrome c release and how anti-apoptotic proteins regulate apoptosis and promote tumor cell survival.
Collapse
Affiliation(s)
- Salah Abu-Hamad
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Nir Arbel
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Doron Calo
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Laetitia Arzoine
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Adrian Israelson
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Nurit Keinan
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Ronit Ben-Romano
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Orr Friedman
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Varda Shoshan-Barmatz
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| |
Collapse
|
48
|
Duncan JA, Gao X, Huang MTH, O'Connor BP, Thomas CE, Willingham SB, Bergstralh DT, Jarvis GA, Sparling PF, Ting JPY. Neisseria gonorrhoeae activates the proteinase cathepsin B to mediate the signaling activities of the NLRP3 and ASC-containing inflammasome. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:6460-9. [PMID: 19414800 PMCID: PMC2722440 DOI: 10.4049/jimmunol.0802696] [Citation(s) in RCA: 202] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Neisseria gonorrhoeae is a common sexually transmitted pathogen that significantly impacts female fertility, neonatal health, and transmission of HIV worldwide. N. gonorrhoeae usually causes localized inflammation of the urethra and cervix by inducing production of IL-1beta and other inflammatory cytokines. Several NLR (nucleotide-binding domain, leucine-rich repeat) proteins are implicated in the formation of pro-IL-1beta-processing complexes called inflammasomes in response to pathogens. We demonstrate that NLRP3 (cryopyrin, NALP3) is the primary NLR required for IL-1beta/IL-18 secretion in response to N. gonorrhoeae in monocytes. We also show that N. gonorrhoeae infection promotes NLRP3-dependent monocytic cell death via pyronecrosis, a recently described pathway with morphological features of necrosis, including release of the strong inflammatory mediator HMBG1. Additionally, N. gonorrhoeae activates the cysteine protease cathepsin B as measured by the breakdown of a cathepsin B substrate. Inhibition of cathepsin B shows that this protease is an apical controlling step in the downstream activities of NLRP3 including IL-1beta production, pyronecrosis, and HMGB1 release. Nonpathogenic Neisseria strains (Neisseria cinerea and Neisseria flavescens) do not activate NLRP3 as robustly as N. gonorrhoeae. Conditioned medium from N. gonorrhoeae contains factors capable of initiating the NLRP3-mediated signaling events. Isolated N. gonorrhoeae lipooligosaccharide, a known virulence factor from this bacterium that is elaborated from the bacterium in the form of outer membrane blebs, activates both NLRP3-induced IL-1beta secretion and pyronecrosis. Our findings indicate that activation of NLRP3-mediated inflammatory response pathways is an important venue associated with host response and pathogenesis of N. gonorrhoeae.
Collapse
Affiliation(s)
- Joseph A Duncan
- Department of Medicine, Division of Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Deghmane AE, Veckerlé C, Giorgini D, Hong E, Ruckly C, Taha MK. Differential modulation of TNF-alpha-induced apoptosis by Neisseria meningitidis. PLoS Pathog 2009; 5:e1000405. [PMID: 19412525 PMCID: PMC2669886 DOI: 10.1371/journal.ppat.1000405] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Accepted: 03/31/2009] [Indexed: 01/01/2023] Open
Abstract
Infections by Neisseria meningitidis show duality between frequent asymptomatic carriage and occasional life-threatening disease. Bacterial and host factors involved in this balance are not fully understood. Cytopathic effects and cell damage may prelude to pathogenesis of isolates belonging to hyper-invasive lineages. We aimed to analyze cell–bacteria interactions using both pathogenic and carriage meningococcal isolates. Several pathogenic isolates of the ST-11 clonal complex and carriage isolates were used to infect human epithelial cells. Cytopathic effect was determined and apoptosis was scored using several methods (FITC-Annexin V staining followed by FACS analysis, caspase assays and DNA fragmentation). Only pathogenic isolates were able to induce apoptosis in human epithelial cells, mainly by lipooligosaccharide (endotoxin). Bioactive TNF-α is only detected when cells were infected by pathogenic isolates. At the opposite, carriage isolates seem to provoke shedding of the TNF-α receptor I (TNF-RI) from the surface that protect cells from apoptosis by chelating TNF-α. Ability to induce apoptosis and inflammation may represent major traits in the pathogenesis of N. meningitidis. However, our data strongly suggest that carriage isolates of meningococci reduce inflammatory response and apoptosis induction, resulting in the protection of their ecological niche at the human nasopharynx. Acquisition of Neisseria meningitidis often leads to asymptomatic colonization (carriage) and rarely results in invasive disease associated with tissue injury. The reasons that make disease-associated isolates (pathogenic isolates) but not asymptomatic carriage isolates able to invade the host to establish disease are not understood. Isolates belonging to the ST-11 clonal complex are most frequently associated with the disease and rarely found in carriers. These hyper-invasive isolates may be able to induce cytopathic effects in target cells. We aimed to investigate the cytopathic effect of meningococcal isolates on epithelial cells using both ST-11 pathogenic isolates and carriage isolates. We showed that cytopathic effects were strongly associated with pathogenic isolates and infected cells exhibited features of apoptosis. This effect is mainly mediated by bacterial endotoxin (lipooligosaccharide) and involved an autocrine signaling mechanism of secreted TNF-α through its receptor TNF-RI. In contrast, carriage isolates down-regulate TNF-RI on the surface of infected cells by increasing TNF-RI shedding into the medium. We suggest that chelating secreted TNF-α protects cells from apoptosis. Our results unravel a differential modulation of TNF-α signaling by meningococcal isolates leading to cell survival or death and would therefore contribute to better understanding of the duality between carriage and invasiveness.
Collapse
|
50
|
Sharma M, Rudel T. Apoptosis resistance in Chlamydia-infected cells: a fate worse than death? ACTA ACUST UNITED AC 2009; 55:154-61. [PMID: 19281566 DOI: 10.1111/j.1574-695x.2008.00515.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chlamydia has long been studied as an intracellular pathogen causing widespread diseases. In the last three decades, the field of apoptosis has rapidly emerged, and as a consequence, research on infectious diseases in general and on Chlamydia-host interaction in particular shifted to apoptosis modulation. Ten years ago, the first paper describing the drastic inhibition of apoptosis in Chlamydia-infected cells was published. In a reversal of roles, here was a pathogen that was strongly protecting cells in an organism against destruction by the organism's immune system. Since then, numerous studies have described apoptosis inhibition by Chlamydia and the mechanisms involved, but still there is a lack of general consensus on the subject. With a section of studies even reporting the induction of cell death by Chlamydia and not its inhibition, the field became even more diverse and complicated. In this review, an attempt is made to discuss the recent findings on apoptosis modulation by chlamydial species.
Collapse
Affiliation(s)
- Manu Sharma
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | | |
Collapse
|