1
|
Gaussmann S, Peschel R, Ott J, Zak KM, Sastre J, Delhommel F, Popowicz GM, Boekhoven J, Schliebs W, Erdmann R, Sattler M. Modulation of peroxisomal import by the PEX13 SH3 domain and a proximal FxxxF binding motif. Nat Commun 2024; 15:3317. [PMID: 38632234 PMCID: PMC11024197 DOI: 10.1038/s41467-024-47605-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/08/2024] [Indexed: 04/19/2024] Open
Abstract
Import of proteins into peroxisomes depends on PEX5, PEX13 and PEX14. By combining biochemical methods and structural biology, we show that the C-terminal SH3 domain of PEX13 mediates intramolecular interactions with a proximal FxxxF motif. The SH3 domain also binds WxxxF peptide motifs in the import receptor PEX5, demonstrating evolutionary conservation of such interactions from yeast to human. Strikingly, intramolecular interaction of the PEX13 FxxxF motif regulates binding of PEX5 WxxxF/Y motifs to the PEX13 SH3 domain. Crystal structures reveal how FxxxF and WxxxF/Y motifs are recognized by a non-canonical surface on the SH3 domain. The PEX13 FxxxF motif also mediates binding to PEX14. Surprisingly, the potential PxxP binding surface of the SH3 domain does not recognize PEX14 PxxP motifs, distinct from its yeast ortholog. Our data show that the dynamic network of PEX13 interactions with PEX5 and PEX14, mediated by diaromatic peptide motifs, modulates peroxisomal matrix import.
Collapse
Affiliation(s)
- Stefan Gaussmann
- Technical University of Munich, TUM School of Natural Sciences, Bavarian NMR Center and Department of Bioscience, Lichtenbergstr. 4, 85747, Garching, Germany
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Rebecca Peschel
- Institute of Biochemistry and Pathobiochemistry, Department of Systems Biology, Faculty of Medicine, Ruhr University Bochum, 44780, Bochum, Germany
| | - Julia Ott
- Institute of Biochemistry and Pathobiochemistry, Department of Systems Biology, Faculty of Medicine, Ruhr University Bochum, 44780, Bochum, Germany
| | - Krzysztof M Zak
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Judit Sastre
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Lichtenbergstr. 4, 85747, Garching, Germany
| | - Florent Delhommel
- Technical University of Munich, TUM School of Natural Sciences, Bavarian NMR Center and Department of Bioscience, Lichtenbergstr. 4, 85747, Garching, Germany
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Grzegorz M Popowicz
- Technical University of Munich, TUM School of Natural Sciences, Bavarian NMR Center and Department of Bioscience, Lichtenbergstr. 4, 85747, Garching, Germany
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Job Boekhoven
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Lichtenbergstr. 4, 85747, Garching, Germany
| | - Wolfgang Schliebs
- Institute of Biochemistry and Pathobiochemistry, Department of Systems Biology, Faculty of Medicine, Ruhr University Bochum, 44780, Bochum, Germany
| | - Ralf Erdmann
- Institute of Biochemistry and Pathobiochemistry, Department of Systems Biology, Faculty of Medicine, Ruhr University Bochum, 44780, Bochum, Germany.
| | - Michael Sattler
- Technical University of Munich, TUM School of Natural Sciences, Bavarian NMR Center and Department of Bioscience, Lichtenbergstr. 4, 85747, Garching, Germany.
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.
| |
Collapse
|
2
|
Mehrabipour M, Jasemi NSK, Dvorsky R, Ahmadian MR. A Systematic Compilation of Human SH3 Domains: A Versatile Superfamily in Cellular Signaling. Cells 2023; 12:2054. [PMID: 37626864 PMCID: PMC10453029 DOI: 10.3390/cells12162054] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
SRC homology 3 (SH3) domains are fundamental modules that enable the assembly of protein complexes through physical interactions with a pool of proline-rich/noncanonical motifs from partner proteins. They are widely studied modular building blocks across all five kingdoms of life and viruses, mediating various biological processes. The SH3 domains are also implicated in the development of human diseases, such as cancer, leukemia, osteoporosis, Alzheimer's disease, and various infections. A database search of the human proteome reveals the existence of 298 SH3 domains in 221 SH3 domain-containing proteins (SH3DCPs), ranging from 13 to 720 kilodaltons. A phylogenetic analysis of human SH3DCPs based on their multi-domain architecture seems to be the most practical way to classify them functionally, with regard to various physiological pathways. This review further summarizes the achievements made in the classification of SH3 domain functions, their binding specificity, and their significance for various diseases when exploiting SH3 protein modular interactions as drug targets.
Collapse
Affiliation(s)
- Mehrnaz Mehrabipour
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
| | - Neda S. Kazemein Jasemi
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
| | - Radovan Dvorsky
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
- Center for Interdisciplinary Biosciences, P. J. Šafárik University, 040 01 Košice, Slovakia
| | - Mohammad R. Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
| |
Collapse
|
3
|
Experimental Characterization of the Interaction between the N-Terminal SH3 Domain of Crkl and C3G. Int J Mol Sci 2021; 22:ijms222413174. [PMID: 34947971 PMCID: PMC8705818 DOI: 10.3390/ijms222413174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/25/2021] [Accepted: 12/03/2021] [Indexed: 11/16/2022] Open
Abstract
Crkl is a protein involved in the onset of several cancer pathologies that exerts its function only through its protein-protein interaction domains, a SH2 domain and two SH3 domains. SH3 domains are small protein interaction modules that mediate the binding and recognition of proline-rich sequences. One of the main physiological interactors of Crkl is C3G (also known as RAPGEF1), an interaction with key implications in regulating cellular growth and differentiation, cell morphogenesis and adhesion processes. Thus, understanding the interaction between Crkl and C3G is fundamental to gaining information about the molecular determinants of the several cancer pathologies in which these proteins are involved. In this paper, through a combination of fast kinetics at different experimental conditions and site-directed mutagenesis, we characterize the binding reaction between the N-SH3 domain of Crkl and a peptide mimicking a specific portion of C3G. Our results show a clear effect of pH on the stability of the complex, due to the protonation of negatively charged residues in the binding pocket of N-SH3. Our results are discussed under the light of previous work on SH3 domains.
Collapse
|
4
|
Reglinski K, Steinfort-Effelsberg L, Sezgin E, Klose C, Platta HW, Girzalsky W, Eggeling C, Erdmann R. Fluidity and Lipid Composition of Membranes of Peroxisomes, Mitochondria and the ER From Oleic Acid-Induced Saccharomyces cerevisiae. Front Cell Dev Biol 2020; 8:574363. [PMID: 33195209 PMCID: PMC7658010 DOI: 10.3389/fcell.2020.574363] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/05/2020] [Indexed: 01/08/2023] Open
Abstract
The maintenance of a fluid lipid bilayer is key for organelle function and cell viability. Given the critical role of lipid compositions in determining membrane properties and organelle identity, it is clear that cells must have elaborate mechanism for membrane maintenance during adaptive responses to environmental conditions. Emphasis of the presented study is on peroxisomes, oleic acid-inducible organelles that are essential for the growth of yeast under conditions of oleic acid as single carbon source. Here, we isolated peroxisomes, mitochondria and ER from oleic acid-induced Saccharomyces cerevisiae and determined the lipid composition of their membranes using shotgun lipidomics and compared it to lipid ordering using fluorescence microscopy. In comparison to mitochondrial and ER membranes, the peroxisomal membranes were slightly more disordered and characterized by a distinct enrichment of phosphaditylinositol, indicating an important role of this phospholipid in peroxisomal membrane associated processes.
Collapse
Affiliation(s)
- Katharina Reglinski
- Leibniz-Institute of Photonic Technologies, Jena, Germany
- Institute of Applied Optics and Biophysics, Friedrich-Schiller University Jena, Jena, Germany
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- University Hospital Jena, Jena, Germany
| | | | - Erdinc Sezgin
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Science for Life Laboratory, Department of Women’s and Children’s Health, Karolinska Institutet, Solna, Sweden
| | | | - Harald W. Platta
- Biochemistry of Intracelluar Transport, Ruhr-University Bochum, Bochum, Germany
| | - Wolfgang Girzalsky
- Systems Biochemistry, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
| | - Christian Eggeling
- Leibniz-Institute of Photonic Technologies, Jena, Germany
- Institute of Applied Optics and Biophysics, Friedrich-Schiller University Jena, Jena, Germany
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Jena Center for Soft Matter (JCSM), Jena, Germany
| | - Ralf Erdmann
- Systems Biochemistry, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
5
|
Wang JY, Li L, Chai RY, Qiu HP, Zhang Z, Wang YL, Liu XH, Lin FC, Sun GC. Pex13 and Pex14, the key components of the peroxisomal docking complex, are required for peroxisome formation, host infection and pathogenicity-related morphogenesis in Magnaporthe oryzae. Virulence 2020; 10:292-314. [PMID: 30905264 PMCID: PMC6527019 DOI: 10.1080/21505594.2019.1598172] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Peroxisomes are ubiquitous organelles in eukaryotic cells that fulfill multiple important metabolisms. Pex13 and Pex14 are key components of the peroxisomal docking complex in yeasts and mammals. In the present work, we functionally characterized the homologues of Pex13 and Pex14 (Mopex13 and Mopex14) in the rice blast fungus Magnaporthe oryzae. Mopex13 and Mopex14 were peroxisomal membrane distributed and were both essential for the maintenance of Mopex14/17 on the peroxisomal membrane. Mopex13 and Mopex14 interacted with each other, and with Mopex14/17 and peroxisomal matrix protein receptors. Disruption of Mopex13 and Mopex14 resulted in a cytoplasmic distribution of peroxisomal matrix proteins and the Woronin body protein Hex1. In the ultrastructure of Δmopex13 and Δmopex14 cells, peroxisomes were detected on fewer occasions, and the Woronin bodies and related structures were dramatically affected. The Δmopex13 and Δmopex14 mutants were reduced in vegetative growth, conidial generation and mycelial melanization, in addition, Δmopex13 showed reduced conidial germination and appressorial formation and abnomal appressorial morphology. Both Δmopex13 and Δmopex14 were deficient in appressorial turgor and nonpathogenic to their hosts. The infection failures in Δmopex13 and Δmopex14 were also due to their reduced ability to degrade fatty acids and to endure reactive oxygen species and cell wall-disrupting compounds. Additionally, Mopex13 and Mopex14 were required for the sexual reproduction of the fungus. These data indicate that Mopex13 and Mopex14, as key components of the peroxisomal docking complex, are indispensable for peroxisomal biogenesis, fungal development and pathogenicity in the rice blast fungus.
Collapse
Affiliation(s)
- Jiao-Yu Wang
- a State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection Microbiology , Zhejiang Academy of Agricultural Sciences , Hangzhou , China
| | - Ling Li
- a State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection Microbiology , Zhejiang Academy of Agricultural Sciences , Hangzhou , China.,b The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, School of Agricultural and Food Sciences , Zhejiang Agriculture and Forest University , Hangzhou , China
| | - Rong-Yao Chai
- a State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection Microbiology , Zhejiang Academy of Agricultural Sciences , Hangzhou , China
| | - Hai-Ping Qiu
- a State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection Microbiology , Zhejiang Academy of Agricultural Sciences , Hangzhou , China
| | - Zhen Zhang
- a State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection Microbiology , Zhejiang Academy of Agricultural Sciences , Hangzhou , China
| | - Yan-Li Wang
- a State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection Microbiology , Zhejiang Academy of Agricultural Sciences , Hangzhou , China
| | - Xiao-Hong Liu
- c State Key Laboratory for Rice Biology, Biotechnology Institute , Zhejiang University , Hangzhou , China
| | - Fu-Cheng Lin
- c State Key Laboratory for Rice Biology, Biotechnology Institute , Zhejiang University , Hangzhou , China
| | - Guo-Chang Sun
- a State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection Microbiology , Zhejiang Academy of Agricultural Sciences , Hangzhou , China
| |
Collapse
|
6
|
Andersen TCB, Kristiansen PE, Huszenicza Z, Johansson MU, Gopalakrishnan RP, Kjelstrup H, Boyken S, Sundvold-Gjerstad V, Granum S, Sørli M, Backe PH, Fulton DB, Karlsson BG, Andreotti AH, Spurkland A. The SH3 domains of the protein kinases ITK and LCK compete for adjacent sites on T cell-specific adapter protein. J Biol Chem 2019; 294:15480-15494. [PMID: 31484725 DOI: 10.1074/jbc.ra119.008318] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 08/22/2019] [Indexed: 12/22/2022] Open
Abstract
T-cell activation requires stimulation of specific intracellular signaling pathways in which protein-tyrosine kinases, phosphatases, and adapter proteins interact to transmit signals from the T-cell receptor to the nucleus. Interactions of LCK proto-oncogene, SRC family tyrosine kinase (LCK), and the IL-2-inducible T cell kinase (ITK) with the T cell-specific adapter protein (TSAD) promotes LCK-mediated phosphorylation and thereby ITK activation. Both ITK and LCK interact with TSAD's proline-rich region (PRR) through their Src homology 3 (SH3) domains. Whereas LCK may also interact with TSAD through its SH2 domain, ITK interacts with TSAD only through its SH3 domain. To begin to understand on a molecular level how the LCK SH3 and ITK SH3 domains interact with TSAD in human HEK293T cells, here we combined biochemical analyses with NMR spectroscopy. We found that the ITK and LCK SH3 domains potentially have adjacent and overlapping binding sites within the TSAD PRR amino acids (aa) 239-274. Pulldown experiments and NMR spectroscopy revealed that both domains may bind to TSAD aa 239-256 and aa 257-274. Co-immunoprecipitation experiments further revealed that both domains may also bind simultaneously to TSAD aa 242-268. Accordingly, NMR spectroscopy indicated that the SH3 domains may compete for these two adjacent binding sites. We propose that once the associations of ITK and LCK with TSAD promote the ITK and LCK interaction, the interactions among TSAD, ITK, and LCK are dynamically altered by ITK phosphorylation status.
Collapse
Affiliation(s)
- Thorny Cesilie Bie Andersen
- Institute of Basic Medical Sciences, Department of Molecular Medicine, University of Oslo, 0317 Oslo, Norway
| | | | - Zsuzsa Huszenicza
- Institute of Basic Medical Sciences, Department of Molecular Medicine, University of Oslo, 0317 Oslo, Norway
| | - Maria U Johansson
- Swedish NMR Centre at the University of Gothenburg, Gothenburg 413 90, Sweden
| | | | - Hanna Kjelstrup
- Institute of Basic Medical Sciences, Department of Molecular Medicine, University of Oslo, 0317 Oslo, Norway
| | - Scott Boyken
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011-1079
| | - Vibeke Sundvold-Gjerstad
- Institute of Basic Medical Sciences, Department of Molecular Medicine, University of Oslo, 0317 Oslo, Norway
| | - Stine Granum
- Institute of Basic Medical Sciences, Department of Molecular Medicine, University of Oslo, 0317 Oslo, Norway
| | - Morten Sørli
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1432 Ås, Norway
| | - Paul Hoff Backe
- Department of Microbiology, Oslo University Hospital and University of Oslo, 0424 Oslo, Norway.,Department of Medical Biochemistry, Oslo University Hospital and University of Oslo, 0424 Oslo, Norway
| | - D Bruce Fulton
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011-1079
| | - B Göran Karlsson
- Swedish NMR Centre at the University of Gothenburg, Gothenburg 413 90, Sweden
| | - Amy H Andreotti
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011-1079
| | - Anne Spurkland
- Institute of Basic Medical Sciences, Department of Molecular Medicine, University of Oslo, 0317 Oslo, Norway
| |
Collapse
|
7
|
Barros-Barbosa A, Rodrigues TA, Ferreira MJ, Pedrosa AG, Teixeira NR, Francisco T, Azevedo JE. The intrinsically disordered nature of the peroxisomal protein translocation machinery. FEBS J 2018; 286:24-38. [PMID: 30443986 DOI: 10.1111/febs.14704] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/14/2018] [Indexed: 12/18/2022]
Abstract
Despite having a membrane that is impermeable to all but the smallest of metabolites, peroxisomes acquire their newly synthesized (cytosolic) matrix proteins in an already folded conformation. In some cases, even oligomeric proteins have been reported to translocate the organelle membrane. The protein sorting machinery that accomplishes this feat must be rather flexible and, unsurprisingly, several of its key components have large intrinsically disordered domains. Here, we provide an overview on these domains and their interactions trying to infer their functional roles in this protein sorting pathway.
Collapse
Affiliation(s)
- Aurora Barros-Barbosa
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Portugal
| | - Tony A Rodrigues
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Portugal
| | - Maria J Ferreira
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Portugal
| | - Ana G Pedrosa
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Portugal
| | - Nélson R Teixeira
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Portugal
| | - Tânia Francisco
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Portugal
| | - Jorge E Azevedo
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Portugal
| |
Collapse
|
8
|
Barros-Barbosa A, Ferreira MJ, Rodrigues TA, Pedrosa AG, Grou CP, Pinto MP, Fransen M, Francisco T, Azevedo JE. Membrane topologies of PEX13 and PEX14 provide new insights on the mechanism of protein import into peroxisomes. FEBS J 2018; 286:205-222. [PMID: 30414318 DOI: 10.1111/febs.14697] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/19/2018] [Accepted: 11/07/2018] [Indexed: 01/19/2023]
Abstract
PEX13 and PEX14 are two core components of the so-called peroxisomal docking/translocation module, the transmembrane hydrophilic channel through which newly synthesized peroxisomal proteins are translocated into the organelle matrix. The two proteins interact with each other and with PEX5, the peroxisomal matrix protein shuttling receptor, through relatively well characterized domains. However, the topologies of these membrane proteins are still poorly defined. Here, we subjected proteoliposomes containing PEX13 or PEX14 and purified rat liver peroxisomes to protease-protection assays and analyzed the protected protein fragments by mass spectrometry, Edman degradation and western blotting using antibodies directed to specific domains of the proteins. Our results indicate that PEX14 is a bona fide intrinsic membrane protein with a Nin -Cout topology, and that PEX13 adopts a Nout -Cin topology, thus exposing its carboxy-terminal Src homology 3 [SH3] domain into the organelle matrix. These results reconcile several enigmatic findings previously reported on PEX13 and PEX14 and provide new insights into the organization of the peroxisomal protein import machinery. ENZYMES: Trypsin, EC3.4.21.4; Proteinase K, EC3.4.21.64; Tobacco etch virus protease, EC3.4.22.44.
Collapse
Affiliation(s)
- Aurora Barros-Barbosa
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Maria J Ferreira
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Tony A Rodrigues
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Ana G Pedrosa
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Cláudia P Grou
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Portugal
| | - Manuel P Pinto
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Portugal
| | - Marc Fransen
- Departement Cellulaire en Moleculaire Geneeskunde, KU Leuven - Universiteit Leuven, Belgium
| | - Tânia Francisco
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Jorge E Azevedo
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| |
Collapse
|
9
|
The peroxisomal AAA-ATPase Pex1/Pex6 unfolds substrates by processive threading. Nat Commun 2018; 9:135. [PMID: 29321502 PMCID: PMC5762779 DOI: 10.1038/s41467-017-02474-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 12/04/2017] [Indexed: 12/15/2022] Open
Abstract
Pex1 and Pex6 form a heterohexameric motor essential for peroxisome biogenesis and function, and mutations in these AAA-ATPases cause most peroxisome-biogenesis disorders in humans. The tail-anchored protein Pex15 recruits Pex1/Pex6 to the peroxisomal membrane, where it performs an unknown function required for matrix-protein import. Here we determine that Pex1/Pex6 from S. cerevisiae is a protein translocase that unfolds Pex15 in a pore-loop-dependent and ATP-hydrolysis-dependent manner. Our structural studies of Pex15 in isolation and in complex with Pex1/Pex6 illustrate that Pex15 binds the N-terminal domains of Pex6, before its C-terminal disordered region engages with the pore loops of the motor, which then processively threads Pex15 through the central pore. Furthermore, Pex15 directly binds the cargo receptor Pex5, linking Pex1/Pex6 to other components of the peroxisomal import machinery. Our results thus support a role of Pex1/Pex6 in mechanical unfolding of peroxins or their extraction from the peroxisomal membrane during matrix-protein import. Pex1 and Pex6 form a heterohexameric Type-2 AAA-ATPase motor whose function in peroxisomal matrix-protein import is still debated. Here, the authors combine structural, biochemical, and cell-biological approaches to show that Pex1/Pex6 is a protein unfoldase, which supports a role in mechanical unfolding of peroxin proteins.
Collapse
|
10
|
Pettinello R, Redmond AK, Secombes CJ, Macqueen DJ, Dooley H. Evolutionary history of the T cell receptor complex as revealed by small-spotted catshark (Scyliorhinus canicula). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 74:125-135. [PMID: 28433528 DOI: 10.1016/j.dci.2017.04.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/18/2017] [Accepted: 04/18/2017] [Indexed: 06/07/2023]
Abstract
In every jawed vertebrate species studied so far, the T cell receptor (TCR) complex is composed of two different TCR chains (α/β or γ/δ) and a number of CD3 subunits responsible for transmitting signals into the T cell. In this study, we characterised all of the TCR and CD3 genes of small-spotted catshark (Scyliorhinus canicula) and analysed their expression in a broad range of tissues. While the TCR complex is highly conserved across jawed vertebrates, we identified a number of differences in catshark, most notably the presence of two copies of both TCRβ and CD3γδ, and the absence of a functionally-important proline rich region from CD3ε. We also demonstrate that TCRβ has duplicated independently multiple times in jawed vertebrate evolution, bringing additional diversity to the TCR complex. This study reveals new insights about the evolutionary history of the TCR complex and raises new avenues for future exploration.
Collapse
Affiliation(s)
- Rita Pettinello
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom.
| | - Anthony K Redmond
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom; Centre for Genome-Enabled Biology & Medicine, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom
| | - Christopher J Secombes
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom
| | - Daniel J Macqueen
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom
| | - Helen Dooley
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom; Dept. Microbiology & Immunology, University of Maryland School of Medicine, Institute of Marine & Environmental Technology, Baltimore MD21202, USA
| |
Collapse
|
11
|
Francisco T, Rodrigues TA, Dias AF, Barros-Barbosa A, Bicho D, Azevedo JE. Protein transport into peroxisomes: Knowns and unknowns. Bioessays 2017; 39. [PMID: 28787099 DOI: 10.1002/bies.201700047] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Peroxisomal matrix proteins are synthesized on cytosolic ribosomes and rapidly transported into the organelle by a complex machinery. The data gathered in recent years suggest that this machinery operates through a syringe-like mechanism, in which the shuttling receptor PEX5 - the "plunger" - pushes a newly synthesized protein all the way through a peroxisomal transmembrane protein complex - the "barrel" - into the matrix of the organelle. Notably, insertion of cargo-loaded receptor into the "barrel" is an ATP-independent process, whereas extraction of the receptor back into the cytosol requires its monoubiquitination and the action of ATP-dependent mechanoenzymes. Here, we review the main data behind this model.
Collapse
Affiliation(s)
- Tânia Francisco
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Tony A Rodrigues
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Ana F Dias
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Aurora Barros-Barbosa
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Diana Bicho
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Jorge E Azevedo
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| |
Collapse
|
12
|
Gkourtsa A, van den Burg J, Avula T, Hochstenbach F, Distel B. Binding of a proline-independent hydrophobic motif by the Candida albicans Rvs167-3 SH3 domain. Microbiol Res 2016; 190:27-36. [PMID: 27393996 DOI: 10.1016/j.micres.2016.04.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 04/22/2016] [Accepted: 04/29/2016] [Indexed: 10/21/2022]
Abstract
Src-homology 3 (SH3) domains are small protein-protein interaction modules. While most SH3 domains bind to proline-x-x-proline (PxxP) containing motifs in their binding partners, some SH3 domains recognize motifs other than proline-based sequences. Recently, we showed that the SH3 domain of Candida albicans Rvs167-3 binds peptides enriched in hydrophobic residues and containing a single proline residue (RΦxΦxΦP, where x is any amino acid and Φ is a hydrophobic residue). Here, we demonstrate that the proline in this motif is not required for Rvs167-3 SH3 recognition. Through mutagenesis studies we show that binding of the peptide ligand involves the conserved tryptophan in the canonical PxxP binding pocket as well as residues in the extended n-Src loop of Rvs167-3 SH3. Our studies establish a novel, proline-independent, binding sequence for Rvs167-3 SH3 (RΦxΦxΦ) that is comprised of a positively charged residue (arginine) and three hydrophobic residues.
Collapse
Affiliation(s)
- Areti Gkourtsa
- Department of Medical Biochemistry, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Janny van den Burg
- Department of Medical Biochemistry, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Teja Avula
- Department of Medical Biochemistry, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Frans Hochstenbach
- Department of Medical Biochemistry, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Ben Distel
- Department of Medical Biochemistry, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
13
|
Žárský V, Tachezy J. Evolutionary loss of peroxisomes--not limited to parasites. Biol Direct 2015; 10:74. [PMID: 26700421 PMCID: PMC4690255 DOI: 10.1186/s13062-015-0101-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/14/2015] [Indexed: 11/26/2022] Open
Abstract
Background Peroxisomes are ubiquitous eukaryotic organelles that compartmentalize a variety of metabolic pathways that are primarily related to the oxidative metabolism of lipids and the detoxification of reactive oxygen species. The importance of peroxisomes is underscored by serious human diseases, which are caused by disorders in peroxisomal functions. Some eukaryotic lineages, however, lost peroxisomes. These organisms are mainly anaerobic protists and some parasitic lineages including Plasmodium and parasitic platyhelminths. Here we performed a systematic in-silico analysis of peroxisomal markers among metazoans to assess presence of peroxisomes and peroxisomal enzymes. Results Our analyses reveal an obvious loss of peroxisomes in all tested flukes, tapeworms, and parasitic roundworms of the order Trichocephalida. Intriguingly, peroxisomal markers are absent from the genome of the free-living tunicate Oikopleura dioica, which inhabits oxygen-containing niches of sea waters. We further map the presence and predicted subcellular localization of putative peroxisomal enzymes, showing that in organisms without the peroxisomal markers the set of these enzymes is highly reduced and none of them contains a predicted peroxisomal targeting signal. Conclusions We have shown that several lineages of metazoans independently lost peroxisomes and that the loss of peroxisomes was not exclusively associated with adaptation to anaerobic habitats and a parasitic lifestyle. Although the reason for the loss of peroxisomes from O. dioica is unclear, organisms lacking peroxisomes, including the free-living O. dioica, share certain typical r-selected traits: high fecundity, limited ontogenesis and relatively low complexity of the gene content. We hypothesize that peroxisomes are generally the first compartment to be lost during evolutionary reductions of the eukaryotic cell. Reviewers This article was reviewed by Michael Gray and Nick Lane. Electronic supplementary material The online version of this article (doi:10.1186/s13062-015-0101-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vojtěch Žárský
- Department of Parasitology, Faculty of Science, Charles University in Prague, Viničná 7, 128 44, Prague, Czech Republic.
| | - Jan Tachezy
- Department of Parasitology, Faculty of Science, Charles University in Prague, Viničná 7, 128 44, Prague, Czech Republic.
| |
Collapse
|
14
|
Crystal structure of Src-like adaptor protein 2 reveals close association of SH3 and SH2 domains through β-sheet formation. Cell Signal 2013; 25:2702-8. [DOI: 10.1016/j.cellsig.2013.08.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Accepted: 08/30/2013] [Indexed: 01/17/2023]
|
15
|
Lipid binding by the Unique and SH3 domains of c-Src suggests a new regulatory mechanism. Sci Rep 2013; 3:1295. [PMID: 23416516 PMCID: PMC3575015 DOI: 10.1038/srep01295] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 02/01/2013] [Indexed: 12/18/2022] Open
Abstract
c-Src is a non-receptor tyrosine kinase involved in numerous signal transduction pathways. The kinase, SH3 and SH2 domains of c-Src are attached to the membrane-anchoring SH4 domain through the flexible Unique domain. Here we show intra- and intermolecular interactions involving the Unique and SH3 domains suggesting the presence of a previously unrecognized additional regulation layer in c-Src. We have characterized lipid binding by the Unique and SH3 domains, their intramolecular interaction and its allosteric modulation by a SH3-binding peptide or by Calcium-loaded calmodulin binding to the Unique domain. We also show reduced lipid binding following phosphorylation at conserved sites of the Unique domain. Finally, we show that injection of full-length c-Src with mutations that abolish lipid binding by the Unique domain causes a strong in vivo phenotype distinct from that of wild-type c-Src in a Xenopus oocyte model system, confirming the functional role of the Unique domain in c-Src regulation.
Collapse
|
16
|
Krause C, Rosewich H, Woehler A, Gärtner J. Functional analysis of PEX13 mutation in a Zellweger syndrome spectrum patient reveals novel homooligomerization of PEX13 and its role in human peroxisome biogenesis. Hum Mol Genet 2013; 22:3844-57. [PMID: 23716570 DOI: 10.1093/hmg/ddt238] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In humans, the concerted action of at least 13 different peroxisomal PEX proteins is needed for proper peroxisome biogenesis. Mutations in any of these PEX genes can lead to lethal neurometabolic disorders of the Zellweger syndrome spectrum (ZSS). Previously, we identified the W313G mutation located within the SH3 domain of the peroxisomal protein, PEX13. As this tryptophan residue is highly conserved in almost all known SH3 proteins, we investigated the pathogenic mechanism of the W313G mutation and its role in PEX13 interactions and functions in peroxisome biogenesis. Here, we report for the first time that human PEX13 interacts with itself in peroxisomes in living cells. We demonstrate that the import of PTS1 (peroxisomal targeting signal 1) proteins is specifically disrupted when homooligomerization of PEX13 is interrupted. Live cell FRET microscopy in living cells as well as co-immunoprecipitation experiments reveal that the highly conserved W313 residue is important for self-association of PEX13 but is not required for interaction with PEX14, a well-established interaction partner at the peroxisomal membrane. Experiments with truncated constructs indicate that although the W313G mutation resides in the C-terminal SH3 domain, the N-terminal half is necessary for peroxisomal localization, which in turn appears to be crucial for homooligomerization. Furthermore, rescue of homooligomerization in the W313G mutant cells through complementation with truncation constructs restores import of peroxisomal matrix proteins. Taken together, the thorough analyses of a ZSS patient mutation unraveled the general cell biological function of PEX13 and its mechanism in the import of peroxisomal matrix PTS1 proteins.
Collapse
|
17
|
Pex5p stabilizes Pex14p: a study using a newly isolated pex5 CHO cell mutant, ZPEG101. Biochem J 2013; 449:195-207. [PMID: 23009329 DOI: 10.1042/bj20120911] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Pex5p [PTS (peroxisome-targeting signal) type 1 receptor] plays an essential role in peroxisomal matrix protein import. In the present study, we isolated a novel PEX5-deficient CHO (Chinese-hamster ovary) cell mutant, termed ZPEG101, showing typical peroxisomal import defects of both PTS1 and PTS2 proteins. ZPEG101 is distinct from other known pex5 CHO mutants in its Pex5p expression. An undetectable level of Pex5p in ZPEG101 results in unstable Pex14p, which is due to inefficient translocation to the peroxisomal membrane. All of the mutant phenotypes of ZPEG101 are restored by expression of wild-type Pex5pL, a longer form of Pex5p, suggesting a role for Pex5p in sustaining the levels of Pex14p in addition to peroxisomal matrix protein import. Complementation analysis using various Pex5p mutants revealed that in the seven pentapeptide WXXXF/Y motifs in Pex5pL, known as the multiple binding sites for Pex14p, the fifth motif is an auxiliary binding site for Pex14p and is required for Pex14p stability. Furthermore, we found that Pex5p-Pex13p interaction is essential for the import of PTS1 proteins as well as catalase, but not for that of PTS2 proteins. Therefore ZPEG101 with no Pex5p would be a useful tool for investigating Pex5p function and delineating the mechanisms underlying peroxisomal matrix protein import.
Collapse
|
18
|
van de Meerakker JBA, Christiaans I, Barnett P, Lekanne Deprez RH, Ilgun A, Mook ORF, Mannens MMAM, Lam J, Wilde AAM, Moorman AFM, Postma AV. A novel alpha-tropomyosin mutation associates with dilated and non-compaction cardiomyopathy and diminishes actin binding. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:833-9. [PMID: 23147248 DOI: 10.1016/j.bbamcr.2012.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 10/30/2012] [Accepted: 11/02/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND Dilated cardiomyopathy (DCM) is characterized by idiopathic dilatation and systolic contractile dysfunction of the ventricle(s) leading to an impaired systolic function. The origin of DCM is heterogeneous, but genetic transmission of the disease accounts for up to 50% of the cases. Mutations in alpha-tropomyosin (TPM1), a thin filament protein involved in structural and regulatory roles in muscle cells, are associated with hypertrophic cardiomyopathy (HCM) and very rarely with DCM. METHODS AND RESULTS Here we present a large four-generation family in which DCM is inherited as an autosomal dominant trait. Six family members have a cardiomyopathy with the age of diagnosis ranging from 5 months to 52 years. The youngest affected was diagnosed with dilated and non-compaction cardiomyopathy (NCCM) and died at the age of five. Three additional children died young of suspected heart problems. We mapped the phenotype to chromosome 15 and subsequently identified a missense mutation in TPM1, resulting in a p.D84N amino acid substitution. In addition we sequenced 23 HCM/DCM genes using next generation sequencing. The TPM1 p.D84N was the only mutation identified. The mutation co-segregates with all clinically affected family members and significantly weakens the binding of tropomyosin to actin by 25%. CONCLUSIONS We show that a mutation in TPM1 is associated with DCM and a lethal, early onset form of NCCM, probably as a result of diminished actin binding caused by weakened charge-charge interactions. Consequently, the screening of TPM1 in patients and families with DCM and/or (severe, early onset forms of) NCCM is warranted. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction.
Collapse
|
19
|
Saksela K, Permi P. SH3 domain ligand binding: What's the consensus and where's the specificity? FEBS Lett 2012; 586:2609-14. [PMID: 22710157 DOI: 10.1016/j.febslet.2012.04.042] [Citation(s) in RCA: 187] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 04/19/2012] [Accepted: 04/19/2012] [Indexed: 10/28/2022]
Abstract
An increasing number of SH3 domain-ligand interactions continue to be described that involve the conserved peptide-binding surface of SH3, but structurally deviate substantially from canonical docking of consensus motif-containing SH3 ligands. Indeed, it appears that that the relative frequency and importance of these types of interactions may have been underestimated. Instead of atypical, we propose referring to such peptides as type I or II (depending on the binding orientation) non-consensus ligands. Here we discuss the structural basis of non-consensus SH3 ligand binding and the dominant role of the SH3 domain specificity zone in selective target recognition, and review some of the best-characterized examples of such interactions.
Collapse
Affiliation(s)
- Kalle Saksela
- Department of Virology, Haartman Institute, University of Helsinki and HUSLAB, University of Helsinki Central Hospital, FI-00014 Helsinki, Finland.
| | | |
Collapse
|
20
|
Feuerstein S, Solyom Z, Aladag A, Favier A, Schwarten M, Hoffmann S, Willbold D, Brutscher B. Transient structure and SH3 interaction sites in an intrinsically disordered fragment of the hepatitis C virus protein NS5A. J Mol Biol 2012; 420:310-23. [PMID: 22543239 DOI: 10.1016/j.jmb.2012.04.023] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 04/21/2012] [Indexed: 12/01/2022]
Abstract
Understanding the molecular mechanisms involved in virus replication and particle assembly is of primary fundamental and biomedical importance. Intrinsic conformational disorder plays a prominent role in viral proteins and their interaction with other viral and host cell proteins via transiently populated structural elements. Here, we report on the results of an investigation of an intrinsically disordered 188-residue fragment of the hepatitis C virus non-structural protein 5A (NS5A), which contains a classical poly-proline Src homology 3 (SH3) binding motif, using sensitivity- and resolution-optimized multidimensional NMR methods, complemented by small-angle X-ray scattering data. Our study provides detailed atomic-resolution information on transient local and long-range structure, as well as fast time scale dynamics in this NS5A fragment. In addition, we could characterize two distinct interaction modes with the SH3 domain of Bin1 (bridging integrator protein 1), a pro-apoptotic tumor suppressor. Despite being largely disordered, the protein contains three regions that transiently adopt α-helical structures, partly stabilized by long-range tertiary interactions. Two of these transient α-helices form a noncanonical SH3-binding motif, which allows low-affinity SH3 binding. Our results contribute to a better understanding of the role of the NS5A protein during hepatitis C virus infection. The present work also highlights the power of NMR spectroscopy to characterize multiple binding events including short-lived transient interactions between globular and highly disordered proteins.
Collapse
Affiliation(s)
- Sophie Feuerstein
- Institut de Biologie Structurale, Université Grenoble 1, 41 rue Jules Horowitz, 38027 Grenoble Cedex 1, France
| | | | | | | | | | | | | | | |
Collapse
|
21
|
McDonald CB, Seldeen KL, Deegan BJ, Bhat V, Farooq A. Binding of the cSH3 domain of Grb2 adaptor to two distinct RXXK motifs within Gab1 docker employs differential mechanisms. J Mol Recognit 2010; 24:585-96. [PMID: 21472810 DOI: 10.1002/jmr.1080] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 07/26/2010] [Accepted: 07/26/2010] [Indexed: 12/29/2022]
Abstract
A ubiquitous component of cellular signaling machinery, Gab1 docker plays a pivotal role in routing extracellular information in the form of growth factors and cytokines to downstream targets such as transcription factors within the nucleus. Here, using isothermal titration calorimetry (ITC) in combination with macromolecular modeling (MM), we show that although Gab1 contains four distinct RXXK motifs, designated G1, G2, G3, and G4, only G1 and G2 motifs bind to the cSH3 domain of Grb2 adaptor and do so with distinct mechanisms. Thus, while the G1 motif strictly requires the PPRPPKP consensus sequence for high-affinity binding to the cSH3 domain, the G2 motif displays preference for the PXVXRXLKPXR consensus. Such sequential differences in the binding of G1 and G2 motifs arise from their ability to adopt distinct polyproline type II (PPII)- and 3(10) -helical conformations upon binding to the cSH3 domain, respectively. Collectively, our study provides detailed biophysical insights into a key protein-protein interaction involved in a diverse array of signaling cascades central to health and disease.
Collapse
Affiliation(s)
- Caleb B McDonald
- Department of Biochemistry & Molecular Biology, USylvester Braman Family Breast Cancer Institute, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | | | | | | | | |
Collapse
|
22
|
Galland N, Michels PAM. Comparison of the peroxisomal matrix protein import system of different organisms. Exploration of possibilities for developing inhibitors of the import system of trypanosomatids for anti-parasite chemotherapy. Eur J Cell Biol 2010; 89:621-37. [PMID: 20435370 DOI: 10.1016/j.ejcb.2010.04.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 03/28/2010] [Accepted: 04/06/2010] [Indexed: 10/19/2022] Open
Abstract
In recent decades, research on peroxisome biogenesis has been particularly boosted since the role of these organelles in metabolism became unraveled. Indeed in plants, yeasts and fungi, peroxisomes play an important role in the adaptation of metabolism during developmental processes and/or altered environmental conditions. In mammals their importance is illustrated by the fact that several severe human inherited diseases have been identified as peroxisome biogenesis disorders (PBD). Particularly interesting are the glycosomes - peroxisome-like organelles in trypanosomatids where the major part of the glycolytic pathway is sequestered - because it was demonstrated that proper compartmentalization of matrix proteins inside glycosomes is essential for the parasite. Although the overall process of peroxisome biogenesis seems well conserved between species, careful study of the literature reveals nonetheless many differences at various steps. In this review, we present a comparison of the first two steps of peroxisome biogenesis - receptor loading and docking at the peroxisomal membrane - in yeasts, mammals, plants and trypanosomatids and highlight major differences in the import process between species despite the conservation of (some of) the proteins involved. Some of the unique features of the process as it occurs in trypanosomatids will be discussed with regard to the possibilities for exploiting them for the development of compounds that could specifically disturb interactions between trypanosomatid peroxins. This strategy could eventually lead to the discovery of drugs against the diseases caused by these parasites.
Collapse
Affiliation(s)
- Nathalie Galland
- Research Unit for Tropical Diseases, de Duve Institute, Brussels, Belgium
| | | |
Collapse
|
23
|
Boogerd CJJ, Dooijes D, Ilgun A, Mathijssen IB, Hordijk R, van de Laar IMBH, Rump P, Veenstra-Knol HE, Moorman AFM, Barnett P, Postma AV. Functional analysis of novel TBX5 T-box mutations associated with Holt-Oram syndrome. Cardiovasc Res 2010; 88:130-9. [PMID: 20519243 DOI: 10.1093/cvr/cvq178] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
AIMS Holt-Oram syndrome (HOS) is a heart/hand syndrome clinically characterized by upper limb and cardiac malformations. Mutations in T-box transcription factor 5 (TBX5) underlie this syndrome, the majority of which lead to premature stops. In this study, we present our functional analyses of five (novel) missense TBX5 mutations identified in HOS patients, most of whom presented with severe cardiac malformations. METHODS AND RESULTS Functional characterization of mutant proteins shows a dramatic loss of DNA-binding capacity, as well as diminished binding to known cardiac interaction partners NKX2-5 and GATA4. The disturbance of these interactions leads to a loss of function, as measured by the reduced activation of Nppa and FGF10 in rat heart derived cells, although with variable severity. Two out of the five mutations are peculiar: one, p.H220del, is associated with additional extra-cardiac defects, perhaps by interfering with other T-box dependant pathways, and another, p.I106V, leads to limb defects only, which is supported by its normal interaction with cardiac-specific interaction partners. CONCLUSION Overall, our data are consistent with the hypothesis that these novel missense mutations in TBX5 lead to functional haploinsufficiency and result in a reduced transcriptional activation of target genes, which is likely central to the pathogenesis of HOS.
Collapse
Affiliation(s)
- Cornelis J J Boogerd
- Heart Failure Research Center, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Fujihara N, Sakaguchi A, Tanaka S, Fujii S, Tsuji G, Shiraishi T, O'Connell R, Kubo Y. Peroxisome biogenesis factor PEX13 is required for appressorium-mediated plant infection by the anthracnose fungus Colletotrichum orbiculare. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:436-445. [PMID: 20192831 DOI: 10.1094/mpmi-23-4-0436] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Peroxisomes are ubiquitous organelles of eukaryotic cells that fulfill a variety of biochemical functions, including beta-oxidation of fatty acids. Here, we report that an ortholog of the Saccharomyces cerevisiae peroxisome biogenesis gene PEX13 is required for pathogenicity of Colletotrichum orbiculare. CoPEX13 was identified by screening random insertional mutants for deficiency in fatty acid utilization. Targeted knockout mutants of CoPEX13 were unable to utilize fatty acids as a carbon source. Expression analysis using green fluorescent protein fused to the peroxisomal targeting signals PTS1 and PTS2 revealed that the import machinery for peroxisomal matrix proteins was impaired in copex13 mutants. Appressoria formed by the copex13 mutants were defective in both melanization and penetration ability on host plants, had thin cell walls, and lacked peroxisomes. Moreover, the concentration of intracellular glycerol was lower in copex13 appressoria than those of the wild type. These findings indicate that fatty acid oxidation in peroxisomes is required not only for appressorium melanization but also for cell wall biogenesis and metabolic processes involved in turgor generation, all of which are essential for appressorium penetration ability.
Collapse
Affiliation(s)
- Naoki Fujihara
- Laboratory of Plant Pathology, Graduate school of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Fernando P, Sandoz JS, Ding W, de Repentigny Y, Brunette S, Kelly JF, Kothary R, Megeney LA. Bin1 SRC homology 3 domain acts as a scaffold for myofiber sarcomere assembly. J Biol Chem 2009; 284:27674-86. [PMID: 19633357 DOI: 10.1074/jbc.m109.029538] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In skeletal muscle development, the genes and regulatory factors that govern the specification of myocytes are well described. Despite this knowledge, the mechanisms that regulate the coordinated assembly of myofiber proteins into the functional contractile unit or sarcomere remain undefined. Here we explored the hypothesis that modular domain proteins such as Bin1 coordinate protein interactions to promote sarcomere formation. We demonstrate that Bin1 facilitates sarcomere organization through protein-protein interactions as mediated by the Src homology 3 (SH3) domain. We observed a profound disorder in myofiber size and structural organization in a murine model expressing the Bin1 SH3 region. In addition, satellite cell-derived myogenesis was limited despite the accumulation of skeletal muscle-specific proteins. Our experiments revealed that the Bin1 SH3 domain formed transient protein complexes with both actin and myosin filaments and the pro-myogenic kinase Cdk5. Bin1 also associated with a Cdk5 phosphorylation domain of titin. Collectively, these observations suggest that Bin1 displays protein scaffold-like properties and binds with sarcomeric factors important in directing sarcomere protein assembly and myofiber maturation.
Collapse
Affiliation(s)
- Pasan Fernando
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa, Ontario K1H 8L6, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Severin A, Joseph RE, Boyken S, Fulton DB, Andreotti AH. Proline isomerization preorganizes the Itk SH2 domain for binding to the Itk SH3 domain. J Mol Biol 2009; 387:726-43. [PMID: 19361414 PMCID: PMC2810249 DOI: 10.1016/j.jmb.2009.02.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 02/06/2009] [Accepted: 02/06/2009] [Indexed: 01/17/2023]
Abstract
We report here the NMR-derived structure of the binary complex formed by the interleukin-2 tyrosine kinase (Itk) Src homology 3 (SH3) and Src homology 2 (SH2) domains. The interaction is independent of both a phosphotyrosine motif and a proline-rich sequence, the classical targets of the SH2 and SH3 domains, respectively. The Itk SH3/SH2 structure reveals the molecular details of this nonclassical interaction and provides a clear picture for how the previously described prolyl cis/trans isomerization present in the Itk SH2 domain mediates SH3 binding. The higher-affinity cis SH2 conformer is preorganized to form a hydrophobic interface with the SH3 domain. The structure also provides insight into how autophosphorylation in the Itk SH3 domain might increase the affinity of the intermolecular SH3/SH2 interaction. Finally, we can compare this Itk complex with other examples of SH3 and SH2 domains engaging their ligands in a nonclassical manner. These small binding domains exhibit a surprising level of diversity in their binding repertoires.
Collapse
Affiliation(s)
- Andrew Severin
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50010
| | - Raji E. Joseph
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50010
| | - Scott Boyken
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50010
| | - D. Bruce Fulton
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50010
| | - Amy H. Andreotti
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50010
| |
Collapse
|
27
|
Liar, a novel Lyn-binding nuclear/cytoplasmic shuttling protein that influences erythropoietin-induced differentiation. Blood 2008; 113:3845-56. [PMID: 19064729 DOI: 10.1182/blood-2008-04-153452] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Erythropoiesis is primarily controlled by erythropoietin (Epo), which stimulates proliferation, differentiation, and survival of erythroid precursors. We have previously shown that the tyrosine kinase Lyn is critical for transducing differentiation signals emanating from the activated Epo receptor. A yeast 2-hybrid screen for downstream effectors of Lyn identified a novel protein, Liar (Lyn-interacting ankyrin repeat), which forms a multiprotein complex with Lyn and HS1 in erythroid cells. Interestingly, 3 of the ankyrin repeats of Liar define a novel SH3 binding region for Lyn and HS1. Liar also contains functional nuclear localization and nuclear export sequences and shuttles rapidly between the nucleus and cytoplasm. Ectopic expression of Liar inhibited the differentiation of normal erythroid progenitors, as well as immortalized erythroid cells. Significantly, Liar affected Epo-activated signaling molecules including Erk2, STAT5, Akt, and Lyn. These results show that Liar is a novel Lyn-interacting molecule that plays an important role in regulating intracellular signaling events associated with erythroid terminal differentiation.
Collapse
|
28
|
Postma AV, van de Meerakker JBA, Mathijssen IB, Barnett P, Christoffels VM, Ilgun A, Lam J, Wilde AAM, Lekanne Deprez RH, Moorman AFM. A gain-of-function TBX5 mutation is associated with atypical Holt-Oram syndrome and paroxysmal atrial fibrillation. Circ Res 2008; 102:1433-42. [PMID: 18451335 DOI: 10.1161/circresaha.107.168294] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Holt-Oram syndrome (HOS) is a heart/hand syndrome clinically characterized by upper limb and cardiac malformations. Mutations in T-box transcription factor 5 (TBX5) underlie this syndrome. Here, we describe a large atypical HOS family in which affected patients have mild skeletal deformations and paroxysmal atrial fibrillation, but few have congenital heart disease. Sequencing of TBX5 revealed a novel mutation, c.373G>A, resulting in the missense mutation p.Gly125Arg, in all investigated affected family members, cosegregating with the disease. We demonstrate that the mutation results in normal Nkx2-5 interaction, is correctly targeted to the nucleus, has significantly enhanced DNA binding and activation of both the Nppa(Anf) and Cx40 promoter, and significantly augments expression of Nppa, Cx40, Kcnj2, and Tbx3 in comparison with wild-type TBX5. Thus, contrary to previously published HOS mutations, the p.G125R TBX5 mutation results in a gain-of-function. We speculate that the gain-of-function mechanism underlies the mild skeletal phenotype and paroxysmal atrial fibrillation and suggest a possible role of TBX5 in the development of (paroxysmal) atrial fibrillation based on a gain-of-function either through a direct stimulation of target genes via TBX5 or indirectly via TBX5 stimulated TBX3. These findings may warrant a renewed look at the phenotypes of families and individuals hitherto not classified as HOS or as atypical but presenting with paroxysmal atrial fibrillation, because these may possibly be the result of additional TBX5 gain-of-function mutations.
Collapse
Affiliation(s)
- Alex V Postma
- Heart Failure Research Center, L2-108-1, Academic Medical Center, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Boogerd KJ, Wong LYE, Christoffels VM, Klarenbeek M, Ruijter JM, Moorman AFM, Barnett P. Msx1 and Msx2 are functional interacting partners of T-box factors in the regulation of Connexin43. Cardiovasc Res 2008; 78:485-93. [PMID: 18285513 DOI: 10.1093/cvr/cvn049] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AIMS T-box factors Tbx2 and Tbx3 play key roles in the development of the cardiac conduction system, atrioventricular canal, and outflow tract of the heart. They regulate the gap-junction-encoding gene Connexin43 (Cx43) and other genes critical for heart development and function. Discovering protein partners of Tbx2 and Tbx3 will shed light on the mechanisms by which these factors regulate these gene programs. METHODS AND RESULTS Employing an yeast 2-hybrid screen and subsequent in vitro pull-down experiments we demonstrate that muscle segment homeobox genes Msx1 and Msx2 are able to bind the cardiac T-box proteins Tbx2, Tbx3, and Tbx5. This interaction, as that of the related Nkx2.5 protein, is supported by the T-box and homeodomain alone. Overlapping spatiotemporal expression patterns of Msx1 and Msx2 together with the T-box genes during cardiac development in mouse and chicken underscore the biological significance of this interaction. We demonstrate that Msx proteins together with Tbx2 and Tbx3 suppress Cx43 promoter activity and down regulate Cx43 gene activity in a rat heart-derived cell line. Using chromatin immunoprecipitation analysis we demonstrate that Msx1 can bind the Cx43 promoter at a conserved binding site located in close proximity to a previously defined T-box binding site, and that the activity of Msx proteins on this promoter appears dependent in the presence of Tbx3. CONCLUSION Msx1 and Msx2 can function in concert with the T-box proteins to suppress Cx43 and other working myocardial genes.
Collapse
Affiliation(s)
- Kees-Jan Boogerd
- Department of Anatomy and Embryology, Heart Failure Research Centre, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
30
|
Kim J, Lee CD, Rath A, Davidson AR. Recognition of non-canonical peptides by the yeast Fus1p SH3 domain: elucidation of a common mechanism for diverse SH3 domain specificities. J Mol Biol 2008; 377:889-901. [PMID: 18280496 DOI: 10.1016/j.jmb.2008.01.063] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Revised: 12/18/2007] [Accepted: 01/14/2008] [Indexed: 01/14/2023]
Abstract
The yeast Fus1p SH3 domain binds to peptides containing the consensus motif, R(S/T)(S/T)SL, which is a sharp contrast to most SH3 domains, which bind to PXXP-containing peptides. Here, we have demonstrated that this domain binds to R(S/T)(S/T)SL-containing peptides derived from two putative in vivo binding partners from yeast proteins, Bnr1p and Ste5p, with K(d) values in the low micromolar range. The R(S/T)(S/T)SL consensus motif is necessary, but not sufficient for binding to the Fus1p SH3 domain, as residues lying N-terminal to the consensus motif also play a critical role in the binding reaction. Through mutagenesis studies and comparisons to other SH3 domains, we have discovered that the Fus1p SH3 domain utilizes a portion of the same binding surface as typical SH3 domains. However, the PXXP-binding surface, which plays the predominant role in binding for most SH3 domains, is debilitated in the WT domain by the substitution of unusual residues at three key conserved positions. By replacing these residues, we created a version of the Fus1p SH3 domain that binds to a PXXP-containing peptide with extremely high affinity (K(d)= 40 nM). Based on our data and analysis, we have clearly delineated two distinct surfaces comprising the typical SH3-domain-binding interface and show that one of these surfaces is the primary mediator of almost every "non-canonical" SH3-domain-mediated interaction described in the literature. Within this framework, dramatic alterations in SH3 domain specificity can be simply explained as a modulation of the binding strengths of these two surfaces.
Collapse
Affiliation(s)
- JungMin Kim
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | | | | | | |
Collapse
|
31
|
Moreira IS, Fernandes PA, Ramos MJ. Hot spots-A review of the protein-protein interface determinant amino-acid residues. Proteins 2007; 68:803-12. [PMID: 17546660 DOI: 10.1002/prot.21396] [Citation(s) in RCA: 557] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Proteins tendency to bind to one another in a highly specific manner forming stable complexes is fundamental to all biological processes. A better understanding of complex formation has many practical applications, which include the rational design of new therapeutic agents, and the analysis of metabolic and signal transduction networks. Alanine-scanning mutagenesis made possible the detection of the functional epitopes, and demonstrated that most of the protein-protein binding energy is related only to a group of few amino acids at intermolecular protein interfaces: the hot spots. The scope of this review is to summarize all the available information regarding hot spots for a better atomic understanding of their structure and function. The ultimate objective is to improve the rational design of complexes of high affinity and specificity as well as that of small molecules, which can mimic the functional epitopes of the proteic complexes.
Collapse
Affiliation(s)
- Irina S Moreira
- REQUIMTE/Departamento de Química, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | | | | |
Collapse
|
32
|
Wu J, Ji C, Xie F, Langefeld CD, Qian K, Gibson AW, Edberg JC, Kimberly RP. FcalphaRI (CD89) alleles determine the proinflammatory potential of serum IgA. THE JOURNAL OF IMMUNOLOGY 2007; 178:3973-82. [PMID: 17339498 DOI: 10.4049/jimmunol.178.6.3973] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The human IgA FcR (FcalphaRI; CD89) mediates a variety of immune system functions including degranulation, endocytosis, phagocytosis, cytokine synthesis, and cytokine release. We have identified a common, nonsynonymous, single nucleotide polymorphism (SNP) in the coding region of CD89 (844A-->G) (rs16986050), which changes codon 248 from AGC (Ser(248)) to GGC (Gly(248)) in the cytoplasmic domain of the receptor. The two different alleles demonstrate significantly different FcalphaRI-mediated intracellular calcium mobilization and degranulation in rat basophilic leukemia cells and cytokine production (IL-6 and TNF-alpha) in murine macrophage P388D1 cells. In the absence of FcR gamma-chain association in P388D1 cells, the Ser(248)-FcalphaRI allele does not mediate cytokine production, but the Gly(248)-FcalphaRI allele retains the capacity to mediate a robust production of proinflammatory cytokine. This allele-dependent difference is also seen with FcalphaRI-mediated IL-6 cytokine release by human neutrophils ex vivo. These findings and the enrichment of the proinflammatory Gly(248)-FcalphaRI allele in systemic lupus erythematosus populations in two ethnic groups compared with their respective non-systemic lupus erythematosus controls suggest that FcalphaRI (CD89) alpha-chain alleles may affect receptor-mediated signaling and play an important role in the modulation of immune responses in inflammatory diseases.
Collapse
MESH Headings
- Alleles
- Animals
- Antigens, CD/genetics
- Antigens, CD/immunology
- Cell Degranulation/genetics
- Cell Degranulation/immunology
- Cell Line, Tumor
- Endocytosis/genetics
- Endocytosis/immunology
- Humans
- Immunoglobulin A/blood
- Immunoglobulin A/immunology
- Interleukin-6/immunology
- Lupus Erythematosus, Systemic/blood
- Lupus Erythematosus, Systemic/genetics
- Lupus Erythematosus, Systemic/immunology
- Mutation, Missense
- Neutrophils/immunology
- Phagocytosis/genetics
- Phagocytosis/immunology
- Polymorphism, Single Nucleotide/immunology
- Rats
- Receptors, Fc/genetics
- Receptors, Fc/immunology
- Tumor Necrosis Factor-alpha/immunology
Collapse
Affiliation(s)
- Jianming Wu
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Jacquot Y, Gallo D, Leclercq G. Estrogen receptor alpha--identification by a modeling approach of a potential polyproline II recognizing domain within the AF-2 region of the receptor that would play a role of prime importance in its mechanism of action. J Steroid Biochem Mol Biol 2007; 104:1-10. [PMID: 17258904 DOI: 10.1016/j.jsbmb.2006.10.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Accepted: 10/02/2006] [Indexed: 11/16/2022]
Abstract
Estrogen receptors (ERs) behave not only as ligand-dependent transcriptional factors; they can also trigger non-genomic responses involving mitogen activated protein kinases (MAPKs), reported to be crucial in transduction cascades. MAPKs are partially activated by proteins with domains able to interact with polyproline II (PPII) regions. Recent studies have brought up the direct interaction of PPII-containing proteins with the alpha subtype human ER (ERalpha). Such observations suggest that ERalpha may contain a "PPII recognizing domain" (PRD). By sequence alignment, we identified such a potential PRD within the AF-2 region of ERalpha (residues 351-414). According to our modeling studies based on X-ray structural data, this PRD appears to be divided in two sub-regions known to interact with alpha-helix containing coactivators. Our data also reveal the potential existence of intramolecular interactions of this domain with a large PPII-rich region of the receptor (residues 301-330). Implication of these regulatory structural elements in both genomic and non-genomic responses seems likely.
Collapse
Affiliation(s)
- Yves Jacquot
- Université Pierre et Marie Curie-Paris 6, CNRS, UMR 7613, Synthèse, Structure et Fonction de Molécules Bioactives, FR 2769, Case courrier 45, 4, place Jussieu, 75005 Paris, France.
| | | | | |
Collapse
|
34
|
Sarkar P, Reichman C, Saleh T, Birge RB, Kalodimos CG. Proline cis-trans isomerization controls autoinhibition of a signaling protein. Mol Cell 2007; 25:413-26. [PMID: 17289588 PMCID: PMC2566824 DOI: 10.1016/j.molcel.2007.01.004] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Revised: 11/30/2006] [Accepted: 01/03/2007] [Indexed: 01/19/2023]
Abstract
Autoinhibition is being widely used in nature to repress otherwise constitutive protein activities and is typically regulated by extrinsic factors. Here we show that autoinhibition can be controlled by an intrinsic intramolecular switch afforded by prolyl cis-trans isomerization. We find that a proline on the linker tethering the two SH3 domains of the Crk adaptor protein interconverts between the cis and trans conformation. In the cis conformation, the two SH3 domains interact intramolecularly, thereby forming the basis of an autoinhibitory mechanism. Conversely, in the trans conformation Crk exists in an extended, uninhibited conformation that is marginally populated but serves to activate the protein upon ligand binding. Interconversion between the cis and trans, and, hence, of the autoinhibited and activated conformations, is accelerated by the action of peptidyl-prolyl isomerases. Proline isomerization appears to make an ideal switch that can regulate the kinetics of activation, thereby modulating the dynamics of signal response.
Collapse
Affiliation(s)
- Paramita Sarkar
- Department of Chemistry, Rutgers University, Newark, NJ 07102
| | - Charles Reichman
- Department of Biochemistry and Molecular Biology, UMDNJ –New Jersey Medical School, Newark, NJ 07103
| | - Tamjeed Saleh
- Department of Chemistry, Rutgers University, Newark, NJ 07102
| | - Raymond B. Birge
- Department of Biochemistry and Molecular Biology, UMDNJ –New Jersey Medical School, Newark, NJ 07103
| | | |
Collapse
|
35
|
Moreira IS, Fernandes PA, Ramos MJ. Hot Spot Occlusion from Bulk Water: a Comprehensive Study of the Complex between the Lysozyme HEL and the Antibody FVD1.3. J Phys Chem B 2007; 111:2697-706. [PMID: 17315919 DOI: 10.1021/jp067096p] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Alanine scanning of protein-protein interfaces has shown that there are some residues in the protein-protein interfaces, responsible for most of the binding free energy, which are called hot spots. Hot spots tend to exist in densely packed central clusters, and a hypothesis has been proposed that considers that inaccessibility to the solvent must be a necessary condition to define a residue as a binding hot spot. This O-ring hypothesis is mainly based on the analysis of the accessible surface area (ASA) of 23 static, crystallographic structures of protein complexes. It is known, however, that protein flexibility allows for temporary exposures of buried interfacial groups, and even though the ASA provides a general trend of the propensity for hydration, protein/solvent-specific interactions or hydrogen bonding cannot be considered here. Therefore, a microscopic level, atomistic picture of hot spot solvation is needed to support the O-ring hypothesis. In this study, we began by applying a computational alanine-scanning mutagenesis technique, which reproduces the experimental results and allows for decomposing the binding free energy difference in its different energetic factors. Subsequently, we calculated the radial distribution function and residence times of the water molecules near the hot/warm spots to study the importance of the water environment around those energetically important amino acid residues. This study shows that within a flexible, dynamic protein framework, the warm/hot spot residues are, indeed, kept sheltered from the bulk solvent during the whole simulation, which allows a better interacting microenvironment.
Collapse
Affiliation(s)
- Irina S Moreira
- Requimte/Departamento de Química, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto- Portugal
| | | | | |
Collapse
|
36
|
Stamenova SD, French ME, He Y, Francis SA, Kramer ZB, Hicke L. Ubiquitin binds to and regulates a subset of SH3 domains. Mol Cell 2007; 25:273-84. [PMID: 17244534 PMCID: PMC2713028 DOI: 10.1016/j.molcel.2006.12.016] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Revised: 10/19/2006] [Accepted: 12/21/2006] [Indexed: 01/28/2023]
Abstract
SH3 domains are modules of 50-70 amino acids that promote interactions among proteins, often participating in the assembly of large dynamic complexes. These domains bind to peptide ligands, which usually contain a core Pro-X-X-Pro (PXXP) sequence. Here we identify a class of SH3 domains that bind to ubiquitin. The yeast endocytic protein Sla1, as well as the mammalian proteins CIN85 and amphiphysin, carry ubiquitin-binding SH3 domains. Ubiquitin and peptide ligands bind to the same hydrophobic groove on the SH3 domain surface, and ubiquitin and a PXXP-containing protein fragment compete for binding to SH3 domains. We conclude that a subset of SH3 domains constitutes a distinct type of ubiquitin-binding domain and that ubiquitin binding can negatively regulate interaction of SH3 domains with canonical proline-rich ligands.
Collapse
Affiliation(s)
- Svetoslava D Stamenova
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, IL 60208, USA
| | | | | | | | | | | |
Collapse
|
37
|
Gao YG, Yan XZ, Song AX, Chang YG, Gao XC, Jiang N, Zhang Q, Hu HY. Structural Insights into the Specific Binding of Huntingtin Proline-Rich Region with the SH3 and WW Domains. Structure 2006; 14:1755-65. [PMID: 17161366 DOI: 10.1016/j.str.2006.09.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Revised: 09/12/2006] [Accepted: 09/27/2006] [Indexed: 10/23/2022]
Abstract
The interactions of huntingtin (Htt) with the SH3 domain- or WW domain-containing proteins have been implicated in the pathogenesis of Huntington's disease (HD). We report the specific interactions of Htt proline-rich region (PRR) with the SH3GL3-SH3 domain and HYPA-WW1-2 domain pair by NMR. The results show that Htt PRR binds with the SH3 domain through nearly its entire chain, and that the binding region on the domain includes the canonical PxxP-binding site and the specificity pocket. The C terminus of PRR orients to the specificity pocket, whereas the N terminus orients to the PxxP-binding site. Htt PRR can also specifically bind to WW1-2; the N-terminal portion preferentially binds to WW1, while the C-terminal portion binds to WW2. This study provides structural insights into the specific interactions between Htt PRR and its binding partners as well as the alteration of these interactions that involve PRR, which may have implications for the understanding of HD.
Collapse
Affiliation(s)
- Yong-Guang Gao
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Stanley WA, Wilmanns M. Dynamic architecture of the peroxisomal import receptor Pex5p. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1592-8. [PMID: 17141887 DOI: 10.1016/j.bbamcr.2006.10.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Revised: 10/26/2006] [Accepted: 10/26/2006] [Indexed: 11/29/2022]
Abstract
The majority of peroxisomal matrix proteins are recognized by the import receptor Pex5p. The receptor is dynamic in terms of its overall architecture and association with the peroxisomal membrane. It participates in different protein complexes during the translocation of cargos from the cytosol to the peroxisomal matrix. Its sequence comprises two structurally and functionally autonomous parts. The N-terminal segment interacts with several peroxins that assemble into distinct protein complexes during cargo translocation. Despite evidence for alpha-helical binding motifs for some of these components (Pex13p, Pex14p) its overall appearance is that of a molten globule and folding/unfolding transitions may play a critical role in its function. In contrast, most of the C-terminal part of the receptor folds into a ring-like alpha-helical structure and binds folded and functionally intact peroxisomal targets that bear a C-terminal peroxisomal targeting signal type-1. Some of these targets also bind to secondary binding sites of the receptor.
Collapse
Affiliation(s)
- Will A Stanley
- EMBL-Hamburg Outstation, c/o DESY, Notkestrasse 85, 22603 Hamburg, Germany
| | | |
Collapse
|
39
|
Azevedo JE, Schliebs W. Pex14p, more than just a docking protein. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1574-84. [PMID: 17046076 DOI: 10.1016/j.bbamcr.2006.09.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2006] [Revised: 08/29/2006] [Accepted: 09/04/2006] [Indexed: 01/01/2023]
Abstract
After binding newly synthesized peroxisomal matrix proteins in the cytosol, the second task of Pex5p, the peroxisomal cycling receptor, is to carry these proteins to the peroxisomal membrane. Defining the nature of the events that occur at this membrane system and which ultimately result in the translocation of the cargo proteins into the matrix of the organelle and in the recycling of Pex5p back to the cytosol, is one of the major goals of the research in this field. Presently, it is generally accepted that all these steps are promoted by a large protein complex embedded in the peroxisomal membrane. This docking/translocation machinery or importomer, as it is often called, comprises many different peroxins of which one of the best characterized is Pex14p. Here, we review data regarding this membrane peroxin with emphasis on the interactions that it establishes with Pex5p. The available evidence suggests that the key to understand how folded proteins are capable of passing an apparently impermeable membrane may largely reside in this pair of peroxins.
Collapse
Affiliation(s)
- Jorge E Azevedo
- Instituto de Biologia Molecular e Celular (IBMC) and Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Univ. do Porto, Portugal.
| | | |
Collapse
|
40
|
Williams C, Distel B. Pex13p: docking or cargo handling protein? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1585-91. [PMID: 17056133 DOI: 10.1016/j.bbamcr.2006.09.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Revised: 09/05/2006] [Accepted: 09/06/2006] [Indexed: 11/20/2022]
Abstract
The Src homology 3 (SH3) domain-containing peroxisomal membrane protein Pex13p is an essential component of the import machinery for matrix proteins and forms a binding site for the peroxisomal targeting type I (PTS1) receptor Pex5p. The interaction between these two proteins can be described as novel in several ways. In the yeasts Saccharomyces cerevisiae and Pichia pastoris, the SH3 domain itself is responsible for the interaction but not via the typical P-x-x-P motifs that are common to SH3 ligands as Pex5p lacks such a motif. Instead, a region of Pex5p containing a W-x-x-x-F/Y motif is crucial for this binding. In mammals, again W-x-x-x-F/Y motifs appear to be important for the interaction but the SH3 domain seems not to be the site for Pex5p binding, this being located in the N-terminus of Pex13p. Despite these differences in the details of the Pex13p-Pex5p interaction, the association of the two proteins is a crucial step in Pex5p-mediated protein import into peroxisomes in both yeasts and mammals.
Collapse
Affiliation(s)
- Chris Williams
- Department of Medical Biochemistry, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | | |
Collapse
|
41
|
Kerssen D, Hambruch E, Klaas W, Platta HW, de Kruijff B, Erdmann R, Kunau WH, Schliebs W. Membrane Association of the Cycling Peroxisome Import Receptor Pex5p. J Biol Chem 2006; 281:27003-15. [PMID: 16849337 DOI: 10.1074/jbc.m509257200] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Peroxisomal proteins carrying a peroxisome targeting signal type 1 (PTS1) are recognized in the cytosol by the cycling import receptor Pex5p. The receptor-cargo complex docks at the peroxisomal membrane where it associates with multimeric protein complexes, referred to as the docking and RING finger complexes. Here we have identified regions within the Saccharomyces cerevisiae Pex5p sequence that interconnect the receptor-cargo complex with the docking complex. Site-directed mutagenesis of the conserved tryptophan residue within a reverse WXXXF motif abolished two-hybrid binding with the N-terminal half of Pex14p. In combination with an additional mutation introduced into the Pex13p-binding site, we generated a Pex5p mutant defective in a stable association not only with the docking complex but also with the RING finger peroxins at the membrane. Surprisingly, PTS1 proteins are still imported into peroxisomes in these mutant cells. Because these mutations had no significant effect on the membrane binding properties of Pex5p, we examined yeast and human Pex5p for intrinsic lipid binding activity. In vitro analyses demonstrated that both proteins have the potential to insert spontaneously into phospholipid membranes. Altogether, these data strongly suggest that a translocation-competent state of the PTS1 receptor enters the membrane via protein-lipid interactions before it tightly associates with other peroxins.
Collapse
Affiliation(s)
- Daniela Kerssen
- Institut für Physiologische Chemie, Abt. Systembiochemie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Mano S, Nakamori C, Nito K, Kondo M, Nishimura M. The Arabidopsis pex12 and pex13 mutants are defective in both PTS1- and PTS2-dependent protein transport to peroxisomes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 47:604-18. [PMID: 16813573 DOI: 10.1111/j.1365-313x.2006.02809.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Peroxisome biogenesis requires various complex processes including organelle division, enlargement and protein transport. We have been studying a number of Arabidopsis apm mutants that display aberrant peroxisome morphology. Two of these mutants, apm2 and apm4, showed green fluorescent protein fluorescence in the cytosol as well as in peroxisomes, indicating a decrease of efficiency of peroxisome targeting signal 1 (PTS1)-dependent protein transport to peroxisomes. Interestingly, both mutants were defective in PTS2-dependent protein transport. Plant growth was more inhibited in apm4 than apm2 mutants, apparently because protein transport was more severely decreased in apm4 than in apm2 mutants. APM2 and APM4 were found to encode proteins homologous to the peroxins PEX13 and PEX12, respectively, which are thought to be involved in transporting matrix proteins into peroxisomes in yeasts and mammals. We show that APM2/PEX13 and APM4/PEX12 are localized on peroxisomal membranes, and that APM2/PEX13 interacts with PEX7, a cytosolic PTS2 receptor. Additionally, a PTS1 receptor, PEX5, was found to stall on peroxisomal membranes in both mutants, suggesting that PEX12 and PEX13 are components that are involved in protein transport on peroxisomal membranes in higher plants. Proteins homologous to PEX12 and PEX13 have previously been found in Arabidopsis but it is not known whether they are involved in protein transport to peroxisomes. Our findings reveal that APM2/PEX13 and APM4/PEX12 are responsible for matrix protein import to peroxisomes in planta.
Collapse
Affiliation(s)
- Shoji Mano
- Department of Cell Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | | | | | | | | |
Collapse
|
43
|
Schiller MR, Chakrabarti K, King GF, Schiller NI, Eipper BA, Maciejewski MW. Regulation of RhoGEF activity by intramolecular and intermolecular SH3 domain interactions. J Biol Chem 2006; 281:18774-86. [PMID: 16644733 DOI: 10.1074/jbc.m512482200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RhoGEFs are central controllers of small G-proteins in cells and are regulated by several mechanisms. There are at least 22 human RhoGEFs that contain SH3 domains, raising the possibility that, like several other enzymes, SH3 domains control the enzymatic activity of guanine nucleotide exchange factor (GEF) domains through intra- and/or intermolecular interactions. The structure of the N-terminal SH3 domain of Kalirin was solved using NMR spectroscopy, and it folds much like other SH3 domains. However, NMR chemical shift mapping experiments showed that this Kalirin SH3 domain is unique, containing novel cooperative binding site(s) for intramolecular PXXP ligands. Intramolecular Kalirin SH3 domain/ligand interactions, as well as binding of the Kalirin SH3 domain to the adaptor protein Crk, inhibit the GEF activity of Kalirin. This study establishes a novel molecular mechanism whereby intramolecular and intermolecular Kalirin SH3 domain/ligand interactions modulate GEF activity, a regulatory mechanism that is likely used by other RhoGEF family members.
Collapse
Affiliation(s)
- Martin R Schiller
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06019-4301, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Li SSC. Specificity and versatility of SH3 and other proline-recognition domains: structural basis and implications for cellular signal transduction. Biochem J 2006; 390:641-53. [PMID: 16134966 PMCID: PMC1199657 DOI: 10.1042/bj20050411] [Citation(s) in RCA: 304] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Protein-protein interactions occurring via the recognition of short peptide sequences by modular interaction domains play a central role in the assembly of signalling protein complexes and larger protein networks that regulate cellular behaviour. In addition to spatial and temporal factors, the specificity of signal transduction is intimately associated with the specificity of many co-operative, pairwise binding events upon which various pathways are built. Although protein interaction domains are usually identified via the recognition code, the consensus sequence motif, to which they selectively bind, they are highly versatile and play diverse roles in the cell. For example, a given interaction domain can bind to multiple sequences that exhibit no apparent identity, and, on the other hand, domains of the same class or different classes may favour a given consensus motif. This promiscuity in ligand selection is typified by the SH3 (Src homology 3) domain and several other interaction modules that commonly recognize proline-rich sequences. Furthermore, interaction domains are highly adaptable, a property that is essential for the evolution of novel pathways and modulation of signalling dynamics. The ability of certain interaction domains to perform multiple tasks, however, poses a challenge for the cell to control signalling specificity when cross-talk between pathways is undesired. Extensive structural and biochemical analysis of many interaction domains in recent years has started to shed light on the molecular basis underlying specific compared with diverse binding events that are mediated by interaction domains and the role affinity plays in affecting domain specificity and regulating cellular signal transduction.
Collapse
Affiliation(s)
- Shawn S-C Li
- Department of Biochemistry, Schulich School of Medicine, University of Western Ontario, London, Ontario, Canada N6A 5C1.
| |
Collapse
|
45
|
Gangenahalli GU, Singh VK, Verma YK, Gupta P, Sharma RK, Chandra R, Gulati S, Luthra PM. Three-Dimensional Structure Prediction of the Interaction of CD34 with the SH3 Domain of Crk-L. Stem Cells Dev 2005; 14:470-7. [PMID: 16305332 DOI: 10.1089/scd.2005.14.470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The monomeric 115-kDa surface protein CD34, which is present on many stem cell populations, has been useful to enumerate the quality and viability of cell suspensions for engraftment. Although these studies assure the validity of CD34 as a stem cell marker, the functional role of this molecule has not been defined. CD34 has been demonstrated to regulate adhesion, differentiation, and proliferation of hematopoietic stem cells and other progenitors. The cytoplasmic domain of CD34 is known to be essential for its function. However, it is not clear how this domain's interactions with other molecules support the functional activity of CD34. Here we show that the cytoplasmic tail of CD34 is structurally similar to the carboxyl terminus of the gap junction protein Connexin 43 (Cx43). Because the activity of CD34 is mediated through its interaction with an SH3 domain of an intracellular protein, we attempted to define the SH3 binding region and amino acids involved in this interaction. We identified Glu325 to Ser334 as potential SH3 binding sites. Our results suggest that the interaction of the cytoplasmic tail of CD34 with the shallow proline-rich motif-binding groove of Crk-L is essential for the function of CD34 in stem cell development.
Collapse
Affiliation(s)
- Gurudutta U Gangenahalli
- Stem-Cell Gene Therapy Research Group, Institute of Nuclear Medicine & Allied Sciences, Delhi-110054, India.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Reichman C, Singh K, Liu Y, Singh S, Li H, Fajardo JE, Fiser A, Birge RB. Transactivation of Abl by the Crk II adapter protein requires a PNAY sequence in the Crk C-terminal SH3 domain. Oncogene 2005; 24:8187-99. [PMID: 16158059 DOI: 10.1038/sj.onc.1208988] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To gain a better understanding of how Crk II regulates the function of the Abl tyrosine kinase, we explored the function of the C-terminal linker and SH3 domain, a region of Crk II that is still poorly understood. Molecular modeling, tryptophan fluorescence, and covariation sequence alignment indicate that the Crk-SH3-C has a unique binding groove and RT loop not observed in typical SH3 domains. Based on these models, we made a series of mutations in the linker and in residues predicted to destabilize the putative binding pocket and RT loop. In Abl transactivation assays, Y222F and P225A mutations in the linker resulted in strong transactivation of Abl by Crk II. However, mutations predicted to be at the surface of the Crk SH3-C were not activators of Abl. Interestingly, combinations of activating mutations of Crk II with mutations in the highly conserved PNAY sequence in the SH3-C inactivated the activating mutations, suggesting that the SH3-C is necessary for activation. Our data provide insight into the role of highly conserved residues in the Crk-SH3-C, suggesting a mechanism for how the linker and the Crk-SH3-C function in the transactivation of the Abl tyrosine kinase.
Collapse
Affiliation(s)
- Charles Reichman
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Heuer K, Arbuzova A, Strauss H, Kofler M, Freund C. The helically extended SH3 domain of the T cell adaptor protein ADAP is a novel lipid interaction domain. J Mol Biol 2005; 348:1025-35. [PMID: 15843031 DOI: 10.1016/j.jmb.2005.02.069] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Revised: 02/16/2005] [Accepted: 02/17/2005] [Indexed: 11/19/2022]
Abstract
Adhesion and degranulation-promoting adapter protein (ADAP) is critically involved in downstream signalling events triggered by the activation of the T cell receptor. Cytokine production, proliferation and integrin clustering of T cells are dependent on ADAP function, but the molecular basis for these processes is poorly understood. We now show the hSH3 domain of ADAP to be a lipid-interaction module that binds to acidic lipids, including phosphatidylinositides. Positively charged surface patches of the domain preferentially bind to polyvalent acidic lipids such as PIP2 or PIP3 over the monovalent PS phospholipid and this interaction is dependent on the N-terminal helix of the hSH3 domain fold. Basic amino acid side-chains from the SH3 scaffold also contribute to lipid binding. In the context of T cell signalling, our findings suggest that ADAP, upon recruitment to the cell-cell junction as part of a multiprotein complex, directly interacts with phosphoinositide-enriched regions of the plasma membrane. Furthermore, the ADAP lipid interaction defines the helically extended SH3 scaffold as a novel member of membrane interaction domains.
Collapse
Affiliation(s)
- Katja Heuer
- Protein Engineering Group, Forschungsinstitut für Molekulare Pharmakologie and Freie Universität Berlin, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | | | | | | | | |
Collapse
|
48
|
Schell-Steven A, Stein K, Amoros M, Landgraf C, Volkmer-Engert R, Rottensteiner H, Erdmann R. Identification of a novel, intraperoxisomal pex14-binding site in pex13: association of pex13 with the docking complex is essential for peroxisomal matrix protein import. Mol Cell Biol 2005; 25:3007-18. [PMID: 15798189 PMCID: PMC1069607 DOI: 10.1128/mcb.25.8.3007-3018.2005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The peroxisomal docking complex is a key component of the import machinery for matrix proteins. The core protein of this complex, Pex14, is thought to represent the initial docking site for the import receptors Pex5 and Pex7. Associated with this complex is a fraction of Pex13, another essential component of the import machinery. Here we demonstrate that Pex13 directly binds Pex14 not only via its SH3 domain but also via a novel intraperoxisomal site. Furthermore, we demonstrate that Pex5 also contributes to the association of Pex13 with Pex14. Peroxisome function was affected only mildly by mutations within the novel Pex14 interaction site of Pex13 or by the non-Pex13-interacting mutant Pex5(W204A). However, when these constructs were tested in combination, PTS1-dependent import and growth on oleic acid were severely compromised. When the SH3 domain-mediated interaction of Pex13 with Pex14 was blocked on top of that, PTS2-dependent matrix protein import was completely compromised and Pex13 was no longer copurified with the docking complex. We conclude that the association of Pex13 with Pex14 is an essential step in peroxisomal protein import that is enabled by two direct interactions and by one that is mediated by Pex5, a result which indicates a novel, receptor-independent function of Pex5.
Collapse
Affiliation(s)
- Annette Schell-Steven
- Institut für Physiologische Chemie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | | | | | | | | | | | | |
Collapse
|
49
|
Vaynberg J, Fukuda T, Chen K, Vinogradova O, Velyvis A, Tu Y, Ng L, Wu C, Qin J. Structure of an Ultraweak Protein-Protein Complex and Its Crucial Role in Regulation of Cell Morphology and Motility. Mol Cell 2005; 17:513-23. [PMID: 15721255 DOI: 10.1016/j.molcel.2004.12.031] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2004] [Revised: 08/13/2004] [Accepted: 12/29/2004] [Indexed: 10/25/2022]
Abstract
Weak protein-protein interactions (PPIs) (K(D) > 10(-6) M) are critical determinants of many biological processes. However, in contrast to a large growing number of well-characterized, strong PPIs, the weak PPIs, especially those with K(D) > 10(-4) M, are poorly explored. Genome wide, there exist few 3D structures of weak PPIs with K(D) > 10(-4) M, and none with K(D) > 10(-3) M. Here, we report the NMR structure of an extremely weak focal adhesion complex (K(D) approximately 3 x 10(-3) M) between Nck-2 SH3 domain and PINCH-1 LIM4 domain. The structure exhibits a remarkably small and polar interface with distinct binding modes for both SH3 and LIM domains. Such an interface suggests a transient Nck-2/PINCH-1 association process that may trigger rapid focal adhesion turnover during integrin signaling. Genetic rescue experiments demonstrate that this interface is indeed involved in mediating cell shape change and migration. Together, the data provide a molecular basis for an ultraweak PPI in regulating focal adhesion dynamics during integrin signaling.
Collapse
Affiliation(s)
- Julia Vaynberg
- Structural Biology Program, Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Moyersoen J, Choe J, Fan E, Hol WGJ, Michels PAM. Biogenesis of peroxisomes and glycosomes: trypanosomatid glycosome assembly is a promising new drug target. FEMS Microbiol Rev 2005; 28:603-43. [PMID: 15539076 DOI: 10.1016/j.femsre.2004.06.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2004] [Revised: 06/14/2004] [Accepted: 06/15/2004] [Indexed: 10/26/2022] Open
Abstract
In trypanosomatids (Trypanosoma and Leishmania), protozoa responsible for serious diseases of mankind in tropical and subtropical countries, core carbohydrate metabolism including glycolysis is compartmentalized in peculiar peroxisomes called glycosomes. Proper biogenesis of these organelles and the correct sequestering of glycolytic enzymes are essential to these parasites. Biogenesis of glycosomes in trypanosomatids and that of peroxisomes in other eukaryotes, including the human host, occur via homologous processes involving proteins called peroxins, which exert their function through multiple, transient interactions with each other. Decreased expression of peroxins leads to death of trypanosomes. Peroxins show only a low level of sequence conservation. Therefore, it seems feasible to design compounds that will prevent interactions of proteins involved in biogenesis of trypanosomatid glycosomes without interfering with peroxisome formation in the human host cells. Such compounds would be suitable as lead drugs against trypanosomatid-borne diseases.
Collapse
Affiliation(s)
- Juliette Moyersoen
- Research Unit for Tropical Diseases, Christian de Duve Institute of Cellular Pathology and Laboratory of Biochemistry, Université Catholique de Louvain, ICP-TROP 74.39, Avenue Hippocrate 74, B-1200 Brussels, Belgium
| | | | | | | | | |
Collapse
|