1
|
Usategui-Martín R, Esteban-López V, Chantre-Fortes E, Sánchez-Martín M, Riancho JA, López DE, González-Sarmiento R. The p.R321C mutation in the p62 protein is associated with abnormalities in the central nervous system. Sci Rep 2025; 15:16929. [PMID: 40374720 PMCID: PMC12081919 DOI: 10.1038/s41598-025-00764-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 04/30/2025] [Indexed: 05/17/2025] Open
Abstract
SQSTM1/p62 has an essential role in autophagy, a catabolic pathway that is vital for maintaining cell homeostasis. p62 alterations have been observed in multiple pathological conditions, including neurodegenerative diseases and bone metabolism alterations. The p.R321C p62 protein mutation has been described in patients with amyotrophic lateral sclerosis, frontotemporal lobar degeneration, and Paget's disease of bone. In vitro studies associated the p62-321C variant with a blockade of autophagy and with the activation of the NF-kB pathway. We aimed to provide a deeper understating of the pathophysiological consequences of the p.R321C p62 mutation using a humanized mouse model. Micro-computed tomography, immunohistochemistry, and western blot analysis studied the functional consequences of the p. R321C p62 mutation. Statistical analyses were performed using SPSS software. The results showed that the p62-321C mice developed seizures after tactile-vestibular stimulation, probably associated with a blockage of the autophagy and NF-kB activation. Changes in expression of cFos and p62 were found in the amygdala, hypothalamic nuclei, and hippocampi nuclei. In addition, numerous degenerating motor neurons were observed in the spinal cord of the p62-321C mice. We report that the blockage of the autophagy, caused by p.R321C p62 mutation, is associated with abnormalities in the central nervous system, mainly seizures after tactile-vestibular stimulation and degeneration of the motor neurons of the spinal cord but not with bone abnormalities in a humanized mouse model.
Collapse
Affiliation(s)
- Ricardo Usategui-Martín
- Molecular Medicine Unit, Department of Medicine, Faculty of Medicine, University of Salamanca, Campus Miguel Unamuno, 37007, Salamanca, Spain.
- Institute of Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain.
| | - Vega Esteban-López
- Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, 37007, Salamanca, Spain
| | - Estefanía Chantre-Fortes
- Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, 37007, Salamanca, Spain
| | - Manuel Sánchez-Martín
- Institute of Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain
- Transgenic Facility, University of Salamanca, 37007, Salamanca, Spain
| | - José A Riancho
- Department of Medicine and Psychiatry, Faculty of Medicine, University of Cantabria, IDIVAL, 39011, Santander, Spain
- Internal Medicine Department, Marqués de Valdecilla University Hospital, 39008, Santander, Spain
| | - Dolores E López
- Institute of Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain
- Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, 37007, Salamanca, Spain
- Department of Cell Biology and Pathology, Faculty of Medicine, University of Salamanca, 37007, Salamanca, Spain
| | - Rogelio González-Sarmiento
- Molecular Medicine Unit, Department of Medicine, Faculty of Medicine, University of Salamanca, Campus Miguel Unamuno, 37007, Salamanca, Spain.
- Institute of Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain.
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-CSIC, 37007, Salamanca, Spain.
| |
Collapse
|
2
|
Saei AK, Asghari N, Jahangiri B, Cordani M, Nayeri Z, Fard NA, Djavaheri-Mergny M, Moosavi MA. Drug repositioning and experimental validation for targeting ZZ domain of p62 as a cancer treatment. Comput Biol Med 2025; 188:109757. [PMID: 39983356 DOI: 10.1016/j.compbiomed.2025.109757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 01/24/2025] [Accepted: 01/25/2025] [Indexed: 02/23/2025]
Abstract
Cancer treatment is often confounded by development of resistance to chemotherapy. This research explores the complex relationship between p62 (also known as SQSTM1), a multifunctional protein central in cancer signaling pathways - especially the NF-κB pathway - and chemoresistance. Our data indicate that disruption of the interaction between p62 and the serine/threonine protein kinase RIP1 is a viable strategy to counteract NF-κB activation and overcome chemoresistance. Employing a comprehensive drug repositioning approach, we utilized bioinformatics tools to perform docking, virtual screening, absorption, distribution, metabolism, and excretion analyses, toxicity analysis, and molecular dynamics simulations to identify FDA-approved drugs that prevent the binding of p62 to RIP1. Notable candidates, particularly montelukast and asunaprevir, blocked the p62-RIP1 interaction, establishing a basis for potential therapeutic interventions against chemoresistant cancers. This study highlights the critical role of the ZZ domain of p62 protein in chemotherapy resistance and sheds light on the possibility of repurposing existing drugs for novel applications in cancer treatment. Our findings provide a solid groundwork for preclinical studies.
Collapse
Affiliation(s)
- Ali Kian Saei
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, P.O Box 14965/161, Tehran, Iran
| | - Narjes Asghari
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, P.O Box 14965/161, Tehran, Iran
| | - Babak Jahangiri
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, P.O Box 14965/161, Tehran, Iran
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Complutense University of Madrid, 28040, Madrid, Spain; Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040, Madrid, Spain
| | - Zahra Nayeri
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, P.O Box 14965/161, Tehran, Iran
| | - Najaf Allahyari Fard
- Department of Systems Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, P.O Box 14965/161, Iran
| | - Mojgan Djavaheri-Mergny
- Team «Metabolism, Cancer & Immunity », Centre de Recherche des Cordeliers, INSERM UMRS1138, Sorbonne Université, Université de Paris, 75006, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, 94800 France
| | - Mohammad Amin Moosavi
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, P.O Box 14965/161, Tehran, Iran.
| |
Collapse
|
3
|
Yang X, Cao X, Zhu Q. p62/SQSTM1 in cancer: phenomena, mechanisms, and regulation in DNA damage repair. Cancer Metastasis Rev 2025; 44:33. [PMID: 39954143 PMCID: PMC11829845 DOI: 10.1007/s10555-025-10250-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 02/06/2025] [Indexed: 02/17/2025]
Abstract
The multidomain protein cargo adaptor p62, also known as sequestosome 1, serves as a shuttling factor and adaptor for the degradation of substrates via the proteasome and autophagy pathways. Regarding its structure, p62 is composed of several functional domains, including the N-terminal Phox1 and Bem1p domains, a ZZ-type zinc finger domain, a LIM protein-binding domain that contains the tumor necrosis factor receptor-associated factor 6 (TRAF6) binding region, two nuclear localization signals (NLS 1/2), a nuclear export signal (NES), the LC3-interacting region (LIR), a Kelch-like ECH-associated protein 1 (KEAP1)-interacting region, and a ubiquitin-associated (UBA) domain. Recent studies have highlighted the critical role of p62 in the development and progression of various malignancies. Overexpression and/or impaired degradation of p62 are linked to the initiation and progression of numerous cancers. While p62 is primarily localized in the cytosol and often considered a cytoplasmic protein, most of the existing literature focuses on its cytoplasmic functions, leaving its nuclear roles less explored. However, an increasing body of research has uncovered p62's involvement in the cellular response to DNA damage. In this review, we summarize the current understanding of p62's molecular functions in malignancies, with particular emphasis on its role in DNA damage repair, highlighting the latest advances in this field.
Collapse
Affiliation(s)
- Xiaojuan Yang
- Liver Digital Transformation Research Laboratory, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xunjie Cao
- Division of Abdominal Tumor Multimodality Treatment, Department of General Surgery, West China Hospital, Sichuan University, Cancer Center, Chengdu, 610041, China
| | - Qing Zhu
- Division of Abdominal Tumor Multimodality Treatment, Department of General Surgery, West China Hospital, Sichuan University, Cancer Center, Chengdu, 610041, China.
| |
Collapse
|
4
|
Ma Y, Liu Y, Zhong Y, Li X, Xu Y, Chen L, Gong L, Huang H, Chen X, He Y, Qiang L. Oroxylin A attenuates psoriasiform skin inflammation by direct targeting p62 (sequestosome 1) via suppressing M1 macrophage polarization. Br J Pharmacol 2024; 181:5110-5132. [PMID: 39313956 DOI: 10.1111/bph.17349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/25/2024] Open
Abstract
BACKGROUND AND PURPOSE Psoriasis results from the interplay of innate and adaptive immunity in the skin. Oroxylin A (OA) has shown anti-inflammatory effects in various disorders. This study explores oroxylin A potential in treating psoriasis, particularly its impact on type I macrophage (Mφ1) polarization. EXPERIMENTAL APPROACH Oroxylin A-mediated therapeutic effects were evaluated using imiquimod-induced or IL-23-injected psoriatic mice models, followed by proteomics assays to predict potential signalling and targeting proteins. Immunofluorescence and immunoblot assays verified that oroxylin A suppresses NF-κB signalling in Mφ1 macrophages. Co-immunoprecipitation and microscale thermophoresis (MST) assays further demonstrated that p62 (sequestosome 1) is the target protein for oroxylin A in macrophages. Oroxylin A-p62-mediated suppression of psoriasis was validated in an imiquimod-induced p62 conditional knockout (cKO) mice model. KEY RESULTS Oroxylin A demonstrated therapeutic efficacy in murine models induced by imiquimod or IL-23 by attenuating cutaneous inflammation and mitigating Mφ1 polarization via NF-κB signalling. Proteomics analysis suggested SQSTM1/p62 as a key target, confirmed to interact directly with oroxylin A. Oroxylin A disrupted the p62-PKCζ interaction by binding to PB1 domain of p62. Its anti-inflammatory effects were significantly reduced in macrophages from p62 cKO mice compared to the wild-type (WT) mice in psoriasis model, supporting oroxylin A role in suppressing Mφ1 polarization through its interaction with p62. CONCLUSION AND IMPLICATIONS Our findings demonstrated oroxylin A suppressed psoriasiform skin inflammation in mouse models by blocking the PKCζ-p62 interaction, subsequently inhibiting the activation of NF-κB p65 phosphorylation in macrophages.
Collapse
Affiliation(s)
- Yuxiang Ma
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Department of Pharmacology, Guilin Medical University, Guilin, China
| | - Yunyao Liu
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - You Zhong
- Zhuhai United Laboratories Co., Ltd., Zhuhai, Guangdong, China
| | - Xiangzheng Li
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yujiao Xu
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Leyi Chen
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Litong Gong
- Jiangsu Chia Tai-Tianqing Pharmaceutical Co., Ltd., Nanjing, China
| | - He Huang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xu Chen
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| | - Yuan He
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Lei Qiang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| |
Collapse
|
5
|
Namazi M, Eftekhar SP, Mosaed R, Shiralizadeh Dini S, Hazrati E. Pulmonary Hypertension and Right Ventricle: A Pathophysiological Insight. CLINICAL MEDICINE INSIGHTS-CARDIOLOGY 2024; 18:11795468241274744. [PMID: 39257563 PMCID: PMC11384539 DOI: 10.1177/11795468241274744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 07/21/2024] [Indexed: 09/12/2024]
Abstract
Background Pulmonary hypertension (PH) is a pulmonary vascular disease characterized by elevated pulmonary vascular pressure. Long-term PH, irrespective of its etiology, leads to increased right ventricular (RV) pressure, RV hypertrophy, and ultimately, RV failure. Main body Research indicates that RV failure secondary to hypertrophy remains the primary cause of mortality in pulmonary arterial hypertension (PAH). However, the impact of PH on RV structure and function under increased overload remains incompletely understood. Several mechanisms have been proposed, including extracellular remodeling, RV hypertrophy, metabolic disturbances, inflammation, apoptosis, autophagy, endothelial-to-mesenchymal transition, neurohormonal dysregulation, capillary rarefaction, and ischemia. Conclusions Studies have demonstrated the significant role of oxidative stress in the development of RV failure. Understanding the interplay among these mechanisms is crucial for the prevention and management of RV failure in patients with PH.
Collapse
Affiliation(s)
- Mehrshad Namazi
- Trauma and Surgery Research Center, AJA University of Medical Sciences, Tehran, Iran
- Clinical Biomechanics and Ergonomics Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Seyed Parsa Eftekhar
- Trauma and Surgery Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Reza Mosaed
- Trauma and Surgery Research Center, AJA University of Medical Sciences, Tehran, Iran
| | | | - Ebrahim Hazrati
- Trauma and Surgery Research Center, AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Yamada M, Warabi E, Oishi H, Lira VA, Okutsu M. Muscle-derived IL-1β regulates EcSOD expression via the NBR1-p62-Nrf2 pathway in muscle during cancer cachexia. J Physiol 2024; 602:4215-4235. [PMID: 39167700 DOI: 10.1113/jp286460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Oxidative stress contributes to the loss of skeletal muscle mass and function in cancer cachexia. However, this outcome may be mitigated by an improved endogenous antioxidant defence system. Here, using the well-established oxidative stress-inducing muscle atrophy model of Lewis lung carcinoma (LLC) in 13-week-old male C57BL/6J mice, we demonstrate that extracellular superoxide dismutase (EcSOD) levels increase in the cachexia-prone extensor digitorum longus muscle. LLC transplantation significantly increased interleukin-1β (IL-1β) expression and release from extensor digitorum longus muscle fibres. Moreover, IL-1β treatment of C2C12 myotubes increased NBR1, p62 phosphorylation at Ser351, Nrf2 nuclear translocation and EcSOD protein expression. Additional studies in vivo indicated that intramuscular IL-1β injection is sufficient to stimulate EcSOD expression, which is prevented by muscle-specific knockout of p62 and Nrf2 (i.e. in p62 skmKO and Nrf2 skmKO mice, respectively). Finally, since an increase in circulating IL-1β may lead to unwanted outcomes, we demonstrate that targeting this pathway at p62 is sufficient to drive muscle EcSOD expression in an Nrf2-dependent manner. In summary, cancer cachexia increases EcSOD expression in extensor digitorum longus muscle via muscle-derived IL-1β-induced upregulation of p62 phosphorylation and Nrf2 activation. These findings provide further mechanistic evidence for the therapeutic potential of p62 and Nrf2 to mitigate cancer cachexia-induced muscle atrophy. KEY POINTS: Oxidative stress plays an important role in muscle atrophy during cancer cachexia. EcSOD, which mitigates muscle loss during oxidative stress, is upregulated in 13-week-old male C57BL/6J mice of extensor digitorum longus muscles during cancer cachexia. Using mouse and cellular models, we demonstrate that cancer cachexia promotes muscle EcSOD protein expression via muscle-derived IL-1β-dependent stimulation of the NBR1-p62-Nrf2 signalling pathway. These results provide further evidence for the potential therapeutic targeting of the NBR1-p62-Nrf2 signalling pathway downstream of IL-1β to mitigate cancer cachexia-induced muscle atrophy.
Collapse
Affiliation(s)
- Mami Yamada
- Graduate School of Science, Nagoya City University, Nagoya, Japan
| | - Eiji Warabi
- Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hisashi Oishi
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Vitor A Lira
- Department of Health & Human Physiology, Fraternal Order of Eagles Diabetes Research Center, Abboud Cardiovascular Research Center, Obesity Research and Education Initiative, Pappajohn Biomedical Institute, The University of Iowa, Iowa City, Iowa, USA
| | - Mitsuharu Okutsu
- Graduate School of Science, Nagoya City University, Nagoya, Japan
| |
Collapse
|
7
|
Yu Q, Ding J, Li S, Li Y. Autophagy in cancer immunotherapy: Perspective on immune evasion and cell death interactions. Cancer Lett 2024; 590:216856. [PMID: 38583651 DOI: 10.1016/j.canlet.2024.216856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/22/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Both the innate and adaptive immune systems work together to produce immunity. Cancer immunotherapy is a novel approach to tumor suppression that has arisen in response to the ineffectiveness of traditional treatments like radiation and chemotherapy. On the other hand, immune evasion can diminish immunotherapy's efficacy. There has been a lot of focus in recent years on autophagy and other underlying mechanisms that impact the possibility of cancer immunotherapy. The primary feature of autophagy is the synthesis of autophagosomes, which engulf cytoplasmic components and destroy them by lysosomal degradation. The planned cell death mechanism known as autophagy can have opposite effects on carcinogenesis, either increasing or decreasing it. It is autophagy's job to maintain the balance and proper functioning of immune cells like B cells, T cells, and others. In addition, autophagy controls whether macrophages adopt the immunomodulatory M1 or M2 phenotype. The ability of autophagy to control the innate and adaptive immune systems is noteworthy. Interleukins and chemokines are immunological checkpoint chemicals that autophagy regulates. Reducing antigen presentation to induce immunological tolerance is another mechanism by which autophagy promotes cancer survival. Therefore, targeting autophagy is of importance for enhancing potential of cancer immunotherapy.
Collapse
Affiliation(s)
- Qiang Yu
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Jiajun Ding
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Shisen Li
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Yunlong Li
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|
8
|
Wu C, Hu L, Liu B, Zeng X, Ma H, Cao Y, Li H, Zhang X. TRAF6-mediated ubiquitination of AKT in the nucleus is a critical event underlying the desensitization of G protein-coupled receptors. Cell Commun Signal 2024; 22:213. [PMID: 38566235 PMCID: PMC10986131 DOI: 10.1186/s12964-024-01592-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Desensitization of G protein-coupled receptors (GPCRs) refers to the attenuation of receptor responsiveness by prolonged or intermittent exposure to agonists. The binding of β-arrestin to the cytoplasmic cavity of the phosphorylated receptor, which competes with the G protein, has been widely accepted as an extensive model for explaining GPCRs desensitization. However, studies on various GPCRs, including dopamine D2-like receptors (D2R, D3R, D4R), have suggested the existence of other desensitization mechanisms. The present study employed D2R/D3R variants with different desensitization properties and utilized loss-of-function approaches to uncover the mechanisms underlying GPCRs homologous desensitization, focusing on the signaling cascade that regulates the ubiquitination of AKT. RESULTS AKT undergoes K8/14 ubiquitination by TRAF6, which occurs in the nucleus and promotes its membrane recruitment, phosphorylation and activation under receptor desensitization conditions. The nuclear entry of TRAF6 relies on the presence of the importin complex. Src regulates the nuclear entry of TRAF6 by mediating the interaction between TRAF6 and importin β1. Ubiquitinated AKT translocates to the plasma membrane where it associates with Mdm2 to phosphorylate it at the S166 and S186 residues. Thereafter, phosphorylated Mdm2 is recruited to the nucleus, resulting in the deubiquitination of β-Arr2. The deubiquitinated β-Arr2 then forms a complex with Gβγ, which serves as a biomarker for GPCRs desensitization. Like in D3R, ubiquitination of AKT is also involved in the desensitization of β2 adrenoceptors. CONCLUSION Our study proposed that the property of a receptor that causes a change in the subcellular localization of TRAF6 from the cytoplasm to the nucleus to mediate AKT ubiquitination could initiate the desensitization of GPCRs.
Collapse
Affiliation(s)
- Chengyan Wu
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Li Hu
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Bing Liu
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Xingyue Zeng
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Haixiang Ma
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Yongkai Cao
- Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Huijun Li
- Department of Pharmaceuticals, People's Hospital of Zunyi City Bo Zhou District, Zunyi, 563000, China
| | - Xiaohan Zhang
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
9
|
Lee YH, Yoon AR, Yun CO, Chung KC. Dual-specificity kinase DYRK3 phosphorylates p62 at the Thr-269 residue and promotes melanoma progression. J Biol Chem 2024; 300:107206. [PMID: 38519031 PMCID: PMC11021969 DOI: 10.1016/j.jbc.2024.107206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/03/2024] [Accepted: 03/12/2024] [Indexed: 03/24/2024] Open
Abstract
Melanoma is a type of skin cancer that originates in melanin-producing melanocytes. It is considered a multifactorial disease caused by both genetic and environmental factors, such as UV radiation. Dual-specificity tyrosine-phosphorylation-regulated kinase (DYRK) phosphorylates many substrates involved in signaling pathways, cell survival, cell cycle control, differentiation, and neuronal development. However, little is known about the cellular function of DYRK3, one of the five members of the DYRK family. Interestingly, it was observed that the expression of DYRK3, as well as p62 (a multifunctional signaling protein), is highly enhanced in most melanoma cell lines. This study aimed to investigate whether DYRK3 interacts with p62, and how this affects melanoma progression, particularly in melanoma cell lines. We found that DYRK3 directly phosphorylates p62 at the Ser-207 and Thr-269 residue. Phosphorylation at Thr-269 of p62 by DYRK3 increased the interaction of p62 with tumor necrosis factor receptor-associated factor 6 (TRAF6), an already known activator of mammalian target of rapamycin complex 1 (mTORC1) in the mTOR-involved signaling pathways. Moreover, the phosphorylation of p62 at Thr-269 promoted the activation of mTORC1. We also found that DYRK3-mediated phosphorylation of p62 at Thr-269 enhanced the growth of melanoma cell lines and melanoma progression. Conversely, DYRK3 knockdown or blockade of p62-T269 phosphorylation inhibited melanoma growth, colony formation, and cell migration. In conclusion, we demonstrated that DYRK3 phosphorylates p62, positively modulating the p62-TRAF6-mTORC1 pathway in melanoma cells. This finding suggests that DYRK3 suppression may be a novel therapy for preventing melanoma progression by regulating the mTORC1 pathway.
Collapse
Affiliation(s)
- Ye Hyung Lee
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - A-Rum Yoon
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, South Korea
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, South Korea
| | - Kwang Chul Chung
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea.
| |
Collapse
|
10
|
Bhatnagar A, Chopra U, Raja S, Das KD, Mahalingam S, Chakravortty D, Srinivasula SM. TLR-mediated aggresome-like induced structures comprise antimicrobial peptides and attenuate intracellular bacterial survival. Mol Biol Cell 2024; 35:ar34. [PMID: 38170582 PMCID: PMC10916861 DOI: 10.1091/mbc.e23-09-0347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
Immune cells employ diverse mechanisms for host defense. Macrophages, in response to TLR activation, assemble aggresome-like induced structures (ALIS). Our group has shown TLR4-signaling transcriptionally upregulates p62/sequestome1, which assembles ALIS. We have demonstrated that TLR4-mediated autophagy is, in fact, selective-autophagy of ALIS. We hypothesize that TLR-mediated autophagy and ALIS contribute to host-defense. Here we show that ALIS are assembled in macrophages upon exposure to different bacteria. These structures are associated with pathogen-containing phagosomes. Importantly, we present evidence of increased bacterial burden, where ALIS assembly is prevented with p62-specific siRNA. We have employed 3D-super-resolution structured illumination microscopy (3D-SR-SIM) and mass-spectrometric (MS) analyses to gain insight into the assembly of ALIS. Ultra-structural analyses of known constituents of ALIS (p62, ubiquitin, LC3) reveal that ALIS are organized structures with distinct patterns of alignment. Furthermore, MS-analyses of ALIS identified, among others, several proteins of known antimicrobial properties. We have validated MS data by testing the association of some of these molecules (Bst2, IFITM2, IFITM3) with ALIS and the phagocytosed-bacteria. We surmise that AMPs enrichment in ALIS leads to their delivery to bacteria-containing phagosomes and restricts the bacteria. Our findings in this paper support hitherto unknown functions of ALIS in host-defense.
Collapse
Affiliation(s)
- Anushree Bhatnagar
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala PO, Vithura, Thiruvananthapuram 695551, Kerala, India
| | - Umesh Chopra
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Sebastian Raja
- Laboratory of Molecular Cell Biology, Department of Biotechnology, Indian Institute of Technology-Madras, Chennai 600036, India
| | - Krishanu Dey Das
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala PO, Vithura, Thiruvananthapuram 695551, Kerala, India
| | - S. Mahalingam
- Laboratory of Molecular Cell Biology, Department of Biotechnology, Indian Institute of Technology-Madras, Chennai 600036, India
| | - Dipshikha Chakravortty
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala PO, Vithura, Thiruvananthapuram 695551, Kerala, India
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Srinivasa Murty Srinivasula
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala PO, Vithura, Thiruvananthapuram 695551, Kerala, India
| |
Collapse
|
11
|
Jin C, Zheng J, Yang Q, Jia Y, Li H, Liu X, Xu Y, Chen Z, He L. Morusin Inhibits RANKL-induced Osteoclastogenesis and Ovariectomized Osteoporosis. Comb Chem High Throughput Screen 2024; 27:1358-1370. [PMID: 37807416 DOI: 10.2174/0113862073252310230925062415] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/18/2023] [Accepted: 08/09/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND Postmenopausal osteoporosis (PMOP) is a classic type of osteoporosis that has gradually become a significant health problem worldwide. There is an urgent need for a safe alternative therapeutic agent considering the poor therapeutic strategies currently available for this disease. The roots and bark of the Morus australis tree (Moraceae) are used to make a traditional Chinese medicine known as "Morusin", and accumulating evidence has demonstrated its multiple activities, such as anti-inflammatory and anti-tumor effects. OBJECTIVE In this study, we aim to explore the effect of Morusin on mouse osteoclasts and its mechanism. METHODS In this study, we explored the inhibitory effects of Morusin on murine osteoclasts in vitro and its mechanism, and the protective effect of Morusin on an ovariectomy (OVX)-induced osteoporosis model in vivo. RESULTS The results showed that Morusin prevented OVX-induced bone loss and dramatically decreased RANKL-induced osteoclastogenesis. Morusin interfered with RANKL-activated NF- κB, MAPK, and PI3K/AKT signaling pathways. The expression of three master factors that control osteoclast differentiation, c-Fos, NFATc1, and c-Jun, was reduced by Morusin treatment. Collectively, in vitro results indicated that Morusin has a protective effect on OVX-induced bone loss in a mouse model. CONCLUSION Our data provide encouraging evidence that Morusin may be an effective treatment for PMOP.
Collapse
Affiliation(s)
- Cong Jin
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
| | - Jiewen Zheng
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
- Shaoxing University School of Medicine, Shaoxing, Zhejiang, 312000, China
| | - Qichang Yang
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yewei Jia
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
| | - Haibo Li
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
| | - Xuewen Liu
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China China
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yangjun Xu
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
- Shaoxing University School of Medicine, Shaoxing, Zhejiang, 312000, China
| | - Zhuolin Chen
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310000, China
| | - Lei He
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
| |
Collapse
|
12
|
Alcober‐Boquet L, Zang T, Pietsch L, Suess E, Hartmann M, Proschak E, Gross LZF, Sacerdoti M, Zeuzem S, Rogov VV, Leroux AE, Piiper A, Biondi RM. The PB1 and the ZZ domain of the autophagy receptor p62/SQSTM1 regulate the interaction of p62/SQSTM1 with the autophagosome protein LC3B. Protein Sci 2024; 33:e4840. [PMID: 37984441 PMCID: PMC10751729 DOI: 10.1002/pro.4840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/30/2023] [Accepted: 11/15/2023] [Indexed: 11/22/2023]
Abstract
Autophagy is a highly conserved cellular process that allows degradation of large macromolecules. p62/SQSTM1 is a key adaptor protein that interacts both with material to be degraded and with LC3 at the autophagosome, enabling degradation of cargos such as protein aggregates, lipid droplets and damaged organelles by selective autophagy. Dysregulation of autophagy contributes to the pathogenesis of many diseases. In this study, we investigated if the interaction of p62/SQSTM1 with LC3B could be regulated. We purified full-length p62/SQSTM1 and established an in vitro assay that measures the interaction with LC3B. We used the assay to determine the role of the different domains of p62/SQSTM1 in the interaction with LC3B. We identified a mechanism of regulation of p62/SQSTM1 where the ZZ and the PB1 domains regulate the exposure of the LIR-sequence to enable or inhibit the interaction with LC3B. A mutation to mimic the phosphorylation of a site on the ZZ domain leads to increased interaction with LC3B. Also, a small compound that binds to the ZZ domain enhances interaction with LC3B. Dysregulation of these mechanisms in p62/SQSTM1 could have implications for diseases where autophagy is affected. In conclusion, our study highlights the regulated nature of p62/SQSTM1 and its ability to modulate the interaction with LC3B through a LIR-sequence Accessibility Mechanism (LAM). Furthermore, our findings suggest the potential for pharmacological modulation of the exposure of LIR, paving the way for future therapeutic strategies.
Collapse
Affiliation(s)
- Lucia Alcober‐Boquet
- Goethe University FrankfurtMedical Clinic 1, Biomedical Research Laboratory, University HospitalFrankfurtGermany
| | - Tabea Zang
- Goethe University FrankfurtMedical Clinic 1, Biomedical Research Laboratory, University HospitalFrankfurtGermany
| | - Larissa Pietsch
- Goethe University FrankfurtMedical Clinic 1, Biomedical Research Laboratory, University HospitalFrankfurtGermany
- German Translational Cancer Network (DKTK)FrankfurtGermany
| | - Evelyn Suess
- Goethe University FrankfurtMedical Clinic 1, Biomedical Research Laboratory, University HospitalFrankfurtGermany
| | - Markus Hartmann
- Institut für Pharmazeutische ChemieGoethe‐Universität FrankfurtFrankfurt am MainGermany
| | - Ewgenij Proschak
- Institut für Pharmazeutische ChemieGoethe‐Universität FrankfurtFrankfurt am MainGermany
| | - Lissy Z. F. Gross
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)—CONICET—Partner Institute of the Max Planck SocietyBuenos AiresArgentina
| | - Mariana Sacerdoti
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)—CONICET—Partner Institute of the Max Planck SocietyBuenos AiresArgentina
| | - Stefan Zeuzem
- Goethe University FrankfurtMedical Clinic 1, Biomedical Research Laboratory, University HospitalFrankfurtGermany
| | - Vladimir V. Rogov
- Institut für Pharmazeutische ChemieGoethe‐Universität FrankfurtFrankfurt am MainGermany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life SciencesGoethe UniversityFrankfurtGermany
| | - Alejandro E. Leroux
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)—CONICET—Partner Institute of the Max Planck SocietyBuenos AiresArgentina
| | - Albrecht Piiper
- Goethe University FrankfurtMedical Clinic 1, Biomedical Research Laboratory, University HospitalFrankfurtGermany
| | - Ricardo M. Biondi
- Goethe University FrankfurtMedical Clinic 1, Biomedical Research Laboratory, University HospitalFrankfurtGermany
- German Translational Cancer Network (DKTK)FrankfurtGermany
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)—CONICET—Partner Institute of the Max Planck SocietyBuenos AiresArgentina
| |
Collapse
|
13
|
Lee B, Kim YH, Lee W, Choi HY, Lee J, Kim J, Mai DN, Jung SF, Kwak MS, Shin JS. USP13 deubiquitinates p62/SQSTM1 to induce autophagy and Nrf2 release for activating antioxidant response genes. Free Radic Biol Med 2023; 208:820-832. [PMID: 37776917 DOI: 10.1016/j.freeradbiomed.2023.09.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/02/2023]
Abstract
SQSTM1/p62 (sequestosome 1) is a multifunctional protein that serves as a receptor for selective autophagy and scaffold. In selective autophagy, p62 functions as a bridge between polyubiquitinated proteins and autophagosomes. Further, p62 acts as a signaling hub for many cellular pathways including mTORC1, NF-κB, and Keap1-Nrf2. Post-translational modifications of p62, such as ubiquitination and phosphorylation, are known to determine its binding partners and regulate their intracellular functions. However, the mechanism of p62 deubiquitination remains unclear. In this study, we found that ubiquitin-specific protease 13 (USP13), a member of the USP family, directly binds p62 and removes ubiquitin at Lys7 (K7) of the PB1 domain. USP13-mediated p62 deubiquitination enhances p62 protein stability and facilitates p62 oligomerization, resulting in increased autophagy and degradation of Keap1, which is a negative regulator of the antioxidant response that promotes Nrf2 activation. Thus, USP13 can be considered a therapeutic target as a deubiquitination enzyme of p62 in autophagy-related diseases.
Collapse
Affiliation(s)
- Bin Lee
- Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea; Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Young Hun Kim
- Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Woori Lee
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Hee Youn Choi
- Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea; Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Jisun Lee
- Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea; Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Jiwon Kim
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Dương Ngọc Mai
- Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Su Ful Jung
- Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea; Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Man Sup Kwak
- Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea; Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Jeon-Soo Shin
- Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea; Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea; Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea; Center for Nanomedicine, Institute for Basic Science (IBS), Yonsei University, Seoul, South Korea.
| |
Collapse
|
14
|
Nurzadeh M, Ghalandarpoor-Attar SM, Ghalandarpoor-Attar SN, Rabiei M. The sequestosome 1 protein: therapeutic vulnerabilities in ovarian cancer. Clin Transl Oncol 2023; 25:2783-2792. [PMID: 36964889 DOI: 10.1007/s12094-023-03148-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 03/04/2023] [Indexed: 03/26/2023]
Abstract
Ovarian cancer (OC) is the most deadly tumor that may develop in a woman's reproductive system. It is also one of the most common causes of death among those who have been diagnosed with cancer in women. An adapter protein known as sequestosome 1(SQSTM1) or p62 is primarily responsible for the transportation, degradation, and destruction of a wide variety of proteins. This adapter protein works in conjunction with the autophagy process as well as the ubiquitin proteasome degradation pathway. In addition, the ability of SQSTM1 to interact with multiple binding partners link SQSTM1 to various pathways in the context of antioxidant defense system and inflammation. In this review, we outline the processes underlying the control that SQSTM1 has on these pathways and how their dysregulation contributes to the development of OC. At the final, the therapeutic approaches based on SQSTM1 targeting have been discussed.
Collapse
Affiliation(s)
- Maryam Nurzadeh
- Fetomaternal Department, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Maryam Rabiei
- Obstetrics and Gynecology Department, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Qian H, Ding WX. SQSTM1/p62 and Hepatic Mallory-Denk Body Formation in Alcohol-Associated Liver Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1415-1426. [PMID: 36906265 PMCID: PMC10642158 DOI: 10.1016/j.ajpath.2023.02.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/14/2023] [Accepted: 02/24/2023] [Indexed: 03/12/2023]
Abstract
Sequestosome 1 (SQSTM1/p62; hereafter p62) is an autophagy receptor protein for selective autophagy primarily due to its direct interaction with the microtubule light chain 3 protein that specifically localizes on autophagosome membranes. As a result, impaired autophagy leads to the accumulation of p62. p62 is also a common component of many human liver disease-related cellular inclusion bodies, such as Mallory-Denk bodies, intracytoplasmic hyaline bodies, α1-antitrypsin aggregates, as well as p62 bodies and condensates. p62 also acts as an intracellular signaling hub, and it involves multiple signaling pathways, including nuclear factor erythroid 2-related factor 2, NF-κB, and the mechanistic target of rapamycin, which are critical for oxidative stress, inflammation, cell survival, metabolism, and liver tumorigenesis. This review discusses the recent insights of p62 in protein quality control, including the role of p62 in the formation and degradation of p62 stress granules and protein aggregates as well as regulation of multiple signaling pathways in the pathogenesis of alcohol-associated liver disease.
Collapse
Affiliation(s)
- Hui Qian
- Department of Pharmacology, Toxicology, and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology, and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas; Department of Internal Medicine, The University of Kansas Medical Center, Kansas City, Kansas.
| |
Collapse
|
16
|
Yamada M, Warabi E, Oishi H, Lira VA, Okutsu M. Muscle p62 stimulates the expression of antioxidant proteins alleviating cancer cachexia. FASEB J 2023; 37:e23156. [PMID: 37624620 PMCID: PMC10560086 DOI: 10.1096/fj.202300349r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/26/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023]
Abstract
Oxidative stress plays an important role in skeletal muscle atrophy during cancer cachexia, and more glycolytic muscles are preferentially affected. Sequestosome1/SQSTM1 (i.e., p62), particularly when phosphorylated at Ser 349 (Ser 351 in mice), competitively binds to the Kelch-like ECH-associated protein 1 (Keap1) activating Nuclear factor erythroid 2-related factor 2 (Nrf2). Nrf2 then stimulates the transcription of antioxidant/electrophile-responsive elements in target genes. However, a potential role for p62 in the protection of muscle wasting in cachexia remains to be determined. Here, using the well-established cachexia-inducing model of Lewis Lung Carcinoma (LLC) in mice we demonstrate higher expression of antioxidant proteins (i.e., NQO1, HO-1, GSTM1, CuZnSOD, MnSOD, and EcSOD) in the more oxidative and cachexia resistant soleus muscle than in the more glycolytic and cachexia prone extensor digitorum longus muscle. This was accompanied by higher p62 (total and phosphorylated) and nuclear Nrf2 levels in the soleus, which were paralleled by higher expression of proteins known to either phosphorylate or promote p62 phosphorylation (i.e., NBR1, CK1, PKCδ, and TAK1). Muscle-specific p62 gain-of-function (i.e., in p62 mTg mice) activated Nrf2 nuclear translocation and increased the expression of multiple antioxidant proteins (i.e., CuZnSOD, MnSOD, EcSOD, NQO1, and GSTM1) in glycolytic muscles. Interestingly, skeletal muscle Nrf2 haplodeficiency blunted the increases of most of these proteins (i.e., CuZnSOD, EcSOD, and NQO1) suggesting that muscle p62 stimulates antioxidant protein expression also via additional, yet to be determined mechanisms. Of note, p62 gain-of-function mitigated glycolytic muscle wasting in LLC-affected mice. Collectively, our findings identify skeletal muscle p62 as a potential therapeutic target for cancer cachexia.
Collapse
Affiliation(s)
- Mami Yamada
- Graduate School of Science, Nagoya City University, Nagoya, Japan
| | - Eiji Warabi
- Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hisashi Oishi
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Vitor A. Lira
- Department of Health and Human Physiology, Obesity Research and Education Initiative, F.O.E. Diabetes Research Center, Abboud Cardiovascular Research Center, Pappajohn Biomedical Institute, The University of Iowa, IA, USA
| | - Mitsuharu Okutsu
- Graduate School of Science, Nagoya City University, Nagoya, Japan
| |
Collapse
|
17
|
Tang D, Kang R. SQSTM1 is a therapeutic target for infection and sterile inflammation. Cytokine 2023; 169:156317. [PMID: 37542833 DOI: 10.1016/j.cyto.2023.156317] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 07/31/2023] [Indexed: 08/07/2023]
Abstract
Inflammation represents a fundamental immune response triggered by various detrimental stimuli, such as infections, tissue damage, toxins, and foreign substances. Protein degradation plays a crucial role in regulating the inflammatory process at multiple levels. The identification of sequestosome 1 (SQSTM1, also known as p62) protein as a binding partner of lymphocyte-specific protein tyrosine kinase in 1995 marked a significant milestone. Subsequent investigations unveiled the activity of SQSTM1 to interact with diverse unstructured substrates, including proteins, organelles, and pathogens, facilitating their delivery to the lysosome for autophagic degradation. In addition to its well-established intracellular functions, emerging studies have reported the active secretion or passive release of SQSTM1 by immune or non-immune cells, orchestrating the inflammatory responses. These distinct characteristics render SQSTM1 a critical therapeutic target in numerous human diseases, including infectious diseases, rheumatoid arthritis, inflammatory bowel disease, pancreatitis, asthma, chronic obstructive pulmonary disease, and cardiovascular diseases. This review provides a comprehensive overview of the structure and modulation of SQSTM1, discusses its intracellular and extracellular roles in inflammation, and highlights its significance in inflammation-related diseases. Future investigations focusing on elucidating the precise localization, structure, post-translational modifications of SQSTM1, as well as the identification of additional interacting partners, hold promise for unravelling further insights into the multifaceted functions of SQSTM1.
Collapse
Affiliation(s)
- Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
18
|
Zhang X, Dai M, Li S, Li M, Cheng B, Ma T, Zhou Z. The emerging potential role of p62 in cancer treatment by regulating metabolism. Trends Endocrinol Metab 2023:S1043-2760(23)00106-6. [PMID: 37349161 DOI: 10.1016/j.tem.2023.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/24/2023]
Abstract
p62 is an important multifunctional adaptor protein participating in autophagy and many other activities. Many studies have revealed that p62 is highly expressed in multiple cancers and decreasing its level can effectively lower the proliferation ability of cancer cells. Moreover, much research has highlighted the significant role of the regulation of cancer cell metabolism in helping to treat tumors. Recent reports demonstrate that p62 could regulate cancer cell metabolism through various mechanisms. However, the relationship between p62 and cancer cell metabolism as well as the related mechanisms has not been fully elucidated. In this review, we describe glucose, glutamine, and fatty acid metabolism in tumor cells and some signaling pathways that can regulate cancer metabolism and are mediated by p62.
Collapse
Affiliation(s)
- Xiaochuan Zhang
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, China
| | - Mengge Dai
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Shaotong Li
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Meng Li
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Bing Cheng
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Ting Ma
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China.
| | - Zheng Zhou
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
19
|
Liang X, Yao J, Cui D, Zheng W, Liu Y, Lou G, Ye B, Shui L, Sun Y, Zhao Y, Zheng M. The TRAF2-p62 axis promotes proliferation and survival of liver cancer by activating mTORC1 pathway. Cell Death Differ 2023:10.1038/s41418-023-01164-7. [PMID: 37081115 DOI: 10.1038/s41418-023-01164-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 04/22/2023] Open
Abstract
TRAF2 (Tumor necrosis factor receptor-associated factor 2) is a dual function protein, acting as an adaptor protein and a ubiquitin E3 ligase, which plays an essential role in mediating the TNFα-NFκB signal pathway. Dysregulated expression of TRAF2 has been reported in a variety of human cancers. Whether and how TRAF2 regulates the growth of liver cancer cells remains elusive. The goal of this study is to investigate potential dysregulation of TRAF2 and its biological function in liver cancer, and to elucidate the underlying mechanism, leading to validation of TRAF2 as an attractive liver cancer target. Here, we reported TRAF2 is up-regulated in human liver cancer cell lines and tissues, and high TRAF2 expression is associated with a poor prognosis of HCC patients. Proteomics profiling along with Co-immunoprecipitation analysis revealed that p62 is a new substrate of TRAF2, which is subjected to TRAF2-induced polyubiquitination via the K63 linkage at the K420 residue. A strong negative correlation was found between the protein levels of p62 and TRAF2 in human HCC samples. TRAF2 depletion inhibited growth and survival of liver cancer cells both in vitro and in vivo by causing p62 accumulation, which is partially rescued by simultaneous p62 knockdown. Mechanistically, TRAF2-mediated p62 polyubiquitylation activates the mTORC1 by forming the p62-mTORC1-Rag complex, which facilitates the lysosome localization of mTORC1. TRAF2 depletion inhibited mTORC1 activity through the disruption of interaction between p62 and the mTORC1 complex. In conclusion, our study provides the proof-of-concept evidence that TRAF2 is a valid target for liver cancer.
Collapse
Affiliation(s)
- Xue Liang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China
| | - Jiping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China
| | - Danrui Cui
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Weiyang Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China
| | - Yanning Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China
| | - Guohua Lou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China
| | - Bingjue Ye
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China
| | - Liyan Shui
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China
| | - Yi Sun
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
- Cancer Institute of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Yongchao Zhao
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China.
| | - Min Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China.
| |
Collapse
|
20
|
Wen Y, Ma J. Phase separation drives the formation of biomolecular condensates in the immune system. Front Immunol 2022; 13:986589. [PMID: 36439121 PMCID: PMC9685520 DOI: 10.3389/fimmu.2022.986589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/19/2022] [Indexed: 08/12/2023] Open
Abstract
When the external conditions change, such as the temperature or the pressure, the multi-component system sometimes separates into several phases with different components and structures, which is called phase separation. Increasing studies have shown that cells condense related biomolecules into independent compartments in order to carry out orderly and efficient biological reactions with the help of phase separation. Biomolecular condensates formed by phase separation play a significant role in a variety of cellular processes, including the control of signal transduction, the regulation of gene expression, and the stress response. In recent years, many phase separation events have been discovered in the immune response process. In this review, we provided a comprehensive and detailed overview of the role and mechanism of phase separation in the innate and adaptive immune responses, which will help the readers to appreciate the advance and importance of this field.
Collapse
Affiliation(s)
- Yuqing Wen
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Hunan Key Laboratory of Cancer Metabolism, Changsha, China
| | - Jian Ma
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Hunan Key Laboratory of Cancer Metabolism, Changsha, China
| |
Collapse
|
21
|
Gao P, Liu H, Huang H, Sun Y, Jia B, Hou B, Zhou X, Strober W, Zhang F. The Crohn Disease-associated ATG16L1 T300A polymorphism regulates inflammatory responses by modulating TLR- and NLR-mediated signaling. Autophagy 2022; 18:2561-2575. [PMID: 35220902 PMCID: PMC9629077 DOI: 10.1080/15548627.2022.2039991] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The mechanisms by which the ATG16L1T300A polymorphism affects cell function and causes an increased risk for the development of Crohn disease remain incompletely understood. Here we report that healthy individuals and mice bearing this polymorphism, even as heterozygotes, manifest enhanced TLR, and NLR cytokine and chemokine responses due to increased activation of NFKB. We elucidated the mechanism of the NFKB abnormality and found that in the ATG16L1T300A cell, there is enhanced polyubiquitination of TRAF6 or RIPK2 resulting from the accumulation of SQSTM1/p62. Indeed, knockout of Sqstm1 in autophagy-deficient cells almost completely normalized TRAF6 or RIPK2 polyubiquitination and NFKB activation in these cells. Thus, by identifying that autophagy is a pathway-intrinsic homeostatic mechanism that restricts excessive TLR- or NLR-mediated inflammatory signaling, our findings shed new light on how the ATG16L1T300A polymorphism sets the stage for the occurrence of Crohn disease.Abbreviations: 3-MA: 3-methyladenine; ATG16L1: autophagy related 16 like 1; ATG7: autophagy related 7; BMDM: bone marrow-derived macrophage; CD: Crohn disease; CXCL: C-X-C motif chemokine ligand; IBD: inflammatory bowel disease; iBMDM: immortalized mouse BMDM; IL1B/IL-1β: interleukin 1 beta; IL6: interleukin 6; KI: knockin; KO: knockout; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; LPS: lipopolysaccharide; MDP: muramyl dipeptide; MEF: mouse embryonic fibroblast; NFKB/NF-κB: nuclear factor kappa B; NFKBIA/IKBA: NFKB inhibitor alpha; NLR: NOD-like receptor; NOD: nucleotide-binding oligomerization domain containing; RIPK2: receptor interacting serine/threonine kinase 2; SNP: single nucleotide polymorphism; SQSTM1/p62: sequestosome 1; TLR: toll like receptor; TNF/TNF-α: tumor necrosis factor; TRAF6: TNF receptor associated factor 6; Ub: ubiquitin; WT: wild type.
Collapse
Affiliation(s)
- Ping Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Hongtao Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Huarong Huang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yu Sun
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Baoqian Jia
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Baidong Hou
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xuyu Zhou
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China,Department of Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Warren Strober
- Mucosal Immunity Section, Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, Maryland, USA,CONTACT Warren Strober Mucosal Immunity Section, Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, Maryland, USA
| | - Fuping Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China,Department of Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China,Fuping Zhang Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing100101China
| |
Collapse
|
22
|
Autophagy-Associated Immunogenic Modulation and Its Applications in Cancer Therapy. Cells 2022; 11:cells11152324. [PMID: 35954167 PMCID: PMC9367255 DOI: 10.3390/cells11152324] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/24/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Autophagy, a lysosome-mediated cellular degradation pathway, recycles intracellular components to maintain metabolic balance and survival. Autophagy plays an important role in tumor immunotherapy as a “double-edged sword” that can both promote and inhibit tumor progression. Autophagy acts on innate and adaptive immunity and interacts with immune cells to modulate tumor immunotherapy. The discovery of autophagy inducers and autophagy inhibitors also provides new insights for clinical anti-tumor therapy. However, there are also difficulties in the application of autophagy-related regulators, such as low bioavailability and the lack of efficient selectivity. This review focuses on autophagy-related immunogenic regulation and its application in cancer therapy.
Collapse
|
23
|
Restoration of atypical protein kinase C ζ function in autosomal dominant polycystic kidney disease ameliorates disease progression. Proc Natl Acad Sci U S A 2022; 119:e2121267119. [PMID: 35867829 PMCID: PMC9335328 DOI: 10.1073/pnas.2121267119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) affects more than 500,000 individuals in the United States alone. In most cases, ADPKD is caused by a loss-of-function mutation in the PKD1 gene, which encodes polycystin-1 (PC1). Previous studies reported that PC1 interacts with atypical protein kinase C (aPKC). Here we show that PC1 binds to the ζ isoform of aPKC (PKCζ) and identify two PKCζ phosphorylation sites on PC1's C-terminal tail. PKCζ expression is down-regulated in patients with ADPKD and orthologous and nonorthologous PKD mouse models. We find that the US Food and Drug Administration-approved drug FTY720 restores PKCζ expression in in vitro and in vivo models of polycystic kidney disease (PKD) and this correlates with ameliorated disease progression in multiple PKD mouse models. Importantly, we show that FTY720 treatment is less effective in PKCζ null versions of these PKD mouse models, elucidating a PKCζ-specific mechanism of action that includes inhibiting STAT3 activity and cyst-lining cell proliferation. Taken together, our results reveal that PKCζ down-regulation is a hallmark of PKD and that its stabilization by FTY720 may represent a therapeutic approach to the treat the disease.
Collapse
|
24
|
Chen Y, Cao H, He W, Zhang X, Xu R. tert-Butylhydroquinone-induced formation of high-molecular-weight p62: A novel mechanism in the activation of Nrf2-Keap1. Cell Biol Int 2022; 46:1345-1354. [PMID: 35830696 DOI: 10.1002/cbin.11849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 11/06/2022]
Abstract
The respiratory system is always exposed to air and is most vulnerable to attack by environmental free radicals. The nuclear factor E2-related factor 2-Kelch-like ECH-associated protein 1-antioxidant response element (Nrf2-Keap1-ARE) pathway and p62 are both involved in the oxidative stress response. However, the interplay between these two systems remains largely unknown. This study shows that treatment of L2 cells with tert-Butylhydroquinone (tBHQ) generates a high-molecular-weight (HMW) form of p62, leading to activation of the Nrf2-Keap1-ARE pathway. The levels of HMW-p62 increased as the tBHQ concentration increased, with concomitant decreases seen in the classical form of p62. Moreover, small interfering RNA targeting p62 increases Keap1 protein levels and inactivates the Nrf2-Keap1-ARE pathway. These results demonstrate that the Nrf2-Keap1 pathway is partially regulated by p62. tBHQ-induced HMW-p62 production may be a novel mechanism in the activation of the Nrf2-Keap1-ARE pathway.
Collapse
Affiliation(s)
- Yunfang Chen
- Department of Oncology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, Guangdong, China.,Department of Oncology, The First Affiliated Hospital, Southern University of Science and Technology, Shenzen, China
| | - Hua Cao
- Department of Oncology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, Guangdong, China.,Department of Oncology, The First Affiliated Hospital, Southern University of Science and Technology, Shenzen, China
| | - Wan He
- Department of Oncology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, Guangdong, China.,Department of Oncology, The First Affiliated Hospital, Southern University of Science and Technology, Shenzen, China
| | - Xi Zhang
- Department of Oncology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, Guangdong, China.,Department of Oncology, The First Affiliated Hospital, Southern University of Science and Technology, Shenzen, China
| | - Ruilian Xu
- Department of Oncology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, Guangdong, China.,Department of Oncology, The First Affiliated Hospital, Southern University of Science and Technology, Shenzen, China
| |
Collapse
|
25
|
Xie F, Li Z, Yang N, Yang J, Hua D, Luo J, He T, Xing Y. Inhibition of Heat Shock Protein B8 Alleviates Retinal Dysfunction and Ganglion Cells Loss Via Autophagy Suppression in Mouse Axonal Damage. Invest Ophthalmol Vis Sci 2022; 63:28. [PMID: 35758906 PMCID: PMC9248752 DOI: 10.1167/iovs.63.6.28] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Purpose Heat shock protein B8 (HspB8) can be upregulated rapidly in many pathologic processes, but its role in traumatic optic neuropathy remains unclear. In this study, we investigated the involvement of autophagy in the effects of HspB8 by using the optic nerve crush (ONC) model. Methods Male C57BL/6J mice were intravitreally injected with recombinant adeno-associated virus type 2 (AAV2-shHspB8 or AAV2-GFP) and subsequently received ONC by a self-closing tweezers. Western blot and immunohistochemistry staining were used to evaluate the expression of HspB8. We conducted retinal flat-mount immunofluorescence to measure the quantities of retinal ganglion cells (RGCs), and full-field flash electroretinogram (ff-ERG) and optomotor response (OMR) were used to evaluate retinal function. The autophagy level was reflected by western blot, immunohistochemistry staining, and transmission electron microscope (TEM) images. We also applied 3-methyladenine (3MA) and rapamycin (Rapa) to regulate autophagy level in optic nerve injury. Results ONC stimulated the expression of HspB8. Declines of RGCs and ff-ERG b-wave amplitudes resulting from ONC can be alleviated by HspB8 downregulation. Increased autophagy activity after ONC was observed; however, this change can be reversed by intravitreal injection of AAV2-shHspB8. Furthermore, application of autophagy inhibitor 3MA had the same neuroprotective effects as AAV2-shHspB8, as illustrated by ff-ERG and quantities of RGCs. Also, protection of AAV2-shHspB8 was compromised by the autophagy activator Rapa. Conclusions Inhibition of HspB8 in mice optic nerve injury had neuroprotective effects, which may be derived from its downregulation of autophagy.
Collapse
Affiliation(s)
- Feijia Xie
- Eye Center, RenMin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China.,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, Shandong Province, People's Republic of China
| | - Zongyuan Li
- Eye Center, RenMin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Ning Yang
- Eye Center, RenMin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Jiayi Yang
- Eye Center, RenMin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Dihao Hua
- Eye Center, RenMin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Jinyuan Luo
- Eye Center, RenMin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Tao He
- Eye Center, RenMin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Yiqiao Xing
- Eye Center, RenMin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| |
Collapse
|
26
|
Keller C, Yorgan TA, Rading S, Schinke T, Karsak M. Impact of the Endocannabinoid System on Bone Formation and Remodeling in p62 KO Mice. Front Pharmacol 2022; 13:858215. [PMID: 35392569 PMCID: PMC8980328 DOI: 10.3389/fphar.2022.858215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/28/2022] [Indexed: 11/15/2022] Open
Abstract
Several studies have shown that the G-protein coupled cannabinoid receptor CB2 and its interaction partner p62 are molecularly involved in bone remodeling processes. Pharmacological activation of the CB2 receptor enhanced bone volume in postmenopausal osteoporosis and arthritis models in rodents, whereas knockout or mutation of the p62 protein in aged mice led to Paget’s disease of bone-like conditions. Studies of pharmacological CB2 agonist effects on bone metabolism in p62 KO mice have not been performed to date. Here, we assessed the effect of the CB2-specific agonist JWH133 after a short-term (5 days in 3-month-old mice) or long-term (4 weeks in 6-month-old mice) treatment on structural, dynamic, and cellular bone morphometry obtained by μCT of the femur and histomorphometry of the vertebral bodies in p62 KO mice and their WT littermates in vivo. A genotype-independent stimulatory effect of CB2 on bone formation, trabecular number, and trabecular thickness after short-term treatment and on tissue mineral density after long-term treatment was detected, indicating a weak osteoanabolic function of this CB2 agonist. Moreover, after short-term systemic CB2 receptor activation, we found significant differences at the cellular level in the number of osteoblasts and osteoclasts only in p62 KO mice, together with a weak increase in trabecular number and a decrease in trabecular separation. Long-term treatment showed an opposite JWH133 effect on osteoclasts in WT versus p62 KO animals and decreased cortical thickness only in treated p62 KO mice. Our results provide new insights into CB2 receptor signaling in vivo and suggest that CB2 agonist activity may be regulated by the presence of its macromolecular binding partner p62.
Collapse
Affiliation(s)
- Christina Keller
- Neuronal and Cellular Signal Transduction, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Timur Alexander Yorgan
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sebastian Rading
- Neuronal and Cellular Signal Transduction, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Meliha Karsak
- Neuronal and Cellular Signal Transduction, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
27
|
In vitro ballooned hepatocytes can be produced by primary human hepatocytes and hepatic stellate cell sheets. Sci Rep 2022; 12:5341. [PMID: 35351975 PMCID: PMC8964766 DOI: 10.1038/s41598-022-09428-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/17/2022] [Indexed: 11/17/2022] Open
Abstract
Despite the increasing prevalence of Nonalcoholic steatohepatitis (NASH) worldwide, there is no effective treatment available for this disease. “Ballooned hepatocyte” is a characteristic finding in NASH and is correlated with disease prognosis, but their mechanisms of action are poorly understood; furthermore, neither animal nor in vitro models of NASH have been able to adequately represent ballooned hepatocytes. Herein, we engineered cell sheets to develop a new in vitro model of ballooned hepatocytes. Primary human hepatocytes (PHH) and Hepatic stellate cells (HSC) were co-cultured to produce cell sheets, which were cultured in glucose and lipid containing medium, following which histological and functional analyses were performed. Histological findings showed hepatocyte ballooning, accumulation of fat droplets, abnormal cytokeratin arrangement, and the presence of Mallory–Denk bodies and abnormal organelles. These findings are similar to those of ballooned hepatocytes in human NASH. Functional analysis showed elevated levels of TGFβ-1, SHH, and p62, but not TNF-α, IL-8. Exposure of PHH/HSC sheets to a glucolipotoxicity environment induces ballooned hepatocyte without inflammation. Moreover, fibrosis is an important mechanism underlying ballooned hepatocytes and could be the basis for the development of a new in vitro NASH model with ballooned hepatocytes.
Collapse
|
28
|
Ma Y, Liang Q, Wang F, Yan K, Sun M, Lin L, Li T, Duan J, Sun Z. Silica nanoparticles induce pulmonary autophagy dysfunction and epithelial-to-mesenchymal transition via p62/NF-κB signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113303. [PMID: 35158278 DOI: 10.1016/j.ecoenv.2022.113303] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
It has been reported that silica nanoparticles (SiNPs) could cause epithelial-to-mesenchymal transition (EMT), but the specific mechanism is still unclear. Thus, the purpose of this study was to investigate the underlying mechanisms of pulmonary EMT after subacute exposure to SiNPs. The results showed intratracheal instillation of SiNPs increased the pulmonary MDA content, while decreased the activity of SOD and GSH-Px in rats. Western blot analysis demonstrated that SiNPs induced autophagy dysfunction via the upregulation of p62. Meanwhile, the inflammation cytokines (TNF-α, IL-18, IL-1β) were released in rat lung. Immunohistochemistry and western blot assays both showed that SiNPs could regulate the related protein biomarkers of EMT through decreasing E-cadherin and increasing vimentin in a dose-dependent manner. Besides, SiNPs activated the proteins expression involved in p62/NF-κB signaling pathway, whereas the pulmonary EMT induced by SiNPs was significantly dampened after the knock down of p62. In this study, we illustrated that subacute exposure to SiNPs could trigger the autophagy dysfunction and pulmonary inflammation, further lead to EMT via activating the p62/NF-κB signaling pathway. Our findings provide new molecular evidence for SiNPs-induced pulmonary toxicity.
Collapse
Affiliation(s)
- Yuexiao Ma
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Qingqing Liang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Fenghong Wang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Kanglin Yan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Mengqi Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Lisen Lin
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Tianyu Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
29
|
Yang T, Deng Z, Xu L, Li X, Yang T, Qian Y, Lu Y, Tian L, Yao W, Wang J. Macrophages-aPKC ɩ-CCL5 Feedback Loop Modulates the Progression and Chemoresistance in Cholangiocarcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:23. [PMID: 35033156 PMCID: PMC8760815 DOI: 10.1186/s13046-021-02235-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/26/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Recent data indicated that macrophages may mutually interact with cancer cells to promote tumor progression and chemoresistance, but the interaction in cholangiocarcinoma (CCA) is obscure. METHODS 10x Genomics single-cell sequencing technology was used to identified the role of macrophages in CCA. Then, we measured the expression and prognostic role of macrophage markers and aPKCɩ in 70 human CCA tissues. Moreover, we constructed monocyte-derived macrophages (MDMs) generated from peripheral blood monocytes (PBMCs) and polarized them into M1/M2 macrophages. A co-culture assay of the human CCA cell lines (TFK-1, EGI-1) and differentiated PBMCs-macrophages was established, and functional studies in vitro and in vivo was performed to explore the interaction between cancer cells and M2 macrophages. Furthermore, we established the cationic liposome-mediated co-delivery of gemcitabine and aPKCɩ-siRNA and detect the antitumor effects in CCA. RESULTS M2 macrophage showed tumor-promoting properties in CCA. High levels of aPKCɩ expression and M2 macrophage infiltration were associated with metastasis and poor prognosis in CCA patients. Moreover, CCA patients with low M2 macrophages infiltration or low aPKCɩ expression benefited from postoperative gemcitabine-based chemotherapy. Further studies showed that M2 macrophages-derived TGFβ1 induced epithelial-mesenchymal transition (EMT) and gemcitabine resistance in CCA cells through aPKCɩ-mediated NF-κB signaling pathway. Reciprocally, CCL5 was secreted more by CCA cells undergoing aPKCɩ-induced EMT and consequently modulated macrophage recruitment and polarization. Furthermore, the cationic liposome-mediated co-delivery of GEM and aPKCɩ-siRNA significantly inhibited macrophages infiltration and CCA progression. CONCLUSION our study demonstrates the role of Macrophages-aPKCɩ-CCL5 Feedback Loop in CCA, and proposes a novel therapeutic strategy of aPKCɩ-siRNA and GEM co-delivered by liposomes for CCA.
Collapse
Affiliation(s)
- Tao Yang
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Zhengdong Deng
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Lei Xu
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Xiangyu Li
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Tan Yang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Yawei Qian
- Department of General Surgery, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, 210009, Jiangsu, China
| | - Yun Lu
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Li Tian
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Wei Yao
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China. .,Department of Oncology Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Jianming Wang
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China. .,Affiliated Tianyou Hospital, Wuhan University of Science & Technology, Wuhan, 430064, China.
| |
Collapse
|
30
|
Cuyler J, Murthy P, Spada NG, McGuire TF, Lotze MT, Xie XQ. Sequestsome-1/p62-targeted small molecules for pancreatic cancer therapy. Drug Discov Today 2022; 27:362-370. [PMID: 34592447 DOI: 10.1016/j.drudis.2021.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/24/2021] [Accepted: 09/22/2021] [Indexed: 12/27/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by heightened autophagy and systemic immune dysfunction. Modest improvements in clinical outcomes have been demonstrated in completed clinical trials targeting autophagy with combination hydroxychloroquine (HCQ) and chemotherapy. Recent mechanistic insights into the role of autophagy-dependent immune evasion have prompted the need for more precise and druggable targets of autophagy inhibition. Sequestosome-1 (SQSTM-1) is a multidomain scaffold protein with well-established roles in autophagy, tumor necrosis factor alpha (TNFα)- and NF-κB-related signaling pathways. SQSTM1 overexpression is frequently observed in PDAC, correlating with clinical stage and outcome. Given the unique molecular structure of SQSTM-1 and its diverse activity, identifying means of limiting SQSTM-1-dependent autophagy to promote an effective immune response in PDAC could be a promising treatment strategy.
Collapse
Affiliation(s)
- Jacob Cuyler
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA 15261, USA; Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Pranav Murthy
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Neal G Spada
- Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Terence F McGuire
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA 15261, USA; Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Michael T Lotze
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Immunology and Bioengineering, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Xiang-Qun Xie
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA 15261, USA; Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Computational Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
31
|
Fan X, Huang T, Tong Y, Fan Z, Yang Z, Yang D, Mao X, Yang M. p62 works as a hub modulation in the ageing process. Ageing Res Rev 2022; 73:101538. [PMID: 34890823 DOI: 10.1016/j.arr.2021.101538] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/22/2021] [Accepted: 12/03/2021] [Indexed: 12/15/2022]
Abstract
p62 (also known as SQSTM1) is widely used as a predictor of autophagic flux, a process that allows the degradation of harmful and unnecessary components through lysosomes to maintain protein homeostasis in cells. p62 is also a stress-induced scaffold protein that resists oxidative stress. The multiple domains in its structure allow it to be connected with a variety of vital signalling pathways, autophagy and the ubiquitin proteasome system (UPS), allowing p62 to play important roles in cell proliferation, apoptosis and survival. Recent studies have shown that p62 is also directly or indirectly involved in the ageing process. In this review, we summarize in detail the process by which p62 regulates ageing from multiple ageing-related signs with the aim of providing new insight for the study of p62 in ageing.
Collapse
Affiliation(s)
- Xiaolan Fan
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Tiantian Huang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Yingdong Tong
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Ziqiang Fan
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Ziyue Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Deying Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Xueping Mao
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Mingyao Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, PR China.
| |
Collapse
|
32
|
Huang PJ, Chiu CC, Hsiao MH, Yow JL, Tzang BS, Hsu TC. Potential of antiviral drug oseltamivir for the treatment of liver cancer. Int J Oncol 2021; 59:109. [PMID: 34859259 PMCID: PMC8651232 DOI: 10.3892/ijo.2021.5289] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/26/2021] [Indexed: 12/11/2022] Open
Abstract
Liver cancer is a leading cause of cancer‑related mortality globally. Since hepatitis virus infections have been strongly associated with the incidence of liver cancer, studies concerning the effects of antiviral drugs on liver cancer have attracted great attention in recent years. The present study investigated the effects of two anti‑hepatitis virus drugs, lamivudine and ribavirin, and one anti‑influenza virus drug, oseltamivir, on liver cancer cells to assess alternative methods for treating liver cancer. MTT assays, wound healing assays, Τranswell assays, flow cytometry, immunoblotting, ELISA, immunofluorescence staining and a xenograft animal model were adopted to verify the effects of lamivudine, ribavirin and oseltamivir on liver cancer cells. Treatment with ribavirin and oseltamivir for 24 and 48 h significantly decreased the viability of both Huh-7 and HepG2 cells compared with that of THLE‑3 cells in a dose‑dependent manner. The subsequent investigations focused on oseltamivir, considering the more serious clinical adverse effects of ribavirin than those of oseltamivir. Significantly decreased migration and invasion were observed in both Huh-7 and HepG2 cells that were treated with oseltamivir for 24 and 48 h. In addition, oseltamivir significantly increased autophagy in Huh‑7 cells, as revealed by the significantly higher ratios of LC3‑II/LC3‑I, increased expression of Beclin‑1, and decreased expression of p62, whereas no significant increases in the expression of apoptosis‑related proteins, including Apaf‑1, cleaved caspase‑3, and cleaved PARP‑1, were detected. Notably, apoptosis and autophagy were significantly increased in HepG2 cells in the presence of oseltamivir, as revealed by the significant increases in the expression of Apaf‑1, cleaved caspase‑3, and cleaved PARP‑1, the higher ratios of LC3‑II/LC3‑I, the increased expression of Beclin‑1, and the decreased expression of p62. Additionally, significant inhibitory effects of oseltamivir on xenografted Huh‑7 cells in athymic nude mice were observed. The present study, for the first time to the best of our knowledge, reported the differential effects of oseltamivir on inducing liver cancer cell death both in vitro and in vivo and may provide an alternative approach for treating liver cancer.
Collapse
Affiliation(s)
- Pei-Ju Huang
- Department of Family Medicine, Changhua Christian Hospital, Changhua 500, Taiwan, R.O.C
| | - Chun-Ching Chiu
- Department of Neurology and Department of Medical Intensive Care Unit, Changhua Christian Hospital, Changhua 500, Taiwan, R.O.C
| | - Min-Hua Hsiao
- Institute of Medicine, College of Medicine, Chung Shan Medical University, Taichung 402, Taiwan, R.O.C
| | - Jia Le Yow
- Institute of Medicine, College of Medicine, Chung Shan Medical University, Taichung 402, Taiwan, R.O.C
| | - Bor-Show Tzang
- Institute of Medicine, College of Medicine, Chung Shan Medical University, Taichung 402, Taiwan, R.O.C
| | - Tsai-Ching Hsu
- Institute of Medicine, College of Medicine, Chung Shan Medical University, Taichung 402, Taiwan, R.O.C
| |
Collapse
|
33
|
The caspase-6-p62 axis modulates p62 droplets based autophagy in a dominant-negative manner. Cell Death Differ 2021; 29:1211-1227. [PMID: 34862482 PMCID: PMC9178044 DOI: 10.1038/s41418-021-00912-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/22/2021] [Accepted: 11/22/2021] [Indexed: 12/15/2022] Open
Abstract
SQSTM1/p62, as a major autophagy receptor, forms droplets that are critical for cargo recognition, nucleation, and clearance. p62 droplets also function as liquid assembly platforms to allow the formation of autophagosomes at their surfaces. It is unknown how p62-droplet formation is regulated under physiological or pathological conditions. Here, we report that p62-droplet formation is selectively blocked by inflammatory toxicity, which induces cleavage of p62 by caspase-6 at a novel cleavage site D256, a conserved site across human, mouse, rat, and zebrafish. The N-terminal cleavage product is relatively stable, whereas the C-terminal product appears undetectable. Using a variety of cellular models, we show that the p62 N-terminal caspase-6 cleavage product (p62-N) plays a dominant-negative role to block p62-droplet formation. In vitro p62 phase separation assays confirm this observation. Dominant-negative regulation of p62-droplet formation by caspase-6 cleavage attenuates p62 droplets dependent autophagosome formation. Our study suggests a novel pathway to modulate autophagy through the caspase-6–p62 axis under certain stress stimuli.
Collapse
|
34
|
Zhang Z, Costa M. p62 functions as a signal hub in metal carcinogenesis. Semin Cancer Biol 2021; 76:267-278. [PMID: 33894381 PMCID: PMC9161642 DOI: 10.1016/j.semcancer.2021.04.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 04/06/2021] [Accepted: 04/15/2021] [Indexed: 12/13/2022]
Abstract
A number of metals are toxic and carcinogenic to humans. Reactive oxygen species (ROS) play an important role in metal carcinogenesis. Oxidative stress acts as the converging point among various stressors with ROS being the main intracellular signal transducer. In metal-transformed cells, persistent expression of p62 and erythroid 2-related factor 2 (Nrf2) result in apoptosis resistance, angiogenesis, inflammatory microenvironment, and metabolic reprogramming, contributing to overall mechanism of metal carcinogenesis. Autophagy, a conserved intracellular process, maintains cellular homeostasis by facilitating the turnover of protein aggregates, cellular debris, and damaged organelles. In addition to being a substrate of autophagy, p62 is also a crucial molecule in a myriad of cellular functions and in molecular events, which include oxidative stress, inflammation, apoptosis, cell proliferation, metabolic reprogramming, that modulate cell survival and tumor growth. The multiple functions of p62 are appreciated by its ability to interact with several key components involved in various oncogenic pathways. This review summarizes the current knowledge and progress in studies of p62 and metal carcinogenesis with emphasis on oncogenic pathways related to oxidative stress, inflammation, apoptosis, and metabolic reprogramming.
Collapse
Affiliation(s)
- Zhuo Zhang
- Department of Environmental Medicine, NYU School of Medicine, 341 East 25th Street, New York, NY 10010, USA
| | - Max Costa
- Department of Environmental Medicine, NYU School of Medicine, 341 East 25th Street, New York, NY 10010, USA.
| |
Collapse
|
35
|
New Look of EBV LMP1 Signaling Landscape. Cancers (Basel) 2021; 13:cancers13215451. [PMID: 34771613 PMCID: PMC8582580 DOI: 10.3390/cancers13215451] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/01/2021] [Accepted: 10/26/2021] [Indexed: 01/18/2023] Open
Abstract
Simple Summary Epstein-Barr Virus (EBV) infection is associated with various lymphomas and carcinomas as well as other diseases in humans. The transmembrane protein LMP1 plays versatile roles in EBV life cycle and pathogenesis, by perturbing, reprograming, and regulating a large range of host cellular mechanisms and functions, which have been increasingly disclosed but not fully understood so far. We summarize recent research progress on LMP1 signaling, including the novel components LIMD1, p62, and LUBAC in LMP1 signalosome and LMP1 novel functions, such as its induction of p62-mediated selective autophagy, regulation of metabolism, induction of extracellular vehicles, and activation of NRF2-mediated antioxidative defense. A comprehensive understanding of LMP1 signal transduction and functions may allow us to leverage these LMP1-regulated cellular mechanisms for clinical purposes. Abstract The Epstein–Barr Virus (EBV) principal oncoprotein Latent Membrane Protein 1 (LMP1) is a member of the Tumor Necrosis Factor Receptor (TNFR) superfamily with constitutive activity. LMP1 shares many features with Pathogen Recognition Receptors (PRRs), including the use of TRAFs, adaptors, and kinase cascades, for signal transduction leading to the activation of NFκB, AP1, and Akt, as well as a subset of IRFs and likely the master antioxidative transcription factor NRF2, which we have gradually added to the list. In recent years, we have discovered the Linear UBiquitin Assembly Complex (LUBAC), the adaptor protein LIMD1, and the ubiquitin sensor and signaling hub p62, as novel components of LMP1 signalosome. Functionally, LMP1 is a pleiotropic factor that reprograms, balances, and perturbs a large spectrum of cellular mechanisms, including the ubiquitin machinery, metabolism, epigenetics, DNA damage response, extracellular vehicles, immune defenses, and telomere elongation, to promote oncogenic transformation, cell proliferation and survival, anchorage-independent cell growth, angiogenesis, and metastasis and invasion, as well as the development of the tumor microenvironment. We have recently shown that LMP1 induces p62-mediated selective autophagy in EBV latency, at least by contributing to the induction of p62 expression, and Reactive Oxygen Species (ROS) production. We have also been collecting evidence supporting the hypothesis that LMP1 activates the Keap1-NRF2 pathway, which serves as the key antioxidative defense mechanism. Last but not least, our preliminary data shows that LMP1 is associated with the deregulation of cGAS-STING DNA sensing pathway in EBV latency. A comprehensive understanding of the LMP1 signaling landscape is essential for identifying potential targets for the development of novel strategies towards targeted therapeutic applications.
Collapse
|
36
|
Wang L, Howell MEA, Sparks-Wallace A, Zhao J, Hensley CR, Nicksic CA, Horne SR, Mohr KB, Moorman JP, Yao ZQ, Ning S. The Ubiquitin Sensor and Adaptor Protein p62 Mediates Signal Transduction of a Viral Oncogenic Pathway. mBio 2021; 12:e0109721. [PMID: 34488443 PMCID: PMC8546576 DOI: 10.1128/mbio.01097-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/11/2021] [Indexed: 02/04/2023] Open
Abstract
The Epstein-Barr virus (EBV) protein LMP1 serves as a paradigm that engages complicated ubiquitination-mediated mechanisms to activate multiple transcription factors. p62 is a ubiquitin sensor and a signal-transducing adaptor that has multiple functions in diverse contexts. However, the interaction between p62 and oncogenic viruses is poorly understood. We recently reported a crucial role for p62 in oncovirus-mediated oxidative stress by acting as a selective autophagy receptor. In this following pursuit, we further discovered that p62 is upregulated in EBV type 3 compared to type 1 latency, with a significant contribution from NF-κB and AP1 activities downstream of LMP1 signaling. In turn, p62 participates in LMP1 signal transduction through its interaction with TRAF6, promoting TRAF6 ubiquitination and activation. As expected, short hairpin RNA (shRNA)-mediated knockdown (KD) of p62 transcripts reduces LMP1-TRAF6 interaction and TRAF6 ubiquitination, as well as p65 nuclear translocation, which was assessed by Amnis imaging flow cytometry. Strikingly, LMP1-stimulated NF-κB, AP1, and Akt activities are all markedly reduced in p62-/- mouse embryo fibroblasts (MEFs) and in EBV-negative Burkitt's lymphoma (BL) cell lines with CRISPR-mediated knockout (KO) of the p62-encoding gene. However, EBV-positive BL cell lines (type 3 latency) with CRISPR-mediated KO of the p62-encoding gene failed to survive. In consequence, shRNA-mediated p62 KD impairs the ability of LMP1 to regulate its target gene expression, promotes etoposide-induced apoptosis, and reduces the proliferation of lymphoblastic cell lines (LCLs). These important findings have revealed a previously unrecognized novel role for p62 in EBV latency and oncogenesis, which advances our understanding of the mechanism underlying virus-mediated oncogenesis. IMPORTANCE As a ubiquitin sensor and a signal-transducing adaptor, p62 is crucial for NF-κB activation, which involves the ubiquitin machinery, in diverse contexts. However, whether p62 is required for EBV LMP1 activation of NF-κB is an open question. In this study, we provide evidence that p62 is upregulated in EBV type 3 latency and, in turn, p62 mediates LMP1 signal transduction to NF-κB, AP1, and Akt by promoting TRAF6 ubiquitination and activation. In consequence, p62 deficiency negatively regulates LMP1-mediated gene expression, promotes etoposide-induced apoptosis, and reduces the proliferation of LCLs. These important findings identified p62 as a novel signaling component of the key viral oncogenic signaling pathway.
Collapse
Affiliation(s)
- Ling Wang
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
- Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Mary E. A. Howell
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Ayrianna Sparks-Wallace
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Juan Zhao
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
- Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Culton R. Hensley
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Camri A. Nicksic
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Shanna R. Horne
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Kaylea B. Mohr
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Jonathan P. Moorman
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
- Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
- HCV/HIV Program, James H Quillen VA Medical Center, Johnson City, Tennessee, USA
| | - Zhi Q. Yao
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
- Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
- HCV/HIV Program, James H Quillen VA Medical Center, Johnson City, Tennessee, USA
| | - Shunbin Ning
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
- Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| |
Collapse
|
37
|
Xu Y, Wu Y, Wang L, Ren Z, Song L, Zhang H, Qian C, Wang Q, He Z, Wan W. Autophagy deficiency activates rDNA transcription. Autophagy 2021; 18:1338-1349. [PMID: 34612149 DOI: 10.1080/15548627.2021.1974178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Macroautophagy/autophagy, a highly conserved lysosome-dependent degradation pathway, has been intensively studied in regulating cell metabolism by degradation of intracellular components. In this study, we link autophagy to RNA metabolism by uncovering a regulatory role of autophagy in ribosomal RNA (rRNA) synthesis. Autophagy-deficient cells exhibit much higher 47S precursor rRNA level, which is caused by the accumulation of SQSTM1/p62 (sequestosome 1) but not other autophagy receptors. Mechanistically, SQSTM1 accumulation potentiates the activation of MTOR (mechanistic target of rapamycin kinase) complex 1 (MTORC1) signaling and promotes the assembly of RNA polymerase I pre-initiation complex at ribosomal DNA (rDNA) promoters, which leads to an increase of 47S rRNA transcribed from rDNA. Functionally, autophagy deficiency promotes protein synthesis, cell growth and cell proliferation, both of which are dependent on SQSTM1 accumulation. Taken together, our findings suggest that autophagy deficiency is involved in RNA metabolism by activating rDNA transcription and provide novel mechanisms for the reprogramming of cell metabolism in autophagy-related diseases including multiple types of cancers.Abbreviations: 5-FUrd: 5-fluorouridine; AMPK: AMP-activated protein kinase; ATG: autophagy related; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; ChIP: chromatin immunoprecipitation; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAPK/ERK: mitogen-activated protein kinase; MTOR: mechanistic target of rapamycin kinase; NBR1: NBR1 autophagy cargo receptor; NFKB/NF-κB: nuclear factor kappa B; NFE2L2/NRF2: nuclear factor, erythroid 2 like 2; OPTN: optineurin; PIC: pre-initiation complex; POLR1: RNA polymerase I; POLR1A/RPA194: RNA polymerase I subunit A; POLR2A: RNA polymerase II subunit A; rDNA: ribosomal DNA; RPS6KB1/S6K1: ribosomal protein S6 kinase B1; rRNA: ribosomal RNA; RUBCN/Rubicon: rubicon autophagy regulator; SQSTM1/p62: sequestosome 1; STX17: syntaxin 17; SUnSET: surface sensing of translation; TAX1BP1: Tax1 binding protein 1; UBTF/UBF1: upstream binding transcription factor; WIPI2: WD repeat domain, phosphoinositide interacting 2; WT: wild-type.
Collapse
Affiliation(s)
- Yinfeng Xu
- Laboratory of Basic Biology, Hunan First Normal University, Changsha, China
| | - Yaosen Wu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lei Wang
- Department of Biochemistry, and Department of Thoracic Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhuo Ren
- Laboratory of Basic Biology, Hunan First Normal University, Changsha, China
| | - Lijiang Song
- Department of Thoracic Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hui Zhang
- Department of Stomatology, the Second Affilliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chuying Qian
- Department of Biochemistry, and Department of Thoracic Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qian Wang
- Department of Biochemistry, and Department of Thoracic Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengfu He
- Department of Thoracic Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Wan
- Department of Biochemistry, and Department of Thoracic Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
38
|
Tang J, Li Y, Xia S, Li J, Yang Q, Ding K, Zhang H. Sequestosome 1/p62: A multitasker in the regulation of malignant tumor aggression (Review). Int J Oncol 2021; 59:77. [PMID: 34414460 PMCID: PMC8425587 DOI: 10.3892/ijo.2021.5257] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 07/12/2021] [Indexed: 02/06/2023] Open
Abstract
Sequestosome 1 (SQSTM1)/p62 is an adapter protein mainly involved in the transportation, degradation and destruction of various proteins that cooperates with components of autophagy and the ubiquitin‑proteasome degradation pathway. Numerous studies have shown that SQSTM1/p62 functions at multiple levels, including involvement in genetic stability or modification, post‑transcriptional regulation and protein function. As a result, SQSTM1/p62 is a versatile protein that is a critical core regulator of tumor cell genetic stability, autophagy, apoptosis and other forms of cell death, malignant growth, proliferation, migration, invasion, metastasis and chemoradiotherapeutic response, and an indicator of patient prognosis. SQSTM1/p62 regulates these processes via its distinct molecular structure, through which it participates in a variety of activating or inactivating tumor‑related and tumor microenvironment‑related signaling pathways, particularly positive feedback loops and epithelial‑mesenchymal transition‑related pathways. Therefore, functioning as a proto‑oncogene or tumor suppressor gene in various types of cancer and tumor‑associated microenvironments, SQSTM1/p62 is capable of promoting or retarding malignant tumor aggression, giving rise to immeasurable effects on tumor occurrence and development, and on patient treatment and prognosis.
Collapse
Affiliation(s)
- Jinlong Tang
- Department of Pathology and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Yuan Li
- Department of Pediatrics, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310000, P.R. China
| | - Shuli Xia
- Department of Pathology, Zhejiang University School of Medicine, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang 310058, P.R. China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou, Zhejiang 310058, P.R. China
| | - Jinfan Li
- Department of Pathology and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Qi Yang
- Department of Pathology and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Kefeng Ding
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
- Cancer Center of Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Honghe Zhang
- Department of Pathology, Zhejiang University School of Medicine, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang 310058, P.R. China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou, Zhejiang 310058, P.R. China
| |
Collapse
|
39
|
Abdullah ML, Al-Shabanah O, Hassan ZK, Hafez MM. Eugenol-Induced Autophagy and Apoptosis in Breast Cancer Cells via PI3K/AKT/FOXO3a Pathway Inhibition. Int J Mol Sci 2021; 22:ijms22179243. [PMID: 34502165 PMCID: PMC8430664 DOI: 10.3390/ijms22179243] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/15/2021] [Accepted: 08/24/2021] [Indexed: 12/11/2022] Open
Abstract
The use of natural compounds is promising in approaches to prevent and treat cancer. The long-term application of most currently employed chemotherapy techniques has toxic side effects. Eugenol, a phenolic phytochemical extracted from certain essential oils, has an anti-cancer effect. The modulation of autophagy can promote either the survival or apoptosis of cancer cells. Triple-negative (MDA-MB-231) and HER2 positive (SK-BR-3) breast cancer cell lines were treated with different doses of eugenol. Apoptosis was detected by a flow-cytometry technique, while autophagy was detected by acridine orange. Real-time PCR and Western blot assays were applied to investigate the effect of eugenol on the gene and protein expression levels of autophagy and apoptotic genes. Treating cells with different concentrations of eugenol significantly inhibited cell proliferation. The protein levels of AKT serine/threonine kinase 1 (AKT), forkhead box O3 (FOXO3a), cyclin dependent kinase inhibitor 1A (p21), cyclin-dependent kinase inhibitor (p27), and Caspase-3 and -9 increased significantly in Eugenol-treated cells. Eugenol also induced autophagy by upregulating the expression levels of microtubule-associated protein 1 light chain 3 (LC3) and downregulating the expression of nucleoporin 62 (NU p62). Eugenol is a promising natural anti-cancer agent against triple-negative and HER2-positive breast cancer. It appears to work by targeting the caspase pathway and by inducing autophagic cell death.
Collapse
Affiliation(s)
- Mashan L. Abdullah
- Experimental Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, MNGHA, Riyadh 11426, Saudi Arabia
- Pharmacology and Toxicology Department, King Saud University, Riyadh 11426, Saudi Arabia;
- Correspondence: (M.L.A.); (M.M.H.)
| | - Othman Al-Shabanah
- Pharmacology and Toxicology Department, King Saud University, Riyadh 11426, Saudi Arabia;
| | - Zeinab K. Hassan
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 12613, Egypt;
| | - Mohamed M. Hafez
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 12613, Egypt;
- Correspondence: (M.L.A.); (M.M.H.)
| |
Collapse
|
40
|
Liu L, Zhang J, Liu H, Shi M, Zhang J, Chen L, Huang L, Li B, Xu P. Correlation of autophagy-related genes for predicting clinical prognosis in colorectal cancer. Biomark Med 2021; 15:715-729. [PMID: 34169735 DOI: 10.2217/bmm-2020-0292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 03/19/2021] [Indexed: 12/24/2022] Open
Abstract
Aim: Autophagy plays a controversial role in cancer. The role of autophagy-related genes (ARGs) in colorectal cancer (CRC) was evaluated based on publicly available data from The Cancer Genome Atlas and the Human Autophagy Database. Materials & methods: After collecting CRC-related transcript and clinical data and a list of ARGs from public databases, the Wilcoxon test was used to identify the differentially expressed ARGs between CRC and paired normal tissues. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were used to identify the major biological properties and pathways associated with these genes. Univariate Cox regression was used to identify the prognosis-associated ARGs, and a forest plot was used to visualize the results. Kaplan-Meier analysis of the 5-year survival rate was performed. Univariate and multivariate Cox analyses were used to verify the impact of the prognosis-associated ARGs. Results: A total of 36 differentially expressed genes (16 upregulated and 20 downregulated in CRC) were obtained from among 206 ARGs. There were 53 enriched pathways, including the p53 signaling pathway, platinum drug resistance, apoptosis, EGFR tyrosine kinase inhibitor resistance and ErbB signaling pathway (p- and q-values <0.05). Kaplan-Meier analysis showed that the 5-year survival rate was 46.0% (95% CI: 0.335-0.631) and 76.0% (95% CI: 0.651-0.886) in the high- and low-risk groups, respectively. The high-risk patients had worse survival probability (p = 6.256 × 10-5). Independent-samples t-tests revealed that MAP1LC3C expression was higher in patients aged ≤65 than >65 (p = 0.022); RAB7A expression was higher in patients aged ≤65 than >65 (p = 7.31 × 10-4), higher in M1 than M0 (p = 0.042), higher in N1-3 than N0 (p = 0.002) and higher in stage III and IV than I and II (p = 0.042); risk score was higher in N1-3 than N0 (p = 0.001) and in stage III and IV than I and II (p = 0.002); and WIPI2 expression was higher in M1 than M0 (p = 0.002), higher in N1-3 than N0 (p = 2.059 × 10-7) and higher in stage III and IV than I and II (p = 2.299 × 10-7). There were no differences in risk score between males and females (p = 0.593), T1-2 and T3-4 (p = 0.082) or M0 and M1 (p = 0.072). Univariate and multivariate Cox analyses showed that RAB7A was a lower-risk gene, while MAP1LC3C, WIPI2, DAPK1, ULK3 and PELP1 were high-risk genes. Conclusion: Certain ARGs are potential prognostic molecular markers of poor prognosis in CRC. Additionally, the p53 signaling pathway, platinum drug resistance, apoptosis, EGFR tyrosine kinase inhibitor resistance and ErbB signaling pathway may be critical pathways regulated by ARGs in CRC.
Collapse
Affiliation(s)
- Liyan Liu
- Department of Pharmacy, Jiangxi Cancer Hospital, 519 Beijing East Road, Nanchang, 330029, PR China
- Department of Pharmacy, Affiliated Cancer Hospital of Nanchang University, 519 Beijing East Road, Nanchang, 330029, PR China
- Laboratory Animal Science & Technology Center, Workstation of Academician, College of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang, 330004, PR China
| | - Jilin Zhang
- Department of Traditional Chinese Medicine, Jiangxi Provincial People's Hospital, 92 Aiguo Road, Nanchang, 330006, PR China
| | - Hongdong Liu
- Laboratory Animal Science & Technology Center, Workstation of Academician, College of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang, 330004, PR China
| | - Min Shi
- Laboratory Animal Science & Technology Center, Workstation of Academician, College of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang, 330004, PR China
| | - Jie Zhang
- Laboratory Animal Science & Technology Center, Workstation of Academician, College of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang, 330004, PR China
| | - Li Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu, 611137, PR China
| | - Luqi Huang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medical, China Academy of Chinese Medical Sciences, 16 Nanxiao Street, Dongzhimen, Dongcheng District, Beijing, 100700, PR China
| | - Bin Li
- Laboratory Animal Science & Technology Center, Workstation of Academician, College of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang, 330004, PR China
| | - Peng Xu
- Laboratory Animal Science & Technology Center, Workstation of Academician, College of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang, 330004, PR China
| |
Collapse
|
41
|
Henrique AM, Gianetti NG, Ferrari MFR. Parkin is downregulated among autophagy-related proteins prior to hyperphosphorylation of Tau in TS65DN mice. Biochem Biophys Res Commun 2021; 561:59-64. [PMID: 34015759 DOI: 10.1016/j.bbrc.2021.05.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 05/07/2021] [Indexed: 10/21/2022]
Abstract
Autophagy is a pathway through which cells execute a plethora of functions, such as macromolecules and organelles quality control, recycling of building blocks and apoptosis. Numerous studies have shown in the past that autophagy is an important mechanism associated with the pathology of various neurodegenerative diseases, whose impairment may lead to several disease-characteristic phenotypes (e.g. misfolded protein and defective organelles accumulation). With this in mind, we aimed to investigate whether alterations in expression of autophagy-related proteins would show before hyperphosphorylation of Tau, a hallmark of Alzheimer's disease (AD). After analyzing 7 different proteins, we observed that, while Pink1 and p62 show an age-related reduction in the Ts65Dn mice respectively in the locus coeruleus and hippocampus, Parkin shows an age-genotype interaction-associated reduction in both brain areas. This suggests potential outcomes in pathways associated with Parkin that could relate to later stages of the disease development.
Collapse
Affiliation(s)
- Alan M Henrique
- Departamento de Genetica e Biologia Evolutiva, Instituto de Biociencias. Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| | - Nathália G Gianetti
- Departamento de Genetica e Biologia Evolutiva, Instituto de Biociencias. Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Merari F R Ferrari
- Departamento de Genetica e Biologia Evolutiva, Instituto de Biociencias. Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
42
|
Roh KH, Lee Y, Yoon JH, Lee D, Kim E, Park E, Lee IY, Kim TS, Song HK, Shin J, Lim DS, Choi EJ. TRAF6-mediated ubiquitination of MST1/STK4 attenuates the TLR4-NF-κB signaling pathway in macrophages. Cell Mol Life Sci 2021; 78:2315-2328. [PMID: 32975614 PMCID: PMC11071754 DOI: 10.1007/s00018-020-03650-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/24/2020] [Accepted: 09/15/2020] [Indexed: 12/27/2022]
Abstract
Pattern-recognition receptors including Toll-like receptors (TLRs) recognize invading pathogens and trigger an immune response in mammals. Here we show that mammalian ste20-like kinase 1/serine/threonine kinase 4 (MST1/STK4) functions as a negative regulator of lipopolysaccharide (LPS)-induced activation of the TLR4-NF-κB signaling pathway associated with inflammation. Myeloid-specific genetic ablation of MST1/STK4 increased the susceptibility of mice to LPS-induced septic shock. Ablation of MST1/STK4 also enhanced NF-κB activation triggered by LPS in bone marrow-derived macrophages (BMDMs), leading to increased production of proinflammatory cytokines by these cells. Furthermore, MST1/STK4 inhibited TRAF6 autoubiquitination as well as TRAF6-mediated downstream signaling induced by LPS. In addition, we found that TRAF6 mediates the LPS-induced activation of MST1/STK4 by catalyzing its ubiquitination, resulting in negative feedback regulation by MST1/STK4 of the LPS-induced pathway leading to cytokine production in macrophages. Together, our findings suggest that MST1/STK4 functions as a negative modulator of the LPS-induced NF-κB signaling pathway during macrophage activation.
Collapse
Affiliation(s)
- Kyung-Hye Roh
- Department of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Yeojin Lee
- Department of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Je-Hyun Yoon
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Danbi Lee
- Department of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Eunju Kim
- Department of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Eunchong Park
- Department of Life Sciences, Korea University, Seoul, 02841, Korea
| | - In Young Lee
- Department of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Tae Sung Kim
- Department of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Hyun Kyu Song
- Department of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Jaekyoon Shin
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea
| | - Dae-Sik Lim
- Department of Biological Sciences, National Creative Research Initiatives Center, Biomedical Research Center, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 305-701, Korea
| | - Eui-Ju Choi
- Department of Life Sciences, Korea University, Seoul, 02841, Korea.
| |
Collapse
|
43
|
Abstract
Autophagy is deregulated in many cancers and represents an attractive target for therapeutic intervention. However, the precise contributions of autophagy to metastatic progression, the principle cause of cancer-related mortality, is only now being uncovered. While autophagy promotes primary tumor growth, metabolic adaptation and resistance to therapy, recent studies have unexpectedly revealed that autophagy suppresses the proliferative outgrowth of disseminated tumor cells into overt and lethal macrometastases. These studies suggest autophagy plays unexpected and complex roles in the initiation and progression of metastases, which will undoubtedly impact therapeutic approaches for cancer treatment. Here, we discuss the intricacies of autophagy in metastatic progression, highlighting and integrating the pleiotropic roles of autophagy on diverse cell biological processes involved in metastasis.
Collapse
Affiliation(s)
- Timothy Marsh
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143 USA
| | - Bhairavi Tolani
- Thoracic Oncology Program, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94115 USA
| | - Jayanta Debnath
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143 USA
| |
Collapse
|
44
|
Yang X, Sheng S, Du X, Su W, Tian J, Zhao X. Hepatocyte-specific TAZ deletion downregulates p62/ Sqstm1 expression in nonalcoholic steatohepatitis. Biochem Biophys Res Commun 2021; 535:60-65. [PMID: 33341674 DOI: 10.1016/j.bbrc.2020.12.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 01/11/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) is characterized by inflammation, hepatocellular injury, and different degrees of fibrosis. Previous studies have indicated that the transcriptional coactivator with PDZ-binding motif TAZ (WWTR1) is correlated with the increased level of liver cholesterol which suppresses TAZ proteasomal degradation and promotes fibrotic NASH by activating soluble adenylyl cyclase -calcium-RhoA pathway. However, the exact mechanism by which TAZ promotes inflammatory and hepatocyte injury has not yet been fully addressed. Reportedly, p62/Sqstm1plays a pivotal role in inflammatory and hepatocyte injury during NASH development. Here, we demonstrated that p62/Sqstm1 was overexpressed in the livers of mouse NASH models in a TAZ-dependent manner. In addition, hepatocyte-specific TAZ deletion reduced p62/Sqstm1 both in vitro and in vivo. Strikingly, luciferase reporter data demonstrated that p62/Sqstm1 is a TAZ/TEAD target gene and can be transcriptionally regulated by TAZ, indicating that hepatocyte-specific TAZ deletion downregulates p62/Sqstm1 expression in NASH.
Collapse
Affiliation(s)
- Xiaoming Yang
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, Ningxia, China; NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, Ningxia, China; Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
| | - Siqi Sheng
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, Ningxia, China; Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Xingchen Du
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, Ningxia, China; Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Wentao Su
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Jue Tian
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Xunxia Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| |
Collapse
|
45
|
Wang T, Zhao N, Peng L, Li Y, Huang X, Zhu J, Chen Y, Yu S, Zhao Y. DJ-1 Regulates Microglial Polarization Through P62-Mediated TRAF6/IRF5 Signaling in Cerebral Ischemia-Reperfusion. Front Cell Dev Biol 2020; 8:593890. [PMID: 33392187 PMCID: PMC7773790 DOI: 10.3389/fcell.2020.593890] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/25/2020] [Indexed: 12/28/2022] Open
Abstract
The polarization of microglia/macrophage, the resident immune cells in the brain, plays an important role in the injury and repair associated with ischemia-reperfusion (I/R). Previous studies have shown that DJ-1 has a protective effect in cerebral I/R. We found that DJ-1 regulates the polarization of microglial cells/macrophages after cerebral I/R and explored the mechanism by which DJ-1 mediates microglial/macrophage polarization in cerebral I/R. Middle cerebral artery occlusion/reperfusion (MCAO/R) and oxygen and glucose deprivation/reoxygenation (OGD/R) models were used to simulate cerebral I/R in vivo and in vitro, respectively. DJ-1 siRNA and the DJ-1-based polypeptide ND13 were used to produce an effect on DJ-1, and the P62-specific inhibitor XRK3F2 was used to block the effect of P62. Enhancing the expression of DJ-1 induced anti-inflammatory (M2) polarization of microglia/macrophage, and the expression of the anti-inflammatory factors IL-10 and IL-4 increased. Interference with DJ-1 expression induced pro-inflammatory (M1) polarization of microglia/macrophage, and the expression of the proinflammatory factors TNF-α and IL-1β increased. DJ-1 inhibited the expression of P62, impeded the interaction between P62 and TRAF6, and blocked nuclear entry of IRF5. In subsequent experiments, XRK3F2 synergistically promoted the effect of DJ-1 on microglial/macrophage polarization, further attenuating the interaction between P62 and TRAF6.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Pathology, Chongqing Medical University, Chongqing, China.,Molecular Medical Laboratory, Chongqing Medical University, Chongqing, China.,Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
| | - Na Zhao
- Department of Pathology, Chongqing Medical University, Chongqing, China.,Molecular Medical Laboratory, Chongqing Medical University, Chongqing, China.,Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
| | - Li Peng
- Department of Pathology, Chongqing Medical University, Chongqing, China.,Molecular Medical Laboratory, Chongqing Medical University, Chongqing, China.,Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
| | - Yumei Li
- Department of Pathology, Chongqing Medical University, Chongqing, China.,Molecular Medical Laboratory, Chongqing Medical University, Chongqing, China.,Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
| | - Xiaohuan Huang
- Department of Pathology, Chongqing Medical University, Chongqing, China.,Molecular Medical Laboratory, Chongqing Medical University, Chongqing, China.,Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
| | - Jin Zhu
- Department of Pathology, Chongqing Medical University, Chongqing, China.,Molecular Medical Laboratory, Chongqing Medical University, Chongqing, China.,Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
| | - Yanlin Chen
- Department of Pathology, Chongqing Medical University, Chongqing, China.,Molecular Medical Laboratory, Chongqing Medical University, Chongqing, China.,Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
| | - Shanshan Yu
- Department of Pathology, Chongqing Medical University, Chongqing, China.,Molecular Medical Laboratory, Chongqing Medical University, Chongqing, China.,Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
| | - Yong Zhao
- Department of Pathology, Chongqing Medical University, Chongqing, China.,Molecular Medical Laboratory, Chongqing Medical University, Chongqing, China.,Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
| |
Collapse
|
46
|
Berkamp S, Mostafavi S, Sachse C. Structure and function of p62/SQSTM1 in the emerging framework of phase separation. FEBS J 2020; 288:6927-6941. [PMID: 33332721 DOI: 10.1111/febs.15672] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/27/2020] [Accepted: 12/15/2020] [Indexed: 12/28/2022]
Abstract
p62/SQSTM1 is a multiprotein interaction hub forming cellular punctate structures known as p62 bodies. p62 is centrally involved in the degradation of ubiquitinated cargo through autophagy, as well as in a wide range of signaling activities as part of the cellular response to nutrient sensing, oxidative stress, infection, immunity, and inflammation. Structural work has shown that p62 forms flexible filamentous assemblies composed of an N-terminal PB1-domain scaffold and a C-terminal binding platform, including folded recognition domains and structurally disordered binding motifs. In the cell, these filaments are part of cellular p62 bodies that display properties of liquid-liquid-phase separation. Here, we review the accumulated structural and functional work of p62 and integrate them with the emerging framework of filamentous biomolecular condensates.
Collapse
Affiliation(s)
- Sabrina Berkamp
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons (ER-C-3/Structural Biology), Forschungszentrum Jülich, Germany.,JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Germany
| | - Siavash Mostafavi
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons (ER-C-3/Structural Biology), Forschungszentrum Jülich, Germany.,JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Germany
| | - Carsten Sachse
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons (ER-C-3/Structural Biology), Forschungszentrum Jülich, Germany.,JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Germany.,Department of Biology, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
47
|
Mohallem R, Aryal UK. Regulators of TNFα mediated insulin resistance elucidated by quantitative proteomics. Sci Rep 2020; 10:20878. [PMID: 33257747 PMCID: PMC7705713 DOI: 10.1038/s41598-020-77914-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/03/2020] [Indexed: 12/21/2022] Open
Abstract
Obesity is a growing epidemic worldwide and is a major risk factor for several chronic diseases, including diabetes, kidney disease, heart disease, and cancer. Obesity often leads to type 2 diabetes mellitus, via the increased production of proinflammatory cytokines such as tumor necrosis factor-α (TNFα). Our study combines different proteomic techniques to investigate the changes in the global proteome, secretome and phosphoproteome of adipocytes under chronic inflammation condition, as well as fundamental cross-talks between different cellular pathways regulated by chronic TNFα exposure. Our results show that many key regulator proteins of the canonical and non-canonical NF-κB pathways, such as Nfkb2, and its downstream effectors, including Csf-1 and Lgals3bp, directly involved in leukocyte migration and invasion, were significantly upregulated at the intra and extracellular proteomes suggesting the progression of inflammation. Our data provides evidence of several key proteins that play a role in the development of insulin resistance.
Collapse
Affiliation(s)
- Rodrigo Mohallem
- Department of Comparative Pathobiology, Purdue University, West Lafayette, USA
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, USA
| | - Uma K Aryal
- Department of Comparative Pathobiology, Purdue University, West Lafayette, USA.
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, USA.
| |
Collapse
|
48
|
Ning S, Wang L. The Multifunctional Protein p62 and Its Mechanistic Roles in Cancers. Curr Cancer Drug Targets 2020; 19:468-478. [PMID: 30332964 PMCID: PMC8052633 DOI: 10.2174/1568009618666181016164920] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/17/2018] [Accepted: 09/28/2018] [Indexed: 12/16/2022]
Abstract
The multifunctional signaling hub p62 is well recognized as a ubiquitin sensor and a selective autophagy receptor. As a ubiquitin sensor, p62 promotes NFκB activation by facilitating TRAF6 ubiquitination and aggregation. As a selective autophagy receptor, p62 sorts ubiquitinated substrates including p62 itself for lysosome-mediated degradation. p62 plays crucial roles in myriad cellular processes including DNA damage response, aging/senescence, infection and immunity, chronic inflammation, and cancerogenesis, dependent on or independent of autophagy. Targeting p62-mediated autophagy may represent a promising strategy for clinical interventions of different cancers. In this review, we summarize the transcriptional and post-translational regulation of p62, and its mechanistic roles in cancers, with the emphasis on its roles in regulation of DNA damage response and its connection to the cGAS-STING-mediated antitumor immune response, which is promising for cancer vaccine design.
Collapse
Affiliation(s)
- Shunbin Ning
- Division of Infectious Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States.,Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States
| | - Ling Wang
- Division of Infectious Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States.,Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States
| |
Collapse
|
49
|
Rahtes A, Li L. Polarization of Low-Grade Inflammatory Monocytes Through TRAM-Mediated Up-Regulation of Keap1 by Super-Low Dose Endotoxin. Front Immunol 2020; 11:1478. [PMID: 32765513 PMCID: PMC7378438 DOI: 10.3389/fimmu.2020.01478] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/08/2020] [Indexed: 12/19/2022] Open
Abstract
Subclinical endotoxemia [low levels of bacterial endotoxin (LPS) in the blood stream] has been correlated with chronic inflammatory diseases, with less-understood mechanisms. We have previously shown that chronic exposure to super low doses of LPS polarizes monocytes/macrophages to a pro-inflammatory state characterized by up-regulation of pro-inflammatory regulators such as p62 and simultaneous down-regulation of anti-inflammatory/resolving regulators such as Nrf2. Building upon this observation, here we show that chronic exposure to super-low doses of LPS leads to accumulation of the Nrf2-inhibitory protein Keap1 in murine monocytes. This is accompanied by increases of p62 and MLKL, consistent with a disruption of autolysosome function in polarized monocytes challenged by super-low dose LPS. Monocytes subjected to persistent super-low dose LPS challenge also accumulate higher levels of IKKβ. As a consequence, SLD-LPS challenge leads to an inflammatory monocyte state represented by higher expression of the inflammatory marker Ly6C as well as lower expression of the anti-inflammatory marker CD200R. Further analysis revealed that Keap1 levels are significantly enriched in the Ly6Chi pro-inflammatory monocyte population. Finally, we show that the TLR4 signaling adaptor TRAM is essential for these effects. Together our study provides novel insight into signaling mechanisms behind low-grade inflammatory monocyte polarization unique to chronic super-low dose LPS exposure.
Collapse
Affiliation(s)
- Allison Rahtes
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Liwu Li
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
50
|
Dawood M, Fleischer E, Klinger A, Bringmann G, Shan L, Efferth T. Inhibition of cell migration and induction of apoptosis by a novel class II histone deacetylase inhibitor, MCC2344. Pharmacol Res 2020; 160:105076. [PMID: 32659428 DOI: 10.1016/j.phrs.2020.105076] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 12/17/2022]
Abstract
Epigenetic modifiers provide a new target for the development of anti-cancer drugs. The eraser histone deacetylase 6 (HDAC6) is a class IIb histone deacetylase that targets various non-histone proteins such as transcription factors, nuclear receptors, cytoskeletal proteins, DNA repair proteins, and molecular chaperones. Therefore, it became an attractive target for cancer treatment. In this study, virtual screening was applied to the MicroCombiChem database with 1162 drug-like compounds to identify new HDAC6 inhibitors. Five compounds were tested in silico and in vitro as HDAC6 inhibitors. Both analyses revealed 1-cyclohexene-1-carboxamide, 2-hydroxy-4,4-dimethyl-N-1-naphthalenyl-6-oxo- (MCC2344) as the best HDAC6 inhibitor among the five ligands. The binding affinity of MCC2344 to HDAC6 was further confirmed by microscale thermophoresis. Additionally, the anti-cancer activity of MCC2344 was tested in several tumor cell lines. Leukemia cells were the most sensitive cells towards MCC2344, particularly the P-glycoprotein-overexpressing multidrug-resistant cell line CEM/ADR5000 exhibited remarkable collateral sensitivity towards MCC2344. Transcriptome analysis using microarray hybridization was performed for investigating downstream mechanisms of action of MCC2344 in leukemia cells. MCC2344 affected microtubule dynamics and suppressed cell migration in the wound healing assay as well as in a spheroid model by hyper-acetylation of tubulin and HSP-90. MCC2344 induced cell death in CEM/ADR5000 cells by activation of PARP, caspase-3, and p21 in addition to the downregulation of p62. MCC2344 significantly inhibited tumor growth in vivo in zebrafish larvae without mortality until 20 pM. We propose MCC2344 as a novel HDAC6 inhibitor for cancer treatment.
Collapse
Affiliation(s)
- Mona Dawood
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany; Department of Molecular Biology, Faculty of Medical Laboratory Sciences, Al-Neelain University, Khartoum, Sudan
| | | | | | - Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, D-97074, Würzburg, Germany
| | - Letian Shan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|