1
|
Hartley GA, Okhovat M, Hoyt SJ, Fuller E, Pauloski N, Alexandre N, Alexandrov I, Drennan R, Dubocanin D, Gilbert DM, Mao Y, McCann C, Neph S, Ryabov F, Sasaki T, Storer JM, Svendsen D, Troy W, Wells J, Core L, Stergachis A, Carbone L, O'Neill RJ. Centromeric transposable elements and epigenetic status drive karyotypic variation in the eastern hoolock gibbon. CELL GENOMICS 2025; 5:100808. [PMID: 40088887 PMCID: PMC12008813 DOI: 10.1016/j.xgen.2025.100808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/10/2024] [Accepted: 02/12/2025] [Indexed: 03/17/2025]
Abstract
Great apes have maintained a stable karyotype with few large-scale rearrangements; in contrast, gibbons have undergone a high rate of chromosomal rearrangements coincident with rapid centromere turnover. Here, we characterize fully assembled centromeres in the eastern hoolock gibbon, Hoolock leuconedys (HLE), finding a diverse group of transposable elements (TEs) that differ from the canonical alpha-satellites found across centromeres of other apes. We find that HLE centromeres contain a CpG methylation centromere dip region, providing evidence that this epigenetic feature is conserved in the absence of satellite arrays. We uncovered a variety of atypical centromeric features, including protein-coding genes and mismatched replication timing. Further, we identify duplications and deletions in HLE centromeres that distinguish them from other gibbons. Finally, we observed differentially methylated TEs, topologically associated domain boundaries, and segmental duplications at chromosomal breakpoints, and thus propose that a combination of multiple genomic attributes with propensities for chromosome instability shaped gibbon centromere evolution.
Collapse
Affiliation(s)
- Gabrielle A Hartley
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA; Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Mariam Okhovat
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | - Savannah J Hoyt
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA; Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Emily Fuller
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA; Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Nicole Pauloski
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA; Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Nicolas Alexandre
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Ivan Alexandrov
- Department of Anatomy and Anthropology and Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ryan Drennan
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA; Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Danilo Dubocanin
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - David M Gilbert
- San Diego Biomedical Research Institute, San Diego, CA 92121, USA
| | - Yizi Mao
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Christine McCann
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA; Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Shane Neph
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Fedor Ryabov
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA; Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Takayo Sasaki
- San Diego Biomedical Research Institute, San Diego, CA 92121, USA
| | - Jessica M Storer
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA; Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Derek Svendsen
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA; Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | | | - Jackson Wells
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | - Leighton Core
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA; Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Andrew Stergachis
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Lucia Carbone
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA; Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA; Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, OR, USA; Division of Genetics, Oregon National Primate Research Center, Portland, OR, USA
| | - Rachel J O'Neill
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA; Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA; Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA.
| |
Collapse
|
2
|
Homiski C, Dey-Rao R, Shen S, Qu J, Melendy T. DNA damage-induced phosphorylation of a replicative DNA helicase results in inhibition of DNA replication through attenuation of helicase function. Nucleic Acids Res 2024; 52:10311-10328. [PMID: 39126317 PMCID: PMC11417368 DOI: 10.1093/nar/gkae663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 06/14/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
A major function of the DNA damage responses (DDRs) that act during the replicative phase of the cell cycle is to inhibit initiation and elongation of DNA replication. It has been shown that DNA replication of the polyomavirus, SV40, is inhibited and its replication fork is slowed by cellular DDR responses. The inhibition of SV40 DNA replication is associated with enhanced DDR kinase phosphorylation of SV40 Large T-antigen (LT), the viral DNA helicase. Mass spectroscopy was used to identify a novel highly conserved DDR kinase site, T518, on LT. In cell-based assays expression of a phosphomimetic form of LT at T518 (T518D) resulted in dramatically decreased levels of SV40 DNA replication, but LT-dependent transcriptional activation was unaffected. Purified WT and LT T518D were analyzed in vitro. In concordance with the cell-based data, reactions using SV40 LT-T518D, but not T518A, showed dramatic inhibition of SV40 DNA replication. A myriad of LT protein-protein interactions and LT's biochemical functions were unaffected by the LT T518D mutation; however, LT's DNA helicase activity was dramatically decreased on long, but not very short, DNA templates. These results suggest that DDR phosphorylation at T518 inhibits SV40 DNA replication by suppressing LT helicase activity.
Collapse
Affiliation(s)
- Caleb Homiski
- Departments of Microbiology & Immunology and Biochemistry, and the Witebsky Center for Microbial Pathogenesis & Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Rama Dey-Rao
- Departments of Microbiology & Immunology and Biochemistry, and the Witebsky Center for Microbial Pathogenesis & Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Shichen Shen
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York at Buffalo, Buffalo, NY 14203, USA; NYS Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Jun Qu
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York at Buffalo, Buffalo, NY 14203, USA; NYS Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Thomas Melendy
- Departments of Microbiology & Immunology and Biochemistry, and the Witebsky Center for Microbial Pathogenesis & Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
3
|
Hartley GA, Okhovat M, Hoyt SJ, Fuller E, Pauloski N, Alexandre N, Alexandrov I, Drennan R, Dubocanin D, Gilbert DM, Mao Y, McCann C, Neph S, Ryabov F, Sasaki T, Storer JM, Svendsen D, Troy W, Wells J, Core L, Stergachis A, Carbone L, O’Neill RJ. Centromeric transposable elements and epigenetic status drive karyotypic variation in the eastern hoolock gibbon. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.29.610280. [PMID: 39257810 PMCID: PMC11384015 DOI: 10.1101/2024.08.29.610280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Great apes have maintained a stable karyotype with few large-scale rearrangements; in contrast, gibbons have undergone a high rate of chromosomal rearrangements coincident with rapid centromere turnover. Here we characterize assembled centromeres in the Eastern hoolock gibbon, Hoolock leuconedys (HLE), finding a diverse group of transposable elements (TEs) that differ from the canonical alpha satellites found across centromeres of other apes. We find that HLE centromeres contain a CpG methylation centromere dip region, providing evidence this epigenetic feature is conserved in the absence of satellite arrays; nevertheless, we report a variety of atypical centromeric features, including protein-coding genes and mismatched replication timing. Further, large structural variations define HLE centromeres and distinguish them from other gibbons. Combined with differentially methylated TEs, topologically associated domain boundaries, and segmental duplications at chromosomal breakpoints, we propose that a "perfect storm" of multiple genomic attributes with propensities for chromosome instability shaped gibbon centromere evolution.
Collapse
Affiliation(s)
- Gabrielle A. Hartley
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Mariam Okhovat
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | - Savannah J. Hoyt
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Emily Fuller
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Nicole Pauloski
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Nicolas Alexandre
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Ivan Alexandrov
- Department of Anatomy and Anthropology and Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Israel
| | - Ryan Drennan
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Danilo Dubocanin
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - David M. Gilbert
- San Diego Biomedical Research Institute, San Diego, CA 92121, USA
| | - Yizi Mao
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Christine McCann
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Shane Neph
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Fedor Ryabov
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
- Department of Biomolecular Engineering, University of California Santa Cruz, CA, USA
| | - Takayo Sasaki
- San Diego Biomedical Research Institute, San Diego, CA 92121, USA
| | - Jessica M. Storer
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Derek Svendsen
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | | | - Jackson Wells
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | - Leighton Core
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Andrew Stergachis
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Lucia Carbone
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, OR, USA
- Division of Genetics, Oregon National Primate Research Center, Portland, OR, USA
| | - Rachel J. O’Neill
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA
| |
Collapse
|
4
|
Massey DJ, Koren A. Telomere-to-telomere human DNA replication timing profiles. Sci Rep 2022; 12:9560. [PMID: 35688856 PMCID: PMC9187705 DOI: 10.1038/s41598-022-13638-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/26/2022] [Indexed: 11/23/2022] Open
Abstract
The spatiotemporal organization of DNA replication produces a highly robust and reproducible replication timing profile. Sequencing-based methods for assaying replication timing genome-wide have become commonplace, but regions of high repeat content in the human genome have remained refractory to analysis. Here, we report the first nearly-gapless telomere-to-telomere replication timing profiles in human, using the T2T-CHM13 genome assembly and sequencing data for five cell lines. We find that replication timing can be successfully assayed in centromeres and large blocks of heterochromatin. Centromeric regions replicate in mid-to-late S-phase and contain replication-timing peaks at a similar density to other genomic regions, while distinct families of heterochromatic satellite DNA differ in their bias for replicating in late S-phase. The high degree of consistency in centromeric replication timing across chromosomes within each cell line prompts further investigation into the mechanisms dictating that some cell lines replicate their centromeres earlier than others, and what the consequences of this variation are.
Collapse
Affiliation(s)
- Dashiell J Massey
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Amnon Koren
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
5
|
Chromatin and Nuclear Architecture: Shaping DNA Replication in 3D. Trends Genet 2020; 36:967-980. [PMID: 32713597 DOI: 10.1016/j.tig.2020.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/26/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022]
Abstract
In eukaryotes, DNA replication progresses through a finely orchestrated temporal and spatial program. The 3D genome structure and nuclear architecture have recently emerged as fundamental determinants of the replication program. Factors with established roles in replication have been recognized as genome organization regulators. Exploiting paradigms from yeasts and mammals, we discuss how DNA replication is regulated in time and space through DNA-associated trans-acting factors, diffusible limiting replication initiation factors, higher-order chromatin folding, dynamic origin localization, and specific nuclear microenvironments. We present an integrated model for the regulation of DNA replication in 3D and highlight the importance of accurate spatio-temporal regulation of DNA replication in physiology and disease.
Collapse
|
6
|
Massey DJ, Kim D, Brooks KE, Smolka MB, Koren A. Next-Generation Sequencing Enables Spatiotemporal Resolution of Human Centromere Replication Timing. Genes (Basel) 2019; 10:genes10040269. [PMID: 30987063 PMCID: PMC6523654 DOI: 10.3390/genes10040269] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/25/2019] [Accepted: 03/29/2019] [Indexed: 12/15/2022] Open
Abstract
Centromeres serve a critical function in preserving genome integrity across sequential cell divisions, by mediating symmetric chromosome segregation. The repetitive, heterochromatic nature of centromeres is thought to be inhibitory to DNA replication, but has also led to their underrepresentation in human reference genome assemblies. Consequently, centromeres have been excluded from genomic replication timing analyses, leaving their time of replication unresolved. However, the most recent human reference genome, hg38, included models of centromere sequences. To establish the experimental requirements for achieving replication timing profiles for centromeres, we sequenced G1- and S-phase cells from five human cell lines, and aligned the sequence reads to hg38. We were able to infer DNA replication timing profiles for the centromeres in each of the five cell lines, which showed that centromere replication occurs in mid-to-late S phase. Furthermore, we found that replication timing was more variable between cell lines in the centromere regions than expected, given the distribution of variation in replication timing genome-wide. These results suggest the potential of these, and future, sequence models to enable high-resolution studies of replication in centromeres and other heterochromatic regions.
Collapse
Affiliation(s)
- Dashiell J Massey
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| | - Dongsung Kim
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA.
| | - Kayla E Brooks
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| | - Marcus B Smolka
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA.
| | - Amnon Koren
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
7
|
Kim SM, Forsburg SL. Regulation of Structure-Specific Endonucleases in Replication Stress. Genes (Basel) 2018; 9:genes9120634. [PMID: 30558228 PMCID: PMC6316474 DOI: 10.3390/genes9120634] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 12/16/2022] Open
Abstract
Replication stress results in various forms of aberrant replication intermediates that need to be resolved for faithful chromosome segregation. Structure-specific endonucleases (SSEs) recognize DNA secondary structures rather than primary sequences and play key roles during DNA repair and replication stress. Holliday junction resolvase MUS81 (methyl methane sulfonate (MMS), and UV-sensitive protein 81) and XPF (xeroderma pigmentosum group F-complementing protein) are a subset of SSEs that resolve aberrant replication structures. To ensure genome stability and prevent unnecessary DNA breakage, these SSEs are tightly regulated by the cell cycle and replication checkpoints. We discuss the regulatory network that control activities of MUS81 and XPF and briefly mention other SSEs involved in the resolution of replication intermediates.
Collapse
Affiliation(s)
- Seong Min Kim
- Program in Molecular & Computational Biology, University of Southern California, Los Angeles, CA 90089, USA.
| | - Susan L Forsburg
- Program in Molecular & Computational Biology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
8
|
Klemm AH, Bosilj A, Gluncˇic M, Pavin N, Tolic IM. Metaphase kinetochore movements are regulated by kinesin-8 motors and microtubule dynamic instability. Mol Biol Cell 2018; 29:1332-1345. [PMID: 29851559 PMCID: PMC5994901 DOI: 10.1091/mbc.e17-11-0667] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
During metaphase, sister chromatids are connected to microtubules extending from the opposite spindle poles via kinetochores to protein complexes on the chromosome. Kinetochores congress to the equatorial plane of the spindle and oscillate around it, with kinesin-8 motors restricting these movements. Yet, the physical mechanism underlying kinetochore movements is unclear. We show that kinetochore movements in the fission yeast Schizosaccharomyces pombe are regulated by kinesin-8-promoted microtubule catastrophe, force-induced rescue, and microtubule dynamic instability. A candidate screen showed that among the selected motors only kinesin-8 motors Klp5/Klp6 are required for kinetochore centering. Kinesin-8 accumulates at the end of microtubules, where it promotes catastrophe. Laser ablation of the spindle resulted in kinetochore movement toward the intact spindle pole in wild-type and klp5Δ cells, suggesting that kinetochore movement is driven by pulling forces. Our theoretical model with Langevin description of microtubule dynamic instability shows that kinesin-8 motors are required for kinetochore centering, whereas sensitivity of rescue to force is necessary for the generation of oscillations. We found that irregular kinetochore movements occur for a broader range of parameters than regular oscillations. Thus, our work provides an explanation for how regulation of microtubule dynamic instability contributes to kinetochore congression and the accompanying movements around the spindle center.
Collapse
Affiliation(s)
- Anna H Klemm
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Agneza Bosilj
- Department of Physics, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Matko Gluncˇic
- Department of Physics, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Nenad Pavin
- Department of Physics, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Iva M Tolic
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.,Division of Molecular Biology, Rud¯er Boškovic´ Institute, 10000 Zagreb, Croatia
| |
Collapse
|
9
|
Kelly T. Historical Perspective of Eukaryotic DNA Replication. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1042:1-41. [PMID: 29357051 DOI: 10.1007/978-981-10-6955-0_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The replication of the genome of a eukaryotic cell is a complex process requiring the ordered assembly of multiprotein replisomes at many chromosomal sites. The process is strictly controlled during the cell cycle to ensure the complete and faithful transmission of genetic information to progeny cells. Our current understanding of the mechanisms of eukaryotic DNA replication has evolved over a period of more than 30 years through the efforts of many investigators. The aim of this perspective is to provide a brief history of the major advances during this period.
Collapse
Affiliation(s)
- Thomas Kelly
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
10
|
Tripathi VP, Dubey DD. A replication-time-controlling sequence element in Schizosaccharomyces pombe. Chromosoma 2016; 126:465-471. [DOI: 10.1007/s00412-016-0606-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/09/2016] [Accepted: 06/14/2016] [Indexed: 12/31/2022]
|
11
|
A diffusion model for the coordination of DNA replication in Schizosaccharomyces pombe. Sci Rep 2016; 6:18757. [PMID: 26729303 PMCID: PMC4700429 DOI: 10.1038/srep18757] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 11/25/2015] [Indexed: 01/28/2023] Open
Abstract
The locations of proteins and epigenetic marks on the chromosomal DNA sequence are believed to demarcate the eukaryotic genome into distinct structural and functional domains that contribute to gene regulation and genome organization. However, how these proteins and epigenetic marks are organized in three dimensions remains unknown. Recent advances in proximity-ligation methodologies and high resolution microscopy have begun to expand our understanding of these spatial relationships. Here we use polymer models to examine the spatial organization of epigenetic marks, euchromatin and heterochromatin, and origins of replication within the Schizosaccharomyces pombe genome. These models incorporate data from microscopy and proximity-ligation experiments that inform on the positions of certain elements and contacts within and between chromosomes. Our results show a striking degree of compartmentalization of epigenetic and genomic features and lead to the proposal of a diffusion based mechanism, centred on the spindle pole body, for the coordination of DNA replication in S. pombe.
Collapse
|
12
|
Pratihar AS, Tripathi VP, Yadav MP, Dubey DD. Chromosomal context and replication properties of ARS plasmids in Schizosaccharomyces pombe. J Biosci 2015; 40:845-53. [PMID: 26648030 DOI: 10.1007/s12038-015-9572-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Short, specific DNA sequences called as Autonomously Replicating Sequence (ARS) elements function as plasmid as well as chromosomal replication origins in yeasts. As compared to ARSs, different chromosomal origins vary greatly in their efficiency and timing of replication probably due to their wider chromosomal context. The two Schizosaccharomyces pombe ARS elements, ars727 and ars2004, represent two extremities in their chromosomal origin activity - ars727 is inactive and late replicating, while ars2004 is a highly active, early-firing origin. To determine the effect of chromosomal context on the activity of these ARS elements, we have cloned them with their extended chromosomal context as well as in the context of each other in both orientations and analysed their replication efficiency by ARS and plasmid stability assays. We found that these ARS elements retain their origin activity in their extended/altered context. However, deletion of a 133-bp region of the previously reported ars727- associated late replication enforcing element (LRE) caused advancement in replication timing of the resulting plasmid. These results confirm the role of LRE in directing plasmid replication timing and suggest that the plasmid origin efficiency of ars2004 or ars727 remains unaltered by the extended chromosomal context.
Collapse
Affiliation(s)
- Aditya S Pratihar
- Department of Biotechnology, Dayanand Academy of Management Studies, Govind Nagar, Kanpur, U.P. 208006, India
| | | | | | | |
Collapse
|
13
|
Managing Single-Stranded DNA during Replication Stress in Fission Yeast. Biomolecules 2015; 5:2123-39. [PMID: 26393661 PMCID: PMC4598791 DOI: 10.3390/biom5032123] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 08/28/2015] [Accepted: 09/01/2015] [Indexed: 01/27/2023] Open
Abstract
Replication fork stalling generates a variety of responses, most of which cause an increase in single-stranded DNA. ssDNA is a primary signal of replication distress that activates cellular checkpoints. It is also a potential source of genome instability and a substrate for mutation and recombination. Therefore, managing ssDNA levels is crucial to chromosome integrity. Limited ssDNA accumulation occurs in wild-type cells under stress. In contrast, cells lacking the replication checkpoint cannot arrest forks properly and accumulate large amounts of ssDNA. This likely occurs when the replication fork polymerase and helicase units are uncoupled. Some cells with mutations in the replication helicase (mcm-ts) mimic checkpoint-deficient cells, and accumulate extensive areas of ssDNA to trigger the G2-checkpoint. Another category of helicase mutant (mcm4-degron) causes fork stalling in early S-phase due to immediate loss of helicase function. Intriguingly, cells realize that ssDNA is present, but fail to detect that they accumulate ssDNA, and continue to divide. Thus, the cellular response to replication stalling depends on checkpoint activity and the time that replication stress occurs in S-phase. In this review we describe the signs, signals, and symptoms of replication arrest from an ssDNA perspective. We explore the possible mechanisms for these effects. We also advise the need for caution when detecting and interpreting data related to the accumulation of ssDNA.
Collapse
|
14
|
Zech J, Godfrey EL, Masai H, Hartsuiker E, Dalgaard JZ. The DNA-Binding Domain of S. pombe Mrc1 (Claspin) Acts to Enhance Stalling at Replication Barriers. PLoS One 2015. [PMID: 26201080 PMCID: PMC4511789 DOI: 10.1371/journal.pone.0132595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
During S-phase replication forks can stall at specific genetic loci. At some loci, the stalling events depend on the replisome components Schizosaccharomyces pombe Swi1 (Saccharomyces cerevisiae Tof1) and Swi3 (S. cerevisiae Csm3) as well as factors that bind DNA in a site-specific manner. Using a new genetic screen we identified Mrc1 (S. cerevisiae Mrc1/metazoan Claspin) as a replisome component involved in replication stalling. Mrc1 is known to form a sub-complex with Swi1 and Swi3 within the replisome and is required for the intra-S phase checkpoint activation. This discovery is surprising as several studies show that S. cerevisiae Mrc1 is not required for replication barrier activity. In contrast, we show that deletion of S. pombe mrc1 leads to an approximately three-fold reduction in barrier activity at several barriers and that Mrc1’s role in replication fork stalling is independent of its role in checkpoint activation. Instead, S. pombe Mrc1 mediated fork stalling requires the presence of a functional copy of its phylogenetically conserved DNA binding domain. Interestingly, this domain is on the sequence level absent from S. cerevisiae Mrc1. Our study indicates that direct interactions between the eukaryotic replisome and the DNA are important for site-specific replication stalling.
Collapse
Affiliation(s)
- Juergen Zech
- Warwick Medical School, University of Warwick, Gibbet Hill Campus, CV47AL Coventry, United Kingdom
- * E-mail: (JZ); (JZD)
| | - Emma Louise Godfrey
- Warwick Medical School, University of Warwick, Gibbet Hill Campus, CV47AL Coventry, United Kingdom
| | - Hisao Masai
- Genome Dynamics Project, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156–8613, Japan
| | - Edgar Hartsuiker
- School of Biological Sciences, Bangor University, Deiniol Road, Bangor, Wales, LI57 2UW, United Kingdom
| | - Jacob Zeuthen Dalgaard
- Warwick Medical School, University of Warwick, Gibbet Hill Campus, CV47AL Coventry, United Kingdom
- * E-mail: (JZ); (JZD)
| |
Collapse
|
15
|
Audergon PNCB, Catania S, Kagansky A, Tong P, Shukla M, Pidoux AL, Allshire RC. Epigenetics. Restricted epigenetic inheritance of H3K9 methylation. Science 2015; 348:132-5. [PMID: 25838386 PMCID: PMC4397586 DOI: 10.1126/science.1260638] [Citation(s) in RCA: 198] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Posttranslational histone modifications are believed to allow the epigenetic transmission of distinct chromatin states, independently of associated DNA sequences. Histone H3 lysine 9 (H3K9) methylation is essential for heterochromatin formation; however, a demonstration of its epigenetic heritability is lacking. Fission yeast has a single H3K9 methyltransferase, Clr4, that directs all H3K9 methylation and heterochromatin. Using releasable tethered Clr4 reveals that an active process rapidly erases H3K9 methylation from tethering sites in wild-type cells. However, inactivation of the putative histone demethylase Epe1 allows H3K9 methylation and silent chromatin maintenance at the tethering site through many mitotic divisions, and transgenerationally through meiosis, after release of tethered Clr4. Thus, H3K9 methylation is a heritable epigenetic mark whose transmission is usually countered by its active removal, which prevents the unauthorized inheritance of heterochromatin.
Collapse
Affiliation(s)
- Pauline N C B Audergon
- Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - Sandra Catania
- Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - Alexander Kagansky
- Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - Pin Tong
- Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - Manu Shukla
- Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - Alison L Pidoux
- Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - Robin C Allshire
- Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK.
| |
Collapse
|
16
|
Kaykov A, Nurse P. The spatial and temporal organization of origin firing during the S-phase of fission yeast. Genome Res 2015; 25:391-401. [PMID: 25650245 PMCID: PMC4352884 DOI: 10.1101/gr.180372.114] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 12/29/2014] [Indexed: 11/25/2022]
Abstract
Eukaryotes duplicate their genomes using multiple replication origins, but the organization of origin firing along chromosomes and during S-phase is not well understood. Using fission yeast, we report the first genome-wide analysis of the spatial and temporal organization of replication origin firing, analyzed using single DNA molecules that can approach the full length of chromosomes. At S-phase onset, origins fire randomly and sparsely throughout the chromosomes. Later in S-phase, clusters of fired origins appear embedded in the sparser regions, which form the basis of nuclear replication foci. The formation of clusters requires proper histone methylation and acetylation, and their locations are not inherited between cell cycles. The rate of origin firing increases gradually, peaking just before mid S-phase. Toward the end of S-phase, nearly all the available origins within the unreplicated regions are fired, contributing to the timely completion of genome replication. We propose that the majority of origins do not fire as a part of a deterministic program. Instead, origin firing, both individually and as clusters, should be viewed as being mostly stochastic.
Collapse
Affiliation(s)
- Atanas Kaykov
- The Rockefeller University, New York, New York 10065, USA;
| | - Paul Nurse
- The Rockefeller University, New York, New York 10065, USA; The Francis Crick Institute, Lincoln's Inn Fields Laboratories, London WC2A 3LY, United Kingdom
| |
Collapse
|
17
|
Anda S, Boye E, Grallert B. Cell-cycle analyses using thymidine analogues in fission yeast. PLoS One 2014; 9:e88629. [PMID: 24551125 PMCID: PMC3923809 DOI: 10.1371/journal.pone.0088629] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 01/14/2014] [Indexed: 11/22/2022] Open
Abstract
Thymidine analogues are powerful tools when studying DNA synthesis including DNA replication, repair and recombination. However, these analogues have been reported to have severe effects on cell-cycle progression and growth, the very processes being investigated in most of these studies. Here, we have analyzed the effects of 5-ethynyl-2′-deoxyuridine (EdU) and 5-Chloro-2′-deoxyuridine (CldU) using fission yeast cells and optimized the labelling procedure. We find that both analogues affect the cell cycle, but that the effects can be mitigated by using the appropriate analogue, short pulses of labelling and low concentrations. In addition, we report sequential labelling of two consecutive S phases using EdU and 5-bromo-2′-deoxyuridine (BrdU). Furthermore, we show that detection of replicative DNA synthesis is much more sensitive than DNA-measurements by flow cytometry.
Collapse
Affiliation(s)
- Silje Anda
- Department of Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Montebello, Norway
| | - Erik Boye
- Department of Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Montebello, Norway
| | - Beata Grallert
- Department of Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Montebello, Norway
- * E-mail:
| |
Collapse
|
18
|
Newman TJ, Mamun MA, Nieduszynski CA, Blow JJ. Replisome stall events have shaped the distribution of replication origins in the genomes of yeasts. Nucleic Acids Res 2013; 41:9705-18. [PMID: 23963700 PMCID: PMC3834809 DOI: 10.1093/nar/gkt728] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/24/2013] [Accepted: 07/25/2013] [Indexed: 01/21/2023] Open
Abstract
During S phase, the entire genome must be precisely duplicated, with no sections of DNA left unreplicated. Here, we develop a simple mathematical model to describe the probability of replication failing due to the irreversible stalling of replication forks. We show that the probability of complete genome replication is maximized if replication origins are evenly spaced, the largest inter-origin distances are minimized, and the end-most origins are positioned close to chromosome ends. We show that origin positions in the yeast Saccharomyces cerevisiae genome conform to all three predictions thereby maximizing the probability of complete replication if replication forks stall. Origin positions in four other yeasts-Kluyveromyces lactis, Lachancea kluyveri, Lachancea waltii and Schizosaccharomyces pombe-also conform to these predictions. Equating failure rates at chromosome ends with those in chromosome interiors gives a mean per nucleotide fork stall rate of ∼5 × 10(-8), which is consistent with experimental estimates. Using this value in our theoretical predictions gives replication failure rates that are consistent with data from replication origin knockout experiments. Our theory also predicts that significantly larger genomes, such as those of mammals, will experience a much greater probability of replication failure genome-wide, and therefore will likely require additional compensatory mechanisms.
Collapse
Affiliation(s)
- Timothy J. Newman
- College of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK, School of Engineering, Physics and Mathematics, University of Dundee, Dundee, DD1 4HN, UK and Centre for Genetics and Genomics, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Mohammed A. Mamun
- College of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK, School of Engineering, Physics and Mathematics, University of Dundee, Dundee, DD1 4HN, UK and Centre for Genetics and Genomics, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Conrad A. Nieduszynski
- College of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK, School of Engineering, Physics and Mathematics, University of Dundee, Dundee, DD1 4HN, UK and Centre for Genetics and Genomics, University of Nottingham, Nottingham, NG7 2UH, UK
| | - J. Julian Blow
- College of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK, School of Engineering, Physics and Mathematics, University of Dundee, Dundee, DD1 4HN, UK and Centre for Genetics and Genomics, University of Nottingham, Nottingham, NG7 2UH, UK
| |
Collapse
|
19
|
Hyrien O, Rappailles A, Guilbaud G, Baker A, Chen CL, Goldar A, Petryk N, Kahli M, Ma E, d'Aubenton-Carafa Y, Audit B, Thermes C, Arneodo A. From simple bacterial and archaeal replicons to replication N/U-domains. J Mol Biol 2013; 425:4673-89. [PMID: 24095859 DOI: 10.1016/j.jmb.2013.09.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 09/15/2013] [Accepted: 09/19/2013] [Indexed: 10/26/2022]
Abstract
The Replicon Theory proposed 50 years ago has proven to apply for replicons of the three domains of life. Here, we review our knowledge of genome organization into single and multiple replicons in bacteria, archaea and eukarya. Bacterial and archaeal replicator/initiator systems are quite specific and efficient, whereas eukaryotic replicons show degenerate specificity and efficiency, allowing for complex regulation of origin firing time. We expand on recent evidence that ~50% of the human genome is organized as ~1,500 megabase-sized replication domains with a characteristic parabolic (U-shaped) replication timing profile and linear (N-shaped) gradient of replication fork polarity. These N/U-domains correspond to self-interacting segments of the chromatin fiber bordered by open chromatin zones and replicate by cascades of origin firing initiating at their borders and propagating to their center, possibly by fork-stimulated initiation. The conserved occurrence of this replication pattern in the germline of mammals has resulted over evolutionary times in the formation of megabase-sized domains with an N-shaped nucleotide compositional skew profile due to replication-associated mutational asymmetries. Overall, these results reveal an evolutionarily conserved but developmentally plastic organization of replication that is driving mammalian genome evolution.
Collapse
Affiliation(s)
- Olivier Hyrien
- Ecole Normale Supérieure, IBENS UMR8197 U1024, Paris 75005, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Li PC, Green MD, Forsburg SL. Mutations disrupting histone methylation have different effects on replication timing in S. pombe centromere. PLoS One 2013; 8:e61464. [PMID: 23658693 PMCID: PMC3641051 DOI: 10.1371/journal.pone.0061464] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 03/11/2013] [Indexed: 11/19/2022] Open
Abstract
The fission yeast pericentromere comprises repetitive sequence elements packaged into heterchromatin marked by histone H3K9 methylation and Swi6 binding. Transient disruption of Swi6 during S phase allows a period of RNA synthesis which programs the RNAi machinery to maintain histone methylation. However, Swi6 is also required for early replication timing. We show that not only Swi6 but also the chromodomain protein Chp1 are delocalized during S phase. Different from loss of swi6, mutations that disrupt histone methylation in the centromere, chp1Δ and clr4Δ, undergo early DNA replication. However, timing is modestly delayed in RNAi mutants dcr1Δ or rdp1Δ, while hrr1Δ mutants resemble swi6Δ in their replication delay. Finally, we show that recruitment of RNA polymerase II in the centromere occurs independently of replication. These different effects indicate that replication timing is not simply linked to histone methylation.
Collapse
Affiliation(s)
- Pao-Chen Li
- Molecular & Computational Biology Program, University of Southern California, Los Angeles, California, United States of America
| | - Marc D. Green
- Molecular & Computational Biology Program, University of Southern California, Los Angeles, California, United States of America
| | - Susan L. Forsburg
- Molecular & Computational Biology Program, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
21
|
Chaudari A, Huberman JA. Identification of two telomere-proximal fission yeast DNA replication origins constrained by nearby cis-acting sequences to replicate in late S phase. F1000Res 2012; 1:58. [PMID: 24358832 PMCID: PMC3790605 DOI: 10.12688/f1000research.1-58.v1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/21/2012] [Indexed: 11/20/2022] Open
Abstract
Telomeres of the fission yeast, Schizosaccharomyces pombe, are known to replicate in late S phase, but the reasons for this late replication are not fully understood. We have identified two closely-spaced DNA replication origins, 5.5 to 8 kb upstream from the telomere itself. These are the most telomere-proximal of all the replication origins in the fission yeast genome. When located by themselves in circular plasmids, these origins fired in early S phase, but if flanking sequences closer to the telomere were included in the circular plasmid, then replication was restrained to late S phase - except in cells lacking the replication-checkpoint kinase, Cds1. We conclude that checkpoint-dependent late replication of telomere-associated sequences is dependent on nearby cis-acting sequences, not on proximity to the physical end of a linear chromosome.
Collapse
Affiliation(s)
- Amna Chaudari
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY, 14263, USA
| | - Joel A Huberman
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY, 14263, USA
| |
Collapse
|
22
|
Sabatinos SA, Green MD, Forsburg SL. Continued DNA synthesis in replication checkpoint mutants leads to fork collapse. Mol Cell Biol 2012; 32:4986-97. [PMID: 23045396 PMCID: PMC3510540 DOI: 10.1128/mcb.01060-12] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 10/01/2012] [Indexed: 01/06/2023] Open
Abstract
Hydroxyurea (HU) treatment activates the intra-S phase checkpoint proteins Cds1 and Mrc1 to prevent replication fork collapse. We found that prolonged DNA synthesis occurs in cds1Δ and mrc1Δ checkpoint mutants in the presence of HU and continues after release. This is coincident with increased DNA damage measured by phosphorylated histone H2A in whole cells during release. High-resolution live-cell imaging shows that mutants first accumulate extensive replication protein A (RPA) foci, followed by increased Rad52. Both DNA synthesis and RPA accumulation require the MCM helicase. We propose that a replication fork "collapse point" in HU-treated cells describes the point at which accumulated DNA damage and instability at individual forks prevent further replication. After this point, cds1Δ and mrc1Δ forks cannot complete genome replication. These observations establish replication fork collapse as a dynamic process that continues after release from HU block.
Collapse
Affiliation(s)
- Sarah A Sabatinos
- Molecular and Computational Biology, University of Southern California, Los Angeles, California, USA.
| | | | | |
Collapse
|
23
|
Abstract
Nucleoside analogs are frequently used to label newly synthesized DNA. These analogs are toxic in many cells, with the exception of the budding yeast. We show that Schizosaccharomyces pombe behaves similarly to metazoans in response to analogs 5-bromo-2'-deoxyuridine (BrdU) and 5-ethynyl-2'-deoxyuridine (EdU). Incorporation causes DNA damage that activates the damage checkpoint kinase Chk1 and sensitizes cells to UV light and other DNA-damaging drugs. Replication checkpoint mutant cds1Δ shows increased DNA damage response after exposure. Finally, we demonstrate that the response to BrdU is influenced by the ribonucleotide reductase inhibitor, Spd1, suggesting that BrdU causes dNTP pool imbalance in fission yeast, as in metazoans. Consistent with this, we show that excess thymidine induces G1 arrest in wild-type fission yeast expressing thymidine kinase. Thus, fission yeast responds to nucleoside analogs similarly to mammalian cells, which has implications for their use in replication and damage research, as well as for dNTP metabolism.
Collapse
|
24
|
Shim YS, Choi Y, Kang K, Cho K, Oh S, Lee J, Grewal SIS, Lee D. Hrp3 controls nucleosome positioning to suppress non-coding transcription in eu- and heterochromatin. EMBO J 2012; 31:4375-87. [PMID: 22990236 DOI: 10.1038/emboj.2012.267] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 09/03/2012] [Indexed: 11/09/2022] Open
Abstract
The positioning of the nucleosome by ATP-dependent remodellers provides the fundamental chromatin environment for the regulation of diverse cellular processes acting on the underlying DNA. Recently, genome-wide nucleosome mapping has revealed more detailed information on the chromatin-remodelling factors. Here, we report that the Schizosaccharomyces pombe CHD remodeller, Hrp3, is a global regulator that drives proper nucleosome positioning and nucleosome stability. The loss of Hrp3 resulted in nucleosome perturbation across the chromosome, and the production of antisense transcripts in the hrp3Δ cells emphasized the importance of nucleosome architecture for proper transcription. Notably, perturbation of the nucleosome in hrp3 deletion mutant was also associated with destabilization of the DNA-histone interaction and cell cycle-dependent alleviation of heterochromatin silencing. Furthermore, the effect of Hrp3 in the pericentric region was found to be accomplished via a physical interaction with Swi6, and appeared to cooperate with other heterochromatin factors for gene silencing. Taken together, our data indicate that a well-positioned nucleosome by Hrp3 is important for the spatial-temporal control of transcription-associated processes.
Collapse
Affiliation(s)
- Young Sam Shim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Yasuhira S, Saito T, Maesawa C, Masuda T. Sensor and effector kinases in DNA damage checkpoint regulate capacity for homologous recombination repair of fission yeast in G2 phase. DNA Repair (Amst) 2012; 11:666-75. [DOI: 10.1016/j.dnarep.2012.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 05/09/2012] [Accepted: 05/20/2012] [Indexed: 10/28/2022]
|
26
|
Latypov VF, Tubbs JL, Watson AJ, Marriott AS, McGown G, Thorncroft M, Wilkinson OJ, Senthong P, Butt A, Arvai AS, Millington CL, Povey AC, Williams DM, Santibanez-Koref MF, Tainer JA, Margison GP. Atl1 regulates choice between global genome and transcription-coupled repair of O(6)-alkylguanines. Mol Cell 2012; 47:50-60. [PMID: 22658721 DOI: 10.1016/j.molcel.2012.04.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 04/05/2012] [Accepted: 04/20/2012] [Indexed: 11/20/2022]
Abstract
Nucleotide excision repair (NER) has long been known to remove DNA lesions induced by chemical carcinogens, and the molecular mechanism has been partially elucidated. Here we demonstrate that in Schizosaccharomyces pombe a DNA recognition protein, alkyltransferase-like 1 (Atl1), can play a pivotal role in selecting a specific NER pathway, depending on the nature of the DNA modification. The relative ease of dissociation of Atl1 from DNA containing small O(6)-alkylguanines allows accurate completion of global genome repair (GGR), whereas strong Atl1 binding to bulky O(6)-alkylguanines blocks GGR, stalls the transcription machinery, and diverts the damage to transcription-coupled repair. Our findings redraw the initial stages of the NER process in those organisms that express an alkyltransferase-like gene and raise the question of whether or not O(6)-alkylguanine lesions that are poor substrates for the alkyltransferase proteins in higher eukaryotes might, by analogy, signal such lesions for repair by NER.
Collapse
Affiliation(s)
- Vitaly F Latypov
- Cancer Research UK Carcinogenesis Group, Paterson Institute for Cancer Research, University of Manchester, Manchester M20 4BX, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Bass KL, Murray JM, O'Connell MJ. Brc1-dependent recovery from replication stress. J Cell Sci 2012; 125:2753-64. [PMID: 22366461 DOI: 10.1242/jcs.103119] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BRCT-containing protein 1 (Brc1) is a multi-BRCT (BRCA1 carboxyl terminus) domain protein in Schizosaccharomyces pombe that is required for resistance to chronic replicative stress, but whether this reflects a repair or replication defect is unknown and the subject of this study. We show that brc1Δ cells are significantly delayed in recovery from replication pausing, though this does not activate a DNA damage checkpoint. DNA repair and recombination protein Rad52 is a homologous recombination protein that loads the Rad51 recombinase at resected double-stranded DNA (dsDNA) breaks and is also recruited to stalled replication forks, where it may stabilize structures through its strand annealing activity. Rad52 is required for the viability of brc1Δ cells, and brc1Δ cells accumulate Rad52 foci late in S phase that are potentiated by replication stress. However, these foci contain the single-stranded DNA (ssDNA) binding protein RPA, but not Rad51 or γH2A. Further, these foci are not associated with increased recombination between repeated sequences, or increased post-replication repair. Thus, these Rad52 foci do not represent sites of recombination. Following the initiation of DNA replication, the induction of these foci by replication stress is suppressed by defects in origin recognition complex (ORC) function, which is accompanied by loss of viability and severe mitotic defects. This suggests that cells lacking Brc1 undergo an ORC-dependent rescue of replication stress, presumably through the firing of dormant origins, and this generates RPA-coated ssDNA and recruits Rad52. However, as Rad51 is not recruited, and the checkpoint effector kinase Chk1 is not activated, these structures must not contain the unprotected primer ends found at sites of DNA damage that are required for recombination and checkpoint activation.
Collapse
Affiliation(s)
- Kirstin L Bass
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | |
Collapse
|
28
|
Hayano M, Kanoh Y, Matsumoto S, Renard-Guillet C, Shirahige K, Masai H. Rif1 is a global regulator of timing of replication origin firing in fission yeast. Genes Dev 2012; 26:137-50. [PMID: 22279046 PMCID: PMC3273838 DOI: 10.1101/gad.178491.111] [Citation(s) in RCA: 193] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 12/14/2011] [Indexed: 11/24/2022]
Abstract
One of the long-standing questions in eukaryotic DNA replication is the mechanisms that determine where and when a particular segment of the genome is replicated. Cdc7/Hsk1 is a conserved kinase required for initiation of DNA replication and may affect the site selection and timing of origin firing. We identified rif1Δ, a null mutant of rif1(+), a conserved telomere-binding factor, as an efficient bypass mutant of fission yeast hsk1. Extensive deregulation of dormant origins over a wide range of the chromosomes occurs in rif1Δ in the presence or absence of hydroxyurea (HU). At the same time, many early-firing, efficient origins are suppressed or delayed in firing timing in rif1Δ. Rif1 binds not only to telomeres, but also to many specific locations on the arm segments that only partially overlap with the prereplicative complex assembly sites, although Rif1 tends to bind in the vicinity of the late/dormant origins activated in rif1Δ. The binding to the arm segments occurs through M to G1 phase in a manner independent of Taz1 and appears to be essential for the replication timing program during the normal cell cycle. Our data demonstrate that Rif1 is a critical determinant of the origin activation program on the fission yeast chromosomes.
Collapse
Affiliation(s)
- Motoshi Hayano
- Genome Dynamics, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8613, Japan
| | - Yutaka Kanoh
- Genome Dynamics, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8613, Japan
| | - Seiji Matsumoto
- Genome Dynamics, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8613, Japan
| | - Claire Renard-Guillet
- Laboratory of Genome Structure and Function, Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Katsuhiko Shirahige
- Laboratory of Genome Structure and Function, Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Hisao Masai
- Genome Dynamics, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8613, Japan
| |
Collapse
|
29
|
Liachko I, Tanaka E, Cox K, Chung SCC, Yang L, Seher A, Hallas L, Cha E, Kang G, Pace H, Barrow J, Inada M, Tye BK, Keich U. Novel features of ARS selection in budding yeast Lachancea kluyveri. BMC Genomics 2011; 12:633. [PMID: 22204614 PMCID: PMC3306766 DOI: 10.1186/1471-2164-12-633] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 12/28/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The characterization of DNA replication origins in yeast has shed much light on the mechanisms of initiation of DNA replication. However, very little is known about the evolution of origins or the evolution of mechanisms through which origins are recognized by the initiation machinery. This lack of understanding is largely due to the vast evolutionary distances between model organisms in which origins have been examined. RESULTS In this study we have isolated and characterized autonomously replicating sequences (ARSs) in Lachancea kluyveri - a pre-whole genome duplication (WGD) budding yeast. Through a combination of experimental work and rigorous computational analysis, we show that L. kluyveri ARSs require a sequence that is similar but much longer than the ARS Consensus Sequence well defined in Saccharomyces cerevisiae. Moreover, compared with S. cerevisiae and K. lactis, the replication licensing machinery in L. kluyveri seems more tolerant to variations in the ARS sequence composition. It is able to initiate replication from almost all S. cerevisiae ARSs tested and most Kluyveromyces lactis ARSs. In contrast, only about half of the L. kluyveri ARSs function in S. cerevisiae and less than 10% function in K. lactis. CONCLUSIONS Our findings demonstrate a replication initiation system with novel features and underscore the functional diversity within the budding yeasts. Furthermore, we have developed new approaches for analyzing biologically functional DNA sequences with ill-defined motifs.
Collapse
Affiliation(s)
- Ivan Liachko
- School of Mathematics and Statistics, University of Sydney, Sydney, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Givens RM, Mesner LD, Hamlin JL, Buck MJ, Huberman JA. Integrity of chromatin and replicating DNA in nuclei released from fission yeast by semi-automated grinding in liquid nitrogen. BMC Res Notes 2011; 4:499. [PMID: 22088094 PMCID: PMC3235078 DOI: 10.1186/1756-0500-4-499] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 11/16/2011] [Indexed: 11/18/2022] Open
Abstract
Background Studies of nuclear function in many organisms, especially those with tough cell walls, are limited by lack of availability of simple, economical methods for large-scale preparation of clean, undamaged nuclei. Findings Here we present a useful method for nuclear isolation from the important model organism, the fission yeast, Schizosaccharomyces pombe. To preserve in vivo molecular configurations, we flash-froze the yeast cells in liquid nitrogen. Then we broke their tough cell walls, without damaging their nuclei, by grinding in a precision-controlled motorized mortar-and-pestle apparatus. The cryo-ground cells were resuspended and thawed in a buffer designed to preserve nuclear morphology, and the nuclei were enriched by differential centrifugation. The washed nuclei were free from contaminating nucleases and have proven well-suited as starting material for genome-wide chromatin analysis and for preparation of fragile DNA replication intermediates. Conclusions We have developed a simple, reproducible, economical procedure for large-scale preparation of endogenous-nuclease-free, morphologically intact nuclei from fission yeast. With appropriate modifications, this procedure may well prove useful for isolation of nuclei from other organisms with, or without, tough cell walls.
Collapse
Affiliation(s)
- Robert M Givens
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
| | | | | | | | | |
Collapse
|
31
|
Maus C, Rybacki S, Uhrmacher AM. Rule-based multi-level modeling of cell biological systems. BMC SYSTEMS BIOLOGY 2011; 5:166. [PMID: 22005019 PMCID: PMC3306009 DOI: 10.1186/1752-0509-5-166] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 10/17/2011] [Indexed: 11/10/2022]
Abstract
BACKGROUND Proteins, individual cells, and cell populations denote different levels of an organizational hierarchy, each of which with its own dynamics. Multi-level modeling is concerned with describing a system at these different levels and relating their dynamics. Rule-based modeling has increasingly attracted attention due to enabling a concise and compact description of biochemical systems. In addition, it allows different methods for model analysis, since more than one semantics can be defined for the same syntax. RESULTS Multi-level modeling implies the hierarchical nesting of model entities and explicit support for downward and upward causation between different levels. Concepts to support multi-level modeling in a rule-based language are identified. To those belong rule schemata, hierarchical nesting of species, assigning attributes and solutions to species at each level and preserving content of nested species while applying rules. Further necessities are the ability to apply rules and flexibly define reaction rate kinetics and constraints on nested species as well as species that are nested within others. An example model is presented that analyses the interplay of an intracellular control circuit with states at cell level, its relation to cell division, and connections to intercellular communication within a population of cells. The example is described in ML-Rules - a rule-based multi-level approach that has been realized within the plug-in-based modeling and simulation framework JAMES II. CONCLUSIONS Rule-based languages are a suitable starting point for developing a concise and compact language for multi-level modeling of cell biological systems. The combination of nesting species, assigning attributes, and constraining reactions according to these attributes is crucial in achieving the desired expressiveness. Rule schemata allow a concise and compact description of complex models. As a result, the presented approach facilitates developing and maintaining multi-level models that, for instance, interrelate intracellular and intercellular dynamics.
Collapse
Affiliation(s)
- Carsten Maus
- University of Rostock, Institute of Computer Science, Albert-Einstein-Str. 22, 18059 Rostock, Germany
| | - Stefan Rybacki
- University of Rostock, Institute of Computer Science, Albert-Einstein-Str. 22, 18059 Rostock, Germany
| | - Adelinde M Uhrmacher
- University of Rostock, Institute of Computer Science, Albert-Einstein-Str. 22, 18059 Rostock, Germany
| |
Collapse
|
32
|
Taylor M, Moore K, Murray J, Aves SJ, Price C. Mcm10 interacts with Rad4/Cut5(TopBP1) and its association with origins of DNA replication is dependent on Rad4/Cut5(TopBP1). DNA Repair (Amst) 2011; 10:1154-63. [PMID: 21945095 DOI: 10.1016/j.dnarep.2011.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 08/31/2011] [Accepted: 09/01/2011] [Indexed: 12/31/2022]
Abstract
Initiation of DNA replication in eukaryotes is a highly conserved and ordered process involving the co-ordinated, stepwise association of distinct proteins at multiple origins of replication throughout the genome. Here, taking Schizosaccharomyces pombe as a model, the role of Rad4(TopBP1) in the assembly of the replication complex has been examined. Quantitative chromatin immunoprecipitation experiments confirm that Rad4(TopBP1) associates with origins of DNA replication and, in addition, demonstrate that the protein is not present within the active replisome. A direct interaction between Rad4(TopBP1) and Mcm10 is shown and this is reflected in the Rad4(TopBP1)-dependent origin association of Mcm10. Rad4(TopBP1) is also shown to interact with Sld2 and Sld3 and to be required for the stable origin association of these two proteins. Rad4(TopBP1) chromatin association at stalled replication forks was found to be dependent upon the checkpoint protein Rad9, which was not required for Rad4(TopBP1) origin association. Comparison of the levels of chromatin association at origins of replication and stalled replication forks and the differential requirement for Rad9 suggest functional differences for Rad4(TopBP1) at these distinct sites.
Collapse
Affiliation(s)
- Mark Taylor
- School of Health and Medicine, Division of Biomedical and Life Sciences, Biological Sciences Building, Lancaster University, Lancaster LA1 4YQ, UK
| | | | | | | | | |
Collapse
|
33
|
Borowiec JA, Schildkraut CL. Open sesame: activating dormant replication origins in the mouse immunoglobulin heavy chain (Igh) locus. Curr Opin Cell Biol 2011; 23:284-92. [PMID: 21571518 DOI: 10.1016/j.ceb.2011.04.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 04/12/2011] [Accepted: 04/13/2011] [Indexed: 11/16/2022]
Abstract
Chromosomal DNA replication in mammals initiates from replication origins whose activity differs in accordance with cell type and differentiation state. In addition to origins that are active in unperturbed conditions, chromosomes also contain dormant origins that can become functional in response to certain genotoxic stress conditions. Improper regulation of origin usage can cause genomic instability leading to tumorigenesis. We review findings from recent single-molecule DNA fiber studies examining replication of the mouse immunoglobulin heavy chain (Igh) locus, in which origin activity over a 400kb region is subject to dramatic developmental regulation. Possible models are discussed to explain such differential origin usage, particularly during replication stress conditions that can activate dormant origins.
Collapse
Affiliation(s)
- James A Borowiec
- Department of Biochemistry and New York University Cancer Institute, New York University School of Medicine, New York, NY 10016, United States
| | | |
Collapse
|
34
|
Singh SK, Sabatinos S, Forsburg S, Bastia D. Regulation of replication termination by Reb1 protein-mediated action at a distance. Cell 2010; 142:868-78. [PMID: 20850009 DOI: 10.1016/j.cell.2010.08.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 06/08/2010] [Accepted: 07/26/2010] [Indexed: 11/30/2022]
Abstract
DNA transactions driven by long-range protein-mediated inter- and intrachromosomal interactions have been reported to influence gene expression. Here, we report that site-specific replication termination in Schizosaccharomyces pombe is modulated by protein-mediated interactions between pairs of Ter sites located either on the same or on different chromosomes. The dimeric Reb1 protein catalyzes termination and mediates interaction between Ter sites. The Reb1-dependent interactions between two antiparallel Ter sites in cis caused looping out of the intervening DNA in vitro and enhancement of fork arrest in vivo. A Ter site on chromosome 2 interacted pairwise with two Ter sites located on chromosome 1 by chromosome kissing. Mutational inactivation of the major interacting Ter site on chromosome 1 significantly reduced fork arrest at the Ter site on chromosome 2, thereby revealing a cooperative mechanism of control of replication termination.
Collapse
Affiliation(s)
- Samarendra K Singh
- Department of Molecular Biology and Biochemistry, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | |
Collapse
|
35
|
Pitt CW, Cooper JP. Pot1 inactivation leads to rampant telomere resection and loss in one cell cycle. Nucleic Acids Res 2010; 38:6968-75. [PMID: 20601686 PMCID: PMC2978358 DOI: 10.1093/nar/gkq580] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Removal of the conserved telomere protein, Pot1, confers the immediate loss of fission yeast telomeres. This drastic phenotype has established the centrality of Pot1 for telomere maintenance but prohibited elucidation of the intermediate steps leading to telomere loss. To circumvent this problem, we have generated a conditional allele, pot1–1. We show that loss of Pot1 function during G1 leads to rapid telomere erosion during the ensuing S/G2 period. Precipitous telomere loss depends upon S-phase progression and is preceded by 5′ telomeric resection. Telomere loss is accompanied by ATR- and Chk1-mediated checkpoint activation, but is not caused by checkpoint arrest.
Collapse
|
36
|
Raghuraman MK, Brewer BJ. Molecular analysis of the replication program in unicellular model organisms. Chromosome Res 2010; 18:19-34. [PMID: 20012185 DOI: 10.1007/s10577-009-9099-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Eukaryotes have long been reported to show temporal programs of replication, different portions of the genome being replicated at different times in S phase, with the added possibility of developmentally regulated changes in this pattern depending on species and cell type. Unicellular model organisms, primarily the budding yeast Saccharomyces cerevisiae, have been central to our current understanding of the mechanisms underlying the regulation of replication origins and the temporal program of replication in particular. But what exactly is a temporal program of replication, and how might it arise? In this article, we explore this question, drawing again on the wealth of experimental information in unicellular model organisms.
Collapse
Affiliation(s)
- M K Raghuraman
- Department of Genome Sciences, University of Washington, Box 355065, Seattle, WA, 98133, USA.
| | | |
Collapse
|
37
|
Postreplication gaps at UV lesions are signals for checkpoint activation. Proc Natl Acad Sci U S A 2010; 107:8219-24. [PMID: 20404181 DOI: 10.1073/pnas.1003449107] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Exposure of eukaryotic cells to UV light induces a checkpoint response that delays cell-cycle progression after cells enter S phase. It has been hypothesized that this checkpoint response provides time for repair by signaling the presence of structures generated when the replication fork encounters UV-induced DNA damage. To gain insight into the nature of the signaling structures, we used time-lapse microscopy to determine the effects of deficiencies in translesion DNA polymerases on the checkpoint response of the fission yeast Schizosaccharomyces pombe. We found that disruption of the genes encoding translesion DNA polymerases Polkappa and Poleta significantly prolonged the checkpoint response, indicating that the substrates of these enzymes are signals for checkpoint activation. Surprisingly, we found no evidence that the translesion polymerases Rev1 and Polzeta repair structures that are recognized by the checkpoint despite their role in maintaining viability after UV irradiation. Quantitative flow cytometry revealed that cells lacking translesion polymerases replicate UV-damaged DNA at the same rate at WT cells, indicating that the enhanced checkpoint response of cells lacking Polkappa and Poleta is not the result of stalled replication forks. These observations support a model in which postreplication DNA gaps with unrepaired UV lesions in the template strand act both as substrates for translesion polymerases and as signals for checkpoint activation.
Collapse
|
38
|
Regulation of Epstein-Barr virus origin of plasmid replication (OriP) by the S-phase checkpoint kinase Chk2. J Virol 2010; 84:4979-87. [PMID: 20200249 DOI: 10.1128/jvi.01300-09] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The Epstein-Barr virus (EBV) origin of plasmid replication (OriP) is required for episome stability during latent infection. Telomere repeat factor 2 (TRF2) binds directly to OriP and facilitates DNA replication and plasmid maintenance. Recent studies have found that TRF2 interacts with the DNA damage checkpoint protein Chk2. We show here that Chk2 plays an important role in regulating OriP plasmid stability, chromatin modifications, and replication timing. The depletion of Chk2 by small interfering RNA (siRNA) leads to a reduction in DNA replication efficiency and a loss of OriP-dependent plasmid maintenance. This corresponds to a change in OriP replication timing and an increase in constitutive histone H3 acetylation. We show that Chk2 interacts with TRF2 in the early G(1)/S phase of the cell cycle. We also show that Chk2 can phosphorylate TRF2 in vitro at a consensus acceptor site in the amino-terminal basic domain of TRF2. TRF2 mutants with a serine-to-aspartic acid phosphomimetic substitution mutation were reduced in their ability to recruit the origin recognition complex (ORC) and stimulate OriP replication. We suggest that the Chk2 phosphorylation of TRF2 is important for coordinating ORC binding with chromatin remodeling during the early S phase and that a failure to execute these events leads to replication defects and plasmid instability.
Collapse
|
39
|
Moser BA, Nakamura TM. Protection and replication of telomeres in fission yeast. Biochem Cell Biol 2010; 87:747-58. [PMID: 19898524 DOI: 10.1139/o09-037] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Telomeres, the natural ends of linear chromosomes, must be protected and completely replicated to guarantee genomic stability in eukaryotic cells. However, the protected state of telomeres is not compatible with recruitment of telomerase, an enzyme responsible for extending telomeric G-rich repeats during S-phase; thus, telomeres must undergo switches from a protected state to an accessible state during the cell cycle. In this minireview, we will summarize recent advances in our understanding of proteins involved in the protection and replication of telomeres, and the way these factors are dynamically recruited to telomeres during the cell cycle. We will focus mainly on recent results from fission yeast Schizosaccharomyces pombe, and compare them with results from budding yeast Saccharomyces cerevisiae and mammalian cell studies. In addition, a model for the way in which fission yeast cells replicate telomeres will be presented.
Collapse
Affiliation(s)
- Bettina A Moser
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, 900 S. Ashland Ave. MC669, Chicago, IL 60607, USA
| | | |
Collapse
|
40
|
Cotobal C, Segurado M, Antequera F. Structural diversity and dynamics of genomic replication origins in Schizosaccharomyces pombe. EMBO J 2010; 29:934-42. [PMID: 20094030 DOI: 10.1038/emboj.2009.411] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 12/21/2009] [Indexed: 11/09/2022] Open
Abstract
DNA replication origins (ORI) in Schizosaccharomyces pombe colocalize with adenine and thymine (A+T)-rich regions, and earlier analyses have established a size from 0.5 to over 3 kb for a DNA fragment to drive replication in plasmid assays. We have asked what are the requirements for ORI function in the chromosomal context. By designing artificial ORIs, we have found that A+T-rich fragments as short as 100 bp without homology to S. pombe DNA are able to initiate replication in the genome. On the other hand, functional dissection of endogenous ORIs has revealed that some of them span a few kilobases and include several modules that may be as short as 25-30 contiguous A+Ts capable of initiating replication from ectopic chromosome positions. The search for elements with these characteristics across the genome has uncovered an earlier unnoticed class of low-efficiency ORIs that fire late during S phase. These results indicate that ORI specification and dynamics varies widely in S. pombe, ranging from very short elements to large regions reminiscent of replication initiation zones in mammals.
Collapse
Affiliation(s)
- Cristina Cotobal
- Instituto de Microbiología Bioquímica, CSIC/Universidad de Salamanca, Edificio Departamental, Salamanca, Spain
| | | | | |
Collapse
|
41
|
Dubey DD, Srivastava VK, Pratihar AS, Yadava MP. High density of weak replication origins in a 75-kb region of chromosome 2 of fission yeast. Genes Cells 2009; 15:1-12. [PMID: 20002499 DOI: 10.1111/j.1365-2443.2009.01363.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Using a two-dimensional gel electrophoresis origin mapping technique and cell synchronization, we have studied replication timing and mapped origins in a 75-kb region of chromosome 2 of Schizosaccharomyces pombe. Three of the five mapped origins are moderately active and the other two are very weak. DNA fragments containing the three moderately active origins and one weak origin are ARS-positive whereas that containing the other weak origin is ARS-negative. Three ARS elements reported earlier from this region appear to be inactive as chromosomal origins. The centromere-proximal 45 kb of this region replicates earlier than the telomere-proximal 30 kb. A transition from early to late replication occurs within 10 kb of the chromosomally inactive ars727, suggesting a possible role of the previously reported late-replication-enforcing region in determining chromosomal replication timing of the region. These results in conjunction with those from some other studies suggest that, in S. pombe, the actual number of potential origins may be significantly higher than previously detected in many genome-wide studies, and the relationship between ARS activity and chromosomal origin activity is not as simple as in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Dharani D Dubey
- Department of Biotechnology, Veer Bahadur Singh Purvanchal University, Jaunpur-222001, UP, India.
| | | | | | | |
Collapse
|
42
|
Skjølberg HC, Fensgård O, Nilsen H, Grallert B, Boye E. Global transcriptional response after exposure of fission yeast cells to ultraviolet light. BMC Cell Biol 2009; 10:87. [PMID: 20015352 PMCID: PMC2806298 DOI: 10.1186/1471-2121-10-87] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Accepted: 12/16/2009] [Indexed: 12/04/2022] Open
Abstract
Background In many cell types, including the fission yeast Schizosaccharomyces pombe, a set of checkpoints are induced by perturbations of the cell cycle or by DNA damage. Many of the checkpoint responses include a substantial change of the transcriptional pattern. As part of characterising a novel G1/S checkpoint in fission yeast we have investigated whether a transcriptional response is induced after irradiation with ultraviolet light. Results Microarray analyses were used to measure the global transcription levels of all open reading frames of fission yeast after 254 nm ultraviolet irradiation, which is known to induce a G1/S checkpoint. We discovered a surprisingly weak transcriptional response, which is quite unlike the marked changes detected after some other types of treatment and in several other checkpoints. Interestingly, the alterations in gene expression after ultraviolet irradiation were not similar to those observed after ionising radiation or oxidative stress. Pathway analysis suggests that there is little systematic transcriptional response to the irradiation by ultraviolet light, but a marked, coordinated transcriptional response was noted on progression of the cells from G1 to S phase. Conclusion There is little response in fission yeast to ultraviolet light at the transcriptional level. Amongst the genes induced or repressed after ultraviolet irradiation we found none that are likely to be involved in the G1/S checkpoint mechanism, suggesting that the checkpoint is not dependent upon transcriptional regulation.
Collapse
Affiliation(s)
- Henriette C Skjølberg
- Department of Cell Biology, Institute for Cancer Research, Oslo University Hospital, Radiumhospitalet, Montebello, 0310 Oslo, Norway.
| | | | | | | | | |
Collapse
|
43
|
Growth pattern of single fission yeast cells is bilinear and depends on temperature and DNA synthesis. Biophys J 2009; 96:4336-47. [PMID: 19450504 DOI: 10.1016/j.bpj.2009.02.051] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 02/11/2009] [Accepted: 02/19/2009] [Indexed: 11/20/2022] Open
Abstract
Cell growth and division have to be tightly coordinated to keep the cell size constant over generations. Changes in cell size can be easily studied in the fission yeast Schizosaccharomyces pombe because these cells have a cylindrical shape and grow only at the cell ends. However, the growth pattern of single cells is currently unclear. Linear, exponential, and bilinear growth models have been proposed. Here we measured the length of single fission yeast cells with high spatial precision and temporal resolution over the whole cell cycle by using time-lapse confocal microscopy of cells with green fluorescent protein-labeled plasma membrane. We show that the growth profile between cell separation and the subsequent mitosis is bilinear, consisting of two linear segments separated by a rate-change point (RCP). The change in growth rate occurred at the same relative time during the cell cycle and at the same relative extension for different temperatures. The growth rate before the RCP was independent of temperature, whereas the growth rate after the RCP increased with an increase in temperature, leading to clear bilinear growth profiles at higher temperatures. The RCP was not directly related to the initiation of growth at the new end (new end take-off). When DNA synthesis was inhibited by hydroxyurea, the RCP was not detected. This result suggests that completion of DNA synthesis is required for the increase in growth rate. We conclude that the growth of fission yeast cells is not a simple exponential growth, but a complex process with precise rates regulated by the events during the cell cycle.
Collapse
|
44
|
Willis N, Rhind N. Regulation of DNA replication by the S-phase DNA damage checkpoint. Cell Div 2009; 4:13. [PMID: 19575778 PMCID: PMC2714077 DOI: 10.1186/1747-1028-4-13] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Accepted: 07/03/2009] [Indexed: 11/29/2022] Open
Abstract
Cells slow replication in response to DNA damage. This slowing was the first DNA damage checkpoint response discovered and its study led to the discovery of the central checkpoint kinase, Ataxia Telangiectasia Mutated (ATM). Nonetheless, the manner by which the S-phase DNA damage checkpoint slows replication is still unclear. The checkpoint could slow bulk replication by inhibiting replication origin firing or slowing replication fork progression, and both mechanisms appear to be used. However, assays in various systems using different DNA damaging agents have produced conflicting results as to the relative importance of the two mechanisms. Furthermore, although progress has been made in elucidating the mechanism of origin regulation in vertebrates, the mechanism by which forks are slowed remains unknown. We review both past and present efforts towards determining how cells slow replication in response to damage and try to resolve apparent conflicts and discrepancies within the field. We propose that inhibition of origin firing is a global checkpoint mechanism that reduces overall DNA synthesis whenever the checkpoint is activated, whereas slowing of fork progression reflects a local checkpoint mechanism that only affects replisomes as they encounter DNA damage and therefore only affects overall replication rates in cases of high lesion density.
Collapse
Affiliation(s)
- Nicholas Willis
- Biochemistry and Molecular Pharmacology, University on Massachusetts Medical School, Worcester MA 01605, USA.
| | | |
Collapse
|
45
|
Wu PYJ, Nurse P. Establishing the program of origin firing during S phase in fission Yeast. Cell 2009; 136:852-64. [PMID: 19269364 DOI: 10.1016/j.cell.2009.01.017] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2007] [Revised: 07/17/2008] [Accepted: 01/05/2009] [Indexed: 01/04/2023]
Abstract
Initiation of eukaryotic DNA synthesis occurs at origins of replication that are utilized with characteristic times and frequencies during S phase. We have investigated origin usage by evaluating the kinetics of replication factor binding in fission yeast and show that similar to metazoa, ORC binding is periodic during the cell cycle, increasing during mitosis and peaking at M/G1. At an origin, the timing of ORC binding in M and pre-RC assembly in G1 correlates with the timing of firing during S, and the level of pre-IC formation reflects origin efficiency. Extending mitosis allows ORC to become more equally associated with origins and leads to genome-wide changes in origin usage, while overproduction of pre-IC factors increases replication of both efficient and inefficient origins. We propose that differential recruitment of ORC to origins during mitosis followed by competition among origins for limiting replication factors establishes the timing and efficiency of origin firing.
Collapse
|
46
|
Irmisch A, Ampatzidou E, Mizuno K, O'Connell MJ, Murray JM. Smc5/6 maintains stalled replication forks in a recombination-competent conformation. EMBO J 2009; 28:144-55. [PMID: 19158664 DOI: 10.1038/emboj.2008.273] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Accepted: 12/02/2008] [Indexed: 01/01/2023] Open
Abstract
The Smc5/6 structural maintenance of chromosomes complex is required for efficient homologous recombination (HR). Defects in Smc5/6 result in chromosome mis-segregation and fragmentation. By characterising two Schizosaccharomyces pombe smc6 mutants, we define two separate functions for Smc5/6 in HR. The first represents the previously described defect in processing recombination-dependent DNA intermediates when replication forks collapse, which leads to increased rDNA recombination. The second novel function defines Smc5/6 as a positive regulator of recombination in the rDNA and correlates mechanistically with a requirement to load RPA and Rad52 onto chromatin genome-wide when replication forks are stably stalled by nucleotide depletion. Rad52 is required for all HR repair, but Rad52 loading in response to replication fork stalling is unexpected and does not correlate with damage-induced foci. We propose that Smc5/6 is required to maintain stalled forks in a stable recombination-competent conformation primed for replication restart.
Collapse
Affiliation(s)
- Anja Irmisch
- Genome Damage and Stability Centre, University of Sussex, Brighton, E. Sussex, UK
| | | | | | | | | |
Collapse
|
47
|
Differential arrival of leading and lagging strand DNA polymerases at fission yeast telomeres. EMBO J 2009; 28:810-20. [PMID: 19214192 DOI: 10.1038/emboj.2009.31] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Accepted: 01/20/2009] [Indexed: 11/08/2022] Open
Abstract
To maintain genomic integrity, telomeres must undergo switches from a protected state to an accessible state that allows telomerase recruitment. To better understand how telomere accessibility is regulated in fission yeast, we analysed cell cycle-dependent recruitment of telomere-specific proteins (telomerase Trt1, Taz1, Rap1, Pot1 and Stn1), DNA replication proteins (DNA polymerases, MCM, RPA), checkpoint protein Rad26 and DNA repair protein Nbs1 to telomeres. Quantitative chromatin immunoprecipitation studies revealed that MCM, Nbs1 and Stn1 could be recruited to telomeres in the absence of telomere replication in S-phase. In contrast, Trt1, Pot1, RPA and Rad26 failed to efficiently associate with telomeres unless telomeres are actively replicated. Unexpectedly, the leading strand DNA polymerase epsilon (Polepsilon) arrived at telomeres earlier than the lagging strand DNA polymerases alpha (Polalpha) and delta (Poldelta). Recruitment of RPA and Rad26 to telomeres matched arrival of DNA Polepsilon, whereas S-phase specific recruitment of Trt1, Pot1 and Stn1 matched arrival of DNA Polalpha. Thus, the conversion of telomere states involves an unanticipated intermediate step where lagging strand synthesis is delayed until telomerase is recruited.
Collapse
|
48
|
The heterochromatin protein Swi6/HP1 activates replication origins at the pericentromeric region and silent mating-type locus. Nat Cell Biol 2009; 11:357-62. [PMID: 19182789 DOI: 10.1038/ncb1845] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Accepted: 11/04/2008] [Indexed: 12/15/2022]
Abstract
Heterochromatin is a structurally compacted region of chromosomes in which transcription and recombination are inactivated. DNA replication is temporally regulated in heterochromatin, but the molecular mechanism for regulation has not been elucidated. Among heterochromatin loci in Schizosaccharomyces pombe, the pericentromeric region and the silent mating-type (mat) locus replicate in early S phase, whereas the sub-telomeric region does not, suggesting complex mechanisms for regulation of replication in heterochromatic regions. Here, we show that Swi6, an S. pombe counterpart of heterochromatin protein 1 (HP1), is required for early replication of the pericentromeric region and the mat locus. Origin-loading of Sld3, which depends on Dfp1/Dbf4-dependent kinase Cdc7 (DDK), is stimulated by Swi6. An HP1-binding motif within Dfp1 is required for interaction with Swi6 in vitro and for early replication of the pericentromeric region and mat locus. Tethering of Dfp1 to the pericentromeric region and mat locus in swi6-deficient cells restores early replication of these loci. Our results show that a heterochromatic protein positively regulates initiation of replication in silenced chromatin by interacting with an essential kinase.
Collapse
|
49
|
Abstract
We discuss the mechanisms regulating entry into and progression through S phase in eukaryotic cells. Methods to study the G1/S transition are briefly reviewed and an overview of G1/S-checkpoints is given, with particular emphasis on fission yeast. Thereafter we discuss different aspects of the intra-S checkpoint and introduce the main molecular players and mechanisms.
Collapse
Affiliation(s)
- Erik Boye
- Department of Cell Biology, Institute for Cancer Research, Rikshospitalet-Radiumhospitalet Medical Centre, Oslo, Norway
| | | | | |
Collapse
|
50
|
Patel PK, Kommajosyula N, Rosebrock A, Bensimon A, Leatherwood J, Bechhoefer J, Rhind N. The Hsk1(Cdc7) replication kinase regulates origin efficiency. Mol Biol Cell 2008; 19:5550-8. [PMID: 18799612 PMCID: PMC2592646 DOI: 10.1091/mbc.e08-06-0645] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Revised: 08/28/2008] [Accepted: 09/08/2008] [Indexed: 11/11/2022] Open
Abstract
Origins of DNA replication are generally inefficient, with most firing in fewer than half of cell cycles. However, neither the mechanism nor the importance of the regulation of origin efficiency is clear. In fission yeast, origin firing is stochastic, leading us to hypothesize that origin inefficiency and stochasticity are the result of a diffusible, rate-limiting activator. We show that the Hsk1-Dfp1 replication kinase (the fission yeast Cdc7-Dbf4 homologue) plays such a role. Increasing or decreasing Hsk1-Dfp1 levels correspondingly increases or decreases origin efficiency. Furthermore, tethering Hsk1-Dfp1 near an origin increases the efficiency of that origin, suggesting that the effective local concentration of Hsk1-Dfp1 regulates origin firing. Using photobleaching, we show that Hsk1-Dfp1 is freely diffusible in the nucleus. These results support a model in which the accessibility of replication origins to Hsk1-Dfp1 regulates origin efficiency and provides a potential mechanistic link between chromatin structure and replication timing. By manipulating Hsk1-Dfp1 levels, we show that increasing or decreasing origin firing rates leads to an increase in genomic instability, demonstrating the biological importance of appropriate origin efficiency.
Collapse
Affiliation(s)
- Prasanta K. Patel
- *Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Naveen Kommajosyula
- *Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Adam Rosebrock
- Department of Molecular Genetics and Microbiology, State University of New York, Stony Brook, NY 11794
| | - Aaron Bensimon
- Genomes Stability Unit, Pasteur Institute, 75724 Paris, France; and
| | - Janet Leatherwood
- Department of Molecular Genetics and Microbiology, State University of New York, Stony Brook, NY 11794
| | - John Bechhoefer
- Department of Physics, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
| | - Nicholas Rhind
- *Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605
| |
Collapse
|