1
|
Wundersitz A, Hoffmann KMV, van Dongen JT. Acyl-CoA-binding proteins: bridging long-chain acyl-CoA metabolism to gene regulation. THE NEW PHYTOLOGIST 2025; 246:1960-1966. [PMID: 40259851 PMCID: PMC12059526 DOI: 10.1111/nph.70142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/18/2025] [Indexed: 04/23/2025]
Abstract
Acyl-Coenzyme A-binding proteins (ACBPs) sequester and transport long-chain acyl-Coenzyme A (LCA-CoA) molecules, key intermediates in lipid metabolism, membrane biogenesis, and energy production. In addition, recent research emphasizes their regulatory role in linking the metabolic state to gene expression. In animals, ACBPs coordinate acetyl-CoA metabolism and enzyme activity, thereby affecting gene expression through broad signaling networks. In plants, ACBPs contribute to development and stress responses, with hypoxia research showing their involvement in detecting LCA-CoA fluctuations to trigger genetic acclimation. This review explores ACBPs in LCA-CoA signaling and gene regulation, emphasizing their function as universal 'translators' of metabolic states for cellular acclimation. Further ACBP research will offer novel regulatory insights into numerous signaling pathways fundamental to health, development, and environmental responses across kingdoms.
Collapse
Affiliation(s)
- Allegra Wundersitz
- Department of Biology, Molecular Ecology of the RhizosphereRWTH Aachen University52074AachenGermany
| | | | - Joost T. van Dongen
- Department of Biology, Molecular Ecology of the RhizosphereRWTH Aachen University52074AachenGermany
| |
Collapse
|
2
|
Peng W, Wang X, Liu Q, Xiao Z, Li F, Ji N, Chen Z, He J, Wang J, Deng Z, Lin S, Liang R. The GntR/VanR transcription regulator AlkR represses AlkB2 monooxygenase expression and regulates n-alkane degradation in Pseudomonas aeruginosa SJTD-1. MLIFE 2025; 4:126-142. [PMID: 40313978 PMCID: PMC12042122 DOI: 10.1002/mlf2.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/17/2024] [Accepted: 12/21/2024] [Indexed: 05/03/2025]
Abstract
Transmembrane alkane monooxygenase (AlkB)-type monooxygenases, especially AlkB2 monooxygenases, are crucial for aerobic degradation of the medium-to-long-chain n-alkanes in hydrocarbon-utilizing microorganisms. In this study, we identified a GntR/VanR transcription regulator AlkR of Pseudomonas aeruginosa SJTD-1 involved in the negative regulation of AlkB2 and deciphered its nature of DNA binding and ligand release. The deletion of alkR enhanced the transcription levels of the alkB2 gene and the utilization efficiency of the medium-to-long-chain n-alkanes by strain SJTD-1. The dimer of AlkR recognizes and binds to a conserved palindromic motif in the promoter of the alkB2 gene, and structural symmetry is vital for DNA binding and transcription repression. The long-chain fatty acyl coenzyme A compounds can release AlkR and stimulate transcription of alkB2, reflecting the effect of alkane catabolic metabolites. Structural insights unveiled that the arginine residues and scaffold residues of AlkR are critical for DNA binding. Further bioinformatics analysis of AlkR revealed the widespread VanR-AlkB couples distributed in Pseudomonadaceae with high conservation in the sequences of functional genes and intergenic regions, highlighting a conserved regulatory pattern for n-alkane utilization across this family. These findings demonstrate the regulatory mechanism and structural basis of GntR/VanR transcription regulators in modulating n-alkane biodegradation and provide valuable insights in improving the bioremediation efficiency of hydrocarbon pollution.
Collapse
Affiliation(s)
- Wanli Peng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Xiuli Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Qinchen Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Zhihong Xiao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Fulin Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Nannan Ji
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Zhuo Chen
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Jiaying He
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Junhao Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Rubing Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
3
|
Singh S, Arya G, Mishra R, Singla S, Pratap A, Upadhayay K, Sharma M, Chaba R. Molecular mechanisms underlying allosteric behavior of Escherichia coli DgoR, a GntR/FadR family transcriptional regulator. Nucleic Acids Res 2025; 53:gkae1299. [PMID: 39777470 PMCID: PMC11705089 DOI: 10.1093/nar/gkae1299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 12/14/2024] [Accepted: 12/23/2024] [Indexed: 01/30/2025] Open
Abstract
GntR/FadR family featuring an N-terminal winged helix-turn-helix DNA-binding domain and a C-terminal α-helical effector-binding and oligomerization domain constitutes one of the largest families of transcriptional regulators. Several GntR/FadR regulators govern the metabolism of sugar acids, carbon sources implicated in bacterial-host interactions. Although effectors are known for a few sugar acid regulators, the unavailability of relevant structures has left their allosteric mechanism unexplored. Here, using DgoR, a transcriptional repressor of d-galactonate metabolism in Escherichia coli, as a model, and its superrepressor alleles, we probed allostery in a GntR/FadR family sugar acid regulator. Genetic and biochemical studies established compromised response to d-galactonate as the reason for the superrepressor behavior of the mutants: T180I does not bind d-galactonate, and while A97V, S171L and M188I bind d-galactonate, effector binding does not induce a conformational change required for derepression, suggesting altered allostery. For mechanistic insights into allosteric communication, we performed simulations of the modeled DgoR structure in different allosteric states for both the wild-type and mutant proteins. We found that each mutant exhibits unique dynamics disrupting the intrinsic allosteric communication pathways, thereby impacting DgoR function. We finally validated the allosteric communication model by testing in silico predictions with experimental data.
Collapse
Affiliation(s)
- Swati Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, SAS Nagar, Mohali 140306, Punjab, India
| | - Garima Arya
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, SAS Nagar, Mohali 140306, Punjab, India
| | - Rajesh Mishra
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, SAS Nagar, Mohali 140306, Punjab, India
| | - Shivam Singla
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, SAS Nagar, Mohali 140306, Punjab, India
| | - Akhil Pratap
- Biological Systems Engineering, Plaksha University, Sector 101 alpha, IT City, SAS Nagar, Mohali 140306, Punjab, India
| | - Krishna Upadhayay
- Council of Scientific and Industrial Research—Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Monika Sharma
- Biological Systems Engineering, Plaksha University, Sector 101 alpha, IT City, SAS Nagar, Mohali 140306, Punjab, India
| | - Rachna Chaba
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, SAS Nagar, Mohali 140306, Punjab, India
| |
Collapse
|
4
|
Wang Q, Shi S, Liu S, Ye S. A user-friendly fluorescent biosensor for precise lactate detection and quantification in vitro. Chem Commun (Camb) 2024; 60:12884-12887. [PMID: 39404007 DOI: 10.1039/d4cc04925j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
As a critical metabolite, the standardization of lactate quantification is increasingly crucial. Therefore, we developed LaconicSF, a lactate-responsive biosensor exhibiting exceptional specificity in lactate detection. LaconicSF enables efficient lactate quantification in CHO cell culture medium and holds potential as a user-friendly detection tool for lactate quantification in vitro.
Collapse
Affiliation(s)
- Qiwei Wang
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China.
| | - Sai Shi
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China.
| | - Si Liu
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China.
| | - Sheng Ye
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China.
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058 Zhejiang, China
| |
Collapse
|
5
|
Borges Farias A, Sganzerla Martinez G, Galán-Vásquez E, Nicolás MF, Pérez-Rueda E. Predicting bacterial transcription factor binding sites through machine learning and structural characterization based on DNA duplex stability. Brief Bioinform 2024; 25:bbae581. [PMID: 39541188 PMCID: PMC11562833 DOI: 10.1093/bib/bbae581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/02/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Transcriptional factors (TFs) in bacteria play a crucial role in gene regulation by binding to specific DNA sequences, thereby assisting in the activation or repression of genes. Despite their central role, deciphering shape recognition of bacterial TFs-DNA interactions remains an intricate challenge. A deeper understanding of DNA secondary structures could greatly enhance our knowledge of how TFs recognize and interact with DNA, thereby elucidating their biological function. In this study, we employed machine learning algorithms to predict transcription factor binding sites (TFBS) and classify them as directed-repeat (DR) or inverted-repeat (IR). To accomplish this, we divided the set of TFBS nucleotide sequences by size, ranging from 8 to 20 base pairs, and converted them into thermodynamic data known as DNA duplex stability (DDS). Our results demonstrate that the Random Forest algorithm accurately predicts TFBS with an average accuracy of over 82% and effectively distinguishes between IR and DR with an accuracy of 89%. Interestingly, upon converting the base pairs of several TFBS-IR into DDS values, we observed a symmetric profile typical of the palindromic structure associated with these architectures. This study presents a novel TFBS prediction model based on a DDS characteristic that may indicate how respective proteins interact with base pairs, thus providing insights into molecular mechanisms underlying bacterial TFs-DNA interaction.
Collapse
Affiliation(s)
- André Borges Farias
- Laboratório Nacional de Computação Científica - LNCC, Avenida Getúlio Vargas, Petrópolis, Rio de Janeiro 25651075, Brazil
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica del Estado de Yucatán, Carretera Sierra Papacal, Mérida 97302, Yucatán, México
| | - Gustavo Sganzerla Martinez
- Microbiology and Immunology, Dalhousie University, 5850 College Street, Halifax B3H 4H7, Nova Scotia, Canada
| | - Edgardo Galán-Vásquez
- Departamento de Ingeniería de Sistemas Computacionales y Automatización, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Escolar S/N, Mexico City 01000, México
| | - Marisa Fabiana Nicolás
- Laboratório Nacional de Computação Científica - LNCC, Avenida Getúlio Vargas, Petrópolis, Rio de Janeiro 25651075, Brazil
| | - Ernesto Pérez-Rueda
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica del Estado de Yucatán, Carretera Sierra Papacal, Mérida 97302, Yucatán, México
| |
Collapse
|
6
|
Purtov YA, Ozoline ON. Neuromodulators as Interdomain Signaling Molecules Capable of Occupying Effector Binding Sites in Bacterial Transcription Factors. Int J Mol Sci 2023; 24:15863. [PMID: 37958845 PMCID: PMC10647483 DOI: 10.3390/ijms242115863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Hormones and neurotransmitters are important components of inter-kingdom signaling systems that ensure the coexistence of eukaryotes with their microbial community. Their ability to affect bacterial physiology, metabolism, and gene expression was evidenced by various experimental approaches, but direct penetration into bacteria has only recently been reported. This opened the possibility of considering neuromodulators as potential effectors of bacterial ligand-dependent regulatory proteins. Here, we assessed the validity of this assumption for the neurotransmitters epinephrine, dopamine, and norepinephrine and two hormones (melatonin and serotonin). Using flexible molecular docking for transcription factors with ligand-dependent activity, we assessed the ability of neuromodulators to occupy their effector binding sites. For many transcription factors, including the global regulator of carbohydrate metabolism, CRP, and the key regulator of lactose assimilation, LacI, this ability was predicted based on the analysis of several 3D models. By occupying the ligand binding site, neuromodulators can sterically hinder the interaction of the target proteins with the natural effectors or even replace them. The data obtained suggest that the direct modulation of the activity of at least some bacterial transcriptional factors by neuromodulators is possible. Therefore, the natural hormonal background may be a factor that preadapts bacteria to the habitat through direct perception of host signaling molecules.
Collapse
Affiliation(s)
- Yuri A. Purtov
- Department of Functional Genomics of Prokaryotes, Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino 142290, Russia
| | - Olga N. Ozoline
- Department of Functional Genomics of Prokaryotes, Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino 142290, Russia
| |
Collapse
|
7
|
Hainzl T, Bonde M, Almqvist F, Johansson J, Sauer-Eriksson A. Structural insights into CodY activation and DNA recognition. Nucleic Acids Res 2023; 51:7631-7648. [PMID: 37326020 PMCID: PMC10415144 DOI: 10.1093/nar/gkad512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/18/2023] [Accepted: 06/09/2023] [Indexed: 06/17/2023] Open
Abstract
Virulence factors enable pathogenic bacteria to infect host cells, establish infection, and contribute to disease progressions. In Gram-positive pathogens such as Staphylococcus aureus (Sa) and Enterococcus faecalis (Ef), the pleiotropic transcription factor CodY plays a key role in integrating metabolism and virulence factor expression. However, to date, the structural mechanisms of CodY activation and DNA recognition are not understood. Here, we report the crystal structures of CodY from Sa and Ef in their ligand-free form and their ligand-bound form complexed with DNA. Binding of the ligands-branched chain amino acids and GTP-induces conformational changes in the form of helical shifts that propagate to the homodimer interface and reorient the linker helices and DNA binding domains. DNA binding is mediated by a non-canonical recognition mechanism dictated by DNA shape readout. Furthermore, two CodY dimers bind to two overlapping binding sites in a highly cooperative manner facilitated by cross-dimer interactions and minor groove deformation. Our structural and biochemical data explain how CodY can bind a wide range of substrates, a hallmark of many pleiotropic transcription factors. These data contribute to a better understanding of the mechanisms underlying virulence activation in important human pathogens.
Collapse
Affiliation(s)
- Tobias Hainzl
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
- Umeå Centre of Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Mari Bonde
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
- QureTech Bio, Umeå, Sweden
| | - Fredrik Almqvist
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
- Umeå Centre of Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Jörgen Johansson
- Umeå Centre of Microbial Research (UCMR), Umeå University, Umeå, Sweden
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
- Molecular Infection Medicine, Sweden (MIMS), Umeå University, 901 87 Umeå, Sweden
| | - A Elisabeth Sauer-Eriksson
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
- Umeå Centre of Microbial Research (UCMR), Umeå University, Umeå, Sweden
| |
Collapse
|
8
|
Chauhan NK, Anand A, Sharma A, Dhiman K, Gosain TP, Singh P, Singh P, Khan E, Chattopadhyay G, Kumar A, Sharma D, Ashish, Sharma TK, Singh R. Structural and Functional Characterization of Rv0792c from Mycobacterium tuberculosis: Identifying Small Molecule Inhibitor against HutC Protein. Microbiol Spectr 2023; 11:e0197322. [PMID: 36507689 PMCID: PMC9927256 DOI: 10.1128/spectrum.01973-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In order to adapt in host tissues, microbial pathogens regulate their gene expression through a variety of transcription factors. Here, we have functionally characterized Rv0792c, a HutC homolog from Mycobacterium tuberculosis. In comparison to the parental strain, a strain of M. tuberculosis with a Rv0792c mutant was compromised for survival upon exposure to oxidative stress and infection in guinea pigs. RNA sequencing analysis revealed that Rv0792c regulates the expression of genes involved in stress adaptation and virulence of M. tuberculosis. Solution small-angle X-ray scattering (SAXS) data-steered model building confirmed that the C-terminal region plays a pivotal role in dimer formation. Systematic evolution of ligands by exponential enrichment (SELEX) resulted in the identification of single-strand DNA (ssDNA) aptamers that can be used as a tool to identify small-molecule inhibitors targeting Rv0792c. Using SELEX and SAXS data-based modeling, we identified residues essential for Rv0792c's aptamer binding activity. In this study, we also identified I-OMe-Tyrphostin as an inhibitor of Rv0792c's aptamer and DNA binding activity. The identified small molecule reduced the growth of intracellular M. tuberculosis in macrophages. The present study thus provides a detailed shape-function characterization of a HutC family of transcription factor from M. tuberculosis. IMPORTANCE Prokaryotes encode a large number of GntR family transcription factors that are involved in various fundamental biological processes, including stress adaptation and pathogenesis. Here, we investigated the structural and functional role of Rv0792c, a HutC homolog from M. tuberculosis. We demonstrated that Rv0792c is essential for M. tuberculosis to adapt to oxidative stress and establish disease in guinea pigs. Using a systematic evolution of ligands by exponential enrichment (SELEX) approach, we identified ssDNA aptamers from a random ssDNA library that bound to Rv0792c protein. These aptamers were thoroughly characterized using biochemical and biophysical assays. Using SAXS, we determined the structural model of Rv0792c in both the presence and absence of the aptamers. Further, using a combination of SELEX and SAXS methodologies, we identified I-OMe-Tyrphostin as a potential inhibitor of Rv0792c. Here we provide a detailed functional characterization of a transcription factor belonging to the HutC family from M. tuberculosis.
Collapse
Affiliation(s)
- Neeraj Kumar Chauhan
- Translational Health Science and Technology Institutegrid.464764.3, Faridabad, Haryana, India
| | - Anjali Anand
- Translational Health Science and Technology Institutegrid.464764.3, Faridabad, Haryana, India
| | - Arun Sharma
- Translational Health Science and Technology Institutegrid.464764.3, Faridabad, Haryana, India
| | - Kanika Dhiman
- Institute of Microbial Technologygrid.417641.1, Council of Scientific and Industrial Research, Chandigarh, India
| | - Tannu Priya Gosain
- Translational Health Science and Technology Institutegrid.464764.3, Faridabad, Haryana, India
| | - Prashant Singh
- Institute of Microbial Technologygrid.417641.1, Council of Scientific and Industrial Research, Chandigarh, India
| | - Padam Singh
- Translational Health Science and Technology Institutegrid.464764.3, Faridabad, Haryana, India
| | - Eshan Khan
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indoregrid.450280.b, Indore, India
| | | | - Amit Kumar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indoregrid.450280.b, Indore, India
| | - Deepak Sharma
- Institute of Microbial Technologygrid.417641.1, Council of Scientific and Industrial Research, Chandigarh, India
| | - Ashish
- Institute of Microbial Technologygrid.417641.1, Council of Scientific and Industrial Research, Chandigarh, India
| | - Tarun Kumar Sharma
- Translational Health Science and Technology Institutegrid.464764.3, Faridabad, Haryana, India
| | - Ramandeep Singh
- Translational Health Science and Technology Institutegrid.464764.3, Faridabad, Haryana, India
| |
Collapse
|
9
|
Takeuchi T, Kameyama K, Miyauchi E, Nakanishi Y, Kanaya T, Fujii T, Kato T, Sasaki T, Tachibana N, Negishi H, Matsui M, Ohno H. Fatty acid overproduction by gut commensal microbiota exacerbates obesity. Cell Metab 2023; 35:361-375.e9. [PMID: 36652945 DOI: 10.1016/j.cmet.2022.12.013] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 07/25/2022] [Accepted: 12/19/2022] [Indexed: 01/19/2023]
Abstract
Although recent studies have highlighted the impact of gut microbes on the progression of obesity and its comorbidities, it is not fully understood how these microbes promote these disorders, especially in terms of the role of microbial metabolites. Here, we report that Fusimonas intestini, a commensal species of the family Lachnospiraceae, is highly colonized in both humans and mice with obesity and hyperglycemia, produces long-chain fatty acids such as elaidate, and consequently facilitates diet-induced obesity. High fat intake altered the expression of microbial genes involved in lipid production, such as the fatty acid metabolism regulator fadR. Monocolonization with a FadR-overexpressing Escherichia coli exacerbated the metabolic phenotypes, suggesting that the change in bacterial lipid metabolism is causally involved in disease progression. Mechanistically, the microbe-derived fatty acids impaired intestinal epithelial integrity to promote metabolic endotoxemia. Our study thus provides a mechanistic linkage between gut commensals and obesity through the overproduction of microbe-derived lipids.
Collapse
Affiliation(s)
- Tadashi Takeuchi
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Keishi Kameyama
- Institute of Food Sciences and Technologies, Ajinomoto Co., Inc., Kawasaki 210-8681, Japan
| | - Eiji Miyauchi
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan; Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan
| | - Yumiko Nakanishi
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Takashi Kanaya
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan; Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Takayoshi Fujii
- Institute of Food Sciences and Technologies, Ajinomoto Co., Inc., Kawasaki 210-8681, Japan
| | - Tamotsu Kato
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Takaharu Sasaki
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Naoko Tachibana
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Hiroki Negishi
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan; Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Misato Matsui
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan; Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan; Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan.
| |
Collapse
|
10
|
Degradation of Exogenous Fatty Acids in Escherichia coli. Biomolecules 2022; 12:biom12081019. [PMID: 35892328 PMCID: PMC9329746 DOI: 10.3390/biom12081019] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 12/10/2022] Open
Abstract
Many bacteria possess all the machineries required to grow on fatty acids (FA) as a unique source of carbon and energy. FA degradation proceeds through the β-oxidation cycle that produces acetyl-CoA and reduced NADH and FADH cofactors. In addition to all the enzymes required for β-oxidation, FA degradation also depends on sophisticated systems for its genetic regulation and for FA transport. The fact that these machineries are conserved in bacteria suggests a crucial role in environmental conditions, especially for enterobacteria. Bacteria also possess specific enzymes required for the degradation of FAs from their environment, again showing the importance of this metabolism for bacterial adaptation. In this review, we mainly describe FA degradation in the Escherichia coli model, and along the way, we highlight and discuss important aspects of this metabolism that are still unclear. We do not detail exhaustively the diversity of the machineries found in other bacteria, but we mention them if they bring additional information or enlightenment on specific aspects.
Collapse
|
11
|
Ma Y, Zheng X, Lin Y, Zhang L, Yuan Y, Wang H, Winterburn J, Wu F, Wu Q, Ye JW, Chen GQ. Engineering an oleic acid-induced system for Halomonas, E. coli and Pseudomonas. Metab Eng 2022; 72:325-336. [PMID: 35513297 DOI: 10.1016/j.ymben.2022.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/11/2022] [Accepted: 04/20/2022] [Indexed: 11/17/2022]
Abstract
Ligand-induced system plays an important role for microbial engineering due to its tunable gene expression control over timings and levels. An oleic acid (OA)-induced system was recently constructed based on protein FadR, a transcriptional regulator involved in fatty acids metabolism, for metabolic control in Escherichia coli. In this study, we constructed a synthetic FadR-based OA-induced systems in Halomonas bluephagenesis by hybridizing the porin promoter core region and FadR-binding operator (fadO). The dynamic control range was optimized over 150-fold, and expression leakage was significantly reduced by tuning FadR expression and positioning fadO, forming a series of OA-induced systems with various expression strengths, respectively. Additionally, ligand orthogonality and cross-species portability were also studied and showed highly linear correlation among Halomonas spp., Escherichia coli and Pseudomonas spp. Finally, OA-induced systems with medium- and small-dynamic control ranges were employed to dynamically control the expression levels of morphology associated gene minCD, and monomer precursor 4-hydroxybutyrate-CoA (4HB-CoA) synthesis pathway for polyhydroxyalkanoates (PHA), respectively, in the presence of oleic acid as an inducer. As a result, over 10 g/L of poly-3-hydroxybutyrate (PHB) accumulated by elongated cell sizes, and 6 g/L of P(3HB-co-9.57 mol% 4HB) were obtained by controlling the dose and induction time of oleic acid only. This study provides a systematic approach for ligand-induced system engineering, and demonstrates an alternative genetic tool for dynamic control of industrial biotechnology.
Collapse
Affiliation(s)
- Yueyuan Ma
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiangrui Zheng
- School of Life Sciences, Tsinghua University, Beijing, 100084, China; Department of Chemical Engineering and Analytical Science, The University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Yina Lin
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Lizhan Zhang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yiping Yuan
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Huan Wang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - James Winterburn
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Fuqing Wu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Qiong Wu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jian-Wen Ye
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China; Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China; Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China.
| | - Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, Beijing, 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China; MOE Key Laboratory for Industrial Biocatalysts, Dept Chemical Engineering, Tsinghua University, Beijing, 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
12
|
Pan J, Wei F, Liu Y, Xu Y, Ma Y. Unraveling the role of GntR on the regulation of alkane hydroxylase AlkB
2
in
Pseudomonas aeruginosa
DN1 based on transcriptome analysis. J Appl Microbiol 2022; 132:2812-2822. [DOI: 10.1111/jam.15453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/28/2021] [Accepted: 01/07/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Jincheng Pan
- Shaanxi Provincial Key Laboratory of Biotechnology Key Laboratory of Resources Biology and Biotechnology in Western China Ministry of Education College of Life Science Northwest University 229 Taibai North Rd Xi’an Shaanxi 710069 China
| | - Fengdan Wei
- Shaanxi Provincial Key Laboratory of Biotechnology Key Laboratory of Resources Biology and Biotechnology in Western China Ministry of Education College of Life Science Northwest University 229 Taibai North Rd Xi’an Shaanxi 710069 China
| | - Yani Liu
- Shaanxi Provincial Key Laboratory of Biotechnology Key Laboratory of Resources Biology and Biotechnology in Western China Ministry of Education College of Life Science Northwest University 229 Taibai North Rd Xi’an Shaanxi 710069 China
| | - Yuanyuan Xu
- Shaanxi Provincial Key Laboratory of Biotechnology Key Laboratory of Resources Biology and Biotechnology in Western China Ministry of Education College of Life Science Northwest University 229 Taibai North Rd Xi’an Shaanxi 710069 China
| | - Yanling Ma
- Shaanxi Provincial Key Laboratory of Biotechnology Key Laboratory of Resources Biology and Biotechnology in Western China Ministry of Education College of Life Science Northwest University 229 Taibai North Rd Xi’an Shaanxi 710069 China
| |
Collapse
|
13
|
Matilla MA, Velando F, Martín-Mora D, Monteagudo-Cascales E, Krell T. A catalogue of signal molecules that interact with sensor kinases, chemoreceptors and transcriptional regulators. FEMS Microbiol Rev 2021; 46:6356564. [PMID: 34424339 DOI: 10.1093/femsre/fuab043] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Bacteria have evolved many different signal transduction systems that sense signals and generate a variety of responses. Generally, most abundant are transcriptional regulators, sensor histidine kinases and chemoreceptors. Typically, these systems recognize their signal molecules with dedicated ligand-binding domains (LBDs), which, in turn, generate a molecular stimulus that modulates the activity of the output module. There are an enormous number of different LBDs that recognize a similarly diverse set of signals. To give a global perspective of the signals that interact with transcriptional regulators, sensor kinases and chemoreceptors, we manually retrieved information on the protein-ligand interaction from about 1,200 publications and 3D structures. The resulting 811 proteins were classified according to the Pfam family into 127 groups. These data permit a delineation of the signal profiles of individual LBD families as well as distinguishing between families that recognize signals in a promiscuous manner and those that possess a well-defined ligand range. A major bottleneck in the field is the fact that the signal input of many signaling systems is unknown. The signal repertoire reported here will help the scientific community design experimental strategies to identify the signaling molecules for uncharacterised sensor proteins.
Collapse
Affiliation(s)
- Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
| | - Félix Velando
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
| | - David Martín-Mora
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
| | - Elizabet Monteagudo-Cascales
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
| |
Collapse
|
14
|
Wang W, Wei Q, Zhang J, Zhang M, Wang C, Qu R, Wang Y, Yang G, Wang J. A Ratiometric Fluorescent Biosensor Reveals Dynamic Regulation of Long‐Chain Fatty Acyl‐CoA Esters Metabolism. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Weibo Wang
- State Key Laboratory of Natural and Biomimetic Drugs Department of Chemical Biology School of Pharmaceutical Sciences Peking University Beijing 100191 China
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education International Joint Research Center for Intelligent Biosensor Technology and Health College of Chemistry Central China Normal University Wuhan 430079 China
| | - Qingpeng Wei
- State Key Laboratory of Natural and Biomimetic Drugs Department of Chemical Biology School of Pharmaceutical Sciences Peking University Beijing 100191 China
| | - Jiayuan Zhang
- Wellcome Centre for Human Genetics University of Oxford Roosevelt Dr, Headington Oxford OX3 7BN UK
| | - Meiqi Zhang
- State Key Laboratory of Natural and Biomimetic Drugs Department of Chemical Biology School of Pharmaceutical Sciences Peking University Beijing 100191 China
| | - Chuchen Wang
- State Key Laboratory of Natural and Biomimetic Drugs Department of Chemical Biology School of Pharmaceutical Sciences Peking University Beijing 100191 China
| | - Renyu Qu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education International Joint Research Center for Intelligent Biosensor Technology and Health College of Chemistry Central China Normal University Wuhan 430079 China
| | - Yuan Wang
- State Key Laboratory of Natural and Biomimetic Drugs Department of Chemical Biology School of Pharmaceutical Sciences Peking University Beijing 100191 China
| | - Guangfu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education International Joint Research Center for Intelligent Biosensor Technology and Health College of Chemistry Central China Normal University Wuhan 430079 China
| | - Jing Wang
- State Key Laboratory of Natural and Biomimetic Drugs Department of Chemical Biology School of Pharmaceutical Sciences Peking University Beijing 100191 China
| |
Collapse
|
15
|
Huang Q, Song P, Chen Y, Liu Z, Lai L. Allosteric Type and Pathways Are Governed by the Forces of Protein-Ligand Binding. J Phys Chem Lett 2021; 12:5404-5412. [PMID: 34080881 DOI: 10.1021/acs.jpclett.1c01253] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Allostery is central to many cellular processes, by up- or down-regulating target function. However, what determines the allosteric type remains elusive and currently it is impossible to predict whether the allosteric compounds would activate or inhibit target function before experimental studies. We demonstrated that the allosteric type and allosteric pathways are governed by the forces imposed by ligand binding to target protein using the anisotropic network model and developed an allosteric type prediction method (AlloType). AlloType correctly predicted 13 of the 16 allosteric systems in the data set with experimentally determined protein and complex structures as well as verified allosteric types, which was also used to identify allosteric pathways. When applied to glutathione peroxidase 4, a protein with no complex structure information, AlloType could still be able to predict the allosteric type of the recently reported allosteric activators, demonstrating its potential application in designing specific allosteric drugs and uncovering allosteric mechanisms.
Collapse
Affiliation(s)
- Qiaojing Huang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Pengbo Song
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yixin Chen
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhirong Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Luhua Lai
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Center for Quantitative Biology, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
16
|
Wang W, Wei Q, Zhang J, Zhang M, Wang C, Qu R, Wang Y, Yang G, Wang J. A Ratiometric Fluorescent Biosensor Reveals Dynamic Regulation of Long-Chain Fatty Acyl-CoA Esters Metabolism. Angew Chem Int Ed Engl 2021; 60:13996-14004. [PMID: 33837610 DOI: 10.1002/anie.202101731] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/14/2021] [Indexed: 01/28/2023]
Abstract
Despite increasing awareness of the biological impacts of long-chain fatty acyl-CoA esters (LCACoAs), our knowledge about the subcellular distribution and regulatory functions of these acyl-CoA molecules is limited by a lack of methods for detecting LCACoAs in living cells. Here, we report development of a genetically encoded fluorescent sensor that enables ratiometric quantification of LCACoAs in living cells and subcellular compartments. We demonstrate how this FadR-cpYFP fusion "LACSer sensor" undergoes LCACoA-induced conformational changes reflected in easily detectable fluorescence responses, and show proof-of-concept for real-time monitoring of LCACoAs in human cells. Subsequently, we applied LACSer in scientific studies investigating how disruption of ACSL enzymes differentially reduces cytosolic and mitochondrial LCACoA levels, and show how genetic disruption of an acyl-CoA binding protein (ACBP) alters mitochondrial accumulation of LCACoAs.
Collapse
Affiliation(s)
- Weibo Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.,Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Qingpeng Wei
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Jiayuan Zhang
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Dr, Headington, Oxford, OX3 7BN, UK
| | - Meiqi Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Chuchen Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Renyu Qu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Yuan Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Guangfu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Jing Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| |
Collapse
|
17
|
Zhang Y, Shi S. Transcription Factor-Based Biosensor for Dynamic Control in Yeast for Natural Product Synthesis. Front Bioeng Biotechnol 2021; 9:635265. [PMID: 33614618 PMCID: PMC7892902 DOI: 10.3389/fbioe.2021.635265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/04/2021] [Indexed: 11/13/2022] Open
Abstract
The synthesis of natural products in yeast has gained remarkable achievements with intensive metabolic engineering efforts. In particular, transcription factor (TF)-based biosensors for dynamic control of gene circuits could facilitate strain evaluation, high-throughput screening (HTS), and adaptive laboratory evolution (ALE) for natural product synthesis. In this review, we summarized recent developments of several TF-based biosensors for core intermediates in natural product synthesis through three important pathways, i.e., fatty acid synthesis pathway, shikimate pathway, and methylerythritol-4-phosphate (MEP)/mevalonate (MVA) pathway. Moreover, we have shown how these biosensors are implemented in synthetic circuits for dynamic control of natural product synthesis and also discussed the design/evaluation principles for improved biosensor performance.
Collapse
Affiliation(s)
- Yiming Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
18
|
The Canonical Long-Chain Fatty Acid Sensing Machinery Processes Arachidonic Acid To Inhibit Virulence in Enterohemorrhagic Escherichia coli. mBio 2021; 12:mBio.03247-20. [PMID: 33468701 PMCID: PMC7845647 DOI: 10.1128/mbio.03247-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Polyunsaturated fatty acids (PUFAs) play important roles in host immunity. Manipulation of lipid content in host tissues through diet or pharmacological interventions is associated with altered severity of various inflammatory diseases. The mammalian gastrointestinal tract is a complex biochemical organ that generates a diverse milieu of host- and microbe-derived metabolites. In this environment, bacterial pathogens sense and respond to specific stimuli, which are integrated into the regulation of their virulence programs. Previously, we identified the transcription factor FadR, a long-chain fatty acid (LCFA) acyl coenzyme A (acyl-CoA) sensor, as a novel virulence regulator in the human foodborne pathogen enterohemorrhagic Escherichia coli (EHEC). Here, we demonstrate that exogenous LCFAs directly inhibit the locus of enterocyte effacement (LEE) pathogenicity island in EHEC through sensing by FadR. Moreover, in addition to LCFAs that are 18 carbons in length or shorter, we introduce host-derived arachidonic acid (C20:4) as an additional LCFA that is recognized by the FadR system in EHEC. We show that arachidonic acid is processed by the acyl-CoA synthetase FadD, which permits binding to FadR and decreases FadR affinity for its target DNA sequences. This interaction enables the transcriptional regulation of FadR-responsive operons by arachidonic acid in EHEC, including the LEE. Finally, we show that arachidonic acid inhibits hallmarks of EHEC disease in a FadR-dependent manner, including EHEC attachment to epithelial cells and the formation of attaching and effacing lesions. Together, our findings delineate a molecular mechanism demonstrating how LCFAs can directly inhibit the virulence of an enteric bacterial pathogen. More broadly, our findings expand the repertoire of ligands sensed by the canonical LFCA sensing machinery in EHEC to include arachidonic acid, an important bioactive lipid that is ubiquitous within host environments.
Collapse
|
19
|
Vigouroux A, Meyer T, Naretto A, Legrand P, Aumont-Nicaise M, Di Cicco A, Renoud S, Doré J, Lévy D, Vial L, Lavire C, Moréra S. Characterization of the first tetrameric transcription factor of the GntR superfamily with allosteric regulation from the bacterial pathogen Agrobacterium fabrum. Nucleic Acids Res 2021; 49:529-546. [PMID: 33313837 PMCID: PMC7797058 DOI: 10.1093/nar/gkaa1181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 11/12/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022] Open
Abstract
A species-specific region, denoted SpG8-1b allowing hydroxycinnamic acids (HCAs) degradation is important for the transition between the two lifestyles (rhizospheric versus pathogenic) of the plant pathogen Agrobacterium fabrum. Indeed, HCAs can be either used as trophic resources and/or as induced-virulence molecules. The SpG8-1b region is regulated by two transcriptional regulators, namely, HcaR (Atu1422) and Atu1419. In contrast to HcaR, Atu1419 remains so far uncharacterized. The high-resolution crystal structures of two fortuitous citrate complexes, two DNA complexes and the apoform revealed that the tetrameric Atu1419 transcriptional regulator belongs to the VanR group of Pfam PF07729 subfamily of the large GntR superfamily. Until now, GntR regulators were described as dimers. Here, we showed that Atu1419 represses three genes of the HCAs catabolic pathway. We characterized both the effector and DNA binding sites and identified key nucleotides in the target palindrome. From promoter activity measurement using defective gene mutants, structural analysis and gel-shift assays, we propose N5,N10-methylenetetrahydrofolate as the effector molecule, which is not a direct product/substrate of the HCA degradation pathway. The Zn2+ ion present in the effector domain has both a structural and regulatory role. Overall, our work shed light on the allosteric mechanism of transcription employed by this GntR repressor.
Collapse
Affiliation(s)
- Armelle Vigouroux
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Thibault Meyer
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622 Villeurbanne, France
| | - Anaïs Naretto
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Pierre Legrand
- Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, 91192 Gif-sur-Yvette, France
| | - Magali Aumont-Nicaise
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Aurélie Di Cicco
- Sorbonne Université, Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 26 rue d’Ulm, 75005 Paris, France
| | - Sébastien Renoud
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622 Villeurbanne, France
| | - Jeanne Doré
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622 Villeurbanne, France
| | - Daniel Lévy
- Sorbonne Université, Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 26 rue d’Ulm, 75005 Paris, France
| | - Ludovic Vial
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622 Villeurbanne, France
| | - Céline Lavire
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622 Villeurbanne, France
| | - Solange Moréra
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
20
|
Molecular Cloning, Purification and Characterization of Mce1R of Mycobacterium tuberculosis. Mol Biotechnol 2021; 63:200-220. [PMID: 33423211 DOI: 10.1007/s12033-020-00293-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2020] [Indexed: 10/22/2022]
Abstract
The mce1 operon of Mycobacterium tuberculosis, important for lipid metabolism/transport, host cell invasion, modulation of host immune response and pathogenicity, is under the transcriptional control of Mce1R. Hence characterizing Mce1R is an important step for novel anti-tuberculosis drug discovery. The present study reports functional and in silico characterization of Mce1R. In this work, we have computationally modeled the structure of Mce1R and have validated the structure by computational and experimental methods. Mce1R has been shown to harbor the canonical VanR-like structure with a flexible N-terminal 'arm', carrying conserved positively charged residues, most likely involved in the operator DNA binding. The mce1R gene has been cloned, expressed, purified and its DNA-binding activity has been measured in vitro. The Kd value for Mce1R-operator DNA interaction has been determined to be 0.35 ± 0.02 µM which implies that Mce1R binds to DNA with moderate affinity compared to the other FCD family of regulators. So far, this is the first report for measuring the DNA-binding affinity of any VanR-type protein. Despite significant sequence similarity at the N-terminal domain, the wHTH motif of Mce1R exhibits poor conservancy of amino acid residues, critical for DNA-binding, thus results in moderate DNA-binding affinity. The N-terminal DNA-binding domain is structurally dynamic while the C-terminal domain showed significant stability and such profile of structural dynamics is most likely to be preserved in the structural orthologs of Mce1R. In addition to this, a cavity has been detected in the C-terminal domain of Mce1R which contains a few conserved residues. Comparison with other FCD family of regulators suggests that most of the conserved residues might be critical for binding to specific ligand. The max pKd value and drug score for the cavity are estimated to be 9.04 and 109 respectively suggesting that the cavity represents a suitable target site for novel anti-tuberculosis drug discovery approaches.
Collapse
|
21
|
Cronan JE. The Escherichia coli FadR transcription factor: Too much of a good thing? Mol Microbiol 2020; 115:1080-1085. [PMID: 33283913 DOI: 10.1111/mmi.14663] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 12/19/2022]
Abstract
Escherichia coli FadR is a transcription factor regulated by acyl-CoA thioester binding that optimizes fatty acid (FA) metabolism in response to environmental FAs. FadR represses the fad genes of FA degradation (β-oxidation) and activates the fab genes of FA synthesis thereby allowing E. coli to have its cake (acyl chains for phospholipid synthesis) and eat it (degrade acyl chains to acetyl-CoA). Acyl-CoA binding of FadR derepresses the transcription of the fad genes and cancels fab gene transcriptional activation. Activation of fab genes was thought restricted to the fabA and fabB genes of unsaturated FA synthesis, but FadR overproduction markedly increases yields of all FA acyl chains. Subsequently, almost all of the remaining fab genes were shown to be transcriptionally activated by FadR binding, but binding was very weak. Why are the low-affinity sites retained? What effects on cell physiology would result from their conversion to high-affinity sites (thereby mimicking FadR overproduction)? Investigations of E. coli cell size determinants showed that FA synthesis primarily determines E. coli cell size. Upon modest induction of FadR, cell size increases, but at the cost of growth rate and accumulation of intracellular membranes. Greater induction resulted in further growth rate decreases and abnormal cells. Hence, too much FadR is bad. FadR is extraordinarily conserved in γ-proteobacteria but has migrated. Mycobacterium tuberculosis encodes FadR orthologs one of which is functional in E. coli. Strikingly, the FadR theme of acyl-CoA-dependent transcriptional regulation is found in a different transcription factor family where two Bacillus species plus bacterial and archaeal thermophiles contain related proteins of similar function.
Collapse
Affiliation(s)
- John E Cronan
- Departments of Microbiology and Biochemistry, University of Illinois, Urbana, IL, USA
| |
Collapse
|
22
|
Lin Z, Sun Y, Liu Y, Tong S, Shang Z, Cai Y, Lin W. Structural and Functional Analyses of the Transcription Repressor DgoR From Escherichia coli Reveal a Divalent Metal-Containing D-Galactonate Binding Pocket. Front Microbiol 2020; 11:590330. [PMID: 33224125 PMCID: PMC7674646 DOI: 10.3389/fmicb.2020.590330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/20/2020] [Indexed: 11/21/2022] Open
Abstract
The transcription repressor of D-galactonate metabolism, DgoR, from Escherichia coli belongs to the FadR family of the GntR superfamily. In the presence of D-galactonate, DgoR binds to two inverted repeats overlapping the dgo cis-acting promoter repressing the expression of genes involved in D-galactonate metabolism. To further understand the structural and molecular details of ligand and effector interactions between D-galactonate and this FadR family member, herein we solved the crystal structure of C-terminal domain of DgoR (DgoR_C), which revealed a unique divalent metal-containing substrate binding pocket. The metal ion is required for D-galactonate binding, as evidenced by the dramatically decreased affinity between D-galactonate and DgoR in the presence of EDTA, which can be reverted by the addition of Zn2+, Mg2+, and Ca2+. The key amino acid residues involved in the interactions between D-galactonate and DgoR were revealed by molecular docking studies and further validated with biochemical studies by site-directed mutagenesis. It was found that changes to alanine in residues R102, W181, T191, and R224 resulted in significantly decreased binding affinities for D-galactonate, as determined by EMSA and MST assays. These results suggest that the molecular modifications induced by a D-galactonate and a metal binding in the DgoR are required for DNA binding activity and consequently, transcriptional inhibition.
Collapse
Affiliation(s)
- Zhaozhu Lin
- Department of Microbiology and Immunology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yi Sun
- Department of Microbiology and Immunology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu Liu
- Department of Chemistry, Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, United States
| | - Shujuan Tong
- Department of Microbiology and Immunology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhuo Shang
- Department of Microbiology and Immunology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuanheng Cai
- Biochemistry and Cell Biology Department, Stony Brook University, Stony Brook, NY, United States
| | - Wei Lin
- Department of Microbiology and Immunology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China
| |
Collapse
|
23
|
Arya G, Pal M, Sharma M, Singh B, Singh S, Agrawal V, Chaba R. Molecular insights into effector binding by DgoR, a GntR/FadR family transcriptional repressor of D-galactonate metabolism in Escherichia coli. Mol Microbiol 2020; 115:591-609. [PMID: 33068046 DOI: 10.1111/mmi.14625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 01/23/2023]
Abstract
Several GntR/FadR transcriptional regulators govern sugar acid metabolism in bacteria. Although effectors have been identified for a few sugar acid regulators, the mode of effector binding is unknown. Even in the overall FadR subfamily, there are limited details on effector-regulator interactions. Here, we identified the effector-binding cavity in Escherichia coli DgoR, a FadR subfamily transcriptional repressor of D-galactonate metabolism that employs D-galactonate as its effector. Using a genetic screen, we isolated several dgoR superrepressor alleles. Blind docking suggested eight amino acids corresponding to these alleles to form a part of the effector-binding cavity. In vivo and in vitro assays showed that these mutations compromise the inducibility of DgoR without affecting its oligomeric status or affinity for target DNA. Taking Bacillus subtilis GntR as a representative, we demonstrated that the effector-binding cavity is similar among FadR subfamily sugar acid regulators. Finally, a comparison of sugar acid regulators with other FadR members suggested conserved features of effector-regulator recognition within the FadR subfamily. Sugar acid metabolism is widely implicated in bacterial colonization and virulence. The present study sets the basis to investigate the influence of natural genetic variations in FadR subfamily regulators on their sensitivity to sugar acids and ultimately on host-bacterial interactions.
Collapse
Affiliation(s)
- Garima Arya
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab, India
| | - Mohinder Pal
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab, India
| | - Monika Sharma
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, India
| | - Bhupinder Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab, India
| | - Swati Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab, India
| | - Vishal Agrawal
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - Rachna Chaba
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab, India
| |
Collapse
|
24
|
Swarbrick CMD, Nanson JD, Patterson EI, Forwood JK. Structure, function, and regulation of thioesterases. Prog Lipid Res 2020; 79:101036. [PMID: 32416211 DOI: 10.1016/j.plipres.2020.101036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 01/15/2023]
Abstract
Thioesterases are present in all living cells and perform a wide range of important biological functions by catalysing the cleavage of thioester bonds present in a diverse array of cellular substrates. Thioesterases are organised into 25 families based on their sequence conservation, tertiary and quaternary structure, active site configuration, and substrate specificity. Recent structural and functional characterisation of thioesterases has led to significant changes in our understanding of the regulatory mechanisms that govern enzyme activity and their respective cellular roles. The resulting dogma changes in thioesterase regulation include mechanistic insights into ATP and GDP-mediated regulation by oligomerisation, the role of new key regulatory regions, and new insights into a conserved quaternary structure within TE4 family members. Here we provide a current and comparative snapshot of our understanding of thioesterase structure, function, and regulation across the different thioesterase families.
Collapse
Affiliation(s)
| | - Jeffrey D Nanson
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience, Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Edward I Patterson
- Centre for Neglected Tropical Diseases, Departments of Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Jade K Forwood
- School of Biomedical Sciences, Charles Sturt University, Boorooma Street, Wagga Wagga, New South Wales, Australia.
| |
Collapse
|
25
|
Fernandez M, Plumbridge J. Complex synergistic amino acid-nucleotide interactions contribute to the specificity of NagC operator recognition and induction. MICROBIOLOGY-SGM 2019; 165:792-803. [PMID: 31107208 DOI: 10.1099/mic.0.000814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
NagC is a transcription factor that represses genes involved in N-acetylglucosamine catabolism in Escherichia coli. Repression by NagC is relieved by interaction with GlcNAc6P, the product of transport of GlcNAc into the cell. The DNA-binding domain of NagC contains a classic helix-turn-helix (HTH) motif, but specific operator recognition requires, in addition, an adjacent linker sequence, which is thought to form an extended wing. Sequences in the linker region are required to distinguish NagC-binding sites from those of its paralogue, Mlc. In investigating the contribution of the HTH to operator recognition, we have identified mutations in the first two positions of the recognition helix of the DNA-binding motif of NagC, which change NagC from being a repressor, which binds in the absence of the inducing signal (GlcNAc6P), to one whose binding is enhanced by GlcNAc6P. In this case GlcNAc6P behaves as a co-repressor rather than an inducer for NagC. The NagC mutants exhibiting this paradoxical behaviour have basic amino acids, arginine or lysine, at two critical positions of the recognition helix. Introducing a third amino acid change converts NagC back to a protein, which represses in the absence of GlcNAc6P. The triple mutant also effectively represses a modified NagC operator that is not repressed by wild-type NagC, showing that this form of NagC is a more promiscuous DNA binder. Specific recognition of the NagC operator thus involves a modulation of basic amino acid-DNA interactions, which affects the ability to discriminate against other permissive sites.
Collapse
Affiliation(s)
- Marion Fernandez
- UMR8261,CNRS, Université de Paris, Institut de Biologie Physico-Chimique, 13, rue P. et M. Curie, 75005 Paris, France
| | - Jacqueline Plumbridge
- UMR8261,CNRS, Université de Paris, Institut de Biologie Physico-Chimique, 13, rue P. et M. Curie, 75005 Paris, France
| |
Collapse
|
26
|
Molecular and Functional Insights into the Regulation of d-Galactonate Metabolism by the Transcriptional Regulator DgoR in Escherichia coli. J Bacteriol 2019; 201:JB.00281-18. [PMID: 30455279 DOI: 10.1128/jb.00281-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 11/07/2018] [Indexed: 12/11/2022] Open
Abstract
d-Galactonate, an aldonic sugar acid, is used as a carbon source by Escherichia coli, and the structural dgo genes involved in its metabolism have previously been investigated. Here, using genetic, biochemical and bioinformatics approaches, we present the first detailed molecular and functional insights into the regulation of d-galactonate metabolism in E. coli K-12 by the transcriptional regulator DgoR. We found that dgoR deletion accelerates the growth of E. coli in d-galactonate concomitant with the strong constitutive expression of dgo genes. In the dgo locus, sequence upstream of dgoR alone harbors the d-galactonate-inducible promoter that likely drives the expression of all dgo genes. DgoR exerts repression on the dgo operon by binding two inverted repeats overlapping the dgo promoter. Binding of d-galactonate induces a conformational change in DgoR to derepress the dgo operon. The findings from our work firmly place DgoR in the GntR family of transcriptional regulators: DgoR binds an operator sequence [5'-TTGTA(G/C)TACA(A/T)-3'] matching the signature of GntR family members that recognize inverted repeats [5'-(N) y GT(N) x AC(N) y -3', where x and y indicate the number of nucleotides, which varies], and it shares critical protein-DNA contacts. We also identified features in DgoR that are otherwise less conserved in the GntR family. Recently, missense mutations in dgoR were recovered in a natural E. coli isolate adapted to the mammalian gut. Our results show these mutants to be DNA binding defective, emphasizing that mutations in the dgo-regulatory elements are selected in the host to allow simultaneous induction of dgo genes. The present study sets the basis to explore the regulation of dgo genes in additional enterobacterial strains where they have been implicated in host-bacterium interactions.IMPORTANCE d-Galactonate is a widely prevalent aldonic sugar acid. Despite the proposed significance of the d-galactonate metabolic pathway in the interaction of enteric bacteria with their hosts, there are no details on its regulation even in Escherichia coli, which has been known to utilize d-galactonate since the 1970s. Here, using multiple methodologies, we identified the promoter, operator, and effector of DgoR, the transcriptional repressor of d-galactonate metabolism in E. coli We establish DgoR as a GntR family transcriptional regulator. Recently, a human urinary tract isolate of E. coli introduced in the mouse gut was found to accumulate missense mutations in dgoR Our results show these mutants to be DNA binding defective, hence emphasizing the role of the d-galactonate metabolic pathway in bacterial colonization of the mammalian gut.
Collapse
|
27
|
Pinheiro J, Lisboa J, Pombinho R, Carvalho F, Carreaux A, Brito C, Pöntinen A, Korkeala H, dos Santos NM, Morais-Cabral JH, Sousa S, Cabanes D. MouR controls the expression of the Listeria monocytogenes Agr system and mediates virulence. Nucleic Acids Res 2018; 46:9338-9352. [PMID: 30011022 PMCID: PMC6182135 DOI: 10.1093/nar/gky624] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 06/25/2018] [Accepted: 06/28/2018] [Indexed: 12/11/2022] Open
Abstract
The foodborne pathogen Listeria monocytogenes (Lm) causes invasive infection in susceptible animals and humans. To survive and proliferate within hosts, this facultative intracellular pathogen tightly coordinates the expression of a complex regulatory network that controls the expression of virulence factors. Here, we identified and characterized MouR, a novel virulence regulator of Lm. Through RNA-seq transcriptomic analysis, we determined the MouR regulon and demonstrated how MouR positively controls the expression of the Agr quorum sensing system (agrBDCA) of Lm. The MouR three-dimensional structure revealed a dimeric DNA-binding transcription factor belonging to the VanR class of the GntR superfamily of regulatory proteins. We also showed that by directly binding to the agr promoter region, MouR ultimately modulates chitinase activity and biofilm formation. Importantly, we demonstrated by in vitro cell invasion assays and in vivo mice infections the role of MouR in Lm virulence.
Collapse
Affiliation(s)
- Jorge Pinheiro
- Group of Molecular Microbiology, IBMC – Institute for Molecular and Cell Biology; i3S – Institute for Research and Innovation in Health, Porto 4200-135, Portugal
- ICBAS- Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto 4200-135, Portugal
| | - Johnny Lisboa
- Group of Fish Immunology & Vaccinology, IBMC – Institute for Molecular and Cell Biology; i3S – Institute for Research and Innovation in Health, Porto 4200-135, Portugal
| | - Rita Pombinho
- Group of Molecular Microbiology, IBMC – Institute for Molecular and Cell Biology; i3S – Institute for Research and Innovation in Health, Porto 4200-135, Portugal
- ICBAS- Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto 4200-135, Portugal
| | - Filipe Carvalho
- Group of Molecular Microbiology, IBMC – Institute for Molecular and Cell Biology; i3S – Institute for Research and Innovation in Health, Porto 4200-135, Portugal
- ICBAS- Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto 4200-135, Portugal
| | - Alexis Carreaux
- Group of Molecular Microbiology, IBMC – Institute for Molecular and Cell Biology; i3S – Institute for Research and Innovation in Health, Porto 4200-135, Portugal
- SDV - UFR Sciences Du Vivant: Université Paris Diderot-Paris 7, Paris 75013, France
| | - Cláudia Brito
- Group of Molecular Microbiology, IBMC – Institute for Molecular and Cell Biology; i3S – Institute for Research and Innovation in Health, Porto 4200-135, Portugal
- ICBAS- Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto 4200-135, Portugal
| | - Anna Pöntinen
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki 00014, Finland
| | - Hannu Korkeala
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki 00014, Finland
| | - Nuno M S dos Santos
- Group of Fish Immunology & Vaccinology, IBMC – Institute for Molecular and Cell Biology; i3S – Institute for Research and Innovation in Health, Porto 4200-135, Portugal
| | - João H Morais-Cabral
- Group of Structural Biochemistry, IBMC – Institute for Molecular and Cell Biology; i3S – Institute for Research and Innovation in Health, Porto 4200-135, Portugal
| | - Sandra Sousa
- Group of Molecular Microbiology, IBMC – Institute for Molecular and Cell Biology; i3S – Institute for Research and Innovation in Health, Porto 4200-135, Portugal
| | - Didier Cabanes
- Group of Molecular Microbiology, IBMC – Institute for Molecular and Cell Biology; i3S – Institute for Research and Innovation in Health, Porto 4200-135, Portugal
| |
Collapse
|
28
|
Kwak YM, Park SC, Na H, Kang SG, Lee G, Ko H, Kim P, Oh B, Yoon S. Crystal structure of the VanR transcription factor and the role of its unique α‐helix in effector recognition. FEBS J 2018; 285:3786-3800. [DOI: 10.1111/febs.14629] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 06/03/2018] [Accepted: 08/07/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Yun Mi Kwak
- Division of Biomedical Convergence College of Biomedical Science Kangwon National University Chuncheon Korea
| | - Sun Cheol Park
- Division of Biomedical Convergence College of Biomedical Science Kangwon National University Chuncheon Korea
| | - Hye‐won Na
- Division of Biomedical Convergence College of Biomedical Science Kangwon National University Chuncheon Korea
| | - Seung Goo Kang
- Division of Biomedical Convergence College of Biomedical Science Kangwon National University Chuncheon Korea
| | - Geun‐Shik Lee
- College of Veterinary Medicine Kangwon National University Chuncheon Korea
| | - Hyun‐Jeong Ko
- Laboratory of Microbiology and Immunology College of Pharmacy Kangwon National University Chuncheon Korea
| | - Pyeung‐Hyeun Kim
- Department of Molecular Bioscience School of Biomedical Science Kangwon National University Chuncheon Korea
| | - Byung‐Chul Oh
- Lee Gil Ya Cancer and Diabetes Institute College of Medicine Gachon University Incheon Korea
| | - Sung‐il Yoon
- Division of Biomedical Convergence College of Biomedical Science Kangwon National University Chuncheon Korea
- Institute of Bioscience and Biotechnology Kangwon National University Chuncheon Korea
| |
Collapse
|
29
|
Yousuf S, Angara RK, Roy A, Gupta SK, Misra R, Ranjan A. Mce2R/Rv0586 of Mycobacterium tuberculosis is the functional homologue of FadR E. coli. MICROBIOLOGY-SGM 2018; 164:1133-1145. [PMID: 29993358 DOI: 10.1099/mic.0.000686] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lipid metabolism is critical to Mycobacterium tuberculosis survival and infection. Unlike Escherichia coli, which has a single FadR, the M. tuberculosis genome encodes five proteins of the FadR sub-family. While the role of E. coli FadR as a regulator of fatty acid metabolism is well known, the definitive functions of M. tuberculosis FadR proteins are still under investigation. An interesting question about the M. tuberculosis FadRs remains open: which one of these proteins is the functional homologue of E. coli FadR? To address this, we have applied two different approaches. The first one was the bioinformatics approach and the second one was the classical molecular genetic approach involving complementation studies. Surprisingly, the results of these two approaches did not agree. Among the five M. tuberculosis FadRs, Rv0494 shared the highest sequence similarity with FadRE. coli and Rv0586 was the second best match. However, only Rv0586, but not Rv0494, could complement E. coli ∆fadR, indicating that Rv0586 is the M. tuberculosis functional homologue of FadRE. coli. Further studies showed that both regulators, Rv0494 and Rv0586, show similar responsiveness to LCFA, and have conserved critical residues for DNA binding. However, analysis of the operator site indicated that the inter-palindromic distance required for DNA binding differs for the two regulators. The differences in the binding site selection helped in the success of Rv0586 binding to fadB upstream over Rv0494 and may have played a critical role in complementing E. coli ∆fadR. Further, for the first time, we report the lipid-responsive nature of Rv0586.
Collapse
Affiliation(s)
- Suhail Yousuf
- 1Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, 500039, India
- 2Graduate studies, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Rajendra Kumar Angara
- 1Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, 500039, India
- 2Graduate studies, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Ajit Roy
- 1Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, 500039, India
- 2Graduate studies, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shailesh Kumar Gupta
- 1Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, 500039, India
- 2Graduate studies, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Rohan Misra
- 1Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, 500039, India
- 2Graduate studies, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Akash Ranjan
- 1Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, 500039, India
| |
Collapse
|
30
|
Tramonti A, Nardella C, di Salvo ML, Pascarella S, Contestabile R. The MocR-like transcription factors: pyridoxal 5'-phosphate-dependent regulators of bacterial metabolism. FEBS J 2018; 285:3925-3944. [PMID: 29974999 DOI: 10.1111/febs.14599] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/14/2018] [Accepted: 06/25/2018] [Indexed: 12/22/2022]
Abstract
Many biological functions played by current proteins were not created by evolution from scratch, rather they were obtained combining already available protein scaffolds. This is the case of MocR-like bacterial transcription factors (MocR-TFs), a subclass of GntR transcription regulators, whose structure is the outcome of the fusion between DNA-binding proteins and pyridoxal 5'-phosphate (PLP)-dependent enzymes. The resultant chimeras can count on the properties of both protein classes, i.e. the capability to recognize specific DNA sequences and to bind PLP and amino-compounds; it is the modulation of such binding properties to confer to MocR-TFs chimeras the ability to interact with effector molecules and DNA so as to regulate transcription. MocR-TFs control different metabolic processes involving vitamin B6 and amino acids, which are canonical ligands of PLP-dependent enzymes. However, MocR-TFs are also implicated in the metabolism of compounds that are not substrates of PLP-dependent enzymes, such as rhizopine and ectoine. Genomic analyses show that MocR-TFs are widespread among eubacteria, implying an essential role in their metabolism and highlighting the scarcity of our knowledge on these important players in microbial metabolism. Although MocR-TFs have been discovered 15 years ago, the research activity on these transcriptional regulators has only recently intensified, producing a wealth of information that needs to be brought back to general principles. This is the main task of this review, which reports and analyses the available information concerning MocR-TFs functional role, structural features, interaction with effector molecules and the characteristics of DNA transcriptional factor-binding sites of MocR-based regulatory systems.
Collapse
Affiliation(s)
- Angela Tramonti
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Roma, Italy.,Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Italy
| | - Caterina Nardella
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Italy
| | - Martino L di Salvo
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Italy
| | - Stefano Pascarella
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Italy
| | - Roberto Contestabile
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Italy
| |
Collapse
|
31
|
Park SC, Kwak YM, Song WS, Hong M, Yoon SI. Structural basis of effector and operator recognition by the phenolic acid-responsive transcriptional regulator PadR. Nucleic Acids Res 2018; 45:13080-13093. [PMID: 29136175 PMCID: PMC5728393 DOI: 10.1093/nar/gkx1055] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 10/19/2017] [Indexed: 12/24/2022] Open
Abstract
The PadR family is a large group of transcriptional regulators that function as environmental sensors. PadR negatively controls the expression of phenolic acid decarboxylase, which detoxifies harmful phenolic acids. To identify the mechanism by which PadR regulates phenolic acid-mediated gene expression, we performed structural and mutational studies of effector and operator recognition by Bacillus subtilis PadR. PadR contains an N-terminal winged helix-turn-helix (wHTH) domain (NTD) and a C-terminal homodimerization domain (CTD) and dimerizes into a dolmen shape. The PadR dimer interacts with the palindromic sequence of the operator DNA using the NTD. Two tyrosine residues and a positively charged residue in the NTD provide major DNA-binding energy and are highly conserved in the PadR family, suggesting that these three residues represent the canonical DNA-binding motif of the PadR family. PadR directly binds a phenolic acid effector molecule using a unique interdomain pocket created between the NTD and the CTD. Although the effector-binding site of PadR is positionally segregated from the DNA-binding site, effector binding to the interdomain pocket causes PadR to be rearranged into a DNA binding-incompatible conformer through an allosteric interdomain-reorganization mechanism.
Collapse
Affiliation(s)
- Sun Cheol Park
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Yun Mi Kwak
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Wan Seok Song
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Minsun Hong
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea
| | - Sung-Il Yoon
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea.,Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
32
|
Gao R, Li D, Lin Y, Lin J, Xia X, Wang H, Bi L, Zhu J, Hassan B, Wang S, Feng Y. Structural and Functional Characterization of the FadR Regulatory Protein from Vibrio alginolyticus. Front Cell Infect Microbiol 2017; 7:513. [PMID: 29312893 PMCID: PMC5733061 DOI: 10.3389/fcimb.2017.00513] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 11/29/2017] [Indexed: 02/03/2023] Open
Abstract
The structure of Vibrio cholerae FadR (VcFadR) complexed with the ligand oleoyl-CoA suggests an additional ligand-binding site. However, the fatty acid metabolism and its regulation is poorly addressed in Vibrio alginolyticus, a species closely-related to V. cholerae. Here, we show crystal structures of V. alginolyticus FadR (ValFadR) alone and its complex with the palmitoyl-CoA, a long-chain fatty acyl ligand different from the oleoyl-CoA occupied by VcFadR. Structural comparison indicates that both VcFadR and ValFadR consistently have an additional ligand-binding site (called site 2), which leads to more dramatic conformational-change of DNA-binding domain than that of the E. coli FadR (EcFadR). Isothermal titration calorimetry (ITC) analyses defines that the ligand-binding pattern of ValFadR (2:1) is distinct from that of EcFadR (1:1). Together with surface plasmon resonance (SPR), electrophoresis mobility shift assay (EMSA) demonstrates that ValFadR binds fabA, an important gene of unsaturated fatty acid (UFA) synthesis. The removal of fadR from V. cholerae attenuates fabA transcription and results in the unbalance of UFA/SFA incorporated into membrane phospholipids. Genetic complementation of the mutant version of fadR (Δ42, 136-177) lacking site 2 cannot restore the defective phenotypes of ΔfadR while the wild-type fadR gene and addition of exogenous oleate can restore them. Mice experiments reveals that VcFadR and its site 2 have roles in bacterial colonizing. Together, the results might represent an additional example that illustrates the Vibrio FadR-mediated lipid regulation and its role in pathogenesis.
Collapse
Affiliation(s)
- Rongsui Gao
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, China
| | - Defeng Li
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yuan Lin
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jingxia Lin
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyun Xia
- Department of Microbiology, Nanjing Agricultural University, Nanjing, China
| | - Hui Wang
- Department of Microbiology, Nanjing Agricultural University, Nanjing, China
| | - Lijun Bi
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jun Zhu
- Department of Microbiology, Nanjing Agricultural University, Nanjing, China.,Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Bachar Hassan
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Shihua Wang
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Youjun Feng
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
33
|
Bock T, Volz C, Hering V, Scrima A, Müller R, Blankenfeldt W. The AibR-isovaleryl coenzyme A regulator and its DNA binding site - a model for the regulation of alternative de novo isovaleryl coenzyme A biosynthesis in Myxococcus xanthus. Nucleic Acids Res 2017; 45:2166-2178. [PMID: 27940564 PMCID: PMC5389471 DOI: 10.1093/nar/gkw1238] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 11/29/2016] [Indexed: 02/06/2023] Open
Abstract
Isovaleryl coenzyme A (IV-CoA) is an important building block of iso-fatty acids. In myxobacteria, IV-CoA is essential for the formation of signaling molecules involved in fruiting body formation. Leucine degradation is the common source of IV-CoA, but a second, de novo biosynthetic route to IV-CoA termed AIB (alternative IV-CoA biosynthesis) was recently discovered in M. xanthus. The AIB-operon contains the TetR-like transcriptional regulator AibR, which we characterize in this study. We demonstrate that IV-CoA binds AibR with micromolar affinity and show by gelshift experiments that AibR interacts with the promoter region of the AIB-operon once IV-CoA is present. We identify an 18-bp near-perfect palindromic repeat as containing the AibR operator and provide evidence that AibR also controls an additional genomic locus coding for a putative acetyl-CoA acetyltransferase. To elucidate atomic details, we determined crystal structures of AibR in the apo, the IV-CoA- and the IV-CoA-DNA-bound state to 1.7 Å, 2.35 Å and 2.92 Å, respectively. IV-CoA induces partial unfolding of an α-helix, which allows sequence-specific interactions between AibR and its operator. This study provides insights into AibR-mediated regulation and shows that AibR functions in an unusual TetR-like manner by blocking transcription not in the ligand-free but in the effector-bound state.
Collapse
Affiliation(s)
- Tobias Bock
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Carsten Volz
- Structural Biology of Autophagy, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Vanessa Hering
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Andrea Scrima
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research, Saarland University, 66123 Saarbrücken, Germany
| | - Rolf Müller
- Structural Biology of Autophagy, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Wulf Blankenfeldt
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany.,Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany
| |
Collapse
|
34
|
Yeo HK, Park YW, Lee JY. Structural basis of operator sites recognition and effector binding in the TetR family transcription regulator FadR. Nucleic Acids Res 2017; 45:4244-4254. [PMID: 28160603 PMCID: PMC5397183 DOI: 10.1093/nar/gkx009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 01/05/2017] [Indexed: 12/01/2022] Open
Abstract
FadR is a fatty acyl-CoA dependent transcription factor that regulates genes encoding proteins involved in fatty-acid degradation and synthesis pathways. In this study, the crystal structures of Bacillus halodurans FadR, which belong to the TetR family, have been determined in three different forms: ligand-bound, ligand-free and DNA-bound at resolutions of 1.75, 2.05 and 2.80 Å, respectively. Structural and functional data showed that B. halodurans FadR was bound to its operator site without fatty acyl-CoAs. Structural comparisons among the three different forms of B. halodurans FadR revealed that the movement of DNA binding domains toward the operator DNA was blocked upon binding of ligand molecules. These findings suggest that the TetR family FadR negatively regulates the genes involved in fatty acid metabolism by binding cooperatively to the operator DNA as a dimer of dimers.
Collapse
Affiliation(s)
- Hyun Ku Yeo
- Department of Life Science, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi-do 10326, Republic of Korea
| | - Young Woo Park
- Department of Life Science, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi-do 10326, Republic of Korea
| | - Jae Young Lee
- Department of Life Science, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi-do 10326, Republic of Korea
| |
Collapse
|
35
|
The Fatty Acid Regulator FadR Influences the Expression of the Virulence Cascade in the El Tor Biotype of Vibrio cholerae by Modulating the Levels of ToxT via Two Different Mechanisms. J Bacteriol 2017; 199:JB.00762-16. [PMID: 28115548 DOI: 10.1128/jb.00762-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/17/2017] [Indexed: 01/16/2023] Open
Abstract
FadR is a master regulator of fatty acid (FA) metabolism that coordinates the pathways of FA degradation and biosynthesis in enteric bacteria. We show here that a ΔfadR mutation in the El Tor biotype of Vibrio cholerae prevents the expression of the virulence cascade by influencing both the transcription and the posttranslational regulation of the master virulence regulator ToxT. FadR is a transcriptional regulator that represses the expression of genes involved in FA degradation, activates the expression of genes involved in unsaturated FA (UFA) biosynthesis, and also activates the expression of two operons involved in saturated FA (SFA) biosynthesis. Since FadR does not bind directly to the toxT promoter, we determined whether the regulation of any of its target genes indirectly influenced ToxT. This was accomplished by individually inserting a double point mutation into the FadR-binding site in the promoter of each target gene, thereby preventing their activation or repression. Although preventing FadR-mediated activation of fabA, which encodes the enzyme that carries out the first step in UFA biosynthesis, did not significantly influence either the transcription or the translation of ToxT, it reduced its levels and prevented virulence gene expression. In the mutant strain unable to carry out FadR-mediated activation of fabA, expressing fabA ectopically restored the levels of ToxT and virulence gene expression. Taken together, the results presented here indicate that V. cholerae FadR influences the virulence cascade in the El Tor biotype by modulating the levels of ToxT via two different mechanisms.IMPORTANCE Fatty acids (FAs) play important roles in membrane lipid homeostasis and energy metabolism in all organisms. In Vibrio cholerae, the causative agent of the acute intestinal disease cholera, they also influence virulence by binding into an N-terminal pocket of the master virulence regulator, ToxT, and modulating its activity. FadR is a transcription factor that coordinately controls the pathways of FA degradation and biosynthesis in enteric bacteria. This study identifies a new link between FA metabolism and virulence in the El Tor biotype by showing that FadR influences both the transcription and posttranslational regulation of the master virulence regulator ToxT by two distinct mechanisms.
Collapse
|
36
|
Levdikov VM, Blagova E, Young VL, Belitsky BR, Lebedev A, Sonenshein AL, Wilkinson AJ. Structure of the Branched-chain Amino Acid and GTP-sensing Global Regulator, CodY, from Bacillus subtilis. J Biol Chem 2016; 292:2714-2728. [PMID: 28011634 PMCID: PMC5314169 DOI: 10.1074/jbc.m116.754309] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 12/23/2016] [Indexed: 01/02/2023] Open
Abstract
CodY is a branched-chain amino acid (BCAA) and GTP sensor and a global regulator of transcription in low G + C Gram-positive bacteria. It controls the expression of over 100 genes and operons, principally by repressing during growth genes whose products are required for adaptations to nutrient limitation. However, the mechanism by which BCAA binding regulates transcriptional changes is not clear. It is known that CodY consists of a GAF (cGMP-stimulated phosphodiesterases, adenylate cyclases, FhlA) domain that binds BCAAs and a winged helix-turn-helix (wHTH) domain that binds to DNA, but the way in which these domains interact and the structural basis of the BCAA dependence of this interaction are unknown. To gain new insights, we determined the crystal structure of unliganded CodY from Bacillus subtilis revealing a 10-turn α-helix linking otherwise discrete GAF and wHTH domains. The structure of CodY in complex with isoleucine revealed a reorganized GAF domain. In both complexes CodY was tetrameric. Size exclusion chromatography with multiangle laser light scattering (SEC-MALLS) experiments showed that CodY is a dimer at concentrations found in bacterial cells. Comparison of structures of dimers of unliganded CodY and CodY-Ile derived from the tetramers showed a splaying of the wHTH domains when Ile was bound; splaying is likely to account for the increased affinity of Ile-bound CodY for DNA. Electrophoretic mobility shift and SEC-MALLS analyses of CodY binding to 19-36-bp operator fragments are consistent with isoleucine-dependent binding of two CodY dimers per duplex. The implications of these observations for effector control of CodY activity are discussed.
Collapse
Affiliation(s)
- Vladimir M Levdikov
- From the Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Elena Blagova
- From the Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Vicki L Young
- From the Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Boris R Belitsky
- the Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, and
| | - Andrey Lebedev
- the STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Abraham L Sonenshein
- the Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, and
| | - Anthony J Wilkinson
- From the Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom,
| |
Collapse
|
37
|
Albanesi D, de Mendoza D. FapR: From Control of Membrane Lipid Homeostasis to a Biotechnological Tool. Front Mol Biosci 2016; 3:64. [PMID: 27766255 PMCID: PMC5052256 DOI: 10.3389/fmolb.2016.00064] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/21/2016] [Indexed: 01/22/2023] Open
Abstract
Phospholipids and fatty acids are not only one of the major components of cell membranes but also important metabolic intermediates in bacteria. Since the fatty acid biosynthetic pathway is essential and energetically expensive, organisms have developed a diversity of homeostatic mechanisms to fine-tune the concentration of lipids at particular levels. FapR is the first global regulator of lipid synthesis discovered in bacteria and is largely conserved in Gram-positive organisms including important human pathogens, such as Staphylococcus aureus, Bacillus anthracis, and Listeria monocytogenes. FapR is a transcription factor that negatively controls the expression of several genes of the fatty acid and phospholipid biosynthesis and was first identified in Bacillus subtilis. This review focuses on the genetic, biochemical and structural advances that led to a detailed understanding of lipid homeostasis control by FapR providing unique opportunities to learn how Gram-positive bacteria monitor the status of fatty acid biosynthesis and adjust the lipid synthesis accordingly. Furthermore, we also cover the potential of the FapR system as a target for new drugs against Gram-positive bacteria as well as its recent biotechnological applications in diverse organisms.
Collapse
Affiliation(s)
- Daniela Albanesi
- Laboratorio de Fisiología Microbiana, Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Rosario Rosario, Argentina
| | - Diego de Mendoza
- Laboratorio de Fisiología Microbiana, Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Rosario Rosario, Argentina
| |
Collapse
|
38
|
CpsR, a GntR family regulator, transcriptionally regulates capsular polysaccharide biosynthesis and governs bacterial virulence in Streptococcus pneumoniae. Sci Rep 2016; 6:29255. [PMID: 27386955 PMCID: PMC4937376 DOI: 10.1038/srep29255] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/14/2016] [Indexed: 11/18/2022] Open
Abstract
Transcriptional regulation of capsule expression is critical for pneumococcal transition from carriage to infection, yet the underlying mechanism remains incompletely understood. Here, we describe the regulation of capsular polysaccharide, one of the most important pneumococcal virulence factor by a GntR family regulator, CpsR. Electrophoretic mobility-shift assays have shown the direct interaction between CpsR and the cps promoter (cpsp), and their interaction could be competitively interfered by glucose. DNase I footprinting assays localized the binding site to a region −146 to −114 base pairs relative to the transcriptional start site of the cps locus in S. pneumoniae D39. We found that CpsR negatively controlled the transcription of the cps locus and hence CPS production, which was confirmed by fine-tuning expression of CpsR in a ΔcpsR complemented strain. Increased expression of CpsR in complemented strain led to a decreased resistance to the whole-blood-mediated killing, suggesting a protective role for CpsR-cpsp interaction in the establishment of invasive infection. Finally, animal experiments showed that CpsR-cpsp interaction was necessary for both pneumococcal colonization and invasive infection. Taken together, our results provide a thorough insight into the regulation of capsule production mediated by CpsR and its important roles in pneumococcal pathogenesis.
Collapse
|
39
|
A Bioinformatics Analysis Reveals a Group of MocR Bacterial Transcriptional Regulators Linked to a Family of Genes Coding for Membrane Proteins. Biochem Res Int 2016; 2016:4360285. [PMID: 27446613 PMCID: PMC4944035 DOI: 10.1155/2016/4360285] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 05/26/2016] [Indexed: 01/30/2023] Open
Abstract
The MocR bacterial transcriptional regulators are characterized by an N-terminal domain, 60 residues long on average, possessing the winged-helix-turn-helix (wHTH) architecture responsible for DNA recognition and binding, linked to a large C-terminal domain (350 residues on average) that is homologous to fold type-I pyridoxal 5′-phosphate (PLP) dependent enzymes like aspartate aminotransferase (AAT). These regulators are involved in the expression of genes taking part in several metabolic pathways directly or indirectly connected to PLP chemistry, many of which are still uncharacterized. A bioinformatics analysis is here reported that studied the features of a distinct group of MocR regulators predicted to be functionally linked to a family of homologous genes coding for integral membrane proteins of unknown function. This group occurs mainly in the Actinobacteria and Gammaproteobacteria phyla. An analysis of the multiple sequence alignments of their wHTH and AAT domains suggested the presence of specificity-determining positions (SDPs). Mapping of SDPs onto a homology model of the AAT domain hinted at possible structural/functional roles in effector recognition. Likewise, SDPs in wHTH domain suggested the basis of specificity of Transcription Factor Binding Site recognition. The results reported represent a framework for rational design of experiments and for bioinformatics analysis of other MocR subgroups.
Collapse
|
40
|
Fillenberg SB, Friess MD, Körner S, Böckmann RA, Muller YA. Crystal Structures of the Global Regulator DasR from Streptomyces coelicolor: Implications for the Allosteric Regulation of GntR/HutC Repressors. PLoS One 2016; 11:e0157691. [PMID: 27337024 PMCID: PMC4918961 DOI: 10.1371/journal.pone.0157691] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 06/02/2016] [Indexed: 12/16/2022] Open
Abstract
Small molecule effectors regulate gene transcription in bacteria by altering the DNA-binding affinities of specific repressor proteins. Although the GntR proteins represent a large family of bacterial repressors, only little is known about the allosteric mechanism that enables their function. DasR from Streptomyces coelicolor belongs to the GntR/HutC subfamily and specifically recognises operators termed DasR-responsive elements (dre-sites). Its DNA-binding properties are modulated by phosphorylated sugars. Here, we present several crystal structures of DasR, namely of dimeric full-length DasR in the absence of any effector and of only the effector-binding domain (EBD) of DasR without effector or in complex with glucosamine-6-phosphate (GlcN-6-P) and N-acetylglucosamine-6-phosphate (GlcNAc-6-P). Together with molecular dynamics (MD) simulations and a comparison with other GntR/HutC family members these data allowed for a structural characterisation of the different functional states of DasR. Allostery in DasR and possibly in many other GntR/HutC family members is best described by a conformational selection model. In ligand-free DasR, an increased flexibility in the EBDs enables the attached DNA-binding domains (DBD) to sample a variety of different orientations and among these also a DNA-binding competent conformation. Effector binding to the EBDs of DasR significantly reorganises the atomic structure of the latter. However, rather than locking the orientation of the DBDs, the effector-induced formation of β-strand β* in the DBD-EBD-linker segment merely appears to take the DBDs ‘on a shorter leash’ thereby impeding the ‘downwards’ positioning of the DBDs that is necessary for a concerted binding of two DBDs of DasR to operator DNA.
Collapse
Affiliation(s)
- Simon B. Fillenberg
- Division of Biotechnology, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Henkestr. 91, D-91052 Erlangen, Germany
| | - Mario D. Friess
- Computational Biology Group, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstr. 5, D-91058 Erlangen, Germany
| | - Samuel Körner
- Division of Biotechnology, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Henkestr. 91, D-91052 Erlangen, Germany
| | - Rainer A. Böckmann
- Computational Biology Group, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstr. 5, D-91058 Erlangen, Germany
| | - Yves A. Muller
- Division of Biotechnology, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Henkestr. 91, D-91052 Erlangen, Germany
- * E-mail:
| |
Collapse
|
41
|
Transcriptional Repression of the VC2105 Protein by Vibrio FadR Suggests that It Is a New Auxiliary Member of the fad Regulon. Appl Environ Microbiol 2016; 82:2819-2832. [PMID: 26944841 DOI: 10.1128/aem.00293-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 02/25/2016] [Indexed: 02/03/2023] Open
Abstract
UNLABELLED Recently, our group along with others reported that the Vibrio FadR regulatory protein is unusual in that, unlike the prototypical fadR product of Escherichia coli, which has only one ligand-binding site, Vibrio FadR has two ligand-binding sites and represents a new mechanism for fatty acid sensing. The promoter region of the vc2105 gene, encoding a putative thioesterase, was mapped, and a putative FadR-binding site (AA CTG GTA AGA GCA CTT) was proposed. Different versions of the FadR regulatory proteins were prepared and purified to homogeneity. Both electrophoretic mobility shift assay (EMSA) and surface plasmon resonance (SPR) determined the direct interaction of the vc2105 gene with FadR proteins of various origins. Further, EMSAs illustrated that the addition of long-chain acyl-coenzyme A (CoA) species efficiently dissociates the vc2105 promoter from the FadR regulator. The expression level of the Vibrio cholerae vc2105 gene was elevated 2- to 3-fold in a fadR null mutant strain, validating that FadR is a repressor for the vc2105 gene. The β-galactosidase activity of a vc2105-lacZ transcriptional fusion was increased over 2-fold upon supplementation of growth medium with oleic acid. Unlike the fadD gene, a member of the Vibrio fad regulon, the VC2105 protein played no role in bacterial growth and virulence-associated gene expression of ctxAB (cholera toxin A/B) and tcpA (toxin coregulated pilus A). Given that the transcriptional regulation of vc2105 fits the criteria for fatty acid degradation (fad) genes, we suggested that it is a new member of the Vibrio fad regulon. IMPORTANCE The Vibrio FadR regulator is unusual in that it has two ligand-binding sites. Different versions of the FadR regulatory proteins were prepared and characterized in vitro and in vivo. An auxiliary fad gene (vc2105) from Vibrio was proposed that encodes a putative thioesterase and has a predicted FadR-binding site (AAC TGG TA A GAG CAC TT). The function of this putative binding site was proved using both EMSA and SPR. Further in vitro and in vivo experiments revealed that the Vibrio FadR is a repressor for the vc2105 gene. Unlike fadD, a member of the Vibrio fad regulon, VC2105 played no role in bacterial growth and expression of the two virulence-associated genes (ctxAB and tcpA). Therefore, since transcriptional regulation of vc2105 fits the criteria for fad genes, it seems likely that vc2105 acts as a new auxiliary member of the Vibrio fad regulon.
Collapse
|
42
|
Al-Zyoud WA, Hynson RMG, Ganuelas LA, Coster ACF, Duff AP, Baker MAB, Stewart AG, Giannoulatou E, Ho JWK, Gaus K, Liu D, Lee LK, Böcking T. Binding of transcription factor GabR to DNA requires recognition of DNA shape at a location distinct from its cognate binding site. Nucleic Acids Res 2016; 44:1411-20. [PMID: 26681693 PMCID: PMC4756830 DOI: 10.1093/nar/gkv1466] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 11/28/2015] [Accepted: 11/30/2015] [Indexed: 12/12/2022] Open
Abstract
Mechanisms for transcription factor recognition of specific DNA base sequences are well characterized and recent studies demonstrate that the shape of these cognate binding sites is also important. Here, we uncover a new mechanism where the transcription factor GabR simultaneously recognizes two cognate binding sites and the shape of a 29 bp DNA sequence that bridges these sites. Small-angle X-ray scattering and multi-angle laser light scattering are consistent with a model where the DNA undergoes a conformational change to bend around GabR during binding. In silico predictions suggest that the bridging DNA sequence is likely to be bendable in one direction and kinetic analysis of mutant DNA sequences with biolayer interferometry, allowed the independent quantification of the relative contribution of DNA base and shape recognition in the GabR-DNA interaction. These indicate that the two cognate binding sites as well as the bendability of the DNA sequence in between these sites are required to form a stable complex. The mechanism of GabR-DNA interaction provides an example where the correct shape of DNA, at a clearly distinct location from the cognate binding site, is required for transcription factor binding and has implications for bioinformatics searches for novel binding sites.
Collapse
MESH Headings
- Bacillus subtilis/genetics
- Bacillus subtilis/metabolism
- Bacterial Proteins/chemistry
- Bacterial Proteins/metabolism
- Base Sequence
- Binding Sites/genetics
- Chromatography, Gel
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- Gene Expression Regulation, Bacterial
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Operon/genetics
- Promoter Regions, Genetic/genetics
- Protein Binding
- Protein Multimerization
- Protein Structure, Tertiary
- Scattering, Small Angle
- Sequence Homology, Nucleic Acid
- Transcription Factors/chemistry
- Transcription Factors/genetics
- Transcription Factors/metabolism
- X-Ray Diffraction
Collapse
Affiliation(s)
- Walid A Al-Zyoud
- School of Medical Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Robert M G Hynson
- The Victor Chang Cardiac Research Institute, 405 Liverpool St Darlinghurst, Darlinghurst, NSW 2010, Australia
| | - Lorraine A Ganuelas
- The Victor Chang Cardiac Research Institute, 405 Liverpool St Darlinghurst, Darlinghurst, NSW 2010, Australia
| | - Adelle C F Coster
- School of Mathematics and Statistics, University of New South Wales, Sydney, NSW 2052, Australia
| | - Anthony P Duff
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW 2234, Australia
| | - Matthew A B Baker
- The Victor Chang Cardiac Research Institute, 405 Liverpool St Darlinghurst, Darlinghurst, NSW 2010, Australia
| | - Alastair G Stewart
- The Victor Chang Cardiac Research Institute, 405 Liverpool St Darlinghurst, Darlinghurst, NSW 2010, Australia
| | - Eleni Giannoulatou
- The Victor Chang Cardiac Research Institute, 405 Liverpool St Darlinghurst, Darlinghurst, NSW 2010, Australia
| | - Joshua W K Ho
- The Victor Chang Cardiac Research Institute, 405 Liverpool St Darlinghurst, Darlinghurst, NSW 2010, Australia
| | - Katharina Gaus
- School of Medical Sciences, The University of New South Wales, Sydney, NSW 2052, Australia EMBL Australia Node for Single Molecule Science, The University of New South Wales, Corner Botany and High Street, Kensington Campus 2052, NSW 2052, Australia
| | - Dali Liu
- Department of Chemistry and Biochemistry, Loyola University, Chicago, IL 60660, USA
| | - Lawrence K Lee
- School of Medical Sciences, The University of New South Wales, Sydney, NSW 2052, Australia The Victor Chang Cardiac Research Institute, 405 Liverpool St Darlinghurst, Darlinghurst, NSW 2010, Australia EMBL Australia Node for Single Molecule Science, The University of New South Wales, Corner Botany and High Street, Kensington Campus 2052, NSW 2052, Australia
| | - Till Böcking
- School of Medical Sciences, The University of New South Wales, Sydney, NSW 2052, Australia EMBL Australia Node for Single Molecule Science, The University of New South Wales, Corner Botany and High Street, Kensington Campus 2052, NSW 2052, Australia
| |
Collapse
|
43
|
Blancato VS, Pagliai FA, Magni C, Gonzalez CF, Lorca GL. Functional Analysis of the Citrate Activator CitO from Enterococcus faecalis Implicates a Divalent Metal in Ligand Binding. Front Microbiol 2016; 7:101. [PMID: 26903980 PMCID: PMC4746285 DOI: 10.3389/fmicb.2016.00101] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/19/2016] [Indexed: 02/04/2023] Open
Abstract
The regulator of citrate metabolism, CitO, from Enterococcus faecalis belongs to the FCD family within the GntR superfamily. In the presence of citrate, CitO binds to cis-acting sequences located upstream of the cit promoters inducing the expression of genes involved in citrate utilization. The quantification of the molecular binding affinities, performed by isothermal titration calorimetry (ITC), indicated that CitO has a high affinity for citrate (KD = 1.2 ± 0.2 μM), while it did not recognize other metabolic intermediates. Based on a structural model of CitO where a putative small molecule and a metal binding site were identified, it was hypothesized that the metal ion is required for citrate binding. In agreement with this model, citrate binding to CitO sharply decreased when the protein was incubated with EDTA. This effect was reverted by the addition of Ni2+, and Zn2+ to a lesser extent. Structure-based site-directed mutagenesis was conducted and it was found that changes to alanine in residues Arg97 and His191 resulted in decreased binding affinities for citrate, as determined by EMSA and ITC. Further assays using lacZ fusions confirmed that these residues in CitO are involved in sensing citrate in vivo. These results indicate that the molecular modifications induced by a ligand and a metal binding in the C-terminal domain of CitO are required for optimal DNA binding activity, and consequently, transcriptional activation.
Collapse
Affiliation(s)
- Víctor S Blancato
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular de Rosario, Consejo Nacional de Investigaciones Científicas y TécnicasRosario, Argentina; Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Science, University of FloridaGainesville, FL, USA
| | - Fernando A Pagliai
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Science, University of Florida Gainesville, FL, USA
| | - Christian Magni
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas Rosario, Argentina
| | - Claudio F Gonzalez
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Science, University of Florida Gainesville, FL, USA
| | - Graciela L Lorca
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Science, University of Florida Gainesville, FL, USA
| |
Collapse
|
44
|
Tutukina MN, Potapova AV, Vlasov PK, Purtov YA, Ozoline ON. Structural modeling of the ExuR and UxuR transcription factors of E. coli: search for the ligands affecting their regulatory properties. J Biomol Struct Dyn 2016; 34:2296-304. [DOI: 10.1080/07391102.2015.1115779] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Maria N. Tutukina
- Institute of Cell Biophysics Russian Academy of Sciences, Institutskaya str., 3, Pushchino, Moscow Region 142290, Russia
| | - Anna V. Potapova
- Institute of Cell Biophysics Russian Academy of Sciences, Institutskaya str., 3, Pushchino, Moscow Region 142290, Russia
| | - Peter K. Vlasov
- Centre for Genomic Regulation (CRG) and Universitat Pompeu Fabra (UPF), C/Dr. Aiguader, 88, Barcelona 08003, Spain
| | - Yuri A. Purtov
- Institute of Cell Biophysics Russian Academy of Sciences, Institutskaya str., 3, Pushchino, Moscow Region 142290, Russia
| | - Olga N. Ozoline
- Institute of Cell Biophysics Russian Academy of Sciences, Institutskaya str., 3, Pushchino, Moscow Region 142290, Russia
| |
Collapse
|
45
|
Lung SC, Chye ML. The binding versatility of plant acyl-CoA-binding proteins and their significance in lipid metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1861:1409-1421. [PMID: 26747650 DOI: 10.1016/j.bbalip.2015.12.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 12/28/2015] [Accepted: 12/29/2015] [Indexed: 11/18/2022]
Abstract
Acyl-CoA esters are the activated form of fatty acids and play important roles in lipid metabolism and the regulation of cell functions. They are bound and transported by nonenzymic proteins such as the acyl-CoA-binding proteins (ACBPs). Although plant ACBPs were so named by virtue of amino acid homology to existing yeast and mammalian counterparts, recent studies revealed that ligand specificities of plant ACBPs are not restricted to acyl-CoA esters. Arabidopsis and rice ACBPs also interact with phospholipids, and their affinities to different acyl-CoA species and phospholipid classes vary amongst isoforms. Their ligands also include heavy metals. Interactors of plant ACBPs are further diversified due to the evolution of protein-protein interacting domains. This review summarizes our current understanding of plant ACBPs with a focus on their binding versatility. Their broad ligand range is of paramount significance in serving a multitude of functions during development and stress responses as discussed herein. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner.
Collapse
Affiliation(s)
- Shiu-Cheung Lung
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.
| |
Collapse
|
46
|
Yang C, Chang CH. Exploring comprehensive within-motif dependence of transcription factor binding in Escherichia coli. Sci Rep 2015; 5:17021. [PMID: 26592556 PMCID: PMC4655474 DOI: 10.1038/srep17021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 10/16/2015] [Indexed: 01/18/2023] Open
Abstract
Modeling the binding of transcription factors helps to decipher the control logic behind transcriptional regulatory networks. Position weight matrix is commonly used to describe a binding motif but assumes statistical independence between positions. Although current approaches take within-motif dependence into account for better predictive performance, these models usually rely on prior knowledge and incorporate simple positional dependence to describe binding motifs. The inability to take complex within-motif dependence into account may result in an incomplete representation of binding motifs. In this work, we applied association rule mining techniques and constructed models to explore within-motif dependence for transcription factors in Escherichia coli. Our models can reflect transcription factor-DNA recognition where the explored dependence correlates with the binding specificity. We also propose a graphical representation of the explored within-motif dependence to illustrate the final binding configurations. Understanding the binding configurations also enables us to fine-tune or design transcription factor binding sites, and we attempt to present the configurations through exploring within-motif dependence.
Collapse
Affiliation(s)
- Chi Yang
- Institute of Biomedical Informatics, National Yang Ming University, Taipei, 11221, Taiwan
| | - Chuan-Hsiung Chang
- Institute of Biomedical Informatics, National Yang Ming University, Taipei, 11221, Taiwan.,Center for Systems and Synthetic Biology, National Yang Ming University, Taipei, 11221, Taiwan
| |
Collapse
|
47
|
Abstract
The pathways in Escherichia coli and (largely by analogy) S. enterica remain the paradigm of bacterial lipid synthetic pathways, although recently considerable diversity among bacteria in the specific areas of lipid synthesis has been demonstrated. The structural biology of the fatty acid synthetic proteins is essentially complete. However, the membrane-bound enzymes of phospholipid synthesis remain recalcitrant to structural analyses. Recent advances in genetic technology have allowed the essentialgenes of lipid synthesis to be tested with rigor, and as expected most genes are essential under standard growth conditions. Conditionally lethal mutants are available in numerous genes, which facilitates physiological analyses. The array of genetic constructs facilitates analysis of the functions of genes from other organisms. Advances in mass spectroscopy have allowed very accurate and detailed analyses of lipid compositions as well as detection of the interactions of lipid biosynthetic proteins with one another and with proteins outside the lipid pathway. The combination of these advances has resulted in use of E. coli and S. enterica for discovery of new antimicrobials targeted to lipid synthesis and in deciphering the molecular actions of known antimicrobials. Finally,roles for bacterial fatty acids other than as membrane lipid structural components have been uncovered. For example, fatty acid synthesis plays major roles in the synthesis of the essential enzyme cofactors, biotin and lipoic acid. Although other roles for bacterial fatty acids, such as synthesis of acyl-homoserine quorum-sensing molecules, are not native to E. coli introduction of the relevant gene(s) synthesis of these foreign molecules readily proceeds and the sophisticated tools available can used to decipher the mechanisms of synthesis of these molecules.
Collapse
|
48
|
Irzik K, van Ooyen J, Gätgens J, Krumbach K, Bott M, Eggeling L. Acyl-CoA sensing by FasR to adjust fatty acid synthesis in Corynebacterium glutamicum. J Biotechnol 2015; 192 Pt A:96-101. [PMID: 25449109 DOI: 10.1016/j.jbiotec.2014.10.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/02/2014] [Accepted: 10/23/2014] [Indexed: 11/28/2022]
Abstract
Corynebacterium glutamicum, like Mycobacterium tuberculosis, is a member of the Corynebacteriales, which have linear fatty acids and as branched fatty acids the mycolic acids. We identified accD1 and fasA as key genes of fatty acid synthesis, encoding the β-subunit of the acetyl-CoA carboxylase and a type-I fatty acid synthase, respectively, and observed their repression during growth on minimal medium with acetate. We also identified the transcriptional regulator FasR and its binding sites in the 5′ upstream regions of accD1 and fasA. In the present work we establish by co-isolation and gel-mobility shifts oleoyl-CoA and palmitoyl-CoA as effectors of FasR, and show by DNA microarray analysis that in presence of exogeneous fatty acids accD1 and fasA are repressed. These results are evidence that acyl-CoA derivatives derived from extracellular fatty acids interact with FasR to repress the genes of fatty acid synthesis. This model also explains the observed repression of accD1 and fasA during growth on acetate, where apparently the known high intracellular acetyl-CoA concentration during growth on this substrate requires reduced accD1 and fasA expression for fine control of de novo fatty acid synthesis. Consequently, this mechanism ensures that membrane lipid homeostasis is maintained when specific nutrients are available resulting in increased acetyl-CoA concentration, as is the case with acetate, or when fatty acids are directly available from the extracellular environment. However, the genes specific to mycolic acid synthesis, which are in part shared with linear fatty acid synthesis, are not controlled by FasR, which is in agreement with the fact that they can not be supplied from the extracellular environment but that their synthesis fully depends on a constant supply of linear fatty acid chains.
Collapse
|
49
|
Modulation of FadR Binding Capacity for Acyl-CoA Fatty Acids Through Structure-Guided Mutagenesis. Protein J 2015; 34:359-66. [DOI: 10.1007/s10930-015-9630-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
50
|
Jain D. Allosteric control of transcription in GntR family of transcription regulators: A structural overview. IUBMB Life 2015; 67:556-63. [PMID: 26172911 DOI: 10.1002/iub.1401] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 06/17/2015] [Indexed: 01/24/2023]
Abstract
The GntR family of transcription regulators constitutes one of the most abundant family of transcription factors. These modulators are involved in a variety of mechanisms controlling various metabolic processes. GntR family members are typically two domain proteins with a smaller N-terminus domain (NTD) with conserved architecture of winged-helix-turn-helix (wHTH) for DNA binding and a larger C-terminus domain (CTD) or the effector binding domain which is also involved in oligomerization. Interestingly, the CTD shows structural heterogeneity depending upon the type of effector molecule that it binds and displays structural homology to various classes of proteins. Binding of the effector molecule to the CTD brings about a conformational change in the transcription factor such that its affinity for its cognate DNA sequence is altered. This review summarizes the structural information available on the members of GntR family and discusses the common features of the DNA binding and operator recognition within the family. The variation in the allosteric mechanism employed by the members of this family is also discussed.
Collapse
Affiliation(s)
- Deepti Jain
- Transcription Regulation Laboratory Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India
| |
Collapse
|