1
|
Wu Y, Liu N, Zheng C, Li D, Li S, Wu J, Zhao S. Insights into the Complexity and Functionality of Plant Virus Protein Phosphorylation. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:598-610. [PMID: 38814574 DOI: 10.1094/mpmi-04-24-0034-cr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Phosphorylation, the most extensive and pleiotropic form of protein posttranslation modification, is central to cellular signal transduction. Throughout the extensive co-evolution of plant hosts and viruses, modifications to phosphorylation have served multiple purposes. Such modifications highlight the evolutionary trajectories of viruses and their hosts, with pivotal roles in regulation and refinement of host-virus interactions. In plant hosts, protein phosphorylation orchestrates immune responses, enhancing the activities of defense-related proteins such as kinases and transcription factors, thereby strengthening pathogen resistance in plants. Moreover, phosphorylation influences the interactions between host and viral proteins, altering viral spread and replication within host plants. In the context of plant viruses, protein phosphorylation controls key aspects of the infection cycle, including viral protein functionality and the interplay between viruses and host plant cells, leading to effects on viral accumulation and dissemination within plant tissues. Explorations of the nuances of protein phosphorylation in plant hosts and their interactions with viruses are particularly important. This review provides a systematic summary of the biological roles of the proteins of plant viruses carrying diverse genomes in regulating infection and host responses through changes in the phosphorylation status. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Yuansheng Wu
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Na Liu
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chengxu Zheng
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dongyuan Li
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shanshan Li
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jianguo Wu
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shanshan Zhao
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
2
|
Qiao Z, Wang J, Huang K, Hu H, Gu Z, Liao Q, Du Z. The non-template functions of helper virus RNAs create optimal replication conditions to enhance the proliferation of satellite RNAs. PLoS Pathog 2024; 20:e1012174. [PMID: 38630801 PMCID: PMC11057728 DOI: 10.1371/journal.ppat.1012174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/29/2024] [Accepted: 04/07/2024] [Indexed: 04/19/2024] Open
Abstract
As a type of parasitic agent, satellite RNAs (satRNAs) rely on cognate helper viruses to achieve their replication and transmission. During the infection of satRNAs, helper virus RNAs serve as templates for synthesizing viral proteins, including the replication proteins essential for satRNA replication. However, the role of non-template functions of helper virus RNAs in satRNA replication remains unexploited. Here we employed the well-studied model that is composed of cucumber mosaic virus (CMV) and its associated satRNA. In the experiments employing the CMV trans-replication system, we observed an unexpected phenomenon the replication proteins of the mild strain LS-CMV exhibited defective in supporting satRNA replication, unlike those of the severe strain Fny-CMV. Independent of translation products, all CMV genomic RNAs could enhance satRNA replication, when combined with the replication proteins of CMV. This enhancement is contingent upon the recruitment and complete replication of helper virus RNAs. Using the method developed for analyzing the satRNA recruitment, we observed a markedly distinct ability of the replication proteins from both CMV strains to recruit the positive-sense satRNA-harboring RNA3 mutant for replication. This is in agreement with the differential ability of both 1a proteins in binding satRNAs in plants. The discrepancies provide a convincing explanation for the variation of the replication proteins of both CMV strains in replicating satRNAs. Taken together, our work provides compelling evidence that the non-template functions of helper virus RNAs create an optimal replication environment to enhance satRNA proliferation.
Collapse
Affiliation(s)
- Zimu Qiao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Jin Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Kaiyun Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Honghao Hu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Zhouhang Gu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Qiansheng Liao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Zhiyou Du
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Park TS, Min DJ, Park JS, Hong JS. The N-Terminal Region of Cucumber Mosaic Virus 2a Protein Is Involved in the Systemic Infection in Brassica juncea. PLANTS (BASEL, SWITZERLAND) 2024; 13:1001. [PMID: 38611534 PMCID: PMC11013781 DOI: 10.3390/plants13071001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024]
Abstract
Brassica juncea belongs to the Brassicaceae family and is used as both an oilseed and vegetable crop. As only a few studies have reported on the cucumber mosaic virus (CMV) in B. juncea, we conducted this study to provide a basic understanding of the B. juncea and CMV interactions. B. juncea-infecting CMV (CMV-Co6) and non-infecting CMV (CMV-Rs1) were used. To identify the determinants of systemic infection in B. juncea, we first constructed infectious clones of CMV-Co6 and CMV-Rs1 and used them as pseudo-recombinants. RNA2 of CMV was identified as an important determinant in B. juncea because B. juncea were systemically infected with RNA2-containing pseudo-recombinants; CMV-Co6, R/6/R, and R/6/6 were systemically infected B. juncea. Subsequently, the amino acids of the 2a and 2b proteins were compared, and a chimeric clone was constructed. The chimeric virus R/6Rns/R6cp, containing the C-terminal region of the 2a protein of CMV-Rs1, still infects B. juncea. It is the 2a protein that determines the systemic CMV infection in B. juncea, suggesting that conserved 160G and 214A may play a role in systemic CMV infection in B. juncea.
Collapse
Affiliation(s)
| | | | | | - Jin-Sung Hong
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea; (T.-S.P.); (D.-J.M.); (J.-S.P.)
| |
Collapse
|
4
|
Ben Mansour K, Komínek P, Komínková M, Brožová J. Characterization of Prunus Necrotic Ringspot Virus and Cherry Virus A Infecting Myrobalan Rootstock. Viruses 2023; 15:1723. [PMID: 37632065 PMCID: PMC10459944 DOI: 10.3390/v15081723] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Prunus necrotic ringspot virus (PNRSV) and cherry virus A (CVA) are two viruses that mainly infect plants of the genus Prunus. Full-length sequences of these two viruses, collected in the Czech Republic from Prunus cerasifera plants, were obtained via HTS sequencing. Phylogenetic analyses based on the NJ method and Splitstree tools showed that the Czech PNRSV isolate (ON088600-ON088602) is a divergent isolate from other molecular groups, sharing less than 97% pairwise nucleotide identity with members of other groups. The Czech CVA isolate (ON088603) belonged to molecular subgroup III-2, clustered with isolates from non-cherry hosts, and shared the highest pairwise nucleotide identity (99.7%) with an isolate of Australian origin.
Collapse
Affiliation(s)
- Karima Ben Mansour
- Ecology, Diagnostics and Genetic Resources of Agriculturally Important Viruses, Fungi and Phytoplasmas, Crop Research Institute, Drnovská 507, 161 06 Prague, Czech Republic; (K.B.M.); (M.K.); (J.B.)
- Department of Plant Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| | - Petr Komínek
- Ecology, Diagnostics and Genetic Resources of Agriculturally Important Viruses, Fungi and Phytoplasmas, Crop Research Institute, Drnovská 507, 161 06 Prague, Czech Republic; (K.B.M.); (M.K.); (J.B.)
| | - Marcela Komínková
- Ecology, Diagnostics and Genetic Resources of Agriculturally Important Viruses, Fungi and Phytoplasmas, Crop Research Institute, Drnovská 507, 161 06 Prague, Czech Republic; (K.B.M.); (M.K.); (J.B.)
| | - Jana Brožová
- Ecology, Diagnostics and Genetic Resources of Agriculturally Important Viruses, Fungi and Phytoplasmas, Crop Research Institute, Drnovská 507, 161 06 Prague, Czech Republic; (K.B.M.); (M.K.); (J.B.)
| |
Collapse
|
5
|
Phosphorylation of VP1 Mediated by CDK1-Cyclin B1 Facilitates Infectious Bursal Disease Virus Replication. J Virol 2023; 97:e0194122. [PMID: 36602364 PMCID: PMC9888224 DOI: 10.1128/jvi.01941-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Infectious bursal disease virus (IBDV) is a double-stranded RNA (dsRNA) virus belonging to the genus Avibirnavirus in the family Birnaviridae. It can cause serious failure of vaccination in young poultry birds with impaired immune systems. Post-translational modifications of the VP1 protein are essential for viral RNA transcription, genome replication, and viral multiplication. Little information is available so far regarding the exact mechanism of phosphorylation of IBDV VP1 and its significance in the viral life cycle. Here, we provide several lines of evidence that the cyclin-dependent kinase 1 (CDK1)-cyclin B1 complex phosphorylates VP1, which facilitates viral replication. We show that the CDK1-cyclin B1 specifically interacts with VP1 and phosphorylates VP1 on the serine 7 residue, located in the N-terminal 7SPAQ10 region, which follows the optimal phosphorylation motif of CDK1, p-S/T-P. Additionally, IBDV infection drives the cytoplasmic accumulation of CDK1-cyclin B1, which co-localizes with VP1, supporting the kinase activity of CDK1-cyclin B1. Treatment with CDK1 inhibitor RO3306 and knockdown of CDK1-cyclin B1 severely disrupts the polymerase activity of VP1, resulting in diminished viral replication. Moreover, the replication of S7A mutant recombinant IBDV was significantly decreased compared to that of wild-type (WT) IBDV. Thus, CDK1-cyclin B1 is a crucial enzyme which phosphorylates IBDV VP1 on serine 7, which is necessary both for the polymerase activity of VP1 and for viral replication. IMPORTANCE Infectious bursal disease virus still poses a great economic threat to the global poultry farming industry. Detailed information on the steps of viral genome replication is essential for the development of antiviral therapeutics. Phosphorylation is a common post-translational modification in several viral proteins. There is a lack of information regarding the significance of VP1 phosphorylation and its role in modulating the viral life cycle. In this study, we found that CDK1-cyclin B1 accumulates in the cytoplasm and phosphorylates VP1 on serine 7. The presence of a CDK1 inhibitor and the silencing of CDK1-cyclin B1 decrease IBDV replication. The mutation of VP1 serine 7 to alanine reduces VP1 polymerase activity, disrupting the viral life cycle, which suggests that this residue serves an essential function. Our study offers novel insights into the regulatory mechanism of VP1 phosphorylation.
Collapse
|
6
|
Zhuang X, Guo X, Gu T, Xu X, Qin L, Xu K, He Z, Zhang K. Phosphorylation of plant virus proteins: Analysis methods and biological functions. Front Microbiol 2022; 13:935735. [PMID: 35958157 PMCID: PMC9360750 DOI: 10.3389/fmicb.2022.935735] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Phosphorylation is one of the most extensively investigated post-translational modifications that orchestrate a variety of cellular signal transduction processes. The phosphorylation of virus-encoded proteins plays an important regulatory role in the infection cycle of such viruses in plants. In recent years, molecular mechanisms underlying the phosphorylation of plant viral proteins have been widely studied. Based on recent publications, our study summarizes the phosphorylation analyses of plant viral proteins and categorizes their effects on biological functions according to the viral life cycle. This review provides a theoretical basis for elucidating the molecular mechanisms of viral infection. Furthermore, it deepens our understanding of the biological functions of phosphorylation in the interactions between plants and viruses.
Collapse
Affiliation(s)
- Xinjian Zhuang
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Xiao Guo
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Tianxiao Gu
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Xiaowei Xu
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Lang Qin
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Kai Xu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Zhen He
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Kun Zhang
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China,Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China,*Correspondence: Kun Zhang, ;
| |
Collapse
|
7
|
Hinge VR, Chavhan RL, Kale SP, Suprasanna P, Kadam US. Engineering Resistance Against Viruses in Field Crops Using CRISPR- Cas9. Curr Genomics 2021; 22:214-231. [PMID: 34975291 PMCID: PMC8640848 DOI: 10.2174/1389202922666210412102214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/29/2021] [Accepted: 02/24/2021] [Indexed: 12/26/2022] Open
Abstract
Food security is threatened by various biotic stresses that affect the growth and production of agricultural crops. Viral diseases have become a serious concern for crop plants as they incur huge yield losses. The enhancement of host resistance against plant viruses is a priority for the effective management of plant viral diseases. However, in the present context of the climate change scenario, plant viruses are rapidly evolving, resulting in the loss of the host resistance mechanism. Advances in genome editing techniques, such as CRISPR-Cas9 [clustered regularly interspaced palindromic repeats-CRISPR-associated 9], have been recognized as promising tools for the development of plant virus resistance. CRISPR-Cas9 genome editing tool is widely preferred due to high target specificity, simplicity, efficiency, and reproducibility. CRISPR-Cas9 based virus resistance in plants has been successfully achieved by gene targeting and cleaving the viral genome or altering the plant genome to enhance plant innate immunity. In this article, we have described the CRISPR-Cas9 system, mechanism of plant immunity against viruses and highlighted the use of the CRISPR-Cas9 system to engineer virus resistance in plants. We also discussed prospects and challenges on the use of CRISPR-Cas9-mediated plant virus resistance in crop improvement.
Collapse
Affiliation(s)
| | | | | | | | - Ulhas S. Kadam
- Address correspondenceto this author at the Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany; E-mail: ,
‡Present Address: Division of Life Sciences, Plant Molecular Biology and Biotechnology Research Center, Gyenongsang National University, Jinju-si, Republic of Korea; E-mail:
| |
Collapse
|
8
|
Yoon JY, Palukaitis P. Cucumber Mosaic Virus 1a Protein Interacts with the Tobacco SHE1 Transcription Factor and Partitions between the Nucleus and the Tonoplast Membrane. THE PLANT PATHOLOGY JOURNAL 2021; 37:182-193. [PMID: 33866760 PMCID: PMC8053847 DOI: 10.5423/ppj.ft.03.2021.0045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 06/12/2023]
Abstract
The transcription factor SHE1 was identified as an interacting partner with the cucumber mosaic virus (CMV) 1a protein in the yeast two-hybrid system, by a pull-down assay, and via bimolecular fluorescent complementation. Using fluorescent-tagged proteins and confocal microscopy, the CMV 1a protein itself was found distributed predominantly between the nucleus and the tonoplast membrane, although it was also found in speckles in the cytoplasm. The SHE1 protein was localized in the nucleus, but in the presence of the CMV 1a protein was partitioned between the nucleus and the tonoplast membrane. SHE1 expression was induced by infection of tobacco with four tested viruses: CMV, tobacco mosaic virus, potato virus X and potato virus Y. Transgenic tobacco expressing the CMV 1a protein showed constitutive expression of SHE1, indicating that the CMV 1a protein may be responsible for its induction. However, previously, such plants also were shown to have less resistance to local and systemic movement of tobacco mosaic virus (TMV) expressing the green fluorescent protein, suggesting that the CMV 1a protein may act to prevent the function of the SHE1 protein. SHE1 is a member of the AP2/ERF class of transcription factors and is conserved in sequence in several Nicotiana species, although two clades of SHE1 could be discerned, including both different Nicotiana species and cultivars of tobacco, varying by the presence of particular insertions or deletions.
Collapse
Affiliation(s)
- Ju-Yeon Yoon
- Virology Unit, Division of Horticultural and Herbal Crop Environment, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju 55365,
Korea
| | - Peter Palukaitis
- Department of Horticulture Sciences, Seoul Women's University, Seoul 01797,
Korea
| |
Collapse
|
9
|
Sáray R, Fábián A, Palkovics L, Salánki K. The 28 Ser Amino Acid of Cucumber Mosaic Virus Movement Protein Has a Role in Symptom Formation and Plasmodesmata Localization. Viruses 2021; 13:222. [PMID: 33572676 PMCID: PMC7912182 DOI: 10.3390/v13020222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 12/28/2022] Open
Abstract
Cucumber mosaic virus (CMV, Cucumovirus, Bromoviridae) is an economically significant virus infecting important horticultural and field crops. Current knowledge regarding the specific functions of its movement protein (MP) is still incomplete. In the present study, potential post-translational modification sites of its MP were assayed with mutant viruses: MP/S28A, MP/S28D, MP/S120A and MP/S120D. Ser28 was identified as an important factor in viral pathogenicity on Nicotiana tabacum cv. Xanthi, Cucumis sativus and Chenopodium murale. The subcellular localization of GFP-tagged movement proteins was determined with confocal laser-scanning microscopy. The wild type movement protein fused to green fluorescent protein (GFP) (MP-eGFP) greatly colocalized with callose at plasmodesmata, while MP/S28A-eGFP and MP/S28D-eGFP were detected as punctate spots along the cell membrane without callose colocalization. These results underline the importance of phosphorylatable amino acids in symptom formation and provide data regarding the essential factors for plasmodesmata localization of CMV MP.
Collapse
Affiliation(s)
- Réka Sáray
- Centre for Agricultural Research, Plant Protection Institute, Herman Ottó Street 15., H-1022 Budapest, Hungary;
- Department of Plant Pathology, Faculty of Horticultural Science, Szent István University, Villányi Street 29-43., H-1118 Budapest, Hungary;
| | - Attila Fábián
- Centre for Agricultural Research, Agricultural Institute, Brunszvik Street 2, H-2462 Martonvásár, Hungary;
| | - László Palkovics
- Department of Plant Pathology, Faculty of Horticultural Science, Szent István University, Villányi Street 29-43., H-1118 Budapest, Hungary;
| | - Katalin Salánki
- Centre for Agricultural Research, Plant Protection Institute, Herman Ottó Street 15., H-1022 Budapest, Hungary;
| |
Collapse
|
10
|
Watt LG, Crawshaw S, Rhee SJ, Murphy AM, Canto T, Carr JP. The cucumber mosaic virus 1a protein regulates interactions between the 2b protein and ARGONAUTE 1 while maintaining the silencing suppressor activity of the 2b protein. PLoS Pathog 2020; 16:e1009125. [PMID: 33270799 PMCID: PMC7738167 DOI: 10.1371/journal.ppat.1009125] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 12/15/2020] [Accepted: 11/04/2020] [Indexed: 12/30/2022] Open
Abstract
The cucumber mosaic virus (CMV) 2b viral suppressor of RNA silencing (VSR) is a potent counter-defense and pathogenicity factor that inhibits antiviral silencing by titration of short double-stranded RNAs. It also disrupts microRNA-mediated regulation of host gene expression by binding ARGONAUTE 1 (AGO1). But in Arabidopsis thaliana complete inhibition of AGO1 is counterproductive to CMV since this triggers another layer of antiviral silencing mediated by AGO2, de-represses strong resistance against aphids (the insect vectors of CMV), and exacerbates symptoms. Using confocal laser scanning microscopy, bimolecular fluorescence complementation, and co-immunoprecipitation assays we found that the CMV 1a protein, a component of the viral replicase complex, regulates the 2b-AGO1 interaction. By binding 2b protein molecules and sequestering them in P-bodies, the 1a protein limits the proportion of 2b protein molecules available to bind AGO1, which ameliorates 2b-induced disease symptoms, and moderates induction of resistance to CMV and to its aphid vector. However, the 1a protein-2b protein interaction does not inhibit the ability of the 2b protein to inhibit silencing of reporter gene expression in agroinfiltration assays. The interaction between the CMV 1a and 2b proteins represents a novel regulatory system in which specific functions of a VSR are selectively modulated by another viral protein. The finding also provides a mechanism that explains how CMV, and possibly other viruses, modulates symptom induction and manipulates host-vector interactions.
Collapse
Affiliation(s)
- Lewis G. Watt
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Sam Crawshaw
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Sun-Ju Rhee
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Alex M. Murphy
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Tomás Canto
- Department of Microbial and Plant Biotechnology, Center for Biological Research, Madrid, Spain
| | - John P. Carr
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
11
|
Hyodo K, Okuno T. Hijacking of host cellular components as proviral factors by plant-infecting viruses. Adv Virus Res 2020; 107:37-86. [PMID: 32711734 DOI: 10.1016/bs.aivir.2020.04.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Plant viruses are important pathogens that cause serious crop losses worldwide. They are obligate intracellular parasites that commandeer a wide array of proteins, as well as metabolic resources, from infected host cells. In the past two decades, our knowledge of plant-virus interactions at the molecular level has exploded, which provides insights into how plant-infecting viruses co-opt host cellular machineries to accomplish their infection. Here, we review recent advances in our understanding of how plant viruses divert cellular components from their original roles to proviral functions. One emerging theme is that plant viruses have versatile strategies that integrate a host factor that is normally engaged in plant defense against invading pathogens into a viral protein complex that facilitates viral infection. We also highlight viral manipulation of cellular key regulatory systems for successful virus infection: posttranslational protein modifications for fine control of viral and cellular protein dynamics; glycolysis and fermentation pathways to usurp host resources, and ion homeostasis to create a cellular environment that is beneficial for viral genome replication. A deeper understanding of viral-infection strategies will pave the way for the development of novel antiviral strategies.
Collapse
Affiliation(s)
- Kiwamu Hyodo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan.
| | - Tetsuro Okuno
- Department of Plant Life Science, Faculty of Agriculture, Ryukoku University, Otsu, Shiga, Japan
| |
Collapse
|
12
|
Hervás M, Navajas R, Chagoyen M, García JA, Martínez-Turiño S. Phosphorylation-Related Crosstalk Between Distant Regions of the Core Region of the Coat Protein Contributes to Virion Assembly of Plum Pox Virus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:653-667. [PMID: 31859600 DOI: 10.1094/mpmi-10-19-0305-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Eukaryotic proteins are often targets of posttranslational modifications (PTMs). Capsid protein (CP) of plum pox virus (PPV), a member of genus Potyvirus, has been reported to be prone to phosphorylation in four serines at the N-terminal region. CP phosphorylation has been proposed to influence PPV infection by regulating CP accumulation in coordination with a second PTM, O-GlcNAcylation. In this study, a further proteomic characterization of PPV CP phosphorylation revealed additional phospho-targets, thus evidencing even greater complexity of the network of PTMs affecting this protein. In particular, two new phosphorylation targets, T254 and T313, at protein distal core, appear to be highly relevant for infection. Although abolishing phosphorylation at these positions does not have a severe effect on infectivity or viral accumulation, phospho-mimicking at either of these targets disrupts cell-to-cell movement. Strand-specific reverse transcription-quantitative PCR analysis and fractionation by centrifugation in a continuous sucrose gradient enabled us to conclude that such a deleterious effect is not related to failures in replication but is a consequence of inaccurate virion assembly. The analysis of spontaneous compensatory mutations at the CP core identified in a multiple phospho-mimicking mutant disclosed a functional dialogue between distant phospho-targets, which was further supported by an in silico PPV virion model, built on the watermelon mosaic virus atomic structure. Therefore, whereas joint and opposite action of O-GlcNAcylation and phosphorylation at the N-terminal disordered protrusion of CP appears to regulate protein stability, we propose that phosphorylations at the core region control assembly and disassembly of viral particles.
Collapse
Affiliation(s)
- Marta Hervás
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Rosana Navajas
- Proteomics Unit, CNB-CSIC, ProteoRed ISCIII, Madrid 28049, Spain
| | - Mónica Chagoyen
- Computational Systems Biology Group, CNB-CSIC, Madrid 28049, Spain
| | - Juan Antonio García
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Sandra Martínez-Turiño
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid 28049, Spain
| |
Collapse
|
13
|
Hervás M, Ciordia S, Navajas R, García JA, Martínez-Turiño S. Common and Strain-Specific Post-Translational Modifications of the Potyvirus Plum pox virus Coat Protein in Different Hosts. Viruses 2020; 12:E308. [PMID: 32178365 PMCID: PMC7150786 DOI: 10.3390/v12030308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 01/04/2023] Open
Abstract
Phosphorylation and O-GlcNAcylation are widespread post-translational modifications (PTMs), often sharing protein targets. Numerous studies have reported the phosphorylation of plant viral proteins. In plants, research on O-GlcNAcylation lags behind that of other eukaryotes, and information about O-GlcNAcylated plant viral proteins is extremely scarce. The potyvirus Plum pox virus (PPV) causes sharka disease in Prunus trees and also infects a wide range of experimental hosts. Capsid protein (CP) from virions of PPV-R isolate purified from herbaceous plants can be extensively modified by O-GlcNAcylation and phosphorylation. In this study, a combination of proteomics and biochemical approaches was employed to broaden knowledge of PPV CP PTMs. CP proved to be modified regardless of whether or not it was assembled into mature particles. PTMs of CP occurred in the natural host Prunus persica, similarly to what happens in herbaceous plants. Additionally, we observed that O-GlcNAcylation and phosphorylation were general features of different PPV strains, suggesting that these modifications contribute to general strategies deployed during plant-virus interactions. Interestingly, phosphorylation at a casein kinase II motif conserved among potyviral CPs exhibited strain specificity in PPV; however, it did not display the critical role attributed to the same modification in the CP of another potyvirus, Potato virus A.
Collapse
Affiliation(s)
- Marta Hervás
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| | - Sergio Ciordia
- Proteomics Unit, Centro Nacional de Biotecnología (CNB-CSIC), ProteoRed ISCIII, 28049 Madrid, Spain; (S.C.); (R.N.)
| | - Rosana Navajas
- Proteomics Unit, Centro Nacional de Biotecnología (CNB-CSIC), ProteoRed ISCIII, 28049 Madrid, Spain; (S.C.); (R.N.)
| | - Juan Antonio García
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| | - Sandra Martínez-Turiño
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| |
Collapse
|
14
|
Nemes K, Gellért Á, Bóka K, Vági P, Salánki K. Symptom recovery is affected by Cucumber mosaic virus coat protein phosphorylation. Virology 2019; 536:68-77. [PMID: 31401466 DOI: 10.1016/j.virol.2019.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 08/01/2019] [Accepted: 08/03/2019] [Indexed: 11/29/2022]
Abstract
Cucumber mosaic virus induces specific recovery phenotype, namely cyclic mosaic symptoms on tobacco plants. We provide further evidence that besides the 2b suppressor protein, the coat protein (CP) also has a role in symptom recovery and it is connected to its phosphorylation. We analyzed the impact of the phosphorylated (S148D) and the non-phosphorylated (S148A) state of CP148 Ser on symptom formation, virion stability and the effect of CP and its mutants on 2b-mediated local GFP-silencing. We demonstrated that a single aa change could be responsible for preventing the recovery phenomenon as replacing the phosphorylatable Ser with Ala in the 148aa position abolishing the cyclic phenomenon. CP/S148A mutation equilibrates the accumulation of the virus during the infection both at RNA and protein level in N. tabacum L. cv Xanthi plants. In summary, we determined a regulatory effect of the CMV CP on the self-attenuation mechanism and downregulation of the suppressor effect of the 2b protein.
Collapse
Affiliation(s)
- Katalin Nemes
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Ákos Gellért
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Károly Bóka
- Department of Plant Anatomy, Eötvös Loránd University, Faculty of Sciences, Budapest, Hungary
| | - Pál Vági
- Department of Plant Anatomy, Eötvös Loránd University, Faculty of Sciences, Budapest, Hungary
| | - Katalin Salánki
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
15
|
He L, Wang Q, Gu Z, Liao Q, Palukaitis P, Du Z. A conserved RNA structure is essential for a satellite RNA-mediated inhibition of helper virus accumulation. Nucleic Acids Res 2019; 47:8255-8271. [PMID: 31269212 PMCID: PMC6735963 DOI: 10.1093/nar/gkz564] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/30/2019] [Accepted: 06/20/2019] [Indexed: 12/15/2022] Open
Abstract
As a class of parasitic, non-coding RNAs, satellite RNAs (satRNAs) have to compete with their helper virus for limited amounts of viral and/or host resources for efficient replication, by which they usually reduce viral accumulation and symptom expression. Here, we report a cucumber mosaic virus (CMV)-associated satRNA (sat-T1) that ameliorated CMV-induced symptoms, accompanied with a significant reduction in the accumulation of viral genomic RNAs 1 and 2, which encode components of the viral replicase. Intrans replication assays suggest that the reduced accumulation is the outcome of replication competition. The structural basis of sat-T1 responsible for the inhibition of viral RNA accumulation was determined to be a three-way branched secondary structure that contains two biologically important hairpins. One is indispensable for the helper virus inhibition, and the other engages in formation of a tertiary pseudoknot structure that is essential for sat-T1 survival. The secondary structure containing the pseudoknot is the first RNA element with a biological phenotype experimentally identified in CMV satRNAs, and it is structurally conserved in most CMV satRNAs. Thus, this may be a generic method for CMV satRNAs to inhibit the accumulation of the helper virus via the newly-identified RNA structure.
Collapse
Affiliation(s)
- Lu He
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Qian Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Zhouhang Gu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Qiansheng Liao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Peter Palukaitis
- Department of Horticultural Sciences, Seoul Women's University, Nowon-gu, Seoul 01797, Republic of Korea
| | - Zhiyou Du
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| |
Collapse
|
16
|
Mei Y, Wang Y, Hu T, Yang X, Lozano-Duran R, Sunter G, Zhou X. Nucleocytoplasmic Shuttling of Geminivirus C4 Protein Mediated by Phosphorylation and Myristoylation Is Critical for Viral Pathogenicity. MOLECULAR PLANT 2018; 11:1466-1481. [PMID: 30523782 DOI: 10.1016/j.molp.2018.10.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/17/2018] [Accepted: 10/17/2018] [Indexed: 05/13/2023]
Abstract
Many geminivirus C4 proteins induce severe developmental abnormalities in plants. We previously demonstrated that Tomato leaf curl Yunnan virus (TLCYnV) C4 induces plant developmental abnormalities at least partically by decreasing the accumulation of NbSKη, an ortholog of Arabidopsis BIN2 kinase involved in the brassinosteroid signaling pathway, in the nucleus through directing it to the plasma membrane. However, the molecular mechanism by which the membrane-associated C4 modifies the localization of NbSKη in the host cell remains unclear. Here, we show that TLCYnV C4 is a nucleocytoplasmic shuttle protein, and that C4 shuttling is accompanied by nuclear export of NbSKη. TLCYnV C4 is phosphorylated by NbSKη in the nucleus, which promotes myristoylation of the viral protein. Myristoylation of phosphorylated C4 favors its interaction with exportin-α (XPO I), which in turn facilitates nuclear export of the C4/NbSKη complex. Supporting this model, chemical inhibition of N-myristoyltransferases or exportin-α enhanced nuclear retention of C4, and mutations of the putative phosphorylation or myristoylation sites in C4 resulted in increased nuclear retention of C4 and thus decreased severity of C4-induced developmental abnormalities. The impact of C4 on development is also lessened when a nuclear localization signal or a nuclear export signal is added to its C-terminus, restricting it to a specific cellular niche and therefore impairing nucleocytoplasmic shuttling. Taken together, our results suggest that nucleocytoplasmic shuttling of TLCYnV C4, enabled by phosphorylation by NbSKη, myristoylation, and interaction with exportin-α, is critical for its function as a pathogenicity factor.
Collapse
Affiliation(s)
- Yuzhen Mei
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yaqin Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Tao Hu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiuling Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Rosa Lozano-Duran
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Garry Sunter
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
17
|
Gao S, Lu J, Cheng X, Gu Z, Liao Q, Du Z. Heterologous Replicase from Cucumoviruses can Replicate Viral RNAs, but is Defective in Transcribing Subgenomic RNA4A or Facilitating Viral Movement. Viruses 2018; 10:v10110590. [PMID: 30373277 PMCID: PMC6265798 DOI: 10.3390/v10110590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 10/18/2018] [Accepted: 10/26/2018] [Indexed: 12/05/2022] Open
Abstract
Interspecific exchange of RNA1 or RNA2 between the cucumoviruses cucumber mosaic virus (CMV) and tomato aspermy virus (TAV) was reported to be non-viable in plants previously. Here we investigated viability of the reassortants between CMV and TAV in Nicotiana benthamiana plants by Agrobacterium-mediated viral inoculation. The reassortants were composed of CMV RNA1 and TAV RNA2 plus RNA3 replicated in the inoculated leaves, while they were defective in viral systemic movement at the early stage of infection. Interestingly, the reassortant containing TAV RNA1 and CMV RNA2 and RNA3 infected plants systemically, but produced RNA4A (the RNA2 subgenome) at an undetectable level. The defect in production of RNA4A was due to the 1a protein encoded by TAV RNA1, and partially restored by replacing the C-terminus (helicase domain) in TAV 1a with that of CMV 1a. Collectively, exchange of the replicase components between CMV and TAV was acceptable for viral replication, but was defective in either directing transcription of subgenomic RNA4A or facilitating viral long-distance movement. Our finding may shed some light on evolution of subgenomic RNA4A in the family Bromoviridae.
Collapse
Affiliation(s)
- Shuangyu Gao
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Jinda Lu
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Xiaodong Cheng
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Zhouhang Gu
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Qiansheng Liao
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Zhiyou Du
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
18
|
Wrzesińska B, Dai Vu L, Gevaert K, De Smet I, Obrępalska-Stęplowska A. Peanut Stunt Virus and Its Satellite RNA Trigger Changes in Phosphorylation in N. benthamiana Infected Plants at the Early Stage of the Infection. Int J Mol Sci 2018; 19:E3223. [PMID: 30340407 PMCID: PMC6214028 DOI: 10.3390/ijms19103223] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/11/2018] [Accepted: 10/16/2018] [Indexed: 11/16/2022] Open
Abstract
Signaling in host plants is an integral part of a successful infection by pathogenic RNA viruses. Therefore, identifying early signaling events in host plants that play an important role in establishing the infection process will help our understanding of the disease process. In this context, phosphorylation constitutes one of the most important post-translational protein modifications, regulating many cellular signaling processes. In this study, we aimed to identify the processes affected by infection with Peanut stunt virus (PSV) and its satellite RNA (satRNA) in Nicotiana benthamiana at the early stage of pathogenesis. To achieve this, we performed proteome and phosphoproteome analyses on plants treated with PSV and its satRNA. The analysis of the number of differentially phosphorylated proteins showed strong down-regulation in phosphorylation in virus-treated plants (without satRNA). Moreover, proteome analysis revealed more down-regulated proteins in PSV and satRNA-treated plants, which indicated a complex dependence between proteins and their modifications. Apart from changes in photosynthesis and carbon metabolism, which are usually observed in virus-infected plants, alterations in proteins involved in RNA synthesis, transport, and turnover were observed. As a whole, this is the first community (phospho)proteome resource upon infection of N. benthamiana with a cucumovirus and its satRNA and this resource constitutes a valuable data set for future studies.
Collapse
Affiliation(s)
- Barbara Wrzesińska
- Institute of Plant Protection-National Research Institute, Department of Entomology, Animal Pests and Biotechnology, Władysława Węgorka 20, 60-318 Poznań, Poland.
| | - Lam Dai Vu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Ghent, Belgium.
- VIB Center for Plant Systems Biology, Technologiepark 927, 9052 Ghent, Belgium.
- Department of Biomolecular Medicine, Ghent University, B-9000 Ghent, Belgium.
- VIB Center for Medical Biotechnology, B-9000 Ghent, Belgium.
| | - Kris Gevaert
- Department of Biomolecular Medicine, Ghent University, B-9000 Ghent, Belgium.
- VIB Center for Medical Biotechnology, B-9000 Ghent, Belgium.
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Ghent, Belgium.
- VIB Center for Plant Systems Biology, Technologiepark 927, 9052 Ghent, Belgium.
| | - Aleksandra Obrępalska-Stęplowska
- Institute of Plant Protection-National Research Institute, Department of Entomology, Animal Pests and Biotechnology, Władysława Węgorka 20, 60-318 Poznań, Poland.
| |
Collapse
|
19
|
Salánki K, Gellért Á, Nemes K, Divéki Z, Balázs E. Molecular Modeling for Better Understanding of Cucumovirus Pathology. Adv Virus Res 2018; 102:59-88. [PMID: 30266176 DOI: 10.1016/bs.aivir.2018.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Cucumber mosaic virus (CMV) is a small RNA virus capable of infecting a wide variety of plant species. The high economic losses due to the CMV infection made this virus a relevant subject of scientific studies, which were further facilitated by the small size of the viral genome. Hence, CMV also became a model organism to investigate the molecular mechanism of pathogenesis. All viral functions are dependent on intra- and intermolecular interactions between nucleic acids and proteins of the virus and the host. This review summarizes the recent data on molecular determinants of such interactions. A particular emphasis is given to the results obtained by utilizing molecular-based planning and modeling techniques.
Collapse
Affiliation(s)
- Katalin Salánki
- MTA ATK, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Ákos Gellért
- MTA ATK, Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Katalin Nemes
- MTA ATK, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Zoltán Divéki
- MTA ATK, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Ervin Balázs
- MTA ATK, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
20
|
Zhang X, Dong K, Xu K, Zhang K, Jin X, Yang M, Zhang Y, Wang X, Han C, Yu J, Li D. Barley stripe mosaic virus infection requires PKA-mediated phosphorylation of γb for suppression of both RNA silencing and the host cell death response. THE NEW PHYTOLOGIST 2018; 218:1570-1585. [PMID: 29453938 DOI: 10.1111/nph.15065] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/22/2018] [Indexed: 06/08/2023]
Abstract
The Barley stripe mosaic virus (BSMV) γb protein is a viral suppressor of RNA silencing (VSR) and symptom determinant. However, it is unclear how post-translational modification affects the different functions of γb. Here, we demonstrate that γb is phosphorylated at Ser-96 by a PKA-like kinase in vivo and in vitro. Mutant viruses containing a nonphosphorylatable substitution (BSMVS96A or BSMVS96R ) exhibited reduced viral accumulation in Nicotiana benthamiana due to transient induction of the cell death response that constrained the virus to necrotic areas. By contrast, a BSMVS96D mutant virus that mimics γb phosphorylation spread similarly to the wild-type virus. Furthermore, the S96A mutant had reduced local and systemic γb VSR activity due to having compromised its binding activity to 21-bp dsRNA. However, overexpression of other VSRs in trans or in cis failed to rescue the necrosis induced by BSMVS96A , demonstrating that suppression of cell death by γb phosphorylation is functionally distinct from its RNA silencing suppressor activities. These results provide new insights into the function of γb phosphorylation in regulating RNA silencing and the BSMV-induced host cell death response, and contribute to our understanding of how the virus optimizes the balance between viral replication and virus survival in the host plants during virus infection.
Collapse
Affiliation(s)
- Xuan Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Kai Dong
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Kai Xu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, 210046, China
| | - Kun Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xuejiao Jin
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Meng Yang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yongliang Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xianbing Wang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Chenggui Han
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jialin Yu
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Dawei Li
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
21
|
Nemes K, Gellért Á, Almási A, Vági P, Sáray R, Kádár K, Salánki K. Phosphorylation regulates the subcellular localization of Cucumber Mosaic Virus 2b protein. Sci Rep 2017; 7:13444. [PMID: 29044170 PMCID: PMC5647415 DOI: 10.1038/s41598-017-13870-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 10/03/2017] [Indexed: 11/27/2022] Open
Abstract
The 2b protein of Cucumber mosaic virus has a role in nearly all steps of the viral cycle including cell-to-cell movement, symptom induction and suppression of antiviral RNA silencing. Previous studies demonstrated the presence of 2b protein in the nucleus and in cytoplasm as well. Phosphorylation site of 2b protein is conserved in all CMV isolates, including proposed constitute motifs for casein kinase II and cyclin-dependent kinase 2. To discern the impact of 2b protein phosphorylation, we created eight different mutants to mimic the non-phosporylated (serine to alanine) as well as the phosphorylated state (serine to aspartic acid) of the protein. We compared these mutants to the wild-type (Rs-CMV) virus in terms of symptom induction, gene silencing suppressor activity as well as in cellular localization. Here, in this study we confirmed the phosphorylation of 2b protein in vivo, both in infected N. benthamiana and in infiltrated patches. Mutants containing aspartic acid in the phosphorylation site accumulated only in the cytoplasm indicating that phosphorylated 2b protein could not enter the nucleus. We identified a conserved dual phosphorylation switch in CMV 2b protein, which equilibrates the shuttling of the 2b protein between the nucleus and the cytoplasm, and regulates the suppressor activity of the 2b protein.
Collapse
Affiliation(s)
- Katalin Nemes
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Ákos Gellért
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Asztéria Almási
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Pál Vági
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
- Department of Plant Anatomy, Eötvös Loránd University, Faculty of Sciences, Budapest, Hungary
| | - Réka Sáray
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Katalin Kádár
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Katalin Salánki
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
22
|
Cheng X, Xiong R, Li Y, Li F, Zhou X, Wang A. Sumoylation of Turnip mosaic virus RNA Polymerase Promotes Viral Infection by Counteracting the Host NPR1-Mediated Immune Response. THE PLANT CELL 2017; 29:508-525. [PMID: 28223439 PMCID: PMC5385955 DOI: 10.1105/tpc.16.00774] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/27/2017] [Accepted: 02/17/2017] [Indexed: 05/14/2023]
Abstract
Sumoylation is a transient, reversible dynamic posttranslational modification that regulates diverse cellular processes including plant-pathogen interactions. Sumoylation of NPR1, a master regulator of basal and systemic acquired resistance to a broad spectrum of plant pathogens, activates the defense response. Here, we report that NIb, the only RNA-dependent RNA polymerase of Turnip mosaic virus (TuMV) that targets the nucleus upon translation, interacts exclusively with and is sumoylated by SUMO3 (SMALL UBIQUITIN-LIKE MODIFIER3), but not the three other Arabidopsis thaliana SUMO paralogs. TuMV infection upregulates SUMO3 expression, and the sumoylation of NIb by SUMO3 regulates the nuclear-cytoplasmic partitioning of NIb. We identified the SUMO-interacting motif in NIb that is essential for its sumoylation and found that knockout or overexpression of SUMO3 suppresses TuMV replication and attenuates viral symptoms, suggesting that SUMO3 plays dual roles as a host factor of TuMV and as an antiviral defender. Sumoylation of NIb by SUMO3 is crucial for its role in suppressing the host immune response. Taken together, our findings reveal that sumoylation of NIb promotes TuMV infection by retargeting NIb from the nucleus to the cytoplasm where viral replication takes place and by suppressing host antiviral responses through counteracting the TuMV infection-induced, SUMO3-activated, NPR1-mediated resistance pathway.
Collapse
Affiliation(s)
- Xiaofei Cheng
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3, Canada
| | - Ruyi Xiong
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3, Canada
- Department of Biology, Western University, London, Ontario N6A 5B7, Canada
| | - Yinzi Li
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3, Canada
- Department of Biology, Western University, London, Ontario N6A 5B7, Canada
| | - Fangfang Li
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3, Canada
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3, Canada
- Department of Biology, Western University, London, Ontario N6A 5B7, Canada
| |
Collapse
|
23
|
Rodriguez-Medina C, Boissinot S, Chapuis S, Gereige D, Rastegar M, Erdinger M, Revers F, Ziegler-Graff V, Brault V. A protein kinase binds the C-terminal domain of the readthrough protein of Turnip yellows virus and regulates virus accumulation. Virology 2015; 486:44-53. [PMID: 26402374 DOI: 10.1016/j.virol.2015.08.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 06/20/2015] [Accepted: 08/29/2015] [Indexed: 10/23/2022]
Abstract
Turnip yellows virus (TuYV), a phloem-limited virus, encodes a 74kDa protein known as the readthrough protein (RT) involved in virus movement. We show here that a TuYV mutant deleted of the C-terminal part of the RT protein (TuYV-∆RTCter) was affected in long-distance trafficking in a host-specific manner. By using the C-terminal domain of the RT protein as a bait in a yeast two-hybrid screen of a phloem cDNA library from Arabidopsis thaliana we identified the calcineurin B-like protein-interacting protein kinase-7 (AtCIPK7). Transient expression of a GFP:CIPK7 fusion protein in virus-inoculated Nicotiana benthamiana leaves led to local increase of wild-type TuYV accumulation, but not that of TuYV-∆RTCter. Surprisingly, elevated virus titer in inoculated leaves did not result in higher TuYV accumulation in systemic leaves, which indicates that virus long-distance movement was not affected. Since GFP:CIPK7 was localized in or near plasmodesmata, CIPK7 could negatively regulate TuYV export from infected cells.
Collapse
Affiliation(s)
| | | | - Sophie Chapuis
- Institut de Biologie Moléculaire des Plantes, Laboratoire propre du CNRS conventionné avec l'Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | - Dalya Gereige
- UMR 1131 SVQV INRA-UDS, 28 rue de Herrlisheim, 68021 Colmar, France
| | - Maryam Rastegar
- UMR 1131 SVQV INRA-UDS, 28 rue de Herrlisheim, 68021 Colmar, France
| | - Monique Erdinger
- UMR 1131 SVQV INRA-UDS, 28 rue de Herrlisheim, 68021 Colmar, France
| | - Frédéric Revers
- INRA, Université de Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, 33882 Villenave d'Ornon, France
| | - Véronique Ziegler-Graff
- Institut de Biologie Moléculaire des Plantes, Laboratoire propre du CNRS conventionné avec l'Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | - Véronique Brault
- UMR 1131 SVQV INRA-UDS, 28 rue de Herrlisheim, 68021 Colmar, France.
| |
Collapse
|
24
|
Hu Y, Li Z, Yuan C, Jin X, Yan L, Zhao X, Zhang Y, Jackson AO, Wang X, Han C, Yu J, Li D. Phosphorylation of TGB1 by protein kinase CK2 promotes barley stripe mosaic virus movement in monocots and dicots. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4733-47. [PMID: 25998907 PMCID: PMC4507770 DOI: 10.1093/jxb/erv237] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The barley stripe mosaic virus (BSMV) triple gene block 1 (TGB1) protein is required for virus cell-to-cell movement. However, little information is available about how these activities are regulated by post-translational modifications. In this study, we showed that the BSMV Xinjiang strain TGB1 (XJTGB1) is phosphorylated in vivo and in vitro by protein kinase CK2 from barley and Nicotiana benthamiana. Liquid chromatography tandem mass spectrometry analysis and in vitro phosphorylation assays demonstrated that Thr-401 is the major phosphorylation site of the XJTGB1 protein, and suggested that a Thr-395 kinase docking site supports Thr-401 phosphorylation. Substitution of Thr-395 with alanine (T395A) only moderately impaired virus cell-to-cell movement and systemic infection. In contrast, the Thr-401 alanine (T401A) virus mutant was unable to systemically infect N. benthamiana but had only minor effects in monocot hosts. Substitution of Thr-395 or Thr-401 with aspartic acid interfered with monocot and dicot cell-to-cell movement and the plants failed to develop systemic infections. However, virus derivatives with single glutamic acid substitutions at Thr-395 and Thr-401 developed nearly normal systemic infections in the monocot hosts but were unable to infect N. benthamiana systemically, and none of the double mutants was able to infect dicot and monocot hosts. The mutant XJTGB1T395A/T401A weakened in vitro interactions between XJTGB1 and XJTGB3 proteins but had little effect on XJTGB1 RNA-binding ability. Taken together, our results support a critical role of CK2 phosphorylation in the movement of BSMV in monocots and dicots, and provide new insights into the roles of phosphorylation in TGB protein functions.
Collapse
Affiliation(s)
- Yue Hu
- State Key laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Zhenggang Li
- State Key laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Cheng Yuan
- State Key laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Xuejiao Jin
- State Key laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Lijie Yan
- State Key laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Xiaofei Zhao
- State Key laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Yongliang Zhang
- State Key laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Andrew O Jackson
- Department of Plant and Microbial Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Xianbing Wang
- State Key laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Chenggui Han
- State Key laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Jialin Yu
- State Key laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Dawei Li
- State Key laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| |
Collapse
|
25
|
Wang A. Dissecting the molecular network of virus-plant interactions: the complex roles of host factors. ANNUAL REVIEW OF PHYTOPATHOLOGY 2015; 53:45-66. [PMID: 25938276 DOI: 10.1146/annurev-phyto-080614-120001] [Citation(s) in RCA: 246] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A successful infection by a plant virus results from the complex molecular interplay between the host plant and the invading virus. Thus, dissecting the molecular network of virus-host interactions advances the understanding of the viral infection process and may assist in the development of novel antiviral strategies. In the past decade, molecular identification and functional characterization of host factors in the virus life cycle, particularly single-stranded, positive-sense RNA viruses, have been a research focus in plant virology. As a result, a number of host factors have been identified. These host factors are implicated in all the major steps of the infection process. Some host factors are diverted for the viral genome translation, some are recruited to improvise the viral replicase complexes for genome multiplication, and others are components of transport complexes for cell-to-cell spread via plasmodesmata and systemic movement through the phloem. This review summarizes current knowledge about host factors and discusses future research directions.
Collapse
Affiliation(s)
- Aiming Wang
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario, N5V 4T3, Canada;
| |
Collapse
|
26
|
Phosphorylation of hepatitis C virus RNA polymerases ser29 and ser42 by protein kinase C-related kinase 2 regulates viral RNA replication. J Virol 2014; 88:11240-52. [PMID: 25031343 DOI: 10.1128/jvi.01826-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
UNLABELLED Hepatitis C virus (HCV) nonstructural protein 5B (NS5B), an RNA-dependent RNA polymerase (RdRp), is the key enzyme for HCV RNA replication. We previously showed that HCV RdRp is phosphorylated by protein kinase C-related kinase 2 (PRK2). In the present study, we used biochemical and reverse-genetics approaches to demonstrate that HCV NS5B phosphorylation is crucial for viral RNA replication in cell culture. Two-dimensional phosphoamino acid analysis revealed that PRK2 phosphorylates NS5B exclusively at its serine residues in vitro and in vivo. Using in vitro kinase assays and mass spectrometry, we identified two phosphorylation sites, Ser29 and Ser42, in the Δ1 finger loop region that interacts with the thumb subdomain of NS5B. Colony-forming assays using drug-selectable HCV subgenomic RNA replicons revealed that preventing phosphorylation by Ala substitution at either Ser29 or Ser42 impairs HCV RNA replication. Furthermore, reverse-genetics studies using HCV infectious clones encoding phosphorylation-defective NS5B confirmed the crucial role of these PRK2 phosphorylation sites in viral RNA replication. Molecular-modeling studies predicted that the phosphorylation of NS5B stabilizes the interactions between its Δ1 loop and thumb subdomain, which are required for the formation of the closed conformation of NS5B known to be important for de novo RNA synthesis. Collectively, our results provide evidence that HCV NS5B phosphorylation has a positive regulatory role in HCV RNA replication. IMPORTANCE While the role of RNA-dependent RNA polymerases (RdRps) in viral RNA replication is clear, little is known about their functional regulation by phosphorylation. In this study, we addressed several important questions about the function and structure of phosphorylated hepatitis C virus (HCV) nonstructural protein 5B (NS5B). Reverse-genetics studies with HCV replicons encoding phosphorylation-defective NS5B mutants and analysis of their RdRp activities revealed previously unidentified NS5B protein features related to HCV replication and NS5B phosphorylation. These attributes most likely reflect potential structural changes induced by phosphorylation in the Δ1 finger loop region of NS5B with two identified phosphate acceptor sites, Ser29 and Ser42, which may transiently affect the closed conformation of NS5B. Elucidating the effects of dynamic changes in NS5B phosphorylation status during viral replication and their impacts on RNA synthesis will improve our understanding of the molecular mechanisms of NS5B phosphorylation-mediated regulation of HCV replication.
Collapse
|
27
|
Mauck KE, De Moraes CM, Mescher MC. Biochemical and physiological mechanisms underlying effects of Cucumber mosaic virus on host-plant traits that mediate transmission by aphid vectors. PLANT, CELL & ENVIRONMENT 2014; 37:1427-39. [PMID: 24329574 DOI: 10.1111/pce.12249] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 11/19/2013] [Accepted: 11/21/2013] [Indexed: 05/25/2023]
Abstract
The transmission of insect-vectored diseases entails complex interactions among pathogens, hosts and vectors. Chemistry plays a key role in these interactions; yet, little work has addressed the chemical ecology of insect-vectored diseases, especially in plant pathosystems. Recently, we documented effects of Cucumber mosaic virus (CMV) on the phenotype of its host (Cucurbita pepo) that influence plant-aphid interactions and appear conducive to the non-persistent transmission of this virus. CMV reduces host-plant quality for aphids, causing rapid vector dispersal. Nevertheless, aphids are attracted to the elevated volatile emissions of CMV-infected plants. Here, we show that CMV infection (1) disrupts levels of carbohydrates and amino acids in leaf tissue (where aphids initially probe plants and acquire virions) and in the phloem (where long-term feeding occurs) in ways that reduce plant quality for aphids; (2) causes constitutive up-regulation of salicylic acid; (3) alters herbivore-induced jasmonic acid biosynthesis as well as the sensitivity of downstream defences to jasmonic acid; and (4) elevates ethylene emissions and free fatty acid precursors of volatiles. These findings are consistent with previously documented patterns of aphid performance and behaviour and provide a foundation for further exploration of the genetic mechanisms responsible for these effects and the evolutionary processes that shape them.
Collapse
Affiliation(s)
- Kerry E Mauck
- Department of Entomology, Penn State University, University Park, PA, 16802, USA; Department of Environmental Systems Science, ETH Zürich, 8092, Zürich, Switzerland
| | | | | |
Collapse
|
28
|
Saxena P, Lomonossoff GP. Virus infection cycle events coupled to RNA replication. ANNUAL REVIEW OF PHYTOPATHOLOGY 2014; 52:197-212. [PMID: 24906127 DOI: 10.1146/annurev-phyto-102313-050205] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Replication, the process by which the genetic material of a virus is copied to generate multiple progeny genomes, is the central part of the virus infection cycle. For an infection to be productive, it is essential that this process is coordinated with other aspects of the cycle, such as translation of the viral genome, encapsidation, and movement of the genome between cells. In the case of positive-strand RNA viruses, this represents a particular challenge, as the infecting genome must not only be replicated but also serve as an mRNA for the production of the replication-associated proteins. In recent years, it has become apparent that in positive-strand RNA plant viruses all the aspects of the infection cycle are intertwined. This article reviews the current state of knowledge regarding replication-associated events in such viruses.
Collapse
Affiliation(s)
- Pooja Saxena
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom; ,
| | | |
Collapse
|
29
|
Chasman D, Gancarz B, Hao L, Ferris M, Ahlquist P, Craven M. Inferring host gene subnetworks involved in viral replication. PLoS Comput Biol 2014; 10:e1003626. [PMID: 24874113 PMCID: PMC4038467 DOI: 10.1371/journal.pcbi.1003626] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 02/06/2014] [Indexed: 12/16/2022] Open
Abstract
Systematic, genome-wide loss-of-function experiments can be used to identify host factors that directly or indirectly facilitate or inhibit the replication of a virus in a host cell. We present an approach that combines an integer linear program and a diffusion kernel method to infer the pathways through which those host factors modulate viral replication. The inputs to the method are a set of viral phenotypes observed in single-host-gene mutants and a background network consisting of a variety of host intracellular interactions. The output is an ensemble of subnetworks that provides a consistent explanation for the measured phenotypes, predicts which unassayed host factors modulate the virus, and predicts which host factors are the most direct interfaces with the virus. We infer host-virus interaction subnetworks using data from experiments screening the yeast genome for genes modulating the replication of two RNA viruses. Because a gold-standard network is unavailable, we assess the predicted subnetworks using both computational and qualitative analyses. We conduct a cross-validation experiment in which we predict whether held-aside test genes have an effect on viral replication. Our approach is able to make high-confidence predictions more accurately than several baselines, and about as well as the best baseline, which does not infer mechanistic pathways. We also examine two kinds of predictions made by our method: which host factors are nearest to a direct interaction with a viral component, and which unassayed host genes are likely to be involved in viral replication. Multiple predictions are supported by recent independent experimental data, or are components or functional partners of confirmed relevant complexes or pathways. Integer program code, background network data, and inferred host-virus subnetworks are available at http://www.biostat.wisc.edu/~craven/chasman_host_virus/.
Collapse
Affiliation(s)
- Deborah Chasman
- Department of Computer Sciences, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Department of Biostatistics and Medical Informatics, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Brandi Gancarz
- Luminex Corporation, Madison, Wisconsin, United States of America
- Institute for Molecular Virology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Linhui Hao
- Institute for Molecular Virology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Howard Hughes Medical Institute, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Michael Ferris
- Department of Computer Sciences, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Paul Ahlquist
- Institute for Molecular Virology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Howard Hughes Medical Institute, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Morgridge Institute for Research, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Mark Craven
- Department of Computer Sciences, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Department of Biostatistics and Medical Informatics, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
30
|
Kang HK, Yang SH, Lee YP, Park YI, Kim SH. A tobacco CBL-interacting protein kinase homolog is involved in phosphorylation of the N-terminal domain of the cucumber mosaic virus polymerase 2a protein. Biosci Biotechnol Biochem 2012; 76:2101-6. [PMID: 23132573 DOI: 10.1271/bbb.120474] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The replication and transcription of cucumber mosaic virus (CMV) are catalyzed by multi-protein complex RNA-dependent RNA polymerase (RdRp), which is composed of the viral-encoded 1a and 2a proteins with host factors. We have reported that the N-terminal region of the polymerase 2a protein, composed of 126 amino acids, is required for interaction with the helicase 1a protein, and that the phosphorylation of the region abrogated interaction with the 1a protein, suggesting a mechanism of resistance in host plants against viral infection. Here, we found that three protein 2a kinases, of 60, 55, and 38 kDa, co-purified with the tobacco membrane fraction in an in-gel kinase assay. By yeast two-hybrid library screening using the N-terminal 126 amino acids of 2a as a bait, we identified CBL-interacting protein kinase 12 (NtCIPK12) corresponding to 55 kDa protein 2a kinase. The bacterially expressed protein kinase showed protein 2a kinase (t2aK) activity in vitro. We found that NtCIPK12 stabilized upon CMV infection at the post-translational level, and accumulated more heavily to the membrane than in the cytosol.
Collapse
Affiliation(s)
- Hyun Ku Kang
- College of Life Sciences and Biotechnology, Korea University, Anam-dong, Seoul 136-701, Korea
| | | | | | | | | |
Collapse
|
31
|
Hernández S, Venegas M, Brahm J, Villanueva RA. The viral transactivator HBx protein exhibits a high potential for regulation via phosphorylation through an evolutionarily conserved mechanism. Infect Agent Cancer 2012; 7:27. [PMID: 23079056 PMCID: PMC3533737 DOI: 10.1186/1750-9378-7-27] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Accepted: 09/20/2012] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED BACKGROUND Hepatitis B virus (HBV) encodes an oncogenic factor, HBx, which is a multifunctional protein that can induce dysfunctional regulation of signaling pathways, transcription, and cell cycle progression, among other processes, through interactions with target host factors. The subcellular localization of HBx is both cytoplasmic and nuclear. This dynamic distribution of HBx could be essential to the multiple roles of the protein at different stages during HBV infection. Transactivational functions of HBx may be exerted both in the nucleus, via interaction with host DNA-binding proteins, and in the cytoplasm, via signaling pathways. Although there have been many studies describing different pathways altered by HBx, and its innumerable binding partners, the molecular mechanism that regulates its different roles has been difficult to elucidate. METHODS In the current study, we took a bioinformatics approach to investigate whether the viral protein HBx might be regulated via phosphorylation by an evolutionarily conserved mechanism. RESULTS We found that the phylogenetically conserved residues Ser25 and Ser41 (both within the negative regulatory domain), and Thr81 (in the transactivation domain) are predicted to be phosphorylated. By molecular 3D modeling of HBx, we further show these residues are all predicted to be exposed on the surface of the protein, making them easily accesible to these types of modifications. Furthermore, we have also identified Yin Yang sites that might have the potential to be phosphorylated and O-β-GlcNAc interplay at the same residues. CONCLUSIONS Thus, we propose that the different roles of HBx displayed in different subcellular locations might be regulated by an evolutionarily conserved mechanism of posttranslational modification, via phosphorylation.
Collapse
Affiliation(s)
- Sergio Hernández
- Laboratorio de Virus Hepatitis, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Avda. República 217, 3er piso, Santiago 8370146, Chile
| | - Mauricio Venegas
- Sección de Gastroenterología, Departamento de Medicina, Hospital Clínico Universidad de Chile, Avda. Santos Dumont 999, Independencia, Santiago 8340457, Chile
| | - Javier Brahm
- Sección de Gastroenterología, Departamento de Medicina, Hospital Clínico Universidad de Chile, Avda. Santos Dumont 999, Independencia, Santiago 8340457, Chile
| | - Rodrigo A Villanueva
- Laboratorio de Virus Hepatitis, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Avda. República 217, 3er piso, Santiago 8370146, Chile
| |
Collapse
|
32
|
Obrępalska-Stęplowska A, Budziszewska M, Wieczorek P, Czerwoniec A. Analysis of two strains of Peanut stunt virus: satRNA-associated and satRNA free. Virus Genes 2012; 44:513-21. [PMID: 22392626 DOI: 10.1007/s11262-012-0729-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Accepted: 02/17/2012] [Indexed: 11/26/2022]
Abstract
Peanut stunt virus (PSV) is a pathogen of legumes, vegetables, trees, and weeds occurring worldwide. The species is characterized by significant genetic variability. PSV strains are classified into four subgroups on the basis of their nucleotide sequence homology. Here, we are presenting two further, fully sequenced PSV strains-PSV-Ag and PSV-G, that could be considered as I subgroup representatives. However, their sequence homology with other typical I subgroups members, similarly as another strain-PSV-P, characterized by our group previously, is lower than 90%. This lead us to propose further subdivision of the I subgroup into IA, IB, and IC units, and to classify PSV-Ag and PSV-G strains to the last one. In this article, we are showing that identity level of PSV-Ag and PSV-G is very high and apart from the presence of satRNA in the first one, they differ only by a few nucleotides in their genomic RNAs. Nevertheless, symptoms they cause on host plants might differ significantly, just as the levels in infected plants. Effect of single amino acid changes between strains on the three-dimensional structure of viral proteins was analyzed. Differences occur mainly on the protein surfaces which can possibly affect protein-protein interaction in infected cells, which is discussed.
Collapse
|
33
|
Vijayapalani P, Chen JCF, Liou MR, Chen HC, Hsu YH, Lin NS. Phosphorylation of bamboo mosaic virus satellite RNA (satBaMV)-encoded protein P20 downregulates the formation of satBaMV-P20 ribonucleoprotein complex. Nucleic Acids Res 2012; 40:638-49. [PMID: 21965537 PMCID: PMC3258126 DOI: 10.1093/nar/gkr705] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 08/14/2011] [Accepted: 08/15/2011] [Indexed: 01/13/2023] Open
Abstract
Bamboo mosaic virus (BaMV) satellite RNA (satBaMV) depends on BaMV for its replication and encapsidation. SatBaMV-encoded P20 protein is an RNA-binding protein that facilitates satBaMV systemic movement in co-infected plants. Here, we examined phosphorylation of P20 and its regulatory functions. Recombinant P20 (rP20) was phosphorylated by host cellular kinase(s) in vitro, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and mutational analyses revealed Ser-11 as the phosphorylation site. The phosphor-mimic rP20 protein interactions with satBaMV-translated mutant P20 were affected. In overlay assay, the Asp mutation at S11 (S11D) completely abolished the self-interaction of rP20 and significantly inhibited the interaction with both the WT and S11A rP20. In chemical cross-linking assays, S11D failed to oligomerize. Electrophoretic mobility shift assay and subsequent Hill transformation analysis revealed a low affinity of the phospho-mimicking rP20 for satBaMV RNA. Substantial modulation of satBaMV RNA conformation upon interaction with nonphospho-mimic rP20 in circular dichroism analysis indicated formation of stable satBaMV ribonucleoprotein complexes. The dissimilar satBaMV translation regulation of the nonphospho- and phospho-mimic rP20 suggests that phosphorylation of P20 in the ribonucleoprotein complex converts the translation-incompetent satBaMV RNA to messenger RNA. The phospho-deficient or phospho-mimicking P20 mutant of satBaMV delayed the systemic spread of satBaMV in co-infected Nicotiana benthamiana with BaMV. Thus, satBaMV likely regulates the formation of satBaMV RNP complex during co-infection in planta.
Collapse
Affiliation(s)
- Paramasivan Vijayapalani
- The Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan, Republic of China
| | - Jeff Chien-Fu Chen
- The Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan, Republic of China
| | - Ming-Ru Liou
- The Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan, Republic of China
| | - Hsin-Chuan Chen
- The Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan, Republic of China
| | - Yau-Heiu Hsu
- The Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan, Republic of China
| | - Na-Sheng Lin
- The Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan, Republic of China
| |
Collapse
|
34
|
Huh SU, Kim MJ, Ham BK, Paek KH. A zinc finger protein Tsip1 controls Cucumber mosaic virus infection by interacting with the replication complex on vacuolar membranes of the tobacco plant. THE NEW PHYTOLOGIST 2011; 191:746-762. [PMID: 21477206 DOI: 10.1111/j.1469-8137.2011.03717.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
• In Cucumber mosaic virus (CMV) RNA replication, replicase-associated protein CMV 1a and RNA-dependent RNA polymerase protein CMV 2a are essential for formation of an active virus replicase complex on vacuolar membranes. • To identify plant host factors involved in CMV replication, a yeast two-hybrid system was used with CMV 1a protein as bait. One of the candidate genes encoded Tsi1-interacting protein 1 (Tsip1), a zinc (Zn) finger protein. Tsip1 strongly interacted with CMV 2a protein, too. • Formation of a Tsip1 complex involving CMV 1a or CMV 2a was confirmed in vitro and in planta. When 35S::Tsip1 tobacco (Nicotiana tabacum) plants were inoculated with CMV-Kor, disease symptom development was delayed and the accumulation of CMV RNAs and coat protein was decreased in both the infected local leaves and the uninfected upper leaves, compared with the wild type, whereas Tsip1-RNAi plants showed modestly but consistently increased CMV susceptibility. In a CMV replication assay, CMV RNA concentrations were reduced in the 35S::Tsip1 transgenic protoplasts compared with wild-type (WT) protoplasts. • These results indicate that Tsip1 might directly control CMV multiplication in tobacco plants by formation of a complex with CMV 1a and CMV 2a.
Collapse
Affiliation(s)
- Sung Un Huh
- School of Life Sciences and Biotechnology, Korea University, 1, 5-ga, Anam-dong, Sungbuk-gu, Seoul 136-701, Republic of Korea
| | - Min Jung Kim
- Examination Division of Food and Biological Resources, Korean Intellectual Property Office, Daejeon 302-701, Republic of Korea
| | - Byung-Kook Ham
- Section of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Kyung-Hee Paek
- School of Life Sciences and Biotechnology, Korea University, 1, 5-ga, Anam-dong, Sungbuk-gu, Seoul 136-701, Republic of Korea
| |
Collapse
|
35
|
Barajas D, Nagy PD. Ubiquitination of tombusvirus p33 replication protein plays a role in virus replication and binding to the host Vps23p ESCRT protein. Virology 2009; 397:358-68. [PMID: 20004458 DOI: 10.1016/j.virol.2009.11.010] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 10/19/2009] [Accepted: 11/06/2009] [Indexed: 12/27/2022]
Abstract
Post-translational modifications of viral replication proteins could be widespread phenomena during the replication of plus-stranded RNA viruses. In this article, we identify two lysines in the tombusvirus p33 replication co-factor involved in ubiquitination and show that the same lysines are also important for the p33 to interact with the host Vps23p ESCRT-I factor. We find that the interaction of p33 with Vps23p is also affected by a "late-domain"-like sequence in p33. The combined mutations of the two lysines and the late-domain-like sequences in p33 reduced replication of a replicon RNA of Tomato bushy stunt virus in yeast model host, in plant protoplasts, and plant leaves, suggesting that p33-Vps23p ESCRT protein interaction affects tombusvirus replication. Using ubiquitin-mimicking p33 chimeras, we demonstrate that high level of p33 ubiquitination is inhibitory for TBSV replication. These findings argue that optimal level of p33 ubiquitination plays a regulatory role during tombusvirus infections.
Collapse
Affiliation(s)
- Daniel Barajas
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| | | |
Collapse
|
36
|
Seo JK, Kwon SJ, Choi HS, Kim KH. Evidence for alternate states of Cucumber mosaic virus replicase assembly in positive- and negative-strand RNA synthesis. Virology 2009; 383:248-60. [PMID: 19022467 DOI: 10.1016/j.virol.2008.10.033] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Revised: 08/30/2008] [Accepted: 10/21/2008] [Indexed: 01/22/2023]
Abstract
Cucumber mosaic virus (CMV) encodes two viral replication proteins, 1a and 2a. Accumulating evidence implies that different aspects of 1a-2a interaction in replication complex assembly are involved in the regulation of virus replication. To further investigate CMV replicase assembly and to dissect the involvement of replicase activities in negative- and positive-strand synthesis, we transiently expressed CMV RNAs and/or proteins in Nicotiana benthamiana leaves using a DNA or RNA-mediated expression system. Surprisingly, we found that, even in the absence of 1a, 2a is capable of synthesizing positive-strand RNAs, while 1a and 2a are both required for negative-strand synthesis. We also report evidence that 1a capping activities function independently of 2a. Moreover, using 1a mutants, we show that capping activities of 1a are crucial for viral translation but not for RNA transcription. These results support the concept that two or more alternate states of replicase assembly are involved in CMV replication.
Collapse
Affiliation(s)
- Jang-Kyun Seo
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | | | | | | |
Collapse
|
37
|
Abstract
Plus-stranded RNA viruses induce large membrane structures that might support the replication of their genomes. Similarly, cytoplasmic replication of poxviruses (large DNA viruses) occurs in associated membranes. These membranes originate from the endoplasmic reticulum (ER) or endosomes. Membrane vesicles that support viral replication are induced by a number of RNA viruses. Similarly, the poxvirus replication site is surrounded by a double-membraned cisterna that is derived from the ER. Analogies to autophagy have been proposed since the finding that autophagy cellular processes involve the formation of double-membrane vesicles. However, molecular evidence to support this hypothesis is lacking. Membrane association of the viral replication complex is mediated by the presence of one or more viral proteins that contain sequences which associate with, or integrate into, membranes. Replication-competent membranes might contain viral or cellular proteins that contain amphipathic helices, which could mediate the membrane bending that is required to form spherical vesicles. Whereas poxvirus DNA replication occurs inside the ER-enclosed site, for most RNA viruses the topology of replication is not clear. Preliminary results for some RNA viruses suggest that their replication could also occur inside double-membrane vesicles. We speculate that cytoplasmic replication might occur inside sites that are 'enwrapped' by an ER-derived cisterna, and that these cisternae are open to the cytoplasm. Thus, RNA and DNA viruses could use a common mechanism for replication that involves membrane wrapping by cellular cisternal membranes. We propose that three-dimensional analyses using high-resolution electron-microscopy techniques could be useful for addressing this issue. High-throughput small-interfering-RNA screens should also shed light on molecular requirements for virus-induced membrane modifications.
Many viruses induce the formation of altered membrane structures upon replication in host cells. This Review examines how viruses modify intracellular membranes, highlights similarities between the structures that are induced by viruses from different families and discusses how these structures could be formed. Viruses are intracellular parasites that use the host cell they infect to produce new infectious progeny. Distinct steps of the virus life cycle occur in association with the cytoskeleton or cytoplasmic membranes, which are often modified during infection. Plus-stranded RNA viruses induce membrane proliferations that support the replication of their genomes. Similarly, cytoplasmic replication of some DNA viruses occurs in association with modified cellular membranes. We describe how viruses modify intracellular membranes, highlight similarities between the structures that are induced by viruses of different families and discuss how these structures could be formed.
Collapse
|
38
|
Kim MJ, Huh SU, Ham BK, Paek KH. A novel methyltransferase methylates Cucumber mosaic virus 1a protein and promotes systemic spread. J Virol 2008; 82:4823-33. [PMID: 18321966 PMCID: PMC2346749 DOI: 10.1128/jvi.02518-07] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2007] [Accepted: 02/27/2008] [Indexed: 11/20/2022] Open
Abstract
In mammalian and yeast systems, methyltransferases have been implicated in the regulation of diverse processes, such as protein-protein interactions, protein localization, signal transduction, RNA processing, and transcription. The Cucumber mosaic virus (CMV) 1a protein is essential not only for virus replication but also for movement. Using a yeast two-hybrid system with tobacco plants, we have identified a novel gene encoding a methyltransferase that interacts with the CMV 1a protein and have designated this gene Tcoi1 (tobacco CMV 1a-interacting protein 1). Tcoi1 specifically interacted with the methyltransferase domain of CMV 1a, and the expression of Tcoi1 was increased by CMV inoculation. Biochemical studies revealed that the interaction of Tcoi1 with CMV 1a protein was direct and that Tcoi1 methylated CMV 1a protein both in vitro and in vivo. The CMV 1a binding activity of Tcoi1 is in the C-terminal domain, which shows the methyltransferase activity. The overexpression of Tcoi1 enhanced the CMV infection, while the reduced expression of Tcoi1 decreased virus infectivity. These results suggest that Tcoi1 controls the propagation of CMV through an interaction with the CMV 1a protein.
Collapse
Affiliation(s)
- Min Jung Kim
- School of Life Sciences and Biotechnology, Korea University, 1, 5-ga, Anam-dong, Sungbuk-gu, Seoul 136-701, Republic of South Korea
| | | | | | | |
Collapse
|
39
|
Hwang MS, Kim KN, Lee JH, Park YI. Identification of amino acid sequences determining interaction between the cucumber mosaic virus-encoded 2a polymerase and 3a movement proteins. J Gen Virol 2008; 88:3445-3451. [PMID: 18024915 DOI: 10.1099/vir.0.83207-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cucumber mosaic virus (CMV)-encoded 3a movement protein (MP) is indispensable for CMV movement in plants. We have previously shown that MP interacts directly with the CMV-encoded 2a polymerase protein in vitro. Here, we further dissected this interaction and determined the amino acid sequences that are responsible for the MP and 2a polymerase protein interaction. Both the N-terminal 21 amino acids and the central GDD motif of the 2a polymerase protein were important for interacting with the MP. Although each of the regions alone was sufficient for the interaction with MP, quantitative yeast two-hybrid analyses showed that they acted synergistically to enhance the binding affinity. The MP N-terminal 20 amino acids were sufficient for interacting with the 2a polymerase protein, and the serine residue at position 14 played a critical role in the interaction. Multiple sequence alignment showed that the 2a protein interacting regions and the serine at position 14 in the MP are highly conserved among subgroup I and II CMV isolates.
Collapse
Affiliation(s)
- Min Sook Hwang
- School of Life Sciences and Biotechnology, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-713, Korea
| | - Kyung Nam Kim
- Department of Molecular Biology, Sejong University, Gunja-dong, Gwangjin-gu, Seoul 143-747, Korea
| | - Jeong Hyun Lee
- School of Life Sciences and Biotechnology, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-713, Korea
| | - Young In Park
- School of Life Sciences and Biotechnology, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-713, Korea
| |
Collapse
|
40
|
Abstract
Plant viruses encode movement proteins (MPs) which play important roles in spreading their infectious materials throughout host plants. This infection is facilitated by cell-to-cell trafficking of MPs through specialized channels termed plasmodesmata, which involves specific interactions between MPs and host factors. Recently, we have reported the identification of a host protein kinase named plasmodesmal-associated protein kinase (PAPK) which specifically phosphorylates a subset of noncell autonomous proteins in vitro, including MPs of Tobacco mosaic virus (TMV) and Bean dwarf mosaic virus (BDMV). Biochemical purification of PAPK was achieved by developing a method in which a series of liquid chromatographic separations of plasmodesmal-enriched subcellular fractions was coupled with phosphorylation assays using TMV MP as a substrate. Application of this approach may prove useful in isolating other host kinases that interact with various viral components.
Collapse
Affiliation(s)
- Jung-Youn Lee
- Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, 15 Innovation Way, Newark, DE 19711, USA
| |
Collapse
|
41
|
Abstract
Identification of the roles of replication factors represents one of the major frontiers in current virus research. Among plant viruses, the positive-stranded (+) RNA viruses are the largest group and the most widespread. The central step in the infection cycles of (+) RNA viruses is RNA replication, which leads to rapid production of huge number of viral (+) RNA progeny in the infected plant cells. The RNA replication process is carried out by the virus-specific replicase complex consisting of viral RNA-dependent RNA polymerase, one or more auxiliary viral replication proteins, and host factors, which assemble in specialized membranous compartments in infected cells. Replication is followed by cell-to-cell and long-distance movement to invade the entire plant and/or encapsidation to facilitate transmission to new plants. This chapter provides an overview of our current understanding of the role of viral replication proteins during genome replication. The recent significant progress in this research area is based on development of powerful in vivo and in vitro approaches, including replicase assays, reverse genetic approaches, intracelular localization studies and the use of plant or yeast model hosts.
Collapse
|
42
|
Jakubiec A, Jupin I. Regulation of positive-strand RNA virus replication: the emerging role of phosphorylation. Virus Res 2007; 129:73-9. [PMID: 17764774 PMCID: PMC7132427 DOI: 10.1016/j.virusres.2007.07.012] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 07/20/2007] [Accepted: 07/20/2007] [Indexed: 12/29/2022]
Abstract
Protein phosphorylation is a reversible post-translational modification that plays a fundamental role in the regulation of many cellular processes. Phosphorylation can modulate protein properties such as enzymatic activity, stability, subcellular localization or interaction with binding partners. The importance of phosphorylation of the replication proteins of negative-strand RNA viruses has previously been documented but recent evidence suggests that replication of positive-strand RNA viruses – the largest class of viruses, including significant human, animal and plant pathogens – may also be regulated by phosphorylation events. The objective of this review is to summarize current knowledge regarding the various regulatory roles played by phosphorylation of nonstructural viral proteins in the replication of positive-strand RNA viruses.
Collapse
Affiliation(s)
| | - Isabelle Jupin
- Corresponding author. Tel.: +33 1 44 27 40 99; fax: +33 1 44 27 57 16.
| |
Collapse
|
43
|
Seo YS, Rojas MR, Lee JY, Lee SW, Jeon JS, Ronald P, Lucas WJ, Gilbertson RL. A viral resistance gene from common bean functions across plant families and is up-regulated in a non-virus-specific manner. Proc Natl Acad Sci U S A 2006; 103:11856-61. [PMID: 16880399 PMCID: PMC1567666 DOI: 10.1073/pnas.0604815103] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Indexed: 01/18/2023] Open
Abstract
Genes involved in a viral resistance response in common bean (Phaseolus vulgaris cv. Othello) were identified by inoculating a geminivirus reporter (Bean dwarf mosaic virus expressing the green fluorescent protein), extracting RNA from tissue undergoing the defense response, and amplifying sequences with degenerate R gene primers. One such gene (a TIR-NBS-LRR gene, RT4-4) was selected for functional analysis in which transgenic Nicotiana benthamiana were generated and screened for resistance to a range of viruses. This analysis revealed that RT4-4 did not confer resistance to the reporter geminivirus; however, it did activate a resistance-related response (systemic necrosis) to seven strains of Cucumber mosaic virus (CMV) from pepper or tomato, but not to a CMV strain from common bean. Of these eight CMV strains, only the strain from common bean systemically infected common bean cv. Othello. Additional evidence that RT4-4 is a CMV R gene came from the detection of resistance response markers in CMV-challenged leaves of RT4-4 transgenic plants, and the identification of the CMV 2a gene product as the elicitor of the necrosis response. These findings indicate that RT4-4 functions across two plant families and is up-regulated in a non-virus-specific manner. This experimental approach holds promise for providing insights into the mechanisms by which plants activate resistance responses against pathogens.
Collapse
Affiliation(s)
| | | | - Jung-Youn Lee
- Section of Plant Biology, University of California, Davis, CA 95616
| | | | | | | | - William J. Lucas
- Section of Plant Biology, University of California, Davis, CA 95616
| | | |
Collapse
|
44
|
Ahlquist P. Parallels among positive-strand RNA viruses, reverse-transcribing viruses and double-stranded RNA viruses. Nat Rev Microbiol 2006; 4:371-82. [PMID: 16582931 PMCID: PMC7097367 DOI: 10.1038/nrmicro1389] [Citation(s) in RCA: 218] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Viruses are exceptionally diverse and are grouped by genome replication and encapsidation strategies into seven distinct classes: two classes of DNA viruses (encapsidating single-stranded (ss)DNA or double-stranded (ds)DNA), three classes of RNA viruses (encapsidating mRNA-sense ssRNA, antisense ssRNA or dsRNA) and two classes of reverse-transcribing viruses (encapsidating RNA or DNA). Despite substantial life-cycle differences, positive-strand RNA ((+)RNA) viruses, dsRNA viruses and reverse-transcribing viruses share multiple similarities in genome replication. All replicate their genomes through RNA intermediates that also serve as mRNAs. Moreover, the intracellular RNA-replication complexes of (+)RNA viruses share similarities in structure, assembly and function with the polymerase-containing virion cores of dsRNA and reverse transcribing viruses. Brome mosaic virus (BMV) RNA-replication factors 1a and 2apol and cis-acting template-recruitment signals parallel retrovirus Gag, Pol and RNA-packaging signals in virion assembly: 1a localizes to specific membranes, self-interacts and induces ∼60-nm membrane invaginations to which it recruits 2apol and viral RNAs for replication. Therefore, like retroviruses and dsRNA viruses, BMV sequesters its genomic RNA and polymerase in a virus-induced compartment for replication. BMV and some other alphavirus-like (+)RNA viruses also parallel retroviruses in using tRNA-related sequences to initiate genome replication, and share with dsRNA reoviruses aspects of the function and interaction of their RNA polymerase and RNA-capping enzymes. Emerging results indicate that the genome-replication machineries of these viruses might share other mechanistic features. Whereas (+)RNA alphavirus-like viruses, dsRNA reoviruses and retroviruses are linked by the above similarities, (+)RNA picornaviruses, dsRNA birnaviruses and reverse-transcribing hepadnaviruses share some distinct features, including protein-primed nucleic-acid synthesis. Such parallels suggest that at least some (+)RNA viruses, dsRNA viruses and reverse-transcribing viruses might have evolved from common ancestors. The transitions required for such evolution can be readily envisioned and some have precedents. These underlying parallels in genome replication by four of the seven main virus classes might provide a basis for more generalizable or broader-spectrum approaches for virus control.
Despite major differences in the life cycles of the seven different classes of known viruses, the genome-replication processes of certain positive-strand RNA viruses, double-stranded RNA viruses and reverse-transcribing viruses show striking parallels. Paul Ahlquist highlights these similarities and discusses their intriguing evolutionary implications. Viruses are divided into seven classes on the basis of differing strategies for storing and replicating their genomes through RNA and/or DNA intermediates. Despite major differences among these classes, recent results reveal that the non-virion, intracellular RNA-replication complexes of some positive-strand RNA viruses share parallels with the structure, assembly and function of the replicative cores of extracellular virions of reverse-transcribing viruses and double-stranded RNA viruses. Therefore, at least four of seven principal virus classes share several underlying features in genome replication and might have emerged from common ancestors. This has implications for virus function, evolution and control.
Collapse
Affiliation(s)
- Paul Ahlquist
- Institute for Molecular Virology and Howard Hughes Medical Institute, University of Wisconsin--Madison, Madison, Wisconsin 53706, USA.
| |
Collapse
|
45
|
Jakubiec A, Tournier V, Drugeon G, Pflieger S, Camborde L, Vinh J, Héricourt F, Redeker V, Jupin I. Phosphorylation of viral RNA-dependent RNA polymerase and its role in replication of a plus-strand RNA virus. J Biol Chem 2006; 281:21236-21249. [PMID: 16717096 DOI: 10.1074/jbc.m600052200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Central to the process of plus-strand RNA virus genome amplification is the viral RNA-dependent RNA polymerase (RdRp). Understanding its regulation is of great importance given its essential function in viral replication and the common architecture and catalytic mechanism of polymerases. Here we show that Turnip yellow mosaic virus (TYMV) RdRp is phosphorylated, when expressed both individually and in the context of viral infection. Using a comprehensive biochemical approach, including metabolic labeling and mass spectrometry analyses, phosphorylation sites were mapped within an N-terminal PEST sequence and within the highly conserved palm subdomain of RNA polymerases. Systematic mutational analysis of the corresponding residues in a reverse genetic system demonstrated their importance for TYMV infectivity. Upon mutation of the phosphorylation sites, distinct steps of the viral cycle appeared affected, but in contrast to other plus-strand RNA viruses, the interaction between viral replication proteins was unaltered. Our results also highlighted the role of another TYMV-encoded replication protein as an antagonistic protein that may prevent the inhibitory effect of RdRp phosphorylation on viral infectivity. Based on these data, we propose that phosphorylation-dependent regulatory mechanisms are essential for viral RdRp function and virus replication.
Collapse
Affiliation(s)
| | | | | | | | | | - Joëlle Vinh
- Ecole Supérieure de Physique et Chimie Industrielles de la Ville de Paris, 75005 Paris, France
| | | | - Virginie Redeker
- Ecole Supérieure de Physique et Chimie Industrielles de la Ville de Paris, 75005 Paris, France
| | | |
Collapse
|
46
|
Villanueva RA, Rouillé Y, Dubuisson J. Interactions between virus proteins and host cell membranes during the viral life cycle. ACTA ACUST UNITED AC 2006; 245:171-244. [PMID: 16125548 PMCID: PMC7112339 DOI: 10.1016/s0074-7696(05)45006-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The structure and function of cells are critically dependent on membranes, which not only separate the interior of the cell from its environment but also define the internal compartments. It is therefore not surprising that the major steps of the life cycle of viruses of animals and plants also depend on cellular membranes. Indeed, interactions of viral proteins with host cell membranes are important for viruses to enter into host cells, replicate their genome, and produce progeny particles. To replicate its genome, a virus first needs to cross the plasma membrane. Some viruses can also modify intracellular membranes of host cells to create a compartment in which genome replication will take place. Finally, some viruses acquire an envelope, which is derived either from the plasma membrane or an internal membrane of the host cell. This paper reviews recent findings on the interactions of viral proteins with host cell membranes during the viral life cycle.
Collapse
Affiliation(s)
- Rodrigo A Villanueva
- CNRS-UPR2511, Institut de Biologie de Lille, Institut Pasteur de Lille, 59021 Lille Cedex, France
| | | | | |
Collapse
|
47
|
Kim MJ, Ham BK, Paek KH. Novel protein kinase interacts with the Cucumber mosaic virus 1a methyltransferase domain. Biochem Biophys Res Commun 2005; 340:228-35. [PMID: 16360640 DOI: 10.1016/j.bbrc.2005.11.178] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2005] [Accepted: 11/30/2005] [Indexed: 11/23/2022]
Abstract
The Cucumber mosaic virus (CMV)-encoded 1a protein has been implicated to play a role in replication of the viral genome along with 2a and one or more host factors. To identify the host cell factors interacting with CMV 1a, we used the yeast two-hybrid system using tobacco cDNA library. One of the cDNA clones encoded a protein homologous to the Arabidopsis putative protein kinase and was designated as Tcoi2 (Tobacco CMV 1a interacting protein 2). Tcoi2 specifically interacted with methyltransferase (MT) domain of CMV 1a protein in yeast cell. In vitro analyses using recombinant proteins showed that Tcoi2 also specifically interacted with CMV 1a MT domain. Tcoi2 did not have autophosphorylation activity but phosphorylated CMV 1a MT domain. Analysis of the subcellular localization of the Tcoi2 fused to GFP demonstrated that it is targeted to the endoplasmic reticulum. These results suggest Tcoi2 as a novel host factor that is capable of interacting and phosphorylating MT domain of CMV 1a protein.
Collapse
Affiliation(s)
- Min Jung Kim
- School of Life Sciences and Biotechnology, Korea University, 1, 5-ga, Anam-dong, Sungbuk-gu, Seoul 136-701, Republic of Korea
| | | | | |
Collapse
|
48
|
Shapka N, Stork J, Nagy PD. Phosphorylation of the p33 replication protein of Cucumber necrosis tombusvirus adjacent to the RNA binding site affects viral RNA replication. Virology 2005; 343:65-78. [PMID: 16154610 DOI: 10.1016/j.virol.2005.08.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Revised: 06/10/2005] [Accepted: 08/08/2005] [Indexed: 11/24/2022]
Abstract
Replication of the nonsegmented, plus-stranded RNA genome of Cucumber necrosis tombusvirus (CNV) requires two essential overlapping viral-coded replication proteins, the p33 replication co-factor and the p92 RNA-dependent RNA polymerase. In this paper, we demonstrate that p33 is phosphorylated in vivo and in vitro by a membrane-bound plant kinase. Phosphorylation of p33 was also demonstrated in vitro by using purified protein kinase C. The related p28 replication protein of Turnip crinkle virus was also found to be phosphorylated in vivo, suggesting that posttranslational modification of replication proteins is a general feature among members of the large Tombusviridae family. Based on in vitro studies with purified recombinant p33, we show evidence for phosphorylation of threonine and serine residues adjacent to the essential RNA-binding site in p33. Phosphorylation-mimicking aspartic acid mutations rendered p33 nonfunctional in plant protoplasts and in yeast, a model host. Comparable mutations within the prereadthrough portion of p92 did not abolish replication. The nonphosphorylation-mimicking alanine mutants of CNV were able to replicate in plant protoplasts and in yeast, albeit with reduced efficiency when compared to the wild type. These alanine mutants also showed altered subgenomic RNA synthesis and a reduction in the ratio between plus- and minus-strand RNAs produced during CNV infection. These findings suggest that phosphorylation of threonine/serine residues adjacent to the essential RNA-binding site in the auxiliary p33 protein likely plays a role in viral RNA replication and subgenomic RNA synthesis during tombusvirus infections.
Collapse
Affiliation(s)
- Natalia Shapka
- Department of Plant Pathology, University of Kentucky, 201F Plant Science Building, Lexington, KY 40546, USA
| | | | | |
Collapse
|
49
|
Sanfaçon H. Replication of positive-strand RNA viruses in plants: contact points between plant and virus components. ACTA ACUST UNITED AC 2005. [DOI: 10.1139/b05-121] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Positive-strand RNA viruses constitute the largest group of plant viruses and have an important impact on world agriculture. These viruses have small genomes that encode a limited number of proteins and depend on their hosts to complete the various steps of their replication cycle. In this review, the contact points between positive-strand RNA plant viruses and their hosts, which are necessary for the translation and replication of the viral genomes, are discussed. Special emphasis is placed on the description of viral replication complexes that are associated with specific membranous compartments derived from plant intracellular membranes and contain viral RNAs and proteins as well as a variety of host proteins. These complexes are assembled via an intricate network of protein–protein, protein–membrane, and protein–RNA interactions. The role of host factors in regulating the assembly, stability, and activity of viral replication complexes are also discussed.
Collapse
Affiliation(s)
- Hélène Sanfaçon
- Agriculture and Agri-Food Canada, Pacific Agri-Food Research Centre, 4200 Highway 97, Summerland, BC V0H 1Z0, Canada (e-mail: )
| |
Collapse
|
50
|
Kim MJ, Ham BK, Kim HR, Lee IJ, Kim YJ, Ryu KH, Park YI, Paek KH. In vitro and in planta interaction evidence between Nicotiana tabacum thaumatin-like protein 1 (TLP1) and cucumber mosaic virus proteins. PLANT MOLECULAR BIOLOGY 2005; 59:981-94. [PMID: 16307370 DOI: 10.1007/s11103-005-2619-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2005] [Accepted: 08/31/2005] [Indexed: 05/05/2023]
Abstract
Using a yeast two-hybrid system, we identified a plant cellular factor that interacts with the proteins of the Cucumber mosaic virus (CMV). Initially 14 candidate genes were isolated from Nicotiana tabacum, using a full-length CMV 1a gene as bait. Among the candidate genes, two were encoding thaumatin-like proteins (TLP), and were designated as Nicotiana tabacum thaumatin-like protein 1 (NtTLP1). Consistent with this observation, recombinant GST-NtTLP1 protein, which was expressed and purified in E. coli, bound tightly to CMV 1a in vitro. In planta interaction was also verified via co-immunoprecipitation. Additionally, NtTLP1 specifically interacted with the CMV movement-related proteins, movement protein and coat protein, in yeast. Real-time quantitative reverse transcription-polymerase chain reaction (RT-PCR) analysis showed that the expression of NtTLP1 increased as the result of CMV inoculation.
Collapse
Affiliation(s)
- Min Jung Kim
- School of Life Sciences and Biotechnology, Korea University, 1, 5-ga, Anam-dong, 136-701, Seoul, Sungbuk-gu, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|