1
|
Ishida JK, Costa EC. What we know so far and what we can expect next: A molecular investigation of plant parasitism. Genet Mol Biol 2024; 47Suppl 1:e20240051. [PMID: 39348487 PMCID: PMC11441458 DOI: 10.1590/1678-4685-gmb-2024-0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/22/2024] [Indexed: 10/02/2024] Open
Abstract
The review explores parasitic plants' evolutionary success and adaptability, highlighting their widespread occurrence and emphasizing the role of an invasive organ called haustorium in nutrient acquisition from hosts. It discusses the genetic and physiological adaptations that facilitate parasitism, including horizontal gene transfer, and the impact of environmental factors like climate change on these relationships. It addresses the need for further research into parasitic plants' genomes and interactions with their hosts to better predict environmental changes' impacts.
Collapse
Affiliation(s)
- Juliane Karine Ishida
- Universidade Federal de Minas Gerias (UFMG), Instituto de Ciências Biológicas, Departamento de Botânica, Belo Horizonte, MG, Brazil
| | - Elaine Cotrim Costa
- Universidade Federal do Rio Grande (FURG), Instituto de Ciências Biológicas, Rio Grande do Sul, RS, Brazil
| |
Collapse
|
2
|
The minicircular and extremely heteroplasmic mitogenome of the holoparasitic plant Rhopalocnemis phalloides. Curr Biol 2021; 32:470-479.e5. [PMID: 34906352 DOI: 10.1016/j.cub.2021.11.053] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/25/2021] [Accepted: 11/22/2021] [Indexed: 12/14/2022]
Abstract
The plastid and nuclear genomes of parasitic plants exhibit deeply altered architectures,1-13 whereas the few examined mitogenomes range from deeply altered to conventional.14-20 To provide further insight on mitogenome evolution in parasitic plants, we report the highly modified mitogenome of Rhopalocnemis phalloides, a holoparasite in Balanophoraceae. Its mitogenome is uniquely arranged in 21 minicircular chromosomes that vary in size from 4,949 to 7,861 bp, with a total length of only 130,713 bp. All chromosomes share an identical 896 bp conserved region, with a large stem-loop that acts as the origin of replication, flanked on each side by hypervariable and semi-conserved regions. Similar minicircular structures with shared and unique regions have been observed in parasitic animals and free-living protists,21-24 suggesting convergent structural evolution. Southern blots confirm both the minicircular structure and the replication origin of the mitochondrial chromosomes. PacBio reads provide evidence for chromosome recombination and rolling-circle replication for the R. phalloides mitogenome. Despite its small size, the mitogenome harbors a typical set of genes and introns within the unique regions of each chromosome, yet introns are the smallest among seed plants and ferns. The mitogenome also exhibits extreme heteroplasmy, predominantly involving short indels and more complex variants, many of which cause potential loss-of-function mutations for some gene copies. All heteroplasmic variants are transcribed, and functional and nonfunctional protein-coding variants are spliced and RNA edited. Our findings offer a unique perspective into how mitogenomes of parasitic plants can be deeply altered and shed light on plant mitogenome replication.
Collapse
|
3
|
Rolling-Circle Replication in Mitochondrial DNA Inheritance: Scientific Evidence and Significance from Yeast to Human Cells. Genes (Basel) 2020; 11:genes11050514. [PMID: 32384722 PMCID: PMC7288456 DOI: 10.3390/genes11050514] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 12/23/2022] Open
Abstract
Studies of mitochondrial (mt)DNA replication, which forms the basis of mitochondrial inheritance, have demonstrated that a rolling-circle replication mode exists in yeasts and human cells. In yeast, rolling-circle mtDNA replication mediated by homologous recombination is the predominant pathway for replication of wild-type mtDNA. In human cells, reactive oxygen species (ROS) induce rolling-circle replication to produce concatemers, linear tandem multimers linked by head-to-tail unit-sized mtDNA that promote restoration of homoplasmy from heteroplasmy. The event occurs ahead of mtDNA replication mechanisms observed in mammalian cells, especially under higher ROS load, as newly synthesized mtDNA is concatemeric in hydrogen peroxide-treated human cells. Rolling-circle replication holds promise for treatment of mtDNA heteroplasmy-attributed diseases, which are regarded as incurable. This review highlights the potential therapeutic value of rolling-circle mtDNA replication.
Collapse
|
4
|
Chevigny N, Schatz-Daas D, Lotfi F, Gualberto JM. DNA Repair and the Stability of the Plant Mitochondrial Genome. Int J Mol Sci 2020; 21:E328. [PMID: 31947741 PMCID: PMC6981420 DOI: 10.3390/ijms21010328] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 12/27/2019] [Accepted: 01/01/2020] [Indexed: 12/13/2022] Open
Abstract
The mitochondrion stands at the center of cell energy metabolism. It contains its own genome, the mtDNA, that is a relic of its prokaryotic symbiotic ancestor. In plants, the mitochondrial genetic information influences important agronomic traits including fertility, plant vigor, chloroplast function, and cross-compatibility. Plant mtDNA has remarkable characteristics: It is much larger than the mtDNA of other eukaryotes and evolves very rapidly in structure. This is because of recombination activities that generate alternative mtDNA configurations, an important reservoir of genetic diversity that promotes rapid mtDNA evolution. On the other hand, the high incidence of ectopic recombination leads to mtDNA instability and the expression of gene chimeras, with potential deleterious effects. In contrast to the structural plasticity of the genome, in most plant species the mtDNA coding sequences evolve very slowly, even if the organization of the genome is highly variable. Repair mechanisms are probably responsible for such low mutation rates, in particular repair by homologous recombination. Herein we review some of the characteristics of plant organellar genomes and of the repair pathways found in plant mitochondria. We further discuss how homologous recombination is involved in the evolution of the plant mtDNA.
Collapse
Affiliation(s)
| | | | | | - José Manuel Gualberto
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67081 Strasbourg, France; (N.C.); (D.S.-D.); (F.L.)
| |
Collapse
|
5
|
R Loops: From Physiological to Pathological Roles. Cell 2019; 179:604-618. [PMID: 31607512 DOI: 10.1016/j.cell.2019.08.055] [Citation(s) in RCA: 433] [Impact Index Per Article: 72.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/19/2019] [Accepted: 08/28/2019] [Indexed: 12/13/2022]
Abstract
DNA-RNA hybrids play a physiological role in cellular processes, but often, they represent non-scheduled co-transcriptional structures with a negative impact on transcription, replication and DNA repair. Accumulating evidence suggests that they constitute a source of replication stress, DNA breaks and genome instability. Reciprocally, DNA breaks facilitate DNA-RNA hybrid formation by releasing the double helix torsional conformation. Cells avoid DNA-RNA accumulation by either preventing or removing hybrids directly or by DNA repair-coupled mechanisms. Given the R-loop impact on chromatin and genome organization and its potential relation with genetic diseases, we review R-loop homeostasis as well as their physiological and pathological roles.
Collapse
|
6
|
Varré JS, D'Agostino N, Touzet P, Gallina S, Tamburino R, Cantarella C, Ubrig E, Cardi T, Drouard L, Gualberto JM, Scotti N. Complete Sequence, Multichromosomal Architecture and Transcriptome Analysis of the Solanum tuberosum Mitochondrial Genome. Int J Mol Sci 2019; 20:E4788. [PMID: 31561566 PMCID: PMC6801519 DOI: 10.3390/ijms20194788] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 12/01/2022] Open
Abstract
Mitochondrial genomes (mitogenomes) in higher plants can induce cytoplasmic male sterility and be somehow involved in nuclear-cytoplasmic interactions affecting plant growth and agronomic performance. They are larger and more complex than in other eukaryotes, due to their recombinogenic nature. For most plants, the mitochondrial DNA (mtDNA) can be represented as a single circular chromosome, the so-called master molecule, which includes repeated sequences that recombine frequently, generating sub-genomic molecules in various proportions. Based on the relevance of the potato crop worldwide, herewith we report the complete mtDNA sequence of two S. tuberosum cultivars, namely Cicero and Désirée, and a comprehensive study of its expression, based on high-coverage RNA sequencing data. We found that the potato mitogenome has a multi-partite architecture, divided in at least three independent molecules that according to our data should behave as autonomous chromosomes. Inter-cultivar variability was null, while comparative analyses with other species of the Solanaceae family allowed the investigation of the evolutionary history of their mitogenomes. The RNA-seq data revealed peculiarities in transcriptional and post-transcriptional processing of mRNAs. These included co-transcription of genes with open reading frames that are probably expressed, methylation of an rRNA at a position that should impact translation efficiency and extensive RNA editing, with a high proportion of partial editing implying frequent mis-targeting by the editing machinery.
Collapse
Affiliation(s)
- Jean-Stéphane Varré
- Univ. Lille, CNRS, Centrale Lille, UMR 9189-CRIStAL-Centre de Recherche en Informatique Signal et Automatique de Lille, F-59000 Lille, France.
| | - Nunzio D'Agostino
- CREA Research Centre for Vegetable and Ornamental Crops, 84098 Pontecagnano Faiano, SA, Italy.
| | - Pascal Touzet
- Univ. Lille, CNRS, UMR 8198-Evo-Eco-Paleo, F-59000 Lille, France.
| | - Sophie Gallina
- Univ. Lille, CNRS, UMR 8198-Evo-Eco-Paleo, F-59000 Lille, France.
| | - Rachele Tamburino
- CNR-IBBR, National Research Council of Italy, Institute of Biosciences and BioResources, 80055 Portici, NA, Italy.
| | - Concita Cantarella
- CREA Research Centre for Vegetable and Ornamental Crops, 84098 Pontecagnano Faiano, SA, Italy.
| | - Elodie Ubrig
- Institut de Biologie Moléculaire des Plantes-CNRS, Université de Strasbourg, Strasbourg 67084, France.
| | - Teodoro Cardi
- CREA Research Centre for Vegetable and Ornamental Crops, 84098 Pontecagnano Faiano, SA, Italy.
| | - Laurence Drouard
- Institut de Biologie Moléculaire des Plantes-CNRS, Université de Strasbourg, Strasbourg 67084, France.
| | - José Manuel Gualberto
- Institut de Biologie Moléculaire des Plantes-CNRS, Université de Strasbourg, Strasbourg 67084, France.
| | - Nunzia Scotti
- CNR-IBBR, National Research Council of Italy, Institute of Biosciences and BioResources, 80055 Portici, NA, Italy.
| |
Collapse
|
7
|
Gualberto JM, Newton KJ. Plant Mitochondrial Genomes: Dynamics and Mechanisms of Mutation. ANNUAL REVIEW OF PLANT BIOLOGY 2017; 68:225-252. [PMID: 28226235 DOI: 10.1146/annurev-arplant-043015-112232] [Citation(s) in RCA: 283] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The large mitochondrial genomes of angiosperms are unusually dynamic because of recombination activities involving repeated sequences. These activities generate subgenomic forms and extensive genomic variation even within the same species. Such changes in genome structure are responsible for the rapid evolution of plant mitochondrial DNA and for the variants associated with cytoplasmic male sterility and abnormal growth phenotypes. Nuclear genes modulate these processes, and over the past decade, several of these genes have been identified. They are involved mainly in pathways of DNA repair by homologous recombination and mismatch repair, which appear to be essential for the faithful replication of the mitogenome. Mutations leading to the loss of any of these activities release error-prone repair pathways, resulting in increased ectopic recombination, genome instability, and heteroplasmy. We review the present state of knowledge of the genes and pathways underlying mitochondrial genome stability.
Collapse
Affiliation(s)
- José M Gualberto
- Institut de Biologie Moléculaire des Plantes, CNRS UPR2357, Université de Strasbourg, 67084 Strasbourg, France;
| | - Kathleen J Newton
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211;
| |
Collapse
|
8
|
Martínez-Alvarez L, Bell SD, Peng X. Multiple consecutive initiation of replication producing novel brush-like intermediates at the termini of linear viral dsDNA genomes with hairpin ends. Nucleic Acids Res 2016; 44:8799-8809. [PMID: 27407114 PMCID: PMC5062984 DOI: 10.1093/nar/gkw636] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/05/2016] [Accepted: 07/05/2016] [Indexed: 11/14/2022] Open
Abstract
Linear dsDNA replicons with hairpin ends are found in the three domains of life, mainly associated with plasmids and viruses including the poxviruses, some phages and archaeal rudiviruses. However, their replication mechanism is not clearly understood. In this study, we find that the rudivirus SIRV2 undergoes multiple consecutive replication reinitiation events at the genomic termini. Using a strand-displacement replication strategy, the multiple reinitiation events from one parental template yield highly branched intermediates corresponding to about 30 genome units which generate exceptional 'brush-like' structures. Moreover, our data support the occurrence of an additional strand-coupled bidirectional replication from a circular dimeric intermediate. The multiple reinitiation process ensures rapid copying of the parental viral genome and will enable protein factors involved in viral genome replication to be specifically localised intracellularly, thereby helping the virus to avoid host defence mechanisms.
Collapse
Affiliation(s)
- Laura Martínez-Alvarez
- Archaea Centre, Department of Biology, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Stephen D Bell
- Department of Molecular and Cellular Biochemistry, Department of Biology, Indiana University, Simon Hall MSB, IN 47405, USA
| | - Xu Peng
- Archaea Centre, Department of Biology, University of Copenhagen, 2200 Copenhagen N, Denmark
| |
Collapse
|
9
|
Homologous Recombination Repair Factors Rad51 and BRCA1 Are Necessary for Productive Replication of Human Papillomavirus 31. J Virol 2015; 90:2639-52. [PMID: 26699641 DOI: 10.1128/jvi.02495-15] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/16/2015] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED High-risk human papillomavirus 31 (HPV31)-positive cells exhibit constitutive activation of the ATM-dependent DNA damage response (DDR), which is necessary for productive viral replication. In response to DNA double-strand breaks (DSBs), ATM activation leads to DNA repair through homologous recombination (HR), which requires the principal recombinase protein Rad51, as well as BRCA1. Previous studies from our lab demonstrated that Rad51 and BRCA1 are expressed at high levels in HPV31-positive cells and localize to sites of viral replication. These results suggest that HPV may utilize ATM activity to increase HR activity as a means to facilitate viral replication. In this study, we demonstrate that high-risk HPV E7 expression alone is sufficient for the increase in Rad51 and BRCA1 protein levels. We have found that this increase occurs, at least in part, at the level of transcription. Studies analyzing protein stability indicate that HPV may also protect Rad51 and BRCA1 from turnover, contributing to the overall increase in cellular levels. We also demonstrate that Rad51 is bound to HPV31 genomes, with binding increasing per viral genome upon productive replication. We have found that depletion of Rad51 and BRCA1, as well as inhibition of Rad51's recombinase activity, abrogates productive viral replication upon differentiation. Overall, these results indicate that Rad51 and BRCA1 are required for the process of HPV31 genome amplification and suggest that productive replication occurs in a manner dependent upon recombination. IMPORTANCE Productive replication of HPV31 requires activation of an ATM-dependent DNA damage response, though how ATM activity contributes to replication is unclear. Rad51 and BRCA1 play essential roles in repair of double-strand breaks, as well as the restart of stalled replication forks through homologous recombination (HR). Given that ATM activity is required to initiate HR repair, coupled with the requirement of Rad51 and BRCA1 for productive viral replication, our findings suggest that HPV may utilize ATM activity to ensure localization of recombination factors to productively replicating viral genomes. The finding that E7 increases the levels of Rad51 and BRCA1 suggests that E7 contributes to productive replication by providing DNA repair factors required for viral DNA synthesis. Our studies not only imply a role for recombination in the regulation of productive HPV replication but provide further insight into how HPV manipulates the DDR to facilitate the productive phase of the viral life cycle.
Collapse
|
10
|
Lewis SC, Joers P, Willcox S, Griffith JD, Jacobs HT, Hyman BC. A rolling circle replication mechanism produces multimeric lariats of mitochondrial DNA in Caenorhabditis elegans. PLoS Genet 2015; 11:e1004985. [PMID: 25693201 PMCID: PMC4334201 DOI: 10.1371/journal.pgen.1004985] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 01/05/2015] [Indexed: 11/24/2022] Open
Abstract
Mitochondrial DNA (mtDNA) encodes respiratory complex subunits essential to almost all eukaryotes; hence respiratory competence requires faithful duplication of this molecule. However, the mechanism(s) of its synthesis remain hotly debated. Here we have developed Caenorhabditis elegans as a convenient animal model for the study of metazoan mtDNA synthesis. We demonstrate that C. elegans mtDNA replicates exclusively by a phage-like mechanism, in which multimeric molecules are synthesized from a circular template. In contrast to previous mammalian studies, we found that mtDNA synthesis in the C. elegans gonad produces branched-circular lariat structures with multimeric DNA tails; we were able to detect multimers up to four mtDNA genome unit lengths. Further, we did not detect elongation from a displacement-loop or analogue of 7S DNA, suggesting a clear difference from human mtDNA in regard to the site(s) of replication initiation. We also identified cruciform mtDNA species that are sensitive to cleavage by the resolvase RusA; we suggest these four-way junctions may have a role in concatemer-to-monomer resolution. Overall these results indicate that mtDNA synthesis in C. elegans does not conform to any previously documented metazoan mtDNA replication mechanism, but instead are strongly suggestive of rolling circle replication, as employed by bacteriophages. As several components of the metazoan mitochondrial DNA replisome are likely phage-derived, these findings raise the possibility that the rolling circle mtDNA replication mechanism may be ancestral among metazoans.
Collapse
Affiliation(s)
- Samantha C. Lewis
- Department of Biology and Interdepartmental Graduate Program in Genetics, Genomics and Bioinformatics, University of California Riverside, Riverside, California, United States of America
- BioMediTech and Tampere University Hospital, University of Tampere, Tampere, Finland
| | - Priit Joers
- BioMediTech and Tampere University Hospital, University of Tampere, Tampere, Finland
- Estonian Biocentre, Tartu, Estonia
| | - Smaranda Willcox
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jack D. Griffith
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Howard T. Jacobs
- BioMediTech and Tampere University Hospital, University of Tampere, Tampere, Finland
- Molecular Neurology Research Program, University of Helsinki, Helsinki, Finland
| | - Bradley C. Hyman
- Department of Biology and Interdepartmental Graduate Program in Genetics, Genomics and Bioinformatics, University of California Riverside, Riverside, California, United States of America
| |
Collapse
|
11
|
Gerhold JM, Sedman T, Visacka K, Slezakova J, Tomaska L, Nosek J, Sedman J. Replication intermediates of the linear mitochondrial DNA of Candida parapsilosis suggest a common recombination based mechanism for yeast mitochondria. J Biol Chem 2014; 289:22659-22670. [PMID: 24951592 DOI: 10.1074/jbc.m114.552828] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Variation in the topology of mitochondrial DNA (mtDNA) in eukaryotes evokes the question if differently structured DNAs are replicated by a common mechanism. RNA-primed DNA synthesis has been established as a mechanism for replicating the circular animal/mammalian mtDNA. In yeasts, circular mtDNA molecules were assumed to be templates for rolling circle DNA-replication. We recently showed that in Candida albicans, which has circular mapping mtDNA, recombination driven replication is a major mechanism for replicating a complex branched mtDNA network. Careful analyses of C. albicans-mtDNA did not reveal detectable amounts of circular DNA molecules. In the present study we addressed the question of how the unit sized linear mtDNA of Candida parapsilosis terminating at both ends with arrays of tandem repeats (mitochondrial telomeres) is replicated. Originally, we expected to find replication intermediates diagnostic of canonical bi-directional replication initiation at the centrally located bi-directional promoter region. However, we found that the linear mtDNA of Candida parapsilosis also employs recombination for replication initiation. The most striking findings were that the mitochondrial telomeres appear to be hot spots for recombination driven replication, and that stable RNA:DNA hybrids, with a potential role in mtDNA replication, are also present in the mtDNA preparations.
Collapse
Affiliation(s)
- Joachim M Gerhold
- Department of Biochemistry, Institute of Molecular and Cell Biology, University of Tartu, Riia 23c, 51014 Tartu, Estonia and.
| | - Tiina Sedman
- Department of Biochemistry, Institute of Molecular and Cell Biology, University of Tartu, Riia 23c, 51014 Tartu, Estonia and
| | - Katarina Visacka
- Department of Genetics, Faculty of Natural Sciences, Comenius University, Mlynská dolina B-1, and
| | - Judita Slezakova
- Department of Genetics, Faculty of Natural Sciences, Comenius University, Mlynská dolina B-1, and
| | - Lubomir Tomaska
- Department of Genetics, Faculty of Natural Sciences, Comenius University, Mlynská dolina B-1, and
| | - Jozef Nosek
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Mlynská dolina CH-1, 842 15 Bratislava, Slovak Republic
| | - Juhan Sedman
- Department of Biochemistry, Institute of Molecular and Cell Biology, University of Tartu, Riia 23c, 51014 Tartu, Estonia and
| |
Collapse
|
12
|
Mechanism of homologous recombination and implications for aging-related deletions in mitochondrial DNA. Microbiol Mol Biol Rev 2014; 77:476-96. [PMID: 24006472 DOI: 10.1128/mmbr.00007-13] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Homologous recombination is a universal process, conserved from bacteriophage to human, which is important for the repair of double-strand DNA breaks. Recombination in mitochondrial DNA (mtDNA) was documented more than 4 decades ago, but the underlying molecular mechanism has remained elusive. Recent studies have revealed the presence of a Rad52-type recombination system of bacteriophage origin in mitochondria, which operates by a single-strand annealing mechanism independent of the canonical RecA/Rad51-type recombinases. Increasing evidence supports the notion that, like in bacteriophages, mtDNA inheritance is a coordinated interplay between recombination, repair, and replication. These findings could have profound implications for understanding the mechanism of mtDNA inheritance and the generation of mtDNA deletions in aging cells.
Collapse
|
13
|
Doublet V, Helleu Q, Raimond R, Souty-Grosset C, Marcadé I. Inverted repeats and genome architecture conversions of terrestrial isopods mitochondrial DNA. J Mol Evol 2013; 77:107-18. [PMID: 24068302 DOI: 10.1007/s00239-013-9587-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 09/18/2013] [Indexed: 10/26/2022]
Abstract
Mitochondrial DNA (mtDNA) is usually depicted as a circular molecule, however, there is increasing evidence that linearization of mtDNA evolved independently many times in organisms such as fungi, unicellular eukaryotes, and animals. Recent observations in various models with linear mtDNA revealed the presence of conserved inverted repeats (IR) at both ends that, when they become single-stranded, may be able to fold on themselves to create telomeric-hairpins involved in genome architecture conversions. The atypical mtDNA of terrestrial isopods (Crustacea: Oniscidea) composed of linear monomers and circular dimers is an interesting model to study genome architecture conversions. Here, we present the mtDNA control region sequences of two species of the genus Armadillidium: A. vulgare and A. pelagicum. All features of arthropods mtDNA control regions are present (origin of replication, poly-T stretch, GA and TA-rich blocks and one variable domain), plus a conserved IR. This IR can potentially fold into a hairpin structure and is present in two different orientations among the A. vulgare populations: either in one sense or in its reverse complement. This polymorphism, also observed in a single individual (heteroplasmy), might be a signature of genome architecture conversions from linear to circular monomeric mtDNA via successive opening and closing of the molecules.
Collapse
Affiliation(s)
- Vincent Doublet
- Equipe Ecologie Evolution Symbiose, Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, 40 Avenue du Recteur Pineau, 86022, Poitiers Cedex, France,
| | | | | | | | | |
Collapse
|
14
|
Sowd GA, Li NY, Fanning E. ATM and ATR activities maintain replication fork integrity during SV40 chromatin replication. PLoS Pathog 2013; 9:e1003283. [PMID: 23592994 PMCID: PMC3617017 DOI: 10.1371/journal.ppat.1003283] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 02/14/2013] [Indexed: 11/18/2022] Open
Abstract
Mutation of DNA damage checkpoint signaling kinases ataxia telangiectasia-mutated (ATM) or ATM- and Rad3-related (ATR) results in genomic instability disorders. However, it is not well understood how the instability observed in these syndromes relates to DNA replication/repair defects and failed checkpoint control of cell cycling. As a simple model to address this question, we have studied SV40 chromatin replication in infected cells in the presence of inhibitors of ATM and ATR activities. Two-dimensional gel electrophoresis and southern blotting of SV40 chromatin replication products reveal that ATM activity prevents accumulation of unidirectional replication products, implying that ATM promotes repair of replication-associated double strand breaks. ATR activity alleviates breakage of a functional fork as it converges with a stalled fork. The results suggest that during SV40 chromatin replication, endogenous replication stress activates ATM and ATR signaling, orchestrating the assembly of genome maintenance machinery on viral replication intermediates. All cells have evolved pathways to maintain the integrity of the genetic information stored in their chromosomes. Endogenous and exogenous agents induce mutations and other damage in DNA, most frequently during DNA replication. Such DNA damage is under surveillance by a complex network of proteins that interact with one another to signal damage, arrest DNA replication, and restore genomic integrity before replication resumes. Many viruses that replicate in the nucleus of mammalian host cells have evolved to disable or evade this surveillance system, but others, e.g. polyomaviruses like SV40, activate it and somehow harness it to facilitate robust replication of viral progeny. We have sought to determine how SV40 induces and deploys host DNA damage signaling in infected cells to promote viral chromosome replication. Here we present evidence that, like host DNA, replicating viral DNA suffers damage that activates surveillance and repair pathways. Unlike host replication, viral DNA replication persists despite damage signaling, allowing defective replication products to accumulate. In the presence of host DNA damage signaling, these defective viral products attract proteins of the host damage surveillance network that correct the defects, thus maximizing viral propagation.
Collapse
Affiliation(s)
- Gregory A. Sowd
- Department of Biological Sciences, Vanderbilt University, Vanderbilt Ingram Comprehensive Cancer Center, Nashville, Tennessee, United States of America
| | - Nancy Yan Li
- Department of Biological Sciences, Vanderbilt University, Vanderbilt Ingram Comprehensive Cancer Center, Nashville, Tennessee, United States of America
| | - Ellen Fanning
- Department of Biological Sciences, Vanderbilt University, Vanderbilt Ingram Comprehensive Cancer Center, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
15
|
Double-strand break repair processes drive evolution of the mitochondrial genome in Arabidopsis. BMC Biol 2011; 9:64. [PMID: 21951689 PMCID: PMC3193812 DOI: 10.1186/1741-7007-9-64] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 09/27/2011] [Indexed: 11/12/2022] Open
Abstract
Background The mitochondrial genome of higher plants is unusually dynamic, with recombination and nonhomologous end-joining (NHEJ) activities producing variability in size and organization. Plant mitochondrial DNA also generally displays much lower nucleotide substitution rates than mammalian or yeast systems. Arabidopsis displays these features and expedites characterization of the mitochondrial recombination surveillance gene MSH1 (MutS 1 homolog), lending itself to detailed study of de novo mitochondrial genome activity. In the present study, we investigated the underlying basis for unusual plant features as they contribute to rapid mitochondrial genome evolution. Results We obtained evidence of double-strand break (DSB) repair, including NHEJ, sequence deletions and mitochondrial asymmetric recombination activity in Arabidopsis wild-type and msh1 mutants on the basis of data generated by Illumina deep sequencing and confirmed by DNA gel blot analysis. On a larger scale, with mitochondrial comparisons across 72 Arabidopsis ecotypes, similar evidence of DSB repair activity differentiated ecotypes. Forty-seven repeat pairs were active in DNA exchange in the msh1 mutant. Recombination sites showed asymmetrical DNA exchange within lengths of 50- to 556-bp sharing sequence identity as low as 85%. De novo asymmetrical recombination involved heteroduplex formation, gene conversion and mismatch repair activities. Substoichiometric shifting by asymmetrical exchange created the appearance of rapid sequence gain and loss in association with particular repeat classes. Conclusions Extensive mitochondrial genomic variation within a single plant species derives largely from DSB activity and its repair. Observed gene conversion and mismatch repair activity contribute to the low nucleotide substitution rates seen in these genomes. On a phenotypic level, these patterns of rearrangement likely contribute to the reproductive versatility of higher plants.
Collapse
|
16
|
Mileshina D, Koulintchenko M, Konstantinov Y, Dietrich A. Transfection of plant mitochondria and in organello gene integration. Nucleic Acids Res 2011; 39:e115. [PMID: 21715377 PMCID: PMC3177224 DOI: 10.1093/nar/gkr517] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Investigation and manipulation of mitochondrial genetics in animal and plant cells remains restricted by the lack of an efficient in vivo transformation methodology. Mitochondrial transfection in whole cells and maintenance of the transfected DNA are main issues on this track. We showed earlier that isolated mitochondria from different organisms can import DNA. Exploiting this mechanism, we assessed the possibility to maintain exogenous DNA in plant organelles. Whereas homologous recombination is scarce in the higher plant nuclear compartment, recombination between large repeats generates the multipartite structure of the plant mitochondrial genome. These processes are under strict surveillance to avoid extensive genomic rearrangements. Nevertheless, following transfection of isolated organelles with constructs composed of a partial gfp gene flanked by fragments of mitochondrial DNA, we demonstrated in organello homologous recombination of the imported DNA with the resident DNA and integration of the reporter gene. Recombination yielded insertion of a continuous exogenous DNA fragment including the gfp sequence and at least 0.5 kb of flanking sequence on each side. According to our observations, transfection constructs carrying multiple sequences homologous to the mitochondrial DNA should be suitable and targeting of most regions in the organelle genome should be feasible, making the approach of general interest.
Collapse
|
17
|
Pohjoismäki JLO, Goffart S. Of circles, forks and humanity: Topological organisation and replication of mammalian mitochondrial DNA. Bioessays 2011; 33:290-9. [PMID: 21290399 DOI: 10.1002/bies.201000137] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The organisation of mammalian mitochondrial DNA (mtDNA) is more complex than usually assumed. Despite often being depicted as a simple circle, the topology of mtDNA can vary from supercoiled monomeric circles over catenanes and oligomers to complex multimeric networks. Replication of mtDNA is also not clear cut. Two different mechanisms of replication have been found in cultured cells and in most tissues: a strand-asynchronous mode involving temporary RNA coverage of one strand, and a strand-coupled mode rather resembling conventional nuclear DNA replication. In addition, a recombination-initiated replication mechanism is likely to be associated with the multimeric mtDNA networks found in human heart. Although an insight into the general principles and key factors of mtDNA organisation and maintenance has been gained over the last few years, there are many open questions regarding replication initiation, termination and physiological factors determining mtDNA organisation and replication mode. However, common themes in mtDNA maintenance across eukaryotic kingdoms can provide valuable lessons for future work.
Collapse
Affiliation(s)
- Jaakko L O Pohjoismäki
- Department of Cardiac Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
| | | |
Collapse
|
18
|
Leung SK, Wong JTY. The replication of plastid minicircles involves rolling circle intermediates. Nucleic Acids Res 2009; 37:1991-2002. [PMID: 19208639 PMCID: PMC2665238 DOI: 10.1093/nar/gkp063] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Plastid genomes of peridinin-containing dinoflagellates are unique in that its genes are found on multiple circular DNA molecules known as ‘minicircles’ of ∼2–3 kb in size, carrying from one to three genes. The non-coding regions (NCRs) of these minicircles share a conserved core region (250–500 bp) that are AT-rich and have several inverted or direct repeats. Southern blot analysis using an NCR probe, after resolving a dinoflagellate whole DNA extract in pulsed-field gel electrophoresis (PFGE), revealed additional positive bands (APBs) of 6–8 kb in size. APBs preferentially diminished from cells treated with the DNA-replication inhibitor aphidicolin, when compared with 2–3 kb minicircles, implicating they are not large minicircles. The APBs are also exonuclease III-sensitive, implicating the presence of linear DNA. These properties and the migration pattern of the APBs in a 2D-gel electrophoresis were in agreement with a rolling circle type of replication, rather than the bubble-forming type. Atomic force microscopy of 6–8 kb DNA separated by PFGE revealed DNA intermediates with rolling circle shapes. Accumulating data thus supports the involvement of rolling circle intermediates in the replication of the minicircles.
Collapse
Affiliation(s)
- Siu Kai Leung
- Department of Biology, Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, PR China
| | | |
Collapse
|
19
|
Navrátilová A, Koblížková A, Macas J. Survey of extrachromosomal circular DNA derived from plant satellite repeats. BMC PLANT BIOLOGY 2008; 8:90. [PMID: 18721471 PMCID: PMC2543021 DOI: 10.1186/1471-2229-8-90] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Accepted: 08/22/2008] [Indexed: 05/19/2023]
Abstract
BACKGROUND Satellite repeats represent one of the most dynamic components of higher plant genomes, undergoing rapid evolutionary changes of their nucleotide sequences and abundance in a genome. However, the exact molecular mechanisms driving these changes and their eventual regulation are mostly unknown. It has been proposed that amplification and homogenization of satellite DNA could be facilitated by extrachromosomal circular DNA (eccDNA) molecules originated by recombination-based excision from satellite repeat arrays. While the models including eccDNA are attractive for their potential to explain rapid turnover of satellite DNA, the existence of satellite repeat-derived eccDNA has not yet been systematically studied in a wider range of plant genomes. RESULTS We performed a survey of eccDNA corresponding to nine different families and three subfamilies of satellite repeats in ten species from various genera of higher plants (Arabidopsis, Oryza, Pisum, Secale, Triticum and Vicia). The repeats selected for this study differed in their monomer length, abundance, and chromosomal localization in individual species. Using two-dimensional agarose gel electrophoresis followed by Southern blotting, eccDNA molecules corresponding to all examined satellites were detected. EccDNA occurred in the form of nicked circles ranging from hundreds to over eight thousand nucleotides in size. Within this range the circular molecules occurred preferentially in discrete size intervals corresponding to multiples of monomer or higher-order repeat lengths. CONCLUSION This work demonstrated that satellite repeat-derived eccDNA is common in plant genomes and thus it can be seriously considered as a potential intermediate in processes driving satellite repeat evolution. The observed size distribution of circular molecules suggests that they are most likely generated by molecular mechanisms based on homologous recombination requiring long stretches of sequence similarity.
Collapse
Affiliation(s)
- Alice Navrátilová
- Biology Centre ASCR, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice, CZ-37005, Czech Republic
| | - Andrea Koblížková
- Biology Centre ASCR, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice, CZ-37005, Czech Republic
| | - Jiří Macas
- Biology Centre ASCR, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice, CZ-37005, Czech Republic
| |
Collapse
|
20
|
Homs M, Kober S, Kepp G, Jeske H. Mitochondrial plasmids of sugar beet amplified via rolling circle method detected during curtovirus screening. Virus Res 2008; 136:124-9. [PMID: 18562034 DOI: 10.1016/j.virusres.2008.04.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2008] [Revised: 04/12/2008] [Accepted: 04/28/2008] [Indexed: 10/22/2022]
Abstract
Crops of sugar beet have been considerably impaired by infection with Beet curly top virus (BCTV) during the past decades. Quick and reliable diagnostic techniques are therefore desirable to detect this circular single-stranded DNA-containing geminivirus. Techniques combining either tissue printing or blot hybridization, or rolling circle amplification (RCA) and restriction fragment length polymorphism (RFLP) were compared. Although they easily detected BCTV with certainty, both exhibited apparent false positive results which have been scrutinized in closer detail. Uninfected control plants revealed unspecific signals due to probe attachment on tissue blots, and dominant fragment patterns upon RCA/RFLP which did not hybridize with BCTV-specific probes. Cloning and sequencing of these DNA fragments showed that they were amplified from mitochondrial plasmids. Examination of their genome structure revealed no relationship with geminiviruses or their satellites.
Collapse
Affiliation(s)
- Maria Homs
- Institute of Biology, Department of Molecular Biology and Plant Virology, University of Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart, Germany
| | | | | | | |
Collapse
|
21
|
Groff-Vindman C, Cesare AJ, Natarajan S, Griffith JD, McEachern MJ. Recombination at long mutant telomeres produces tiny single- and double-stranded telomeric circles. Mol Cell Biol 2005; 25:4406-12. [PMID: 15899847 PMCID: PMC1140610 DOI: 10.1128/mcb.25.11.4406-4412.2005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Recombinational telomere elongation (RTE) known as alternate lengthening of telomeres is the mechanism of telomere maintenance in up to 5 to 10% of human cancers. The telomeres of yeast mutants lacking telomerase can also be maintained by recombination. Previously, we proposed the roll-and-spread model to explain this elongation in the yeast Kluveromyces lactis. This model suggests that a very small ( approximately 100-bp) circular molecule of telomeric DNA is copied by a rolling circle event to generate a single long telomere. The sequence of this primary elongated telomere is then spread by recombination to all remaining telomeres. Here we show by two-dimensional gel analysis and electron microscopy that small circles of single- and double-stranded telomeric DNA are commonly made by recombination in a K. lactis mutant with long telomeres. These circles were found to be especially abundant between 100 and 400 bp (or nucleotides). Interestingly, the single-stranded circles consist of only the G-rich telomeric strand sequence. To our knowledge this is the first report of single-stranded telomeric circles as a product of telomere dysfunction. We propose that the small telomeric circles form through the resolution of an intratelomeric strand invasion which resembles a t-loop. Our data reported here demonstrate that K. lactis can, in at least some circumstances, make telomeric circles of the very small sizes predicted by the roll-and-spread model. The very small circles seen here are both predicted products of telomere rapid deletion, a process observed in both human and yeast cells, and predicted templates for roll-and-spread RTE.
Collapse
Affiliation(s)
- Cindy Groff-Vindman
- University of Georgia at Athens, Department of Genetics, Room C318, Life Sciences Building, Athens, GA 30602, USA
| | | | | | | | | |
Collapse
|
22
|
Sedman T, Jõers P, Kuusk S, Sedman J. Helicase Hmi1 stimulates the synthesis of concatemeric mitochondrial DNA molecules in yeast Saccharomyces cerevisiae. Curr Genet 2005; 47:213-22. [PMID: 15690159 DOI: 10.1007/s00294-005-0566-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Revised: 12/30/2004] [Accepted: 01/04/2005] [Indexed: 11/26/2022]
Abstract
Hmi1p is a helicase in the yeast Saccharomyces cerevisiae required for maintenance of the wild-type mitochondrial genome. Disruption of the HMI1 ORF generates rho(-) and rho(0) cells. Here we demonstrate that, in rho(-) yeast strains, Hmi1p stimulates the synthesis of long concatemeric mitochondrial DNA molecules associated with a reduction in the number of nucleoids used for mitochondrial DNA packaging. Surprisingly, the ATPase negative mutants of Hmi1p can also stimulate the synthesis of long concatemeric rho(-) mitochondrial DNA molecules and support the maintenance of the wild-type mitochondrial genome, albeit with reduced efficiency. We show that, in the mutant hmi1-5 background, the wild-type mitochondrial DNA is fragmented; and we propose that, in hmi1Delta yeast cells, the loss of the wild-type mitochondrial genome is caused by this fragmentation of the mitochondrial DNA.
Collapse
Affiliation(s)
- Tiina Sedman
- Department of General and Microbial Biochemistry, University of Tartu, Vanemuise 46, Tartu 51014, Estonia
| | | | | | | |
Collapse
|
23
|
Ling F, Shibata T. Mhr1p-dependent concatemeric mitochondrial DNA formation for generating yeast mitochondrial homoplasmic cells. Mol Biol Cell 2004; 15:310-22. [PMID: 14565971 PMCID: PMC307549 DOI: 10.1091/mbc.e03-07-0508] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2003] [Revised: 09/08/2003] [Accepted: 09/24/2003] [Indexed: 11/11/2022] Open
Abstract
Mitochondria carry many copies of mitochondrial DNA (mtDNA), but mt-alleles quickly segregate during mitotic growth through unknown mechanisms. Consequently, all mtDNA copies are often genetically homogeneous within each individual ("homoplasmic"). Our previous study suggested that tandem multimers ("concatemers") formed mainly by the Mhr1p (a yeast nuclear gene-encoded mtDNA-recombination protein)-dependent pathway are required for mtDNA partitioning into buds with concomitant monomerization. The transmission of a few randomly selected clones (as concatemers) of mtDNA into buds is a possible mechanism to establish homoplasmy. The current study provides evidence for this hypothesis as follows: the overexpression of MHR1 accelerates mt-allele-segregation in growing heteroplasmic zygotes, and mhr1-1 (recombination-deficient) causes its delay. The mt-allele-segregation rate correlates with the abundance of concatemers, which depends on Mhr1p. In G1-arrested cells, concatemeric mtDNA was labeled by [14C]thymidine at a much higher density than monomers, indicating concatemers as the immediate products of mtDNA replication, most likely in a rolling circle mode. After releasing the G1 arrest in the absence of [14C]thymidine, the monomers as the major species in growing buds of dividing cells bear a similar density of 14C as the concatemers in the mother cells, indicating that the concatemers in mother cells are the precursors of the monomers in buds.
Collapse
Affiliation(s)
- Feng Ling
- Cellular and Molecular Biology Laboratory, RIKEN, Saitama 351-0198, Japan
| | | |
Collapse
|
24
|
Nosek J, Tomáska L. Mitochondrial genome diversity: evolution of the molecular architecture and replication strategy. Curr Genet 2003; 44:73-84. [PMID: 12898180 DOI: 10.1007/s00294-003-0426-z] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2003] [Revised: 06/25/2003] [Accepted: 06/26/2003] [Indexed: 11/28/2022]
Abstract
Mitochondrial genomes in organisms from diverse phylogenetic groups vary in both size and molecular form. Although the types of mitochondrial genome appear very dissimilar, several lines of evidence argue that they do not differ radically. This would imply that interconversion between different types of mitochondrial genome might have occurred via relatively simple mechanisms. We exemplify this scenario on patterns accompanying evolution of mitochondrial telomeres. We propose that mitochondrial telomeres are derived from mobile elements (transposons or plasmids) that invaded mitochondria, integrated into circular or polydisperse linear mitochondrial DNAs (mtDNAs) and subsequently enabled precise resolution of the linear genophore. Simply, the selfish elements generated a problem - how to maintain the ends of a linear DNA - and, at the same time, made themselves essential by providing its solution. This scenario implies that insertion or deletion of such resolution elements may represent relatively simple routes for interconversion between different forms of the mitochondrial genome.
Collapse
Affiliation(s)
- Jozef Nosek
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Mlynská dolina CH-1, 842 15, Bratislava, Slovakia.
| | | |
Collapse
|
25
|
Sigala B, Tsaneva IR. Functional dissection of the Schizosaccharomyces pombe Holliday junction resolvase Ydc2: in vivo role in mitochondrial DNA maintenance. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:2837-47. [PMID: 12823554 DOI: 10.1046/j.1432-1033.2003.03661.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The crystal structure of the Schizosaccharomyces pombe Holliday junction resolvase Ydc2 revealed significant structural homology with the Escherichia coli resolvase RuvC but Ydc2 contains a small triple helical bundle that has no equivalent in RuvC. Two of the alpha-helices that form this bundle show homology to a putative DNA-binding motif known as SAP. To investigate the biochemical function of the triple-helix domain, truncated Ydc2 mutants were expressed in E. coli and in fission yeast. Although the truncated proteins retained all amino-acid residues that map to the structural core of RuvC including the catalytic site, deletion of the SAP motif alone or the whole triple-helix domain of Ydc2 resulted in the complete loss of resolvase activity and impaired significantly the binding of Ydc2 to synthetic junctions in vitro. These results are in full agreement with our proposal for a DNA-binding role of the triple-helix motif [Ceschini et al. (2001) EMBO J. 20, 6601-6611]. The biological effect of Ydc2 on mtDNA in yeast was probed using wild-type and several Ydc2 mutants expressed in Deltaydc2 S. pombe. The truncated mutants were shown to localize exclusively to yeast mitochondria ruling out a possible role of the helical bundle in mitochondrial targeting. Cells that lacked Ydc2 showed a significant depletion of mtDNA content. Plasmids expressing full-length Ydc2 but not the truncated or catalytically inactive Ydc2 mutants could rescue the mtDNA 'phenotype'. These results provide evidence that the Holliday junction resolvase activity of Ydc2 is required for mtDNA transmission and affects mtDNA content in S. pombe.
Collapse
Affiliation(s)
- Barbara Sigala
- Department of Biochemistry and Molecular Biology, University College London, London, UK
| | | |
Collapse
|