1
|
Selzer AM, Alvarado JJ, Smithgall TE. Cocrystallization of the Src-Family Kinase Hck with the ATP-Site Inhibitor A-419259 Stabilizes an Extended Activation Loop Conformation. Biochemistry 2024; 63:2594-2601. [PMID: 39315638 PMCID: PMC11483750 DOI: 10.1021/acs.biochem.4c00323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/29/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024]
Abstract
Hematopoietic cell kinase (Hck) is a member of the Src kinase family and is a promising drug target in myeloid leukemias. Here, we report the crystal structure of human Hck in complex with the pyrrolopyrimidine inhibitor A-419259, determined at a resolution of 1.8 Å. This structure reveals the complete Hck active site in the presence of A-419259, including the αC-helix, the DFG motif, and the activation loop. A-419259 binds at the ATP-site of Hck and induces an overall closed conformation of the kinase with the regulatory SH3 and SH2 domains bound intramolecularly to their respective internal ligands. A-419259 stabilizes the DFG-in/αC-helix-out conformation observed previously with Hck and the pyrazolopyrimidine inhibitor PP1 (PDB: 1QCF). However, the activation loop conformations are distinct, with PP1 inducing a folded loop structure with the tyrosine autophosphorylation site (Tyr416) pointing into the ATP binding site, while A-419259 stabilizes an extended loop conformation with Tyr416 facing out into the solvent. Autophosphorylation also induces activation loop extension and significantly reduces the Hck sensitivity to PP1 but not A-419259. In cancer cells where Hck is constitutively active, the extended autophosphorylation loop may render Hck more sensitive to inhibitors like A-419259 which prefer this kinase conformation. More generally, these results provide additional insight into targeted kinase inhibitor design and how conformational preferences of inhibitors may impact selectivity and potency.
Collapse
Affiliation(s)
- Ari M. Selzer
- Department of Microbiology
and Molecular Genetics, University of Pittsburgh
School of Medicine, 450 Technology Drive, Pittsburgh, Pennsylvania PA 15219, United States
| | - John J. Alvarado
- Department of Microbiology
and Molecular Genetics, University of Pittsburgh
School of Medicine, 450 Technology Drive, Pittsburgh, Pennsylvania PA 15219, United States
| | - Thomas E. Smithgall
- Department of Microbiology
and Molecular Genetics, University of Pittsburgh
School of Medicine, 450 Technology Drive, Pittsburgh, Pennsylvania PA 15219, United States
| |
Collapse
|
2
|
Lao C, Zheng P, Chen H, Liu Q, An F, Li Z. DeepAEG: a model for predicting cancer drug response based on data enhancement and edge-collaborative update strategies. BMC Bioinformatics 2024; 25:105. [PMID: 38461284 PMCID: PMC10925015 DOI: 10.1186/s12859-024-05723-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 02/27/2024] [Indexed: 03/11/2024] Open
Abstract
MOTIVATION The prediction of cancer drug response is a challenging subject in modern personalized cancer therapy due to the uncertainty of drug efficacy and the heterogeneity of patients. It has been shown that the characteristics of the drug itself and the genomic characteristics of the patient can greatly influence the results of cancer drug response. Therefore, accurate, efficient, and comprehensive methods for drug feature extraction and genomics integration are crucial to improve the prediction accuracy. RESULTS Accurate prediction of cancer drug response is vital for guiding the design of anticancer drugs. In this study, we propose an end-to-end deep learning model named DeepAEG which is based on a complete-graph update mode to predict IC50. Specifically, we integrate an edge update mechanism on the basis of a hybrid graph convolutional network to comprehensively learn the potential high-dimensional representation of topological structures in drugs, including atomic characteristics and chemical bond information. Additionally, we present a novel approach for enhancing simplified molecular input line entry specification data by employing sequence recombination to eliminate the defect of single sequence representation of drug molecules. Our extensive experiments show that DeepAEG outperforms other existing methods across multiple evaluation parameters in multiple test sets. Furthermore, we identify several potential anticancer agents, including bortezomib, which has proven to be an effective clinical treatment option. Our results highlight the potential value of DeepAEG in guiding the design of specific cancer treatment regimens.
Collapse
Affiliation(s)
- Chuanqi Lao
- Research Center for Graph Computing, Zhejiang Lab, Yuhang, Hangzhou, 311121, Zhejiang, China
| | - Pengfei Zheng
- Research Center for Graph Computing, Zhejiang Lab, Yuhang, Hangzhou, 311121, Zhejiang, China
| | - Hongyang Chen
- Research Center for Graph Computing, Zhejiang Lab, Yuhang, Hangzhou, 311121, Zhejiang, China.
| | - Qiao Liu
- Department of Statistics, Stanford University, Stanford, Palo Alto, CA, 94305, USA
| | - Feng An
- Research Center for Graph Computing, Zhejiang Lab, Yuhang, Hangzhou, 311121, Zhejiang, China
| | - Zhao Li
- Research Center for Graph Computing, Zhejiang Lab, Yuhang, Hangzhou, 311121, Zhejiang, China
| |
Collapse
|
3
|
Benegas P, Ziegler B, Dieminger V, Bengió R, Zapata P, Larripa I, Ferri C. Expression of genes potentially involved in loss of response in patients with chronic myeloid leukemia. Gene 2024; 896:148047. [PMID: 38042214 DOI: 10.1016/j.gene.2023.148047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/28/2023] [Accepted: 11/28/2023] [Indexed: 12/04/2023]
Abstract
Chronic Myeloid Leukemia (CML) is a hematological malignancy characterized by the presence of the BCR::ABL1 fusion gene, which leads to uncontrolled cell growth and survival. Tyrosine kinase inhibitors (TKIs) have revolutionized the treatment of CML, but a significant proportion of patients develop resistance or lose response to these drugs. Understanding the molecular mechanisms underlying treatment response and resistance is crucial for improving patient outcomes. This study aimed to analyze the expression patterns of genes involved in treatment response and resistance in CML patients receiving TKI therapy. The expression levels of MET, FOXO3, p15, p16, HCK, and FYN genes were examined in CML patients and compared to healthy donors. Gene expression levels were compared between optimal responders (OR) and resistant patients (R) vs. healthy donors (HD). The MET and FOXO3 OR group showed significant differences compared with the HD, (p < 0.0001) and (p = 0.0003), respectively. p15 expression showed significant differences between OR and HD groups (p = 0.0078), while no significant differences were found in p16 expression between the HD groups. FYN showed a statistically significant difference between R vs. HD (p = 0.0157). The results of HCK expression analysis revealed significant differences between OR and HD (p = 0.0041) and between R and HD (p = 0.0026). When we analyzed OR patients with undetectable BCR::ABL1 transcripts, a greater expression of HCK was observed in the R group. These findings suggest that monitoring the expression levels of MET and FOXO3 genes could be valuable in predicting treatment response and relapse in CML patients. Our study provides important insights into the potential use of gene expression analysis as a tool for predicting treatment response and guiding treatment decisions in CML patients. This knowledge may ultimately contribute to the development of personalized treatment strategies to improve patient outcomes in CML.
Collapse
Affiliation(s)
- Paula Benegas
- Universidad Nacional de Misiones, Facultad de Ciencias Exactas Químicas y Naturales, Instituto de Biotecnología Misiones "Dra. María Ebe Reca" (INBIOMIS), Laboratorio de Biotecnología Molecular (BIOTECMOL), Misiones, Argentina; Consejo Nacional de Invetigaciones Cientìficas y Tècnicas (CONICET), Buenos Aires, Argentina
| | - Betiana Ziegler
- Universidad Nacional de Misiones, Facultad de Ciencias Exactas Químicas y Naturales, Instituto de Biotecnología Misiones "Dra. María Ebe Reca" (INBIOMIS), Laboratorio de Biotecnología Molecular (BIOTECMOL), Misiones, Argentina; Laboratorio de Genética Hematológica, IMEX, CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Victoria Dieminger
- Universidad Nacional de Misiones, Facultad de Ciencias Exactas Químicas y Naturales, Instituto de Biotecnología Misiones "Dra. María Ebe Reca" (INBIOMIS), Laboratorio de Biotecnología Molecular (BIOTECMOL), Misiones, Argentina
| | - Raquel Bengió
- Departamento de Hemato-oncología, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Pedro Zapata
- Universidad Nacional de Misiones, Facultad de Ciencias Exactas Químicas y Naturales, Instituto de Biotecnología Misiones "Dra. María Ebe Reca" (INBIOMIS), Laboratorio de Biotecnología Molecular (BIOTECMOL), Misiones, Argentina; Consejo Nacional de Invetigaciones Cientìficas y Tècnicas (CONICET), Buenos Aires, Argentina
| | - Irene Larripa
- Laboratorio de Genética Hematológica, IMEX, CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Cristian Ferri
- Universidad Nacional de Misiones, Facultad de Ciencias Exactas Químicas y Naturales, Instituto de Biotecnología Misiones "Dra. María Ebe Reca" (INBIOMIS), Laboratorio de Biotecnología Molecular (BIOTECMOL), Misiones, Argentina.
| |
Collapse
|
4
|
El-Tanani M, Nsairat H, Matalka II, Lee YF, Rizzo M, Aljabali AA, Mishra V, Mishra Y, Hromić-Jahjefendić A, Tambuwala MM. The impact of the BCR-ABL oncogene in the pathology and treatment of chronic myeloid leukemia. Pathol Res Pract 2024; 254:155161. [PMID: 38280275 DOI: 10.1016/j.prp.2024.155161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/29/2024]
Abstract
Chronic Myeloid Leukemia (CML) is characterized by chromosomal aberrations involving the fusion of the BCR and ABL genes on chromosome 22, resulting from a reciprocal translocation between chromosomes 9 and 22. This fusion gives rise to the oncogenic BCR-ABL, an aberrant tyrosine kinase identified as Abl protein. The Abl protein intricately regulates the cell cycle by phosphorylating protein tyrosine residues through diverse signaling pathways. In CML, the BCR-ABL fusion protein disrupts the first exon of Abl, leading to sustained activation of tyrosine kinase and resistance to deactivation mechanisms. Pharmacological interventions, such as imatinib, effectively target BCR-ABL's tyrosine kinase activity by binding near the active site, disrupting ATP binding, and inhibiting downstream protein phosphorylation. Nevertheless, the emergence of resistance, often attributed to cap structure mutations, poses a challenge to imatinib efficacy. Current research endeavours are directed towards overcoming resistance and investigating innovative therapeutic strategies. This article offers a comprehensive analysis of the structural attributes of BCR-ABL, emphasizing its pivotal role as a biomarker and therapeutic target in CML. It underscores the imperative for ongoing research to refine treatment modalities and enhance overall outcomes in managing CML.
Collapse
MESH Headings
- Humans
- Imatinib Mesylate/therapeutic use
- Imatinib Mesylate/pharmacology
- Genes, abl
- Pyrimidines/therapeutic use
- Piperazines/therapeutic use
- Benzamides/pharmacology
- Benzamides/therapeutic use
- Drug Resistance, Neoplasm/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Fusion Proteins, bcr-abl/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Protein Kinase Inhibitors/pharmacology
Collapse
Affiliation(s)
- Mohamed El-Tanani
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates; Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan.
| | - Hamdi Nsairat
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Ismail I Matalka
- Ras Al Khaimah Medical and Health Sciences University, United Arab Emirates; Department of Pathology and Microbiology, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Yin Fai Lee
- Neuroscience, Psychology & Behaviour, College of Life Sciences, University of Leicester, Leicester LE1 9HN, UK; School of Life Sciences, Faculty of Science and Engineering, Anglia Ruskin University, Cambridge CB1 1PT, UK
| | - Manfredi Rizzo
- Department of Health Promotion, Mother and Childcare, Internal Medicine and Medical Specialties, School of Medicine, University of Palermo, Palermo, Italy
| | - Alaa A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid 21163, Jordan
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Yachana Mishra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka cesta 15, Sarajevo 71000, Bosnia and Herzegovina
| | - Murtaza M Tambuwala
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates; Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK.
| |
Collapse
|
5
|
Busch C, Mulholland T, Zagnoni M, Dalby M, Berry C, Wheadon H. Overcoming BCR::ABL1 dependent and independent survival mechanisms in chronic myeloid leukaemia using a multi-kinase targeting approach. Cell Commun Signal 2023; 21:342. [PMID: 38031192 PMCID: PMC10685629 DOI: 10.1186/s12964-023-01363-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Despite improved patient outcome using tyrosine kinase inhibitors (TKIs), chronic myeloid leukaemia (CML) patients require life-long treatment due to leukaemic stem cell (LSC) persistence. LSCs reside in the bone marrow (BM) niche, which they modify to their advantage. The BM provides oncogene-independent signals to aid LSC cell survival and quiescence. The bone-morphogenetic pathway (BMP) is one pathway identified to be highly deregulated in CML, with high levels of BMP ligands detected in the BM, accompanied by CML stem and progenitor cells overexpressing BMP type 1 receptors- activin-like kinases (ALKs), especially in TKI resistant patients. Saracatinib (SC), a SRC/ABL1 dual inhibitor, inhibits the growth of CML cells resistant to the TKI imatinib (IM). Recent studies indicate that SC is also a potent ALK inhibitor and BMP antagonist. Here we investigate the efficacy of SC in overcoming CML BCR::ABL1 dependent and independent signals mediated by the BM niche both in 2D and 3D culture. METHODS CML cells (K562 cell line and CML CD34+ primary cells) were treated with single or combination treatments of: IM, SC and the BMP receptors inhibitor dorsomorphin (DOR), with or without BMP4 stimulation in 2D (suspension) and 3D co-culture on HS5 stroma cell line and mesenchymal stem cells in AggreWell and microfluidic devices. Flow cytometry was performed to investigate apoptosis, cell cycle progression and proliferation, alongside colony assays following treatment. Proteins changes were validated by immunoblotting and transcriptional changes by Fluidigm multiplex qPCR. RESULTS By targeting the BMP pathway, using specific inhibitors against ALKs in combination with SRC and ABL TKIs, we show an increase in apoptosis, altered cell cycle regulation, fewer cell divisions, and reduced numbers of CD34+ cells. Impairment of long-term proliferation and differentiation potential after combinatorial treatment also occurred. CONCLUSION BMP signalling pathway is important for CML cell survival. Targeting SRC, ABL and ALK kinases is more effective than ABL inhibition alone, the combination efficacy importantly being demonstrated in both 2D and 3D cell cultures highlighting the need for combinatorial therapies in contrast to standard of care single agents. Our study provides justification to target multiple kinases in CML to combat LSC persistence.
Collapse
Affiliation(s)
- Caroline Busch
- Paul O'Gorman Leukaemia Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G12 0ZD, UK
| | - Theresa Mulholland
- Centre for Microsystems and Photonics, Electronic and Electrical Engineering, University of Strathclyde, Glasgow, G1 1XW, UK
| | - Michele Zagnoni
- Centre for Microsystems and Photonics, Electronic and Electrical Engineering, University of Strathclyde, Glasgow, G1 1XW, UK
| | - Matthew Dalby
- Mazumdar-Shaw Advanced Research Centre, School of Molecular Biosciences, University of Glasgow, Glasgow, G11 6EW, UK
| | - Catherine Berry
- Mazumdar-Shaw Advanced Research Centre, School of Molecular Biosciences, University of Glasgow, Glasgow, G11 6EW, UK
| | - Helen Wheadon
- Paul O'Gorman Leukaemia Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G12 0ZD, UK.
| |
Collapse
|
6
|
MacMullan MA, Wang P, Graham NA. Phospho-proteomics reveals that RSK signaling is required for proliferation of natural killer cells stimulated with IL-2 or IL-15. Cytokine 2022; 157:155958. [PMID: 35841827 DOI: 10.1016/j.cyto.2022.155958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/13/2022] [Accepted: 07/01/2022] [Indexed: 11/19/2022]
Abstract
Natural killer (NK) cells are cytotoxic lymphocytes that play a critical role in the innate immune system. Although cytokine signaling is crucial for the development, expansion, and cytotoxicity of NK cells, the signaling pathways stimulated by cytokines are not well understood. Here, we sought to compare the early signaling dynamics induced by the cytokines interleukin (IL)-2 and IL-15 using liquid chromatography-mass spectrometry (LC-MS)-based phospho-proteomics. Following stimulation of the immortalized NK cell line NK-92 with IL-2 or IL-15 for 5, 10, 15, or 30 min, we identified 8,692 phospho-peptides from 3,023 proteins. Comparing the kinetic profiles of 3,619 fully quantified phospho-peptides, we found that IL-2 and IL-15 induced highly similar signaling in NK-92 cells. Among the IL-2/IL-15-regulated phospho-peptides were both well-known signaling events like the JAK/STAT pathway and novel signaling events with potential functional significance including LCP1 pSer5, STMN1 pSer25, CHEK1 pSer286, STIM1 pSer608, and VDAC1 pSer104. Using bioinformatic approaches, we sought to identify kinases regulated by IL-2/IL-15 stimulation and found that the p90 ribosomal S6 kinase (p90RSK) family was activated by both cytokines. Using pharmacological inhibitors, we then discovered that RSK signaling is required for IL-2 and IL-15-induced proliferation in NK-92 cells. Taken together, our analysis represents the first phospho-proteomic characterization of cytokine signaling in NK cells and increases our understanding of how cytokine signaling regulates NK cell function.
Collapse
Affiliation(s)
- Melanie A MacMullan
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, United States.
| | - Pin Wang
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, United States; Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, United States; Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, United States.
| | - Nicholas A Graham
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, United States; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, United States; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, United States.
| |
Collapse
|
7
|
HIV-1 Nef Induces Hck/Lyn-Dependent Expansion of Myeloid-Derived Suppressor Cells Associated with Elevated Interleukin-17/G-CSF Levels. J Virol 2021; 95:e0047121. [PMID: 34106001 PMCID: PMC8354241 DOI: 10.1128/jvi.00471-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Human immunodeficiency virus (HIV) or simian immunodeficiency virus (SIV) infection causes myelodysplasia, anemia, and accumulation of inflammatory monocytes (CD14+ CD16+) through largely unknown cellular and molecular pathways. The mouse cells thought to be equivalent to human CD14+ CD16+ cells are CD11b+ Gr1+ myeloid-derived suppressor cells (MDSC). We used HIV transgenic (Tg) mouse models to study MDSC, namely, CD4C/Nef Tg mice expressing nef in dendritic cells (DC), pDC, CD4+ T, and other mature and immature myeloid cells and CD11c/Nef Tg mice with a more restricted expression, mainly in DC and pDC. Both Tg strains showed expansion of granulocytic and CD11b+ Gr1low/int cells with MDSC characteristics. Fetal liver cell transplantation revealed that this expansion was stroma-independent and abrogated in mixed Tg/non-Tg 50% chimera. Tg bone marrow (BM) erythroid progenitors were decreased and myeloid precursors increased, suggesting an aberrant differentiation likely driving CD11b+ Gr1+ cell expansion, apparently cell autonomously in CD4C/Nef Tg mice and likely through a bystander effect in CD11c/Nef Tg mice. Hck was activated in Tg spleen, and Nef-mediated CD11b+ Gr1+ cell expansion was abrogated in Hck/Lyn-deficient Nef Tg mice, indicating a requirement of Hck/Lyn for this Nef function. IL-17 and granulocyte colony-stimulating factor (G-CSF) were elevated in Nef Tg mice. Increased G-CSF levels were normalized in Tg mice treated with anti-IL-17 antibodies. Therefore, Nef expression in myeloid precursors causes severe BM failure, apparently cell autonomously. More cell-restricted expression of Nef in DC and pDC appears sufficient to induce BM differentiation impairment, granulopoiesis, and expansion of MDSC at the expense of erythroid maturation, with IL-17→G-CSF as one likely bystander contributor. IMPORTANCE HIV-1 and SIV infection often lead to myelodysplasia, anemia, and accumulation of inflammatory monocytes (CD14+ CD16+), with the latter likely involved in neuroAIDS. We found that some transgenic (Tg) mouse models of AIDS also develop accumulation of mature and immature cells of the granulocytic lineage, decreased erythroid precursors, and expansion of MDSC (equivalent to human CD14+ CD16+ cells). We identified Nef as being responsible for these phenotypes, and its expression in mouse DC appears sufficient for their development through a bystander mechanism. Nef expression in myeloid progenitors may also favor myeloid cell expansion, likely in a cell-autonomous way. Hck/Lyn is required for the Nef-mediated accumulation of myeloid cells. Finally, we identified G-CSF under the control of IL-17 as one bystander mediator of MDSC expansion. Our findings provide a framework to determine whether the Nef>Hck/Lyn>IL-17>G-CSF pathway is involved in human AIDS and whether it represents a valid therapeutic target.
Collapse
|
8
|
Gene Transcription as a Therapeutic Target in Leukemia. Int J Mol Sci 2021; 22:ijms22147340. [PMID: 34298959 PMCID: PMC8304797 DOI: 10.3390/ijms22147340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/11/2022] Open
Abstract
Blood malignancies often arise from undifferentiated hematopoietic stem cells or partially differentiated stem-like cells. A tight balance of multipotency and differentiation, cell division, and quiescence underlying normal hematopoiesis requires a special program governed by the transcriptional machinery. Acquisition of drug resistance by tumor cells also involves reprogramming of their transcriptional landscape. Limiting tumor cell plasticity by disabling reprogramming of the gene transcription is a promising strategy for improvement of treatment outcomes. Herein, we review the molecular mechanisms of action of transcription-targeted drugs in hematological malignancies (largely in leukemia) with particular respect to the results of clinical trials.
Collapse
|
9
|
Li Z, Wang F, Tian X, Long J, Ling B, Zhang W, Xu J, Liang A. HCK maintains the self-renewal of leukaemia stem cells via CDK6 in AML. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:210. [PMID: 34167558 PMCID: PMC8223385 DOI: 10.1186/s13046-021-02007-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 06/06/2021] [Indexed: 01/01/2023]
Abstract
Background: Leukaemia stem cells (LSCs) are responsible for the initiation, maintenance, and recurrence of acute myeloid leukaemia (AML), an aggressive haematological malignancy associated with drug resistance and relapse. Identifying therapeutic LSC targets is critical to curing AML. Methods Bioinformatics databases were used to identify therapeutic LSC targets. The conditional knockout mice were used to analyse the role of HCK in leukaemogenesis or normal haematopoiesis. Colony-forming assays, cell counting, and flow cytometry were used to detect the viability and function of leukaemia cells. RT-PCR, western blotting, and RNA sequencing were used to detect mRNA and protein expression. Result HCK is expressed at higher levels in LSCs than in haematopoietic stem cells (HSCs), and high HCK levels are correlated with reduced survival time in AML patients. Knockdown of HCK leads to cell cycle arrest, which results in a dramatic decrease in the proliferation and colony formation in human AML cell lines. Moreover, HCK is required for leukemogenesis and leukaemia maintenance in vivo and in vitro. HCK is necessary for the self-renewal of LSCs during serial transplantation and limiting dilution assay. The phenotypes resulting from HCK deficiency can be rescued by CDK6 overexpression in the human cell line. RNA sequencing and gene expression have demonstrated that HCK may sustain cell cycle entry and maintain the self-renewal ability of LSCs through activating the ERK1/2-c-Myc-CDK6 signalling axis. In contrast, HCK deletion does not affect normal haematopoiesis or haematopoietic reconstruction in mice. Conclusions HCK maintains the self-renewal of leukaemia stem cells via CDK6 in AML and may be an ideal therapeutic target for eradicating LSCs without influencing normal haematopoiesis. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02007-4.
Collapse
Affiliation(s)
- Zheng Li
- Department of Haematology, Tongji Hospital, Tongji University School of Medicine, 1239 Siping Road, 200092, Shanghai, P.R. China
| | - Fangce Wang
- Department of Haematology, Tongji Hospital, Tongji University School of Medicine, 1239 Siping Road, 200092, Shanghai, P.R. China
| | - Xiaoxue Tian
- Department of Haematology, Tongji Hospital, Tongji University School of Medicine, 1239 Siping Road, 200092, Shanghai, P.R. China
| | - Jun Long
- Department of Haematology, Tongji Hospital, Tongji University School of Medicine, 1239 Siping Road, 200092, Shanghai, P.R. China
| | - Bin Ling
- The Second People's Hospital of Yunnan Province, 650000, Kunming, P.R. China
| | - Wenjun Zhang
- Department of Haematology, Tongji Hospital, Tongji University School of Medicine, 1239 Siping Road, 200092, Shanghai, P.R. China.
| | - Jun Xu
- East Hospital, Tongji University School of Medicine, 1239 Siping Road, 200092, Shanghai, P.R. China.
| | - Aibin Liang
- Department of Haematology, Tongji Hospital, Tongji University School of Medicine, 1239 Siping Road, 200092, Shanghai, P.R. China.
| |
Collapse
|
10
|
Pradhan K, Geng S, Zhang Y, Lin RC, Li L. TRAM-Related TLR4 Pathway Antagonized by IRAK-M Mediates the Expression of Adhesion/Coactivating Molecules on Low-Grade Inflammatory Monocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:2980-2988. [PMID: 34031144 PMCID: PMC8278277 DOI: 10.4049/jimmunol.2000978] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 04/05/2021] [Indexed: 11/19/2022]
Abstract
Low-grade inflammatory monocytes critically contribute to the pathogenesis of chronic inflammatory diseases such as atherosclerosis. The elevated expression of coactivating molecule CD40 as well as key adhesion molecule CD11a is a critical signature of inflammatory monocytes from both human patients with coronary artery diseases as well as in animal models of atherosclerosis. In this study, we report that subclinical superlow-dose LPS, a key risk factor for low-grade inflammation and atherosclerosis, can potently trigger the induction of CD40 and CD11a on low-grade inflammatory monocytes. Subclinical endotoxin-derived monocytes demonstrate immune-enhancing effects and suppress the generation of regulatory CD8+CD122+ T cells, which further exacerbate the inflammatory environment conducive for chronic diseases. Mechanistically, subclinical endotoxemia activates TRAM-mediated signaling processes, leading to the activation of MAPK and STAT5, which is responsible for the expression of CD40 and CD11a. We also demonstrate that TRAM-mediated monocyte polarization can be suppressed by IRAK-M. IRAK-M-deficient monocytes have increased expression of TRAM, elevated induction of CD40 and CD11a by subclinical-dose endotoxin, and are more potent in suppressing the CD8 regulatory T cells. Mice with IRAK-M deficiency generate an increased population of inflammatory monocytes and a reduced population of CD8 T regulatory cells. In contrast, mice with TRAM deficiency exhibit a significantly reduced inflammatory monocyte population and an elevated CD8 T regulatory cell population. Together, our data reveal a competing intracellular circuitry involving TRAM and IRAK-M that modulate the polarization of low-grade inflammatory monocytes with an immune-enhancing function.
Collapse
Affiliation(s)
- Kisha Pradhan
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Shuo Geng
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Yao Zhang
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Rui-Ci Lin
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Liwu Li
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA
| |
Collapse
|
11
|
Involvement of STAT5 in Oncogenesis. Biomedicines 2020; 8:biomedicines8090316. [PMID: 32872372 PMCID: PMC7555335 DOI: 10.3390/biomedicines8090316] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/19/2020] [Accepted: 08/26/2020] [Indexed: 12/24/2022] Open
Abstract
Signal transducer and activator of transcription (STAT) proteins, and in particular STAT3, have been established as heavily implicated in cancer. Recently, the involvement of STAT5 signalling in the pathology of cancer has been shown to be of increasing importance. STAT5 plays a crucial role in the development of the mammary gland and the homeostasis of the immune system. However, in various cancers, aberrant STAT5 signalling promotes the expression of target genes, such as cyclin D, Bcl-2 and MMP-2, that result in increased cell proliferation, survival and metastasis. To target constitutive STAT5 signalling in cancers, there are several STAT5 inhibitors that can prevent STAT5 phosphorylation, dimerisation, or its transcriptional activity. Tyrosine kinase inhibitors (TKIs) that target molecules upstream of STAT5 could also be utilised. Consequently, since STAT5 contributes to tumour aggressiveness and cancer progression, inhibiting STAT5 constitutive activation in cancers that rely on its signalling makes for a promising targeted treatment option.
Collapse
|
12
|
Patel RK, Patel YK, Smithgall TE. In Vitro Evolution Reveals a Single Mutation as Sole Source of Src-Family Kinase C-Helix-out Inhibitor Resistance. ACS Chem Biol 2020; 15:2175-2184. [PMID: 32602694 PMCID: PMC8136437 DOI: 10.1021/acschembio.0c00373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Understanding cancer cell drug resistance to protein-tyrosine kinase inhibitors, which often arises from acquired mutations in the target kinase, is central to the development of more durable therapies. Experimental systems that reveal potential paths to resistance for a given inhibitor and kinase target have an important role in preclinical development of kinase inhibitor drugs. Here, we employed a codon mutagenesis strategy to define the mutational landscape of acquired resistance in HCK, a member of the SRC tyrosine kinase family and therapeutic target in acute myeloid leukemia (AML). Using PCR-based saturation mutagenesis, we created a cDNA library designed to replace each codon in the HCK open reading frame with all possible codons. This HCK mutant library was used to transform Rat-2 fibroblasts, followed by selection for resistant colonies with A-419259, a pyrrolopyrimidine HCK inhibitor and drug lead for AML. X-ray crystallography has shown that A-419259 binding induces outward rotation of the kinase domain αC-helix, a conformation incompatible with phosphotransfer. Remarkably, only a single resistance mutation evolved during A-419259 selection: histidine substitution for threonine at the gatekeeper position in the kinase domain. Deep sequencing confirmed representation of nearly all other missense mutations across the entire HCK open reading frame. This observation suggests that A-419259 and other C-helix-out Src-family kinase inhibitors may have a narrow path to acquired resistance in the context of AML cases where Hck is an oncogenic driver.
Collapse
Affiliation(s)
- Ravi K. Patel
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine 450 Technology Drive, Pittsburgh, PA 15219, USA
| | | | - Thomas E. Smithgall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine 450 Technology Drive, Pittsburgh, PA 15219, USA
| |
Collapse
|
13
|
Hurtz C, Wertheim GB, Loftus JP, Blumenthal D, Lehman A, Li Y, Bagashev A, Manning B, Cummins KD, Burkhardt JK, Perl AE, Carroll M, Tasian SK. Oncogene-independent BCR-like signaling adaptation confers drug resistance in Ph-like ALL. J Clin Invest 2020; 130:3637-3653. [PMID: 32191635 PMCID: PMC7324172 DOI: 10.1172/jci134424] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/17/2020] [Indexed: 12/23/2022] Open
Abstract
Children and adults with Philadelphia chromosome-like B cell acute lymphoblastic leukemia (Ph-like B-ALL) experience high relapse rates despite best-available conventional chemotherapy. Ph-like ALL is driven by genetic alterations that activate constitutive cytokine receptor and kinase signaling, and early-phase trials are investigating the potential of the addition of tyrosine kinase inhibitors (TKIs) to chemotherapy to improve clinical outcomes. However, preclinical studies have shown that JAK or PI3K pathway inhibition is insufficient to eradicate the most common cytokine receptor-like factor 2-rearranged (CRLF2-rearranged) Ph-like ALL subset. We thus sought to define additional essential signaling pathways required in Ph-like leukemogenesis for improved therapeutic targeting. Herein, we describe an adaptive signaling plasticity of CRLF2-rearranged Ph-like ALL following selective TKI pressure, which occurs in the absence of genetic mutations. Interestingly, we observed that Ph-like ALL cells have activated SRC, ERK, and PI3K signaling consistent with activated B cell receptor (BCR) signaling, although they do not express cell surface μ-heavy chain (μHC). Combinatorial targeting of JAK/STAT, PI3K, and "BCR-like" signaling with multiple TKIs and/or dexamethasone prevented this signaling plasticity and induced complete cell death, demonstrating a more optimal and clinically pragmatic therapeutic strategy for CRLF2-rearranged Ph-like ALL.
Collapse
Affiliation(s)
- Christian Hurtz
- Division of Hematology and Oncology and
- Abramson Cancer Center, Department of Medicine, and
| | - Gerald B. Wertheim
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Division of Hematopathology
| | - Joseph P. Loftus
- Division of Oncology, and
- Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Daniel Blumenthal
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Division of Hematopathology
| | - Anne Lehman
- Division of Hematology and Oncology and
- Abramson Cancer Center, Department of Medicine, and
| | - Yong Li
- Division of Oncology, and
- Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Asen Bagashev
- Division of Oncology, and
- Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Bryan Manning
- Division of Hematology and Oncology and
- Abramson Cancer Center, Department of Medicine, and
| | - Katherine D. Cummins
- Division of Hematology and Oncology and
- Abramson Cancer Center, Department of Medicine, and
- Center for Cellular Immunotherapies
| | - Janis K. Burkhardt
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Division of Hematopathology
| | - Alexander E. Perl
- Division of Hematology and Oncology and
- Abramson Cancer Center, Department of Medicine, and
| | - Martin Carroll
- Division of Hematology and Oncology and
- Abramson Cancer Center, Department of Medicine, and
| | - Sarah K. Tasian
- Division of Oncology, and
- Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, and
- Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
14
|
Shibata N, Ohoka N, Tsuji G, Demizu Y, Miyawaza K, Ui-Tei K, Akiyama T, Naito M. Deubiquitylase USP25 prevents degradation of BCR-ABL protein and ensures proliferation of Ph-positive leukemia cells. Oncogene 2020; 39:3867-3878. [PMID: 32203161 DOI: 10.1038/s41388-020-1253-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 02/07/2023]
Abstract
Fusion genes resulting from chromosomal rearrangements are frequently found in a variety of cancer cells. Some of these are known to be driver oncogenes, such as BCR-ABL in chronic myelogenous leukemia (CML). The products of such fusion genes are abnormal proteins that are ordinarily degraded in cells by a mechanism known as protein quality control. This suggests that the degradation of BCR-ABL protein is suppressed in CML cells to ensure their proliferative activity. Here, we show that ubiquitin-specific protease 25 (USP25) suppresses the degradation of BCR-ABL protein in cells harboring Philadelphia chromosome (Ph). USP25 was found proximal to BCR-ABL protein in cells. Depletion of USP25 using shRNA-mediated gene silencing increased the ubiquitylated BCR-ABL, and reduced the level of BCR-ABL protein. Accordingly, BCR-ABL-mediated signaling and cell proliferation were suppressed in BCR-ABL-positive leukemia cells by the depletion of USP25. We further found that pharmacological inhibition of USP25 induced rapid degradation of BCR-ABL protein in Ph-positive leukemia cells, regardless of their sensitivity to tyrosine kinase inhibitors. These results indicate that USP25 is a novel target for inducing the degradation of oncogenic BCR-ABL protein in Ph-positive leukemia cells. This could be an effective approach to overcome resistance to kinase inhibitors.
Collapse
MESH Headings
- Cell Proliferation/drug effects
- Deubiquitinating Enzymes/genetics
- Drug Resistance, Neoplasm/genetics
- Gene Silencing/drug effects
- Genes, abl/genetics
- Humans
- Jurkat Cells
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Philadelphia Chromosome
- Protein Kinase Inhibitors/pharmacology
- Proteolysis/drug effects
- RNA, Small Interfering/genetics
- Ubiquitin Thiolesterase/genetics
Collapse
Affiliation(s)
- Norihito Shibata
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Kanagawa, 210-9501, Japan
| | - Nobumichi Ohoka
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Kanagawa, 210-9501, Japan
| | - Genichiro Tsuji
- Division of Organic Chemistry, National Institute of Health Sciences, Kanagawa, 210-9501, Japan
| | - Yosuke Demizu
- Division of Organic Chemistry, National Institute of Health Sciences, Kanagawa, 210-9501, Japan
| | - Keiji Miyawaza
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi, 409-3898, Japan
| | - Kumiko Ui-Tei
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8561, Japan
| | - Tetsu Akiyama
- Laboratory of Molecular and Genetic Information, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan
| | - Mikihiko Naito
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Kanagawa, 210-9501, Japan.
| |
Collapse
|
15
|
Pond MP, Eells R, Treece BW, Heinrich F, Lösche M, Roux B. Membrane Anchoring of Hck Kinase via the Intrinsically Disordered SH4-U and Length Scale Associated with Subcellular Localization. J Mol Biol 2019; 432:2985-2997. [PMID: 31877324 DOI: 10.1016/j.jmb.2019.11.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 12/21/2022]
Abstract
Src family kinases (SFKs) are a group of nonreceptor tyrosine kinases that are characterized by their involvement in critical signal transduction pathways. SFKs are often found attached to membranes, but little is known about the conformation of the protein in this environment. Here, solution nuclear magnetic resonance (NMR), neutron reflectometry (NR), and molecular dynamics (MD) simulations were employed to study the membrane interactions of the intrinsically disordered SH4 and Unique domains of the Src family kinase Hck. Through development of a procedure to combine the information from the different techniques, we were able produce a first-of-its-kind atomically detailed structural ensemble of a membrane-bound intrinsically disordered protein. Evaluation of the model demonstrated its consistency with previous work and provided insight into how SFK Unique domains act to differentiate the family members from one another. Fortuitously, the position of the ensemble on the membrane allowed the model to be combined with configurations of the multidomain Hck kinase previously determined from small-angle solution X-ray scattering to produce full-length models of membrane-anchored Hck. The resulting models allowed us to estimate that the kinase active site is positioned about 65 ± 35 Å away from the membrane surface, offering the first estimations of the length scale associated with the concept of SFK subcellular localization.
Collapse
Affiliation(s)
- Matthew P Pond
- Department of Biochemistry and Molecular Biology, Gordon Center for Integrative Science, University of Chicago, Chicago, IL, 60637, USA
| | - Rebecca Eells
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Bradley W Treece
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Frank Heinrich
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA, 15213, USA; Center for Neutron Research, NIST, Gaithersburg, MD, 20899, USA
| | - Mathias Lösche
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA, 15213, USA; Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA; Center for Neutron Research, NIST, Gaithersburg, MD, 20899, USA
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, Gordon Center for Integrative Science, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
16
|
Kazi JU, Rönnstrand L. FMS-like Tyrosine Kinase 3/FLT3: From Basic Science to Clinical Implications. Physiol Rev 2019; 99:1433-1466. [PMID: 31066629 DOI: 10.1152/physrev.00029.2018] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
FMS-like tyrosine kinase 3 (FLT3) is a receptor tyrosine kinase that is expressed almost exclusively in the hematopoietic compartment. Its ligand, FLT3 ligand (FL), induces dimerization and activation of its intrinsic tyrosine kinase activity. Activation of FLT3 leads to its autophosphorylation and initiation of several signal transduction cascades. Signaling is initiated by the recruitment of signal transduction molecules to activated FLT3 through binding to specific phosphorylated tyrosine residues in the intracellular region of FLT3. Activation of FLT3 mediates cell survival, cell proliferation, and differentiation of hematopoietic progenitor cells. It acts in synergy with several other cytokines to promote its biological effects. Deregulated FLT3 activity has been implicated in several diseases, most prominently in acute myeloid leukemia where around one-third of patients carry an activating mutant of FLT3 which drives the disease and is correlated with poor prognosis. Overactivity of FLT3 has also been implicated in autoimmune diseases, such as rheumatoid arthritis. The observation that gain-of-function mutations of FLT3 can promote leukemogenesis has stimulated the development of inhibitors that target this receptor. Many of these are in clinical trials, and some have been approved for clinical use. However, problems with acquired resistance to these inhibitors are common and, furthermore, only a fraction of patients respond to these selective treatments. This review provides a summary of our current knowledge regarding structural and functional aspects of FLT3 signaling, both under normal and pathological conditions, and discusses challenges for the future regarding the use of targeted inhibition of these pathways for the treatment of patients.
Collapse
Affiliation(s)
- Julhash U Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University , Lund , Sweden ; Lund Stem Cell Center, Department of Laboratory Medicine, Lund University , Lund , Sweden ; and Division of Oncology, Skåne University Hospital , Lund , Sweden
| | - Lars Rönnstrand
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University , Lund , Sweden ; Lund Stem Cell Center, Department of Laboratory Medicine, Lund University , Lund , Sweden ; and Division of Oncology, Skåne University Hospital , Lund , Sweden
| |
Collapse
|
17
|
Shen K, Moroco JA, Patel RK, Shi H, Engen JR, Dorman HR, Smithgall TE. The Src family kinase Fgr is a transforming oncoprotein that functions independently of SH3-SH2 domain regulation. Sci Signal 2018; 11:11/553/eaat5916. [DOI: 10.1126/scisignal.aat5916] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Fgr is a member of the Src family of nonreceptor tyrosine kinases, which are overexpressed and constitutively active in many human cancers. Fgr expression is restricted to myeloid hematopoietic cells and is markedly increased in a subset of bone marrow samples from patients with acute myeloid leukemia (AML). Here, we investigated the oncogenic potential of Fgr using Rat-2 fibroblasts that do not express the kinase. Expression of either wild-type or regulatory tail-mutant constructs of Fgr promoted cellular transformation (inferred from colony formation in soft agar), which was accompanied by phosphorylation of the Fgr activation loop, suggesting that the kinase domain of Fgr functions independently of regulation by its noncatalytic SH3-SH2 region. Unlike other family members, recombinant Fgr was not activated by SH3-SH2 domain ligands. However, hydrogen-deuterium exchange mass spectrometry data suggested that the regulatory SH3 and SH2 domains packed against the back of the kinase domain in a Src-like manner. Sequence alignment showed that the activation loop of Fgr was distinct from that of all other Src family members, with proline rather than alanine at the +2 position relative to the activation loop tyrosine. Substitution of the activation loop of Fgr with the sequence from Src partially inhibited kinase activity and suppressed colony formation. Last, Fgr expression enhanced the sensitivity of human myeloid progenitor cells to the cytokine GM-CSF. Because its kinase domain is not sensitive to SH3-SH2–mediated control, simple overexpression of Fgr without mutation may contribute to oncogenic transformation in AML and other blood cancers.
Collapse
|
18
|
de Araujo ED, Manaswiyoungkul P, Erdogan F, Qadree AK, Sina D, Tin G, Toutah K, Yuen K, Gunning PT. A functional in vitro assay for screening inhibitors of STAT5B phosphorylation. J Pharm Biomed Anal 2018; 162:60-65. [PMID: 30223143 DOI: 10.1016/j.jpba.2018.08.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 08/02/2018] [Accepted: 08/16/2018] [Indexed: 10/28/2022]
Abstract
Inhibition of STAT phosphorylation is recognized as a viable therapeutic strategy for disrupting tumorigenesis. Constitutive STAT phosphorylation is found with high frequency in a number of primary tumor types, while non-cancer cells exhibit low basal activity, providing an exploitable therapeutic window. STAT activation involves phosphorylation of the SH2 domain by a number of tyrosine kinases followed by STAT dimerization and translocation to the nucleus. By blocking the cognate binding site, STAT SH2-domain inhibitors can impede kinase-mediated de novo STAT phosphorylation. Assessing for inhibitors of STAT phosphorylation has previously been conducted exclusively in cellulo using Western blot analysis. However, while providing useful in cellulo efficacy, it is not possible to conclude that inhibition is due to a direct blockade of STAT protein. Here we developed a functional assay that directly reports the blockade of phosphorylation as a result of inhibitor interaction with STAT proteins. We have optimized reaction conditions for the functional assay and validated the assay against known STAT5B ligands, including peptides and small molecule inhibitors. As part of the study, we have also identified several sites of STAT5B phosphorylation by Abl kinase. This assay will serve to delineate the functional mechanism of STAT binders in vitro and deconvolute the mechanism of phospho-STAT inhibition observed in Western blot analysis.
Collapse
Affiliation(s)
- Elvin D de Araujo
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd N., Mississauga, Ontario L5L 1C6, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Pimyupa Manaswiyoungkul
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd N., Mississauga, Ontario L5L 1C6, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Fettah Erdogan
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd N., Mississauga, Ontario L5L 1C6, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Abdul K Qadree
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd N., Mississauga, Ontario L5L 1C6, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Diana Sina
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd N., Mississauga, Ontario L5L 1C6, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Gary Tin
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd N., Mississauga, Ontario L5L 1C6, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Krimo Toutah
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd N., Mississauga, Ontario L5L 1C6, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Karen Yuen
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd N., Mississauga, Ontario L5L 1C6, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Patrick T Gunning
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd N., Mississauga, Ontario L5L 1C6, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada.
| |
Collapse
|
19
|
Nath A, Wang J, Stephanie Huang R. Pharmacogenetics and Pharmacogenomics of Targeted Therapeutics in Chronic Myeloid Leukemia. Mol Diagn Ther 2018; 21:621-631. [PMID: 28698977 DOI: 10.1007/s40291-017-0292-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The advent of targeted therapeutics has greatly improved outcomes of chronic myeloid leukemia (CML) patients. Despite increased efficacy and better clinical responses over cytotoxic chemotherapies, many patients receiving targeted drugs exhibit a poor initial response, develop drug resistance, or undergo relapse after initial success. This inter-individual variation in response has heightened the interest in studying pharmacogenetics and pharmacogenomics (PGx) of cancer drugs. In this review, we discuss the influence of various germline and somatic factors on targeted drug response in CML. Specifically, we examine the role of genetic variants in drug metabolism genes, i.e. CYP3A family genes, and drug transporters, i.e. ABC and SLC family genes. Additionally, we focus on acquired somatic variations in BCR-ABL1, and the potential role played by additional downstream signaling pathways, in conferring resistance to targeted drugs in CML. This review highlights the importance of PGx of targeted therapeutics and its potential application to improving treatment decisions and patient outcomes.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/genetics
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Cytochrome P-450 CYP3A/genetics
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Fusion Proteins, bcr-abl/genetics
- Glucuronosyltransferase/genetics
- Humans
- Inactivation, Metabolic/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Organic Cation Transporter 1/genetics
- Pharmacogenetics
- Protein Kinase Inhibitors/therapeutic use
Collapse
Affiliation(s)
- Aritro Nath
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Jacqueline Wang
- Biological Sciences Collegiate Division, The University of Chicago, Chicago, IL, USA
| | - R Stephanie Huang
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
20
|
A novel, dual pan-PIM/FLT3 inhibitor SEL24 exhibits broad therapeutic potential in acute myeloid leukemia. Oncotarget 2018; 9:16917-16931. [PMID: 29682194 PMCID: PMC5908295 DOI: 10.18632/oncotarget.24747] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 02/24/2018] [Indexed: 11/25/2022] Open
Abstract
Fms-like tyrosine kinase 3 internal tandem duplication (FLT3-ITD) is one of the most common genetic lesions in acute myeloid leukemia patients (AML). Although FLT3 tyrosine kinase inhibitors initially exhibit clinical activity, resistance to treatment inevitably occurs within months. PIM kinases are thought to be major drivers of the resistance phenotype and their inhibition in relapsed samples restores cell sensitivity to FLT3 inhibitors. Thus, simultaneous PIM and FLT3 inhibition represents a promising strategy in AML therapy. For such reasons, we have developed SEL24-B489 - a potent, dual PIM and FLT3-ITD inhibitor. SEL24-B489 exhibited significantly broader on-target activity in AML cell lines and primary AML blasts than selective FLT3-ITD or PIM inhibitors. SEL24-B489 also demonstrated marked activity in cells bearing FLT3 tyrosine kinase domain (TKD) mutations that lead to FLT3 inhibitor resistance. Moreover, SEL24-B489 inhibited the growth of a broad panel of AML cell lines in xenograft models with a clear pharmacodynamic-pharmacokinetic relationship. Taken together, our data highlight the unique dual activity of the SEL24-B489 that abrogates the activity of signaling circuits involved in proliferation, inhibition of apoptosis and protein translation/metabolism. These results underscore the therapeutic potential of the dual PIM/FLT3-ITD inhibitor for the treatment of AML.
Collapse
|
21
|
El-Moghazy SM, George RF, Osman EEA, Elbatrawy AA, Kissova M, Colombo A, Crespan E, Maga G. Novel pyrazolo[3,4- d ]pyrimidines as dual Src-Abl inhibitors active against mutant form of Abl and the leukemia K-562 cell line. Eur J Med Chem 2016; 123:1-13. [DOI: 10.1016/j.ejmech.2016.07.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 07/14/2016] [Accepted: 07/18/2016] [Indexed: 02/08/2023]
|
22
|
Bavi R, Kumar R, Rampogu S, Kim Y, Kwon YJ, Park SJ, Lee KW. Novel virtual lead identification in the discovery of hematopoietic cell kinase (HCK) inhibitors: application of 3D QSAR and molecular dynamics simulation. J Recept Signal Transduct Res 2016; 37:224-238. [DOI: 10.1080/10799893.2016.1212376] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Rohit Bavi
- Division of Applied Life Science (BK21 Plus Program), Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), Jinju, Republic of Korea
| | - Raj Kumar
- Division of Applied Life Science (BK21 Plus Program), Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), Jinju, Republic of Korea
| | - Shailima Rampogu
- Division of Applied Life Science (BK21 Plus Program), Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), Jinju, Republic of Korea
| | - Yongseong Kim
- Department of Science Education, Kyungnam University, Masan, Republic of Korea
| | - Yong Jung Kwon
- Department of Chemical Engineering, Kangwon National University, Chunchon, Republic of Korea
| | - Seok Ju Park
- Department of Internal Medicine, College of Medicine, Busan Paik Hospital, Inje University, Republic of Korea
| | - Keun Woo Lee
- Division of Applied Life Science (BK21 Plus Program), Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), Jinju, Republic of Korea
| |
Collapse
|
23
|
Tabarestani S, Movafagh A. New Developments in Chronic Myeloid Leukemia: Implications for Therapy. IRANIAN JOURNAL OF CANCER PREVENTION 2016; 9:e3961. [PMID: 27366312 PMCID: PMC4922205 DOI: 10.17795/ijcp-3961] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 01/21/2016] [Indexed: 12/31/2022]
Abstract
Context: Chronic myeloid leukemia (CML) is a myeloproliferative disorder characterized by overproduction of immature and matured myeloid cells in the peripheral blood, bone marrow and spleen. Evidence Acquisition: A hallmark of CML is the presence of (9; 22) (q34; q11) reciprocal translocation, which is cytogenetically visible as Philadelphia chromosome (Ph) and results in the formation of BCR-ABL1 fusion protein. This fusion protein is a constitutively active tyrosine kinase which is necessary and sufficient for malignant transformation. The introduction of imatinib, a BCR-ABL1- targeting tyrosine kinase inhibitor (TKI) has revolutionized CML therapy. Subsequently, two other TKIs with increased activity against BCR-ABL1, dasatinib and nilotinib, were developed and approved for CML patients. Nevertheless, CML therapy faces major challenges. Results: The first is the development of resistance to BCR-ABL1 inhibitors in some patients, which can be due to BCR-ABL1 overexpression, differences in cellular drug influx and efflux, activation of alternative signaling pathways, or emergence of BCR-ABL1 kinase domain mutations during TKI treatment. The second is the limited efficiency of BCR-ABL1-TKIs in blast crisis (BC) CML. The third is the insensitivity of CML stem cells to BCR-ABL1 inhibitors. Conventional chemotherapeutics and BCR-ABL1 inhibitors which act by inhibiting cell proliferation and inducing apoptosis, are ineffective against quiescent CML stem cells. Conclusions: A better understanding of the mechanisms that underlie TKI resistance, progression to BC, genomic instability and stem cell quiescence is essential to develop curative strategies for patients with CML.
Collapse
Affiliation(s)
- Sanaz Tabarestani
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - Abolfazl Movafagh
- Medical Genetics Department, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| |
Collapse
|
24
|
HS-543 induces apoptosis of Imatinib-resistant chronic myelogenous leukemia with T315I mutation. Oncotarget 2015; 6:1507-18. [PMID: 25483100 PMCID: PMC4359310 DOI: 10.18632/oncotarget.2837] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 12/01/2014] [Indexed: 11/25/2022] Open
Abstract
Chronic myeloid leukemia (CML) is characterized by a constitutive activation of Bcr-Abl tyrosine kinase. Bcr-Abl/T315I is the predominant mutation that causes resistance to Imatinib. In the present study, we synthesized a novel Bcr-Abl inhibitor, HS-543, and investigated its effect on cell survival or apoptosis in CML cells bearing Bcr-Abl/T315I (BaF3/T315I) or wild-type Bcr-Abl (BaF3/WT). HS-543 showed anti-proliferative effects in the BaF3/WT cells as well as the BaF3/T315I cells with resistance to Imatinib and strongly inhibited the Bcr-Abl signaling pathway in a dose-dependent manner. Furthermore, it significantly increased the sub G1 phase associated with early apoptosis, with increased levels of cleaved PARP and cleaved caspase-3, as well as the TUNEL-positive apoptotic cells. In addition, we found that HS-543 induced apoptosis with the loss of mitochondrial membrane potential by decreasing the expression of Mcl-1 and survivin, together with increasing that of Bax. In BaF3/T315I xenograft models, HS-543 significantly delayed tumor growth, unlike Imatinib. Our results demonstrate that HS-543 exhibits the induction of apoptosis and anti-proliferative effect by blocking the Bcr-Abl signaling pathway in the T315I-mutated Bcr-Abl cells with resistance to Imatinib. We suggest that HS-543 may be a novel promising agent to target Bcr-Abl and overcome Imatinib resistance in CML patients.
Collapse
|
25
|
Bagca BG, Ozalp O, Kurt CC, Mutlu Z, Saydam G, Gunduz C, Avci CB. Ruxolitinib induces autophagy in chronic myeloid leukemia cells. Tumour Biol 2015; 37:1573-9. [PMID: 26298727 DOI: 10.1007/s13277-015-3947-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 08/17/2015] [Indexed: 12/22/2022] Open
Abstract
Ruxolitinib is the first agent used in myelofibrosis treatment with its potent JAK2 inhibitory effect. In this novel study, we aimed to discover the anti-leukemic effect of ruxolitinib in K-562 human chronic myeloid leukemia cell line compared to NCI-BL 2171 human healthy B lymphocyte cell line. Cytotoxic effect of ruxolitinib was determined by using WST-1 assay. IC50 values for K-562 and NCI-BL 2171 cell lines were defined as 20 and 23.6 μM at the 48th hour, respectively. Autophagic effects of ruxolitinib were detected by measuring LC3B-II protein formation. Ruxolitinib induced autophagic cell death in K-562 and NCI-BL 2171 cell lines 2.11- and 1.79-fold compared to control groups, respectively. To determine the autophagy-related gene expression changes, total RNA was isolated from K-562 and NCI-BL 2171 cells treated with ruxolitinib and untreated cells as control group. Reverse transcription procedure was performed for cDNA synthesis, and gene expressions were shown by RT-qPCR. Ruxolitinib treatment caused a notable decrease in expression of AKT, mTOR, and STAT autophagy inhibitor genes in K-562 cells, contrariwise control cell line. Ruxolitinib is a promising agent in chronic myeloid leukemia treatment by blocking JAK/STAT pathway known as downstream of BCR-ABL and triggering autophagy. This is the first study that reveals the relationship between ruxolitinib and autophagy induction.
Collapse
Affiliation(s)
- Bakiye Goker Bagca
- Department of Medical Biology, School of Medicine, Ege University, Izmir, Turkey.
| | - Ozgun Ozalp
- Department of Medical Biology, School of Medicine, Ege University, Izmir, Turkey
| | - Cansu Caliskan Kurt
- Department of Medical Biology, School of Medicine, Ege University, Izmir, Turkey
| | - Zeynep Mutlu
- Department of Medical Biology, School of Medicine, Ege University, Izmir, Turkey
| | - Guray Saydam
- Department of Hematology, School of Medicine, Ege University, Izmir, Turkey
| | - Cumhur Gunduz
- Department of Medical Biology, School of Medicine, Ege University, Izmir, Turkey
| | - Cigir Biray Avci
- Department of Medical Biology, School of Medicine, Ege University, Izmir, Turkey
| |
Collapse
|
26
|
Poh AR, O'Donoghue RJ, Ernst M. Hematopoietic cell kinase (HCK) as a therapeutic target in immune and cancer cells. Oncotarget 2015; 6:15752-71. [PMID: 26087188 PMCID: PMC4599235 DOI: 10.18632/oncotarget.4199] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/29/2015] [Indexed: 12/21/2022] Open
Abstract
The hematopoietic cell kinase (HCK) is a member of the SRC family of cytoplasmic tyrosine kinases (SFKs), and is expressed in cells of the myeloid and B-lymphocyte cell lineages. Excessive HCK activation is associated with several types of leukemia and enhances cell proliferation and survival by physical association with oncogenic fusion proteins, and with functional interactions with receptor tyrosine kinases. Elevated HCK activity is also observed in many solid malignancies, including breast and colon cancer, and correlates with decreased patient survival rates. HCK enhances the secretion of growth factors and pro-inflammatory cytokines from myeloid cells, and promotes macrophage polarization towards a wound healing and tumor-promoting alternatively activated phenotype. Within tumor associated macrophages, HCK stimulates the formation of podosomes that facilitate extracellular matrix degradation, which enhance immune and epithelial cell invasion. By virtue of functional cooperation between HCK and bona fide oncogenic tyrosine kinases, excessive HCK activation can also reduce drug efficacy and contribute to chemo-resistance, while genetic ablation of HCK results in minimal physiological consequences in healthy mice. Given its known crystal structure, HCK therefore provides an attractive therapeutic target to both, directly inhibit the growth of cancer cells, and indirectly curb the source of tumor-promoting changes in the tumor microenvironment.
Collapse
Affiliation(s)
- Ashleigh R. Poh
- The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Victoria, Australia
| | - Robert J.J. O'Donoghue
- The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Victoria, Australia
- Olivia Newton-John Cancer Research Institute, La Trobe University School of Cancer Medicine, Victoria, Australia
| | - Matthias Ernst
- The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Victoria, Australia
- Olivia Newton-John Cancer Research Institute, La Trobe University School of Cancer Medicine, Victoria, Australia
| |
Collapse
|
27
|
FANG ZHENGHUAN, JUNG KYUNGHEE, YAN HONGHUA, KIM SOOJUNG, SON MIKWON, RUMMAN MARUFA, LEE HYUNSEUNG, KIM KIWOON, YOO HYEDONG, HONG SOONSUN. CD-200 induces apoptosis and inhibits Bcr-Abl signaling in imatinib-resistant chronic myeloid leukemia with T315I mutation. Int J Oncol 2015; 47:253-61. [DOI: 10.3892/ijo.2015.2994] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 04/09/2015] [Indexed: 11/06/2022] Open
|
28
|
Chereda B, Melo JV. Natural course and biology of CML. Ann Hematol 2015; 94 Suppl 2:S107-21. [PMID: 25814077 DOI: 10.1007/s00277-015-2325-z] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 12/07/2014] [Indexed: 12/14/2022]
Abstract
Chronic myeloid leukaemia (CML) is a myeloproliferative disorder arising in the haemopoietic stem cell (HSC) compartment. This disease is characterised by a reciprocal t(9;22) chromosomal translocation, resulting in the formation of the Philadelphia (Ph) chromosome containing the BCR-ABL1 gene. As such, diagnosis and monitoring of disease involves detection of BCR-ABL1. It is the BCR-ABL1 protein, in particular its constitutively active tyrosine kinase activity, that forges the pathogenesis of CML. This aberrant kinase signalling activates downstream targets that reprogram the cell to cause uncontrolled proliferation and results in myeloid hyperplasia and 'indolent' symptoms of chronic phase (CP) CML. Without successful intervention, the disease will progress into blast crisis (BC), resembling an acute leukaemia. This advanced disease stage takes on an aggressive phenotype and is almost always fatal. The cell biology of CML is also centred on BCR-ABL1. The presence of BCR-ABL1 can explain virtually all the cellular features of the leukaemia (enhanced cell growth, inhibition of apoptosis, altered cell adhesion, growth factor independence, impaired genomic surveillance and differentiation). This article provides an overview of the clinical and cell biology of CML, and highlights key findings and unanswered questions essential for understanding this disease.
Collapse
MESH Headings
- Animals
- Disease Progression
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/physiopathology
- Mutation
- Neoplasm Proteins/chemistry
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Prognosis
Collapse
Affiliation(s)
- Bradley Chereda
- Departments of Genetics and Molecular Pathology, and Haematology, Centre for Cancer Biology, SA Pathology, Frome Road, Adelaide, 5000, Australia,
| | | |
Collapse
|
29
|
Fahrenkamp D, de Leur HSV, Küster A, Chatain N, Müller-Newen G. Src family kinases interfere with dimerization of STAT5A through a phosphotyrosine-SH2 domain interaction. Cell Commun Signal 2015; 13:10. [PMID: 25885255 PMCID: PMC4350284 DOI: 10.1186/s12964-014-0081-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/30/2014] [Indexed: 11/10/2022] Open
Abstract
Background Chronic myeloid leukemia (CML) is driven by the expression of the BCR-ABL oncoprotein. STAT5 is a BCR-ABL substrate and persistently activated by tyrosine phosphorylation in CML cells. Activated STAT5 (pSTAT5) drives proliferation and survival of leukemic cells and contributes to initial transformation and maintenance of the disease. In cytokine-induced STAT5 signaling, phosphorylation of STAT5A on Y694 leads to nuclear accumulation of the transcription factor, followed by DNA-binding and gene induction. However, Src-family kinases (SFK) mediate cytoplasmic retention of pSTAT5A leading to attenuated target gene expression and colony formation in CML cells. Results In this study we show that autophosphorylation of Y416 in the highly conserved activation loop of SFK generates a potent recruitment site for the SH2 domain of STAT5A. Binding of the SH2 domain to the activation loop is required for STAT5AY694 phosphorylation by SFK, but at the same time promotes the persistent cytoplasmic localization of the transcription factor as found in BCR-ABL+ leukemia. As a consequence of the complex formation between tyrosine-phosphorylated SFK and the SH2 domain of STAT5A, the dimerization of STAT5A is impaired. We further demonstrate that constitutively active STAT5AS710F escapes from SFK-mediated cytoplasmic retention by enhancing STAT5A dimer stability. Conclusion Our results reveal important structural aspects of cytoplasmic pSTAT5A found in myeloid leukemias and will contribute to the understanding of STAT5A mediated cytoplasmic signaling.
Collapse
Affiliation(s)
- Dirk Fahrenkamp
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Hildegard Schmitz-Van de Leur
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Andrea Küster
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Nicolas Chatain
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany. .,Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.
| | - Gerhard Müller-Newen
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.
| |
Collapse
|
30
|
Ku M, Wall M, MacKinnon RN, Walkley CR, Purton LE, Tam C, Izon D, Campbell L, Cheng HC, Nandurkar H. Src family kinases and their role in hematological malignancies. Leuk Lymphoma 2015; 56:577-86. [PMID: 24898666 DOI: 10.3109/10428194.2014.907897] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The Src family protein tyrosine kinases (SFKs) are non-receptor intracellular kinases that have important roles in both hematopoiesis and leukemogenesis. The derangement of their expression or activation has been demonstrated to contribute to hematological malignancies. This review first examines the mechanisms of SFK overexpression and hyperactivation, emphasizing the dysregulation of the upstream modulators. Subsequently, the role of SFK up-regulation in the initiation, progression and therapy resistance of many hematological malignancies is also analyzed. The presented evidence endeavors to highlight the influence of SFK up-regulation on an extensive number of hematological malignancies and the need to consider them as candidates in targeted anticancer therapy.
Collapse
Affiliation(s)
- Matthew Ku
- Haematology Department and Victorian Cancer Cytogenetics Service, St Vincent's Hospital , Fitzroy , Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Berger A, Sexl V, Valent P, Moriggl R. Inhibition of STAT5: a therapeutic option in BCR-ABL1-driven leukemia. Oncotarget 2014; 5:9564-76. [PMID: 25333255 PMCID: PMC4259420 DOI: 10.18632/oncotarget.2465] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 09/06/2014] [Indexed: 01/10/2023] Open
Abstract
The two transcription factors STAT5A and STAT5B are central signaling molecules in leukemias driven by Abelson fusion tyrosine kinases and they fulfill all criteria of drug targets. STAT5A and STAT5B display unique nuclear shuttling mechanisms and they have a key role in resistance of leukemic cells against treatment with tyrosine kinase inhibitors (TKI). Moreover, STAT5A and STAT5B promote survival of leukemic stem cells. We here discuss the possibility of targeting up-stream kinases with TKI, direct STAT5 inhibition via SH2 domain obstruction and blocking nuclear translocation of STAT5. All discussed options will result in a stop of STAT5 transport to the nucleus to block STAT5-mediated transcriptional activity. In summary, recently described shuttling functions of STAT5 are discussed as potentially druggable pathways in leukemias.
Collapse
Affiliation(s)
- Angelika Berger
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | - Veronika Sexl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | - Peter Valent
- Department of Medicine I, Division of Hematology and Ludwig-Boltzmann Cluster Oncology, Medical University of Vienna, Austria
| | - Richard Moriggl
- Ludwig-Boltzmann Institute for Cancer Research, University of Veterinary Medicine, Medical University Vienna, Austria
| |
Collapse
|
32
|
Zhang H, Gu L, Liu T, Chiang KY, Zhou M. Inhibition of MDM2 by nilotinib contributes to cytotoxicity in both Philadelphia-positive and negative acute lymphoblastic leukemia. PLoS One 2014; 9:e100960. [PMID: 24968304 PMCID: PMC4072773 DOI: 10.1371/journal.pone.0100960] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 06/02/2014] [Indexed: 12/13/2022] Open
Abstract
Nilotinib is a selective BCR-ABL tyrosine kinase inhibitor related to imatinib that is more potent than imatinib. Nilotinib is widely used to treat chronic myelogenous leukemia (CML) and Philadelphia-positive (Ph+) acute lymphoblastic leukemia (ALL). The present study identifies Mouse double minute 2 homolog (MDM2) as a target of nilotinib. In studying ALL cell lines, we found that the expression of MDM2 in both Philadelphia positive (Ph+) and Philadelphia negative (Ph-) ALL cells was remarkably inhibited by nilotinib, in a dose- and time-dependent manner. Further studies demonstrated that nilotinib inhibited MDM2 at the post-translational level by inducing MDM2 self-ubiquitination and degradation. Nilotinib-mediated MDM2 downregulation did not result in accumulation and activation of p53. Inhibition of MDM2 in nilotinib-treated ALL cells led to downregulation of the anti-apoptotic protein X-linked inhibitor of apoptosis protein (XIAP), a translational target of MDM2, resulting in activation of caspases. Inhibition of XIAP following nilotinib-mediated downregulation of MDM2 resulted in apoptosis of MDM2-expressing ALL; however, similar nilotinib treatment induced stronger apoptosis in Ph+/MDM2+ ALL than in Ph-/MDM2+ or Ph+/MDM2- ALL. The ALL cells that were Ph-/MDM2- were totally resistant to nilotinib. These results suggested that nilotinib can inhibit MDM2 and induce a p53-independent apoptosis pathway by downregulating XIAP; thus, nilotinib can treat not only Ph+, but also Ph- ALL patients whose cancer cells overexpress MDM2.
Collapse
Affiliation(s)
- Hailong Zhang
- Department of Pediatrics and Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Lubing Gu
- Department of Pediatrics and Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Tao Liu
- Department of Pediatrics and Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Kuang-Yueh Chiang
- Department of Pediatrics and Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Muxiang Zhou
- Department of Pediatrics and Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
33
|
Jung YS, Cheong HJ, Kim SJ, Kim KH, Lee N, Park HS, Won JH. Src family kinase inhibitor PP2 enhances differentiation of acute promyelocytic leukemia cell line induced by combination of all-trans-retinoic acid and arsenic trioxide. Leuk Res 2014; 38:977-82. [PMID: 24953245 DOI: 10.1016/j.leukres.2014.05.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/12/2014] [Accepted: 05/27/2014] [Indexed: 11/30/2022]
Abstract
An all-trans-retinoic acid (ATRA) and arsenic trioxide (ATO) combination yields high-quality remission and survival in newly-diagnosed acute promyelocytic leukemia (APL). For subsequent similar data, NCCN guidelines indicate that ATRA plus ATO is one of the recommended regimens for the treatment of patients with APL. We demonstrated SFK (Src family kinase) inhibitor PP2-enhanced APL cell differentiation when combined with either ATRA or ATO with difference in activation of RA-induced genes. In this study, we investigated whether SFK inhibitor PP2 could enhance the differentiation of NB4 APL cells when combined with ATRA and ATO and the changes in the expression of intercellular adhesion molecule-1 (ICAM-1) derived from the retinoic acid receptor (RAR) target gene. Treatment of NB4 cells with 1 μM of ATRA, 0.5 μM of ATO, or 10 μM of PP2 for 72 h induced expression of CD11b-positive cells by 13.01%, 11.53% or 13.28%, respectively. However, the combination of ATRA and ATO and the combination of three agents (ATRA, ATO, and PP2) led to a significantly higher expression of CD11b-positive cells (30.96% and 63.17%, respectively). The synergistic effect of the combination of three agents was more significant than the combination of ATRA and ATO. These results were confirmed with NBT staining. These effects were not related to apoptosis. Annexin-V-fluorescein staining revealed that a combination of ATRA and ATO and combination of the three agents did not induce apoptosis in NB4 cells. The expression of ICAM-1 markedly increased in cells treated with the combination of the three agents. These findings suggest that the SFK inhibitor can enhance differentiation of APL cells combined with ATRA and ATO. FDA approved SFK inhibitors, such as dasatinib and bosutinib, may be beneficial for the treatment of APL with a combination of ATRA and ATO.
Collapse
Affiliation(s)
- Yun Seok Jung
- Division of Hematology-Oncology, Department of Internal Medicine, and Institute for Clinical Molecular Biology Research, Soonchunhang University College of Medicine, Soonchunhang University Seoul Hospital, Seoul, Republic of Korea
| | - Hee-Jeong Cheong
- Division of Hematology-Oncology, Department of Internal Medicine, and Institute for Clinical Molecular Biology Research, Soonchunhang University College of Medicine, Soonchunhang University Seoul Hospital, Seoul, Republic of Korea
| | - Sook-Ja Kim
- Division of Hematology-Oncology, Department of Internal Medicine, and Institute for Clinical Molecular Biology Research, Soonchunhang University College of Medicine, Soonchunhang University Seoul Hospital, Seoul, Republic of Korea
| | - Kyoung Ha Kim
- Division of Hematology-Oncology, Department of Internal Medicine, and Institute for Clinical Molecular Biology Research, Soonchunhang University College of Medicine, Soonchunhang University Seoul Hospital, Seoul, Republic of Korea
| | - Namsu Lee
- Division of Hematology-Oncology, Department of Internal Medicine, and Institute for Clinical Molecular Biology Research, Soonchunhang University College of Medicine, Soonchunhang University Seoul Hospital, Seoul, Republic of Korea
| | - Hee Sook Park
- Division of Hematology-Oncology, Department of Internal Medicine, and Institute for Clinical Molecular Biology Research, Soonchunhang University College of Medicine, Soonchunhang University Seoul Hospital, Seoul, Republic of Korea
| | - Jong-Ho Won
- Division of Hematology-Oncology, Department of Internal Medicine, and Institute for Clinical Molecular Biology Research, Soonchunhang University College of Medicine, Soonchunhang University Seoul Hospital, Seoul, Republic of Korea.
| |
Collapse
|
34
|
Schenone S, Radi M, Musumeci F, Brullo C, Botta M. Biologically Driven Synthesis of Pyrazolo[3,4-d]pyrimidines As Protein Kinase Inhibitors: An Old Scaffold As a New Tool for Medicinal Chemistry and Chemical Biology Studies. Chem Rev 2014; 114:7189-238. [DOI: 10.1021/cr400270z] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Silvia Schenone
- Dipartimento
di Farmacia, Università degli Studi di Genova Viale Benedetto
XV, 3, 16132 Genova, Italy
| | - Marco Radi
- Dipartimento
di Farmacia, Università degli Studi di Parma Viale delle
Scienze, 27/A, 43124 Parma, Italy
| | - Francesca Musumeci
- Dipartimento
di Farmacia, Università degli Studi di Genova Viale Benedetto
XV, 3, 16132 Genova, Italy
| | - Chiara Brullo
- Dipartimento
di Farmacia, Università degli Studi di Genova Viale Benedetto
XV, 3, 16132 Genova, Italy
| | - Maurizio Botta
- Dipartimento
di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena Via Aldo Moro, 2, 53100 Siena, Italy
- Sbarro
Institute for Cancer Research and Molecular Medicine, Center for Biotechnology,
College of Science and Technology, Temple University, BioLife Science
Building, Suite 333, 1900 N 12th Street, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
35
|
Schaller-Schönitz M, Barzan D, Williamson AJK, Griffiths JR, Dallmann I, Battmer K, Ganser A, Whetton AD, Scherr M, Eder M. BCR-ABL affects STAT5A and STAT5B differentially. PLoS One 2014; 9:e97243. [PMID: 24836440 PMCID: PMC4023949 DOI: 10.1371/journal.pone.0097243] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 04/16/2014] [Indexed: 11/21/2022] Open
Abstract
Signal transducers and activators of transcription (STATs) are latent cytoplasmic transcription factors linking extracellular signals to target gene transcription. Hematopoietic cells express two highly conserved STAT5-isoforms (STAT5A/STAT5B), and STAT5 is directly activated by JAK2 downstream of several cytokine receptors and the oncogenic BCR-ABL tyrosine kinase. Using an IL-3-dependent cell line with inducible BCR-ABL-expression we compared STAT5-activation by IL-3 and BCR-ABL in a STAT5-isoform specific manner. RNAi targeting of STAT5B strongly inhibits BCR-ABL-dependent cell proliferation, and STAT5B but not STAT5A is essential for BCL-XL-expression in the presence of BCR-ABL. Although BCR-ABL induces STAT5-tyrosine phosphorylation independent of JAK2-kinase activity, BCR-ABL is less efficient in inducing active STAT5A:STAT5B-heterodimerization than IL-3, leaving constitutive STAT5A and STAT5B-homodimerization unaffected. In comparison to IL-3, nuclear accumulation of a STAT5A-eGFP fusion protein is reduced by BCR-ABL, and BCR-ABL tyrosine kinase activity induces STAT5A-eGFP translocation to the cell membrane and co-localization with the IL-3 receptor. Furthermore, BCR-ABL-dependent phosphorylation of Y682 in STAT5A was detected by mass-spectrometry. Finally, RNAi targeting STAT5B but not STAT5A sensitizes human BCR-ABL-positive cell lines to imatinib-treatment. These data demonstrate differences between IL-3 and BCR-ABL-mediated STAT5-activation and isoform-specific effects, indicating therapeutic options for isoform-specific STAT5-inhibition in BCR-ABL-positive leukemia.
Collapse
Affiliation(s)
- Michael Schaller-Schönitz
- Hannover Medical School, Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover, Germany
| | - David Barzan
- Hannover Medical School, Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover, Germany
| | - Andrew J. K. Williamson
- Faculty of Medical and Human Sciences, Manchester Academic Health Science Centre, University of Manchester, Wolfson Molecular Imaging Centre, Manchester, United Kingdom
| | - John R. Griffiths
- Faculty of Medical and Human Sciences, Manchester Academic Health Science Centre, University of Manchester, Wolfson Molecular Imaging Centre, Manchester, United Kingdom
| | - Iris Dallmann
- Hannover Medical School, Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover, Germany
| | - Karin Battmer
- Hannover Medical School, Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover, Germany
| | - Arnold Ganser
- Hannover Medical School, Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover, Germany
| | - Anthony D. Whetton
- Faculty of Medical and Human Sciences, Manchester Academic Health Science Centre, University of Manchester, Wolfson Molecular Imaging Centre, Manchester, United Kingdom
| | - Michaela Scherr
- Hannover Medical School, Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover, Germany
| | - Matthias Eder
- Hannover Medical School, Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover, Germany
- * E-mail:
| |
Collapse
|
36
|
Bernt KM, Hunger SP. Current concepts in pediatric Philadelphia chromosome-positive acute lymphoblastic leukemia. Front Oncol 2014; 4:54. [PMID: 24724051 PMCID: PMC3971203 DOI: 10.3389/fonc.2014.00054] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 03/06/2014] [Indexed: 12/22/2022] Open
Abstract
The t(9;22)(q34;q11) or Philadelphia chromosome creates a BCR-ABL1 fusion gene encoding for a chimeric BCR-ABL1 protein. It is present in 3-4% of pediatric acute lymphoblastic leukemia (Ph(+) ALL), and about 25% of adult ALL cases. Prior to the advent of tyrosine kinase inhibitors (TKI), Ph(+) ALL was associated with a very poor prognosis despite the use of intensive chemotherapy and frequently hematopoietic stem-cell transplantation (HSCT) in first remission. The development of TKIs revolutionized the therapy of Ph(+) ALL. Addition of the first generation ABL1 class TKI imatinib to intensive chemotherapy dramatically increased the survival for children with Ph(+) ALL and established that many patients can be cured without HSCT. In parallel, the mechanistic understanding of Ph(+) ALL expanded exponentially through careful mapping of pathways downstream of BCR-ABL1, the discovery of mutations in master regulators of B-cell development such as IKZF1 (Ikaros), PAX5, and early B-cell factor (EBF), the recognition of the complex clonal architecture of Ph(+) ALL, and the delineation of genomic, epigenetic, and signaling abnormalities contributing to relapse and resistance. Still, many important basic and clinical questions remain unanswered. Current clinical trials are testing second generation TKIs in patients with newly diagnosed Ph(+) ALL. Neither the optimal duration of therapy nor the optimal chemotherapy backbone are currently defined. The role of HSCT in first remission and post-transplant TKI therapy also require further study. In addition, it will be crucial to continue to dig deeper into understanding Ph(+) ALL at a mechanistic level, and translate findings into complementary targeted approaches. Expanding targeted therapies hold great promise to decrease toxicity and improve survival in this high-risk disease, which provides a paradigm for how targeted therapies can be incorporated into treatment of other high-risk leukemias.
Collapse
Affiliation(s)
- Kathrin M Bernt
- Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado , Aurora, CO , USA
| | - Stephen P Hunger
- Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado , Aurora, CO , USA
| |
Collapse
|
37
|
Ichim CV. Kinase-independent mechanisms of resistance of leukemia stem cells to tyrosine kinase inhibitors. Stem Cells Transl Med 2014; 3:405-15. [PMID: 24598782 DOI: 10.5966/sctm.2012-0159] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Tyrosine kinase inhibitors such as imatinib mesylate have changed the clinical course of chronic myeloid leukemia; however, the observation that these inhibitors do not target the leukemia stem cell implies that patients need to maintain lifelong therapy. The mechanism of this phenomenon is unclear: the question of whether tyrosine kinase inhibitors are inactive inside leukemia stem cells or whether leukemia stem cells do not require breakpoint cluster region (Bcr)-Abl signaling is currently under debate. Herein, I propose an alternative model: perhaps the leukemia stem cell requires Bcr-Abl, but is dependent on its kinase-independent functions. Kinases such as epidermal growth factor receptor and Janus kinase 2 possess kinase-independent roles in regulation of gene expression; it is worth investigating whether Bcr-Abl has similar functions. Mechanistically, Bcr-Abl is able to activate the Ras, phosphatidylinositol 3-kinase/Akt, and/or the Src-kinase Hck/Stat5 pathways in a scaffolding-dependent manner. Whereas the scaffolding activity of Bcr-Abl with Grb2 is dependent on autophosphorylation, kinases such as Hck can use Bcr-Abl as substrate, inducing phosphorylation of Y177 to enable scaffolding ability in the absence of Bcr-Abl catalytic activity. It is worth investigating whether leukemia stem cells exclusively express kinases that are able to use Bcr-Abl as substrate. A kinase-independent role for Bcr-Abl in leukemia stem cells would imply that drugs that target Bcr-Abl's scaffolding ability or its DNA-binding ability should be used in conjunction with current therapeutic regimens to increase their efficacy and eradicate the stem cells of chronic myeloid leukemia.
Collapse
MESH Headings
- Animals
- Drug Resistance, Neoplasm
- Gene Expression Regulation, Leukemic/drug effects
- Gene Expression Regulation, Leukemic/genetics
- Humans
- Leukemia
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Neoplastic Stem Cells/enzymology
- Neoplastic Stem Cells/pathology
- Phosphatidylinositol 3-Kinases/genetics
- Phosphatidylinositol 3-Kinases/metabolism
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/metabolism
- Signal Transduction/drug effects
- Signal Transduction/genetics
Collapse
Affiliation(s)
- Christine Victoria Ichim
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Discipline of Molecular and Cellular Biology, Sunnybrook Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
38
|
Ringel F, Kaeda J, Schwarz M, Oberender C, Grille P, Dörken B, Marque F, Manley PW, Radimerski T, le Coutre P. Effects of Jak2 type 1 inhibitors NVP-BSK805 and NVP-BVB808 on Jak2 mutation-positive and Bcr-Abl-positive cell lines. Acta Haematol 2014; 132:75-86. [PMID: 24504330 DOI: 10.1159/000356784] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 10/15/2013] [Indexed: 01/14/2023]
Abstract
Janus kinases are critical components of signaling pathways that regulate hematopoiesis. Mutations of the non-receptor tyrosine kinase JAK2 are found in many BCR-ABL-negative myeloproliferative neoplasms. Preclinical results support that JAK2 inhibitors could show efficacy in treating chronic myeloproliferative neoplasms. JAK2 has also been postulated to play a role in BCR-ABL signal transduction. Therefore, inhibitors of JAK2 kinases are turning into therapeutic strategies for treatment of chronic myelogenous leukemia (CML). In this study, the effects of two novel JAK2 inhibitors, NVP-BSK805 and NVP-BVB808, have been investigated in cell lines expressing either BCR-ABL or mutant JAK2. Possible synergies between NVP-BSK805/NVP-BVB808 and the kinase inhibitors imatinib and nilotinib were assessed. Proliferation and apoptosis tests with both substances showed response in the following cell lines: CHRF-288-11, SET-2 and UKE-1. All BCR-ABL-positive cell lines showed some reduction in proliferation, but with half-maximal growth-inhibitory values >1 µM. Combination of the JAK2 inhibitors with imatinib and nilotinib showed no significant additive or synergistic effects, although all BCR-ABL-positive cell lines responded well to both CML therapeutic agents. Interestingly, it seemed that the combination of imatinib with NVP-BSK805 had a protective effect on the cells. Combination treatment with nilotinib did not show this effect.
Collapse
MESH Headings
- Apoptosis/drug effects
- Benzamides/administration & dosage
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Humans
- Imatinib Mesylate
- Janus Kinase 2/antagonists & inhibitors
- Janus Kinase 2/genetics
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Mutation
- Myeloproliferative Disorders/drug therapy
- Myeloproliferative Disorders/enzymology
- Myeloproliferative Disorders/genetics
- Phosphorylation/drug effects
- Piperazines/administration & dosage
- Protein Kinase Inhibitors/administration & dosage
- Protein Kinase Inhibitors/pharmacology
- Pyrimidines/administration & dosage
- Quinoxalines/administration & dosage
- Quinoxalines/pharmacology
- STAT5 Transcription Factor/metabolism
- Tumor Suppressor Proteins/metabolism
Collapse
Affiliation(s)
- Frauke Ringel
- Medizinische Klinik m.S. Hämatologie und Onkologie, Campus Virchow Klinikum, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Brobeil A, Koch P, Eiber M, Tag C, Wimmer M. The known interactome of PTPIP51 in HaCaT cells—Inhibition of kinases and receptors. Int J Biochem Cell Biol 2014. [DOI: 10.1016/j.biocel.2013.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
40
|
Bharathikumar VM, Barreto K, Decoteau JF, Geyer CR. Allosteric lariat peptide inhibitors of Abl kinase. Chembiochem 2013; 14:2119-25. [PMID: 24030821 DOI: 10.1002/cbic.201300253] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Indexed: 11/06/2022]
Abstract
Going against tradition: although most kinase inhibitors are ATP competitive, lariat peptides inhibit Abl kinase activity in an ATP-uncompetitive manner. Further, lariat peptides discriminated Src family kinases, and recognize the allosteric region that lies adjacent to the ATP binding pocket in the Abl kinase catalytic cleft.
Collapse
Affiliation(s)
- V M Bharathikumar
- Department of Biochemistry, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5 (Canada)
| | | | | | | |
Collapse
|
41
|
Yoon SG, Cheong HJ, Kim SJ, Kim KH, Lee SC, Lee N, Park HS, Won JH. Src Family Kinase Inhibitor PP2 Has Different Effects on All-Trans-Retinoic Acid or Arsenic Trioxide-Induced Differentiation of an Acute Promyelocytic Leukemia Cell Line. Cancer Res Treat 2013; 45:126-33. [PMID: 23864846 PMCID: PMC3710962 DOI: 10.4143/crt.2013.45.2.126] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 02/07/2013] [Indexed: 12/02/2022] Open
Abstract
Purpose Leukemic promyelocytes have the unique ability to undergo differentiation after exposure to retinoic acid and both differentiation and apoptosis after exposure to arsenic trioxide (ATO). Recent studies have shown that inhibition of Src family kinases (SFKs) resulted in enhancement of retinoic acid-induced myeloid differentiation. Materials and Methods In this study, we investigated the question of whether the SFK inhibitor PP2 enhanced the differentiation of NB4 cells when combined with ATO as well as when combined with all-trans-retinoic acid (ATRA). In addition, we attempted to determine the difference in retinoic acid-induced gene expression between cells treated with PP2 in combination with ATRA and in combination with ATO. Results SFK inhibitor PP2 induced significant enhancement of ATRA- or ATO-induced differentiation of NB4 cells. A significantly stronger synergistic effect was observed when PP2 was combined with ATRA than when combined with ATO. Flow cytometric analysis demonstrated a significant increase in CD11b-positive granulocytes up to 60.73% and 31.58%, respectively. These results were confirmed by nitroblue tetrazolium staining. These effects were not related to apoptosis. Results of Annexin-V-fluorescein staining revealed that PP2 combined with ATRA or PP2 combined with ATO did not induce apoptosis in NB4 cells. Retinoic acid-induced gene expression was different in both groups. Intercellular adhesion molecule-1 expression showed a significant increase in cells treated with PP2 in combination with ATRA, whereas cathepsin D expression showed a significant increase in cells treated with PP2 in combination with ATO. Conclusion Our data showed that SFK inhibitor PP2 enhanced acute promyelocytic leukemia cell differentiation when combined with either ATRA or ATO with difference in activation of retinoic acid-induced genes.
Collapse
Affiliation(s)
- Suk-Gu Yoon
- Division of Hematology-Oncology, Department of Internal Medicine, Institute for Clinical Molecular Biology Research, Soonchunhang University Hospital, Soonchunhang University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Tintori C, Laurenzana I, La Rocca F, Falchi F, Carraro F, Ruiz A, Esté JA, Kissova M, Crespan E, Maga G, Biava M, Brullo C, Schenone S, Botta M. Identification of Hck inhibitors as hits for the development of antileukemia and anti-HIV agents. ChemMedChem 2013; 8:1353-60. [PMID: 23813855 DOI: 10.1002/cmdc.201300204] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Indexed: 12/16/2022]
Abstract
Hematopoietic cell kinase (Hck) is a member of the Src family of non-receptor protein tyrosine kinases. High levels of Hck are associated with drug resistance in chronic myeloid leukemia. Furthermore, Hck activity has been connected with HIV-1. Herein, structure-based drug design efforts were aimed at identifying novel Hck inhibitors. First, an in-house library of pyrazolo[3,4-d]pyrimidine derivatives, which were previously shown to be dual Abl and c-Src inhibitors, was analyzed by docking studies within the ATP binding site of Hck to select the best candidates to be tested in a cell-free assay. Next, the same computational protocol was applied to screen a database of commercially available compounds. As a result, most of the selected compounds were found active against Hck, with Ki values ranging from 0.14 to 18.4 μM, confirming the suitability of the computational approach adopted. Furthermore, selected compounds showed an interesting antiproliferative activity profile against the human leukemia cell line KU-812, and one compound was found to block HIV-1 replication at sub-toxic concentrations.
Collapse
Affiliation(s)
- Cristina Tintori
- Dipartimento Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via A. De Gasperi 2, 53100 Siena, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Dorritie KA, McCubrey JA, Johnson DE. STAT transcription factors in hematopoiesis and leukemogenesis: opportunities for therapeutic intervention. Leukemia 2013; 28:248-57. [PMID: 23797472 DOI: 10.1038/leu.2013.192] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 05/30/2013] [Accepted: 06/13/2013] [Indexed: 12/14/2022]
Abstract
Signal transducer and activator of transcription (STAT) proteins comprise a family of transcription factors that are activated by cytokines, hormones and growth factors. The activation of STAT proteins plays a key role in the production of mature hematopoietic cells via effects on cellular proliferation, survival and lineage-specific differentiation. Emerging evidence also demonstrates frequent, constitutive activation of STATs in primary leukemia specimens. Moreover, roles for STATs in promoting leukemia development have been delineated in numerous preclinical studies. This review summarizes our current understanding of STAT protein involvement in normal hematopoiesis and leukemogenesis, as well as recent advances in the development and testing of novel STAT inhibitors.
Collapse
Affiliation(s)
- K A Dorritie
- Department of Medicine, University of Pittsburgh and the University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - J A McCubrey
- Department of Microbiology and Immunology, School of Medicine, East Carolina University, Greenville, NC, USA
| | - D E Johnson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh and the University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| |
Collapse
|
44
|
Singh MM, Howard A, Irwin ME, Gao Y, Lu X, Multani A, Chandra J. Expression and activity of Fyn mediate proliferation and blastic features of chronic myelogenous leukemia. PLoS One 2012; 7:e51611. [PMID: 23284724 PMCID: PMC3524192 DOI: 10.1371/journal.pone.0051611] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 11/01/2012] [Indexed: 12/30/2022] Open
Abstract
The BCR-ABL1 oncogene is a tyrosine kinase that activates many signaling pathways, resulting in the induction of chronic myeloid leukemia (CML). Kinase inhibitors, such as imatinib, have been developed for the treatment of CML; however, the terminal, blast crisis phase of the disease remains a clinical challenge. Blast crisis CML is difficult to treat due to resistance to tyrosine kinase inhibitors, increased genomic instability and acquired secondary mutations. Our recent studies uncovered a role for Fyn in promoting BCR-ABL1 mediated cell growth and sensitivity to imatinib. Here we demonstrate that Fyn contributes to BCR-ABL1 induced genomic instability, a feature of blast crisis CML. Bone marrow cells and mouse embryonic fibroblasts derived from Fyn knockout mice transduced with BCR-ABL1 display slowed growth and clonogenic potential as compared to Fyn wild-type BCR-ABL1 expressing counterparts. K562 cells overexpressing constitutively active Fyn kinase were larger in size and displayed an accumulation of genomic abnormalities such as chromosomal aberrations and polyploidy. Importantly, loss of Fyn protected mouse embryonic fibroblast cells from increased number of chromosomal aberrations and fragments induced by BCR-ABL1. Together, these results reveal a novel role for Fyn in regulating events required for genomic maintenance and suggest that Fyn kinase activity plays a role in the progression of CML to blast crisis.
Collapse
MESH Headings
- Animals
- Apoptosis
- Blast Crisis/genetics
- Blast Crisis/metabolism
- Blast Crisis/pathology
- Blotting, Western
- Cell Cycle
- Cell Differentiation
- Cell Proliferation
- Cell Size
- Cells, Cultured
- Embryo, Mammalian/cytology
- Embryo, Mammalian/metabolism
- Fibroblasts/cytology
- Fibroblasts/metabolism
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Genomic Instability
- Humans
- Immunoenzyme Techniques
- Immunoprecipitation
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Mice
- Mice, Knockout
- Proto-Oncogene Proteins c-fyn/genetics
- Proto-Oncogene Proteins c-fyn/metabolism
- Proto-Oncogene Proteins c-fyn/physiology
Collapse
Affiliation(s)
- Melissa M. Singh
- Department of Pediatrics Research, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Adrienne Howard
- Department of Pediatrics Research, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
- Graduate School of Biomedical Sciences, The University of Texas at Houston Health Science Center, Houston, Texas, United States of America
| | - Mary E. Irwin
- Department of Pediatrics Research, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Yin Gao
- Department of Pediatrics Research, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Xiaolin Lu
- Department of Pediatrics Research, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Asha Multani
- Molecular Cytogenetics Core Facility, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Joya Chandra
- Department of Pediatrics Research, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
- Graduate School of Biomedical Sciences, The University of Texas at Houston Health Science Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
45
|
Src family kinases mediate cytoplasmic retention of activated STAT5 in BCR-ABL-positive cells. Oncogene 2012; 32:3587-97. [PMID: 22926520 DOI: 10.1038/onc.2012.369] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 06/06/2012] [Accepted: 07/09/2012] [Indexed: 12/30/2022]
Abstract
Persistent activation of the Abl tyrosine kinase in the BCR-ABL fusion protein is the major cause of chronic myeloid leukemia (CML). Among many other substrates BCR-ABL phosphorylates STAT5 and Src family kinases (SFK). Activated pSTAT5 is essential for initial transformation and maintenance of the disease. Cytokine-induced phosphorylation on tyrosine 694 typically leads to nuclear accumulation of pSTAT5 and target gene expression. We verified that in BCR-ABL-positive progenitor cells from a CML patient and in K562 cells pSTAT5 is cytoplasmic. However, upon ectopic expression of BCR-ABL p210 in non-myeloid cells, co-transfected STAT5A is phosphorylated on Y694 and localized in the nucleus arguing for an additional factor mediating cytoplasmic retention in CML cells. Expression of the SFK v-Src, Hck or Lyn together with STAT5A results in phosphorylation on Y694 and cytoplasmic retention. Upon coexpression of BCR-ABL and individual SFK the cytoplasmic retention of activated STAT5A mediated by v-Src and Hck but not Lyn is dominant over nuclear translocation induced by BCR-ABL. Cytoplasmic retention depends on the kinase activity of SFK and is mediated through the interaction of the SH2 domain of STAT5A with the SFK. Interestingly, nuclear accumulation of STAT5A as a result of activation by FLT3-ITD, an oncogene found in acute myeloid leukemia, cannot be prevented by coexpression of SFK. Importantly, inhibition of SFK in K562 cells restored nuclear accumulation of pSTAT5A, enhanced STAT5 target gene expression and increased colony formation. Thus, SFK mediate cytoplasmic retention of pSTAT5A in BCR-ABL-positive cells. Cytoplasmic pSTAT5A in CML cells might balance the controversial functions of STAT5 in cellular senescence and differentiation versus G1/S progression and survival.
Collapse
|
46
|
Guo Y, Shan Q, Gong Y, Lin J, Yang X, Zhou R. Oridonin in combination with imatinib exerts synergetic anti-leukemia effect in Ph+ acute lymphoblastic leukemia cells in vitro by inhibiting activation of LYN/mTOR signaling pathway. Cancer Biol Ther 2012; 13:1244-54. [PMID: 22895079 DOI: 10.4161/cbt.21460] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL) is triggered by constitutively activated BCR-ABL and SRC family tyrosine kinases.They account for the activations of multiple growth-signaling pathways, including Raf/MEK/ERK, Akt/mTOR and STAT5 pathways. The BCR-ABL tyrosine kinase inhibitor imatinib is the standard treatment for Ph+ leukemia and plays efficacious role in CML. However, imatinib has few inhibitory effects on SRC tyrosine kinase with response rate of Ph+ ALL lower and relapse more frequent and quicker compared with CML. Previous studies showed that oridonin inhibits proliferation and induces apoptosis in many tumor cells. However, the anticancer activity and mechanism of oridonin in Ph+ ALL is unknown. To investigate the anticancer activity of oridonin, we examined its role in constitutively activated Akt/mTOR, Raf/MEK/ERK, STAT5 and SRC pathway, mRNA level of bcr/abl gene, cell viability and apoptosis in Ph+ ALL SUP-B15 cells. Furthermore, we detected synergetic effect of oridonin plus imatinib. Our results showed that oridonin inhibiting activations of LYN (one of SRC family kinases) and ABL and their downstream Akt/mTOR, Raf/MEK/ERK and STAT5 pathways, downregulated Bcl-2 but upregulated Bax protein and then induced apoptosis in Ph+ ALL cells. Oridonin plus imatinib exerted synergetic effects by overcoming imatinib defect of upregulating Akt/mTOR and LYN signaling. Additionally, we examined the effect of oridonin on the signaling pathways in the primary specimens from Ph+ ALL patients. Our data showed that oridonin remarkably suppressed activations of Akt/mTOR, Raf/MEK and STAT5 pathway in these primary specimens and oridonin with imatinib exerted synergetic suppressive effects on mTOR, STAT5 and LYN signaling in one imatinib resistant patient specimen. Additional evaluation of oridonin as a potential therapeutic agent for Ph+ ALL seems warranted.
Collapse
Affiliation(s)
- Yong Guo
- Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Sichuan, China
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
c-Src and Bcr-Abl are two cytoplasmatic tyrosine kinases (TKs) involved in the development of malignancies. In particular, Bcr-Abl is the etiologic agent of chronic myeloid leukemia, where Src is also involved; the latter is hyperactivated in several solid tumors. Because of the structural homology between Src and Abl, several compounds originally synthesized as Src inhibitors have also been shown to be Abl inhibitors, useful in overcoming the onset of some types of chronic myeloid leukemia resistances, which frequently appear in the advanced phases of pathology. In recent years, the development of such compounds has been promoted by both excellent preclinical and clinical results, and by the theory that dual or multi-targeted inhibitors might be more effective than selective inhibitors. This review is an update on the most important dual inhibitors already in clinical trials and includes information regarding compounds that have appeared in the literature in recent years.
Collapse
|
48
|
Du W, Wang YC, Hong J, Su WY, Lin YW, Lu R, Xiong H, Fang JY. STAT5 isoforms regulate colorectal cancer cell apoptosis via reduction of mitochondrial membrane potential and generation of reactive oxygen species. J Cell Physiol 2012; 227:2421-9. [PMID: 21826656 DOI: 10.1002/jcp.22977] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although the two isoforms of signal transducer and activator of transcription 5 (STAT5) protein, STAT5a and STAT5b, have 94% sequence identity, they are encoded by different genes. Previous studies have been unable to define clearly the roles of the STAT5 genes in colorectal cancer (CRC). To investigate the role of STAT5 isoforms in CRC oncogenesis, immunohistochemical staining was performed. Colorectal adenocarcinomas showed higher expression of STAT5a/5b than normal colonic mucosa (P < 0.05), and STAT5b expression was significantly higher than that of STAT5a in colorectal adenocarcinoma tissue (P < 0.05). Furthermore, STAT5b expression was significantly associated with TNM stage. To delineate the roles of STAT5a/5b in CRC carcinogenesis, we studied CRC cells depleted of each isoform by treating the cells with small interfering RNA. Both STAT5a and STAT5b were found to be involved in cell growth, cell cycle progression, and apoptosis of CRC cells, and exerted their effects via the regulation of downstream targets of the STAT genes. However, STAT5b influenced CRC cell apoptosis more than STAT5a (P < 0.05), reducing mitochondrial membrane potential and generating reactive oxygen species. In conclusion, both isoforms of STAT5 are involved in the growth and cell cycle progression of CRC cells, STAT5b could play a more important role than STAT5a in the clinicopathological characteristics of CRC and CRC cell apoptosis.
Collapse
Affiliation(s)
- Wan Du
- Shanghai Institute of Digestive Disease, Shanghai Jiao-Tong University School of Medicine, Renji Hospital, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Nam S, Scuto A, Yang F, Chen W, Park S, Yoo HS, Konig H, Bhatia R, Cheng X, Merz KH, Eisenbrand G, Jove R. Indirubin derivatives induce apoptosis of chronic myelogenous leukemia cells involving inhibition of Stat5 signaling. Mol Oncol 2012; 6:276-83. [PMID: 22387217 DOI: 10.1016/j.molonc.2012.02.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Revised: 01/23/2012] [Accepted: 02/08/2012] [Indexed: 01/05/2023] Open
Abstract
Indirubin is the major active anti-tumor component of a traditional Chinese herbal medicine used for treatment of chronic myelogenous leukemia (CML). While previous studies indicate that indirubin is a promising therapeutic agent for CML, the molecular mechanism of action of indirubin is not fully understood. We report here that indirubin derivatives (IRDs) potently inhibit Signal Transducer and Activator of Transcription 5 (Stat5) protein in CML cells. Compound E804, which is the most potent in this series of IRDs, blocked Stat5 signaling in human K562 CML cells, imatinib-resistant human KCL-22 CML cells expressing the T315I mutant Bcr-Abl (KCL-22M), and CD34-positive primary CML cells from patients. Autophosphorylation of Src family kinases (SFKs) was strongly inhibited in K562 and KCL-22M cells at 5 μM E804, and in primary CML cells at 10 μM E804, although higher concentrations partially inhibited autophosphorylation of Bcr-Abl. Previous studies indicate that SFKs cooperate with Bcr-Abl to activate downstream Stat5 signaling. Activation of Stat5 was strongly blocked by E804 in CML cells. E804 down-regulated expression of Stat5 target proteins Bcl-x(L) and Mcl-1, associated with induction of apoptosis. In sum, our findings identify IRDs as potent inhibitors of the SFK/Stat5 signaling pathway downstream of Bcr-Abl, leading to apoptosis of K562, KCL-22M and primary CML cells. IRDs represent a promising structural class for development of new therapeutics for wild type or T315I mutant Bcr-Abl-positive CML patients.
Collapse
Affiliation(s)
- Sangkil Nam
- Molecular Medicine, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Sokolenko S, George S, Wagner A, Tuladhar A, Andrich JMS, Aucoin MG. Co-expression vs. co-infection using baculovirus expression vectors in insect cell culture: Benefits and drawbacks. Biotechnol Adv 2012; 30:766-81. [PMID: 22297133 PMCID: PMC7132753 DOI: 10.1016/j.biotechadv.2012.01.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 01/13/2012] [Accepted: 01/17/2012] [Indexed: 12/12/2022]
Abstract
The baculovirus expression vector system (BEVS) is a versatile and powerful platform for protein expression in insect cells. With the ability to approach similar post-translational modifications as in mammalian cells, the BEVS offers a number of advantages including high levels of expression as well as an inherent safety during manufacture and of the final product. Many BEVS products include proteins and protein complexes that require expression from more than one gene. This review examines the expression strategies that have been used to this end and focuses on the distinguishing features between those that make use of single polycistronic baculovirus (co-expression) and those that use multiple monocistronic baculoviruses (co-infection). Three major areas in which researchers have been able to take advantage of co-expression/co-infection are addressed, including compound structure-function studies, insect cell functionality augmentation, and VLP production. The core of the review discusses the parameters of interest for co-infection and co-expression with time of infection (TOI) and multiplicity of infection (MOI) highlighted for the former and the choice of promoter for the latter. In addition, an overview of modeling approaches is presented, with a suggested trajectory for future exploration. The review concludes with an examination of the gaps that still remain in co-expression/co-infection knowledge and practice.
Collapse
Affiliation(s)
- Stanislav Sokolenko
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | | | | | | | | | |
Collapse
|