1
|
Fan J, Du X, Chen M, Xu Y, Xu J, Lu L, Zhou S, Kong X, Xu K, Zhang H. Critical role of checkpoint kinase 1 in spinal cord injury-induced motor dysfunction in mice. Int Immunopharmacol 2024; 138:112521. [PMID: 38917519 DOI: 10.1016/j.intimp.2024.112521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/02/2024] [Accepted: 06/16/2024] [Indexed: 06/27/2024]
Abstract
Spinal cord injury (SCI) is a devastating neurotraumatic condition characterized by severe motor dysfunction and paralysis. Accumulating evidence suggests that DNA damage is involved in SCI pathology. However, the underlying mechanisms remain elusive. Although checkpoint kinase 1 (Chk1)-regulated DNA damage is involved in critical cellular processes, its role in SCI regulation remains unclear. This study aimed to explore the role and potential mechanism of Chk1 in SCI-induced motor dysfunction. Adult female C57BL/6J mice subjected to T9-T10 spinal cord contusions were used as models of SCI. Western blotting, immunoprecipitation, histomorphology, and Chk1 knockdown or overexpression achieved by adeno-associated virus were performed to explore the underlying mechanisms. Levels of p-Chk1 and γ-H2AX (a cellular DNA damage marker) were upregulated, while ferroptosis-related protein levels, including glutathione peroxidase 4 (GPX4) and x-CT were downregulated, in the spinal cord and hippocampal tissues of SCI mice. Functional experiments revealed increased Basso Mouse Scale (BMS) scores, indicating that Chk1 downregulation promoted motor function recovery after SCI, whereas Chk1 overexpression aggravated SCI-induced motor dysfunction. In addition, Chk1 downregulation reversed the SCI-increased levels of GPX4 and x-CT expression in the spinal cord and hippocampus, while immunoprecipitation assays revealed strengthened interactions between p-Chk1 and GPX4 in the spinal cord after SCI. Finally, Chk1 downregulation promoted while Chk1 overexpression inhibited NeuN cellular immunoactivity in the spinal cord after SCI, respectively. Collectively, these preliminary results imply that Chk1 is a novel regulator of SCI-induced motor dysfunction, and that interventions targeting Chk1 may represent promising therapeutic targets for neurotraumatic diseases such as SCI.
Collapse
Affiliation(s)
- Junming Fan
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Cixi People's Hospital, Institute of Cixi Biomedical Research, Wenzhou Medical University, Cixi, Ningbo, Zhejiang 315302, China
| | - Xiaotong Du
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Mengfan Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yun Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jinyu Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Leilei Lu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Department of Emergency, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Shaoyan Zhou
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaoxia Kong
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Ke Xu
- Cixi People's Hospital, Institute of Cixi Biomedical Research, Wenzhou Medical University, Cixi, Ningbo, Zhejiang 315302, China.
| | - Hongyu Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Cixi People's Hospital, Institute of Cixi Biomedical Research, Wenzhou Medical University, Cixi, Ningbo, Zhejiang 315302, China.
| |
Collapse
|
2
|
Xu H, Gitto SB, Ho GY, Medvedev S, Shield-Artin K, Kim H, Beard S, Kinose Y, Wang X, Barker HE, Ratnayake G, Hwang WT, Australian Ovarian Cancer Study, Hansen RJ, Strouse B, Milutinovic S, Hassig C, Wakefield MJ, Vandenberg CJ, Scott CL, Simpkins F. CHK1 inhibitor SRA737 is active in PARP inhibitor resistant and CCNE1 amplified ovarian cancer. iScience 2024; 27:109978. [PMID: 39021796 PMCID: PMC11253285 DOI: 10.1016/j.isci.2024.109978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 04/05/2024] [Accepted: 05/11/2024] [Indexed: 07/20/2024] Open
Abstract
High-grade serous ovarian cancers (HGSOCs) with homologous recombination deficiency (HRD) are initially responsive to poly (ADP-ribose) polymerase inhibitors (PARPi), but resistance ultimately emerges. HGSOC with CCNE1 amplification (CCNE1 amp) are associated with resistance to PARPi and platinum treatments. High replication stress in HRD and CCNE1 amp HGSOC leads to increased reliance on checkpoint kinase 1 (CHK1), a key regulator of cell cycle progression and the replication stress response. Here, we investigated the anti-tumor activity of the potent, highly selective, orally bioavailable CHK1 inhibitor (CHK1i), SRA737, in both acquired PARPi-resistant BRCA1/2 mutant and CCNE1 amp HGSOC models. We demonstrated that SRA737 increased replication stress and induced subsequent cell death in vitro. SRA737 monotherapy in vivo prolonged survival in CCNE1 amp models, suggesting a potential biomarker for CHK1i therapy. Combination SRA737 and PARPi therapy increased tumor regression in both PARPi-resistant and CCNE1 amp patient-derived xenograft models, warranting further study in these HGSOC subgroups.
Collapse
Affiliation(s)
- Haineng Xu
- Ovarian Cancer Research Center, Division of Gynecology Oncology, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sarah B. Gitto
- Ovarian Cancer Research Center, Division of Gynecology Oncology, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gwo-Yaw Ho
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Sergey Medvedev
- Ovarian Cancer Research Center, Division of Gynecology Oncology, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kristy Shield-Artin
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Hyoung Kim
- Ovarian Cancer Research Center, Division of Gynecology Oncology, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sally Beard
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Yasuto Kinose
- Ovarian Cancer Research Center, Division of Gynecology Oncology, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xiaolei Wang
- Ovarian Cancer Research Center, Division of Gynecology Oncology, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Holly E. Barker
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | | | - Wei-Ting Hwang
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Australian Ovarian Cancer Study
- Research Division, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC 3000, Australia
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, NSW 2145, Australia
| | - Ryan J. Hansen
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, NSW 2145, Australia
| | - Bryan Strouse
- Sierra Oncology, Inc, 885 West Georgia Street, Suite 2150, Vancouver, BC V6C 3E8, Canada
| | - Snezana Milutinovic
- Sierra Oncology, Inc, 885 West Georgia Street, Suite 2150, Vancouver, BC V6C 3E8, Canada
| | - Christian Hassig
- Sierra Oncology, Inc, 885 West Georgia Street, Suite 2150, Vancouver, BC V6C 3E8, Canada
| | - Matthew J. Wakefield
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Cassandra J. Vandenberg
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Clare L. Scott
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
- The Royal Women’s Hospital, Parkville, VIC 3052, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC 3010, Australia
- Sir Peter MacCallum Cancer Centre Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Fiona Simpkins
- Ovarian Cancer Research Center, Division of Gynecology Oncology, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
3
|
Knoblochova L, Duricek T, Vaskovicova M, Zorzompokou C, Rayova D, Ferencova I, Baran V, Schultz RM, Hoffmann ER, Drutovic D. CHK1-CDC25A-CDK1 regulate cell cycle progression and protect genome integrity in early mouse embryos. EMBO Rep 2023; 24:e56530. [PMID: 37694680 PMCID: PMC10561370 DOI: 10.15252/embr.202256530] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/12/2023] Open
Abstract
After fertilization, remodeling of the oocyte and sperm genomes is essential to convert these highly differentiated and transcriptionally quiescent cells into early cleavage-stage blastomeres that are transcriptionally active and totipotent. This developmental transition is accompanied by cell cycle adaptation, such as lengthening or shortening of the gap phases G1 and G2. However, regulation of these cell cycle changes is poorly understood, especially in mammals. Checkpoint kinase 1 (CHK1) is a protein kinase that regulates cell cycle progression in somatic cells. Here, we show that CHK1 regulates cell cycle progression in early mouse embryos by restraining CDK1 kinase activity due to CDC25A phosphatase degradation. CHK1 kinase also ensures the long G2 phase needed for genome activation and reprogramming gene expression in two-cell stage mouse embryos. Finally, Chk1 depletion leads to DNA damage and chromosome segregation errors that result in aneuploidy and infertility.
Collapse
Affiliation(s)
- Lucie Knoblochova
- Institute of Animal Physiology and Genetics of the Czech Academy of SciencesLibechovCzech Republic
- Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Tomas Duricek
- Institute of Animal Physiology and Genetics of the Czech Academy of SciencesLibechovCzech Republic
| | - Michaela Vaskovicova
- Institute of Animal Physiology and Genetics of the Czech Academy of SciencesLibechovCzech Republic
| | - Chrysoula Zorzompokou
- Institute of Animal Physiology and Genetics of the Czech Academy of SciencesLibechovCzech Republic
| | - Diana Rayova
- Institute of Animal Physiology and Genetics of the Czech Academy of SciencesLibechovCzech Republic
| | - Ivana Ferencova
- Institute of Animal Physiology and Genetics of the Czech Academy of SciencesLibechovCzech Republic
| | - Vladimir Baran
- Institute of Animal Physiology, Centre of Biosciences, Slovak Academy of SciencesKosiceSlovakia
| | - Richard M Schultz
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPAUSA
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary MedicineUniversity of CaliforniaDavisCAUSA
| | - Eva R Hoffmann
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - David Drutovic
- Institute of Animal Physiology and Genetics of the Czech Academy of SciencesLibechovCzech Republic
| |
Collapse
|
4
|
Parisis N, Dans PD, Jbara M, Singh B, Schausi-Tiffoche D, Molina-Serrano D, Brun-Heath I, Hendrychová D, Maity SK, Buitrago D, Lema R, Nait Achour T, Giunta S, Girardot M, Talarek N, Rofidal V, Danezi K, Coudreuse D, Prioleau MN, Feil R, Orozco M, Brik A, Wu PYJ, Krasinska L, Fisher D. Histone H3 serine-57 is a CHK1 substrate whose phosphorylation affects DNA repair. Nat Commun 2023; 14:5104. [PMID: 37607906 PMCID: PMC10444856 DOI: 10.1038/s41467-023-40843-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 08/12/2023] [Indexed: 08/24/2023] Open
Abstract
Histone post-translational modifications promote a chromatin environment that controls transcription, DNA replication and repair, but surprisingly few phosphorylations have been documented. We report the discovery of histone H3 serine-57 phosphorylation (H3S57ph) and show that it is implicated in different DNA repair pathways from fungi to vertebrates. We identified CHK1 as a major human H3S57 kinase, and disrupting or constitutively mimicking H3S57ph had opposing effects on rate of recovery from replication stress, 53BP1 chromatin binding, and dependency on RAD52. In fission yeast, mutation of all H3 alleles to S57A abrogated DNA repair by both non-homologous end-joining and homologous recombination, while cells with phospho-mimicking S57D alleles were partly compromised for both repair pathways, presented aberrant Rad52 foci and were strongly sensitised to replication stress. Mechanistically, H3S57ph loosens DNA-histone contacts, increasing nucleosome mobility, and interacts with H3K56. Our results suggest that dynamic phosphorylation of H3S57 is required for DNA repair and recovery from replication stress, opening avenues for investigating the role of this modification in other DNA-related processes.
Collapse
Affiliation(s)
- Nikolaos Parisis
- IGMM, CNRS, INSERM, University of Montpellier, Montpellier, France
- Equipe labellisée Ligue contre le Cancer, Paris, France
- BPMP, CNRS, INRA, Montpellier SupAgro, University of Montpellier, Montpellier, France
- Institut Jacques Monod, CNRS, University Paris Diderot, Paris, France
| | - Pablo D Dans
- IRB Barcelona, BIST, Barcelona, Spain
- Bioinformatics Unit, Institute Pasteur of Montevideo, Montevideo, Uruguay
- Department of Biological Sciences, CENUR North Riverside, University of the Republic (UdelaR), Salto, Uruguay
| | - Muhammad Jbara
- Schulich Faculty of Chemistry, Technion Israel Institute of Technology, Haifa, Israel
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | | - Denisa Hendrychová
- IGMM, CNRS, INSERM, University of Montpellier, Montpellier, France
- Equipe labellisée Ligue contre le Cancer, Paris, France
- Department of Experimental Biology, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Suman Kumar Maity
- Schulich Faculty of Chemistry, Technion Israel Institute of Technology, Haifa, Israel
| | | | | | - Thiziri Nait Achour
- IGMM, CNRS, INSERM, University of Montpellier, Montpellier, France
- Equipe labellisée Ligue contre le Cancer, Paris, France
| | - Simona Giunta
- The Rockefeller University, New York, NY, USA
- Laboratory of Genome Evolution, Department of Biology and Biotechnology "Charles Darwin", University of Rome Sapienza, Rome, Italy
| | - Michael Girardot
- IGMM, CNRS, INSERM, University of Montpellier, Montpellier, France
| | - Nicolas Talarek
- IGMM, CNRS, INSERM, University of Montpellier, Montpellier, France
| | - Valérie Rofidal
- BPMP, CNRS, INRA, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Katerina Danezi
- IGMM, CNRS, INSERM, University of Montpellier, Montpellier, France
- Equipe labellisée Ligue contre le Cancer, Paris, France
| | - Damien Coudreuse
- IGDR, CNRS, University of Rennes, Rennes, France
- IBGC, CNRS, University of Bordeaux, Bordeaux, France
| | | | - Robert Feil
- IGMM, CNRS, INSERM, University of Montpellier, Montpellier, France
| | | | - Ashraf Brik
- Schulich Faculty of Chemistry, Technion Israel Institute of Technology, Haifa, Israel
| | - Pei-Yun Jenny Wu
- IGDR, CNRS, University of Rennes, Rennes, France
- IBGC, CNRS, University of Bordeaux, Bordeaux, France
| | - Liliana Krasinska
- IGMM, CNRS, INSERM, University of Montpellier, Montpellier, France.
- Equipe labellisée Ligue contre le Cancer, Paris, France.
| | - Daniel Fisher
- IGMM, CNRS, INSERM, University of Montpellier, Montpellier, France.
- Equipe labellisée Ligue contre le Cancer, Paris, France.
| |
Collapse
|
5
|
Manoharan R, Karthikeyan S, Anandh S, Priya Doss C G, Ramireddy S, Bharanidharan G, Aruna P, Mangaiyarkarasi R, Chinnathambi S, Pandian GN, Ganesan S. A Biophysical Approach of Cytarabine Anticancer Drug Insights into Human Serum Albumin and Checkpoint Kinase 1. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
6
|
Yam CQX, Lim HH, Surana U. DNA damage checkpoint execution and the rules of its disengagement. Front Cell Dev Biol 2022; 10:1020643. [PMID: 36274841 PMCID: PMC9582513 DOI: 10.3389/fcell.2022.1020643] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Chromosomes are susceptible to damage during their duplication and segregation or when exposed to genotoxic stresses. Left uncorrected, these lesions can result in genomic instability, leading to cells' diminished fitness, unbridled proliferation or death. To prevent such fates, checkpoint controls transiently halt cell cycle progression to allow time for the implementation of corrective measures. Prominent among these is the DNA damage checkpoint which operates at G2/M transition to ensure that cells with damaged chromosomes do not enter the mitotic phase. The execution and maintenance of cell cycle arrest are essential aspects of G2/M checkpoint and have been studied in detail. Equally critical is cells' ability to switch-off the checkpoint controls after a successful completion of corrective actions and to recommence cell cycle progression. Interestingly, when corrective measures fail, cells can mount an unusual cellular response, termed adaptation, where they escape checkpoint arrest and resume cell cycle progression with damaged chromosomes at the cost of genome instability or even death. Here, we discuss the DNA damage checkpoint, the mitotic networks it inhibits to prevent segregation of damaged chromosomes and the strategies cells employ to quench the checkpoint controls to override the G2/M arrest.
Collapse
Affiliation(s)
| | - Hong Hwa Lim
- A*STAR Singapore Immunology Network, Singapore, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Uttam Surana
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Pharmacology, National University of Singapore, Singapore, Singapore
| |
Collapse
|
7
|
Abstract
Cancer is a group of diseases in which cells divide continuously and excessively. Cell division is tightly regulated by multiple evolutionarily conserved cell cycle control mechanisms, to ensure the production of two genetically identical cells. Cell cycle checkpoints operate as DNA surveillance mechanisms that prevent the accumulation and propagation of genetic errors during cell division. Checkpoints can delay cell cycle progression or, in response to irreparable DNA damage, induce cell cycle exit or cell death. Cancer-associated mutations that perturb cell cycle control allow continuous cell division chiefly by compromising the ability of cells to exit the cell cycle. Continuous rounds of division, however, create increased reliance on other cell cycle control mechanisms to prevent catastrophic levels of damage and maintain cell viability. New detailed insights into cell cycle control mechanisms and their role in cancer reveal how these dependencies can be best exploited in cancer treatment.
Collapse
Affiliation(s)
- Helen K Matthews
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Cosetta Bertoli
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Robertus A M de Bruin
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK.
- UCL Cancer Institute, University College London, London, UK.
| |
Collapse
|
8
|
Ho K, Luo H, Zhu W, Tang Y. Critical role of SMG7 in activation of the ATR-CHK1 axis in response to genotoxic stress. Sci Rep 2021; 11:7502. [PMID: 33820915 PMCID: PMC8021557 DOI: 10.1038/s41598-021-86957-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/15/2021] [Indexed: 11/30/2022] Open
Abstract
CHK1 is a crucial DNA damage checkpoint kinase and its activation, which requires ATR and RAD17, leads to inhibition of DNA replication and cell cycle progression. Recently, we reported that SMG7 stabilizes and activates p53 to induce G1 arrest upon DNA damage; here we show that SMG7 plays a critical role in the activation of the ATR-CHK1 axis. Following genotoxic stress, SMG7-null cells exhibit deficient ATR signaling, indicated by the attenuated phosphorylation of CHK1 and RPA32, and importantly, unhindered DNA replication and fork progression. Through its 14-3-3 domain, SMG7 interacts directly with the Ser635-phosphorylated RAD17 and promotes chromatin retention of the 9-1-1 complex by the RAD17-RFC, an essential step to CHK1 activation. Furthermore, through maintenance of CHK1 activity, SMG7 controls G2-M transition and facilitates orderly cell cycle progression during recovery from replication stress. Taken together, our data reveals SMG7 as an indispensable signaling component in the ATR-CHK1 pathway during genotoxic stress response.
Collapse
Affiliation(s)
- Kathleen Ho
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Ave, Albany, NY, 12208, USA
| | - Hongwei Luo
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Ave, Albany, NY, 12208, USA
| | - Wei Zhu
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Ave, Albany, NY, 12208, USA
- Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Science, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Yi Tang
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Ave, Albany, NY, 12208, USA.
| |
Collapse
|
9
|
Hutchcraft ML, Gallion HH, Kolesar JM. MUTYH as an Emerging Predictive Biomarker in Ovarian Cancer. Diagnostics (Basel) 2021; 11:84. [PMID: 33419231 PMCID: PMC7825630 DOI: 10.3390/diagnostics11010084] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 12/28/2020] [Accepted: 01/05/2021] [Indexed: 12/15/2022] Open
Abstract
Approximately 18% of ovarian cancers have an underlying genetic predisposition and many of the genetic alterations have become intervention and therapy targets. Although mutations in MutY homolog (MUTYH) are best known for MUTYH associated polyposis and colorectal cancer, it plays a role in the development of ovarian cancer. In this review, we discuss the function of the MUTYH gene, mutation epidemiology, and its mechanism for carcinogenesis. We additionally examine its emerging role in the development of ovarian cancer and how it may be used as a predictive and targetable biomarker. MUTYH mutations may confer the risk of ovarian cancer by the failure of its well-known base excision repair mechanism or by failure to induce cell death. Biallelic germline MUTYH mutations confer a 14% risk of ovarian cancer by age 70. A monoallelic germline mutation in conjunction with a somatic MUTYH mutation may also contribute to the development of ovarian cancer. Resistance to platinum-based chemotherapeutic agents may be seen in tumors with monoallelic mutations, but platinum sensitivity in the biallelic setting. As MUTYH is intimately associated with targetable molecular partners, therapeutic options for MUTYH driven ovarian cancers include programed-death 1/programed-death ligand-1 inhibitors and poly-adenosine diphosphate ribose polymerase inhibitors. Understanding the function of MUTYH and its associated partners is critical for determining screening, risk reduction, and therapeutic approaches for MUTYH-driven ovarian cancers.
Collapse
Affiliation(s)
- Megan L. Hutchcraft
- Division of Gynecologic Oncology, Department of Obstetrics & Gynecology, University of Kentucky Markey Cancer Center, 800 Rose Street, Lexington, KY 40536-0263, USA; (M.L.H.); (H.H.G.)
| | - Holly H. Gallion
- Division of Gynecologic Oncology, Department of Obstetrics & Gynecology, University of Kentucky Markey Cancer Center, 800 Rose Street, Lexington, KY 40536-0263, USA; (M.L.H.); (H.H.G.)
| | - Jill M. Kolesar
- Division of Gynecologic Oncology, Department of Obstetrics & Gynecology, University of Kentucky Markey Cancer Center, 800 Rose Street, Lexington, KY 40536-0263, USA; (M.L.H.); (H.H.G.)
- Department of Pharmacy Practice & Science, University of Kentucky College of Pharmacy, 567 Todd Building, 789 South Limestone Street, Lexington, KY 40539-0596, USA
| |
Collapse
|
10
|
Neizer-Ashun F, Bhattacharya R. Reality CHEK: Understanding the biology and clinical potential of CHK1. Cancer Lett 2020; 497:202-211. [PMID: 32991949 DOI: 10.1016/j.canlet.2020.09.016] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/26/2020] [Accepted: 09/20/2020] [Indexed: 12/13/2022]
Abstract
The DNA damage response enables cells to cope with various stresses that threaten genomic integrity. A critical component of this response is the serine/threonine kinase CHK1 which is encoded by the CHEK1 gene. Originally identified as a regulator of the G2/M checkpoint, CHK1 has since been shown to play important roles in DNA replication, mitotic progression, DNA repair, and overall cell cycle regulation. However, the potential of CHK1 as a cancer therapy has not been realized clinically. Herein we expound our current understanding of the principal roles of CHK1 and highlight different avenues for CHK1 targeting in cancer therapy.
Collapse
Affiliation(s)
- Fiifi Neizer-Ashun
- Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, OK, 73104, United States
| | - Resham Bhattacharya
- Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, OK, 73104, United States; Department of Obstetrics and Gynecology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, United States; Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Science Center, Oklahoma City, OK, 73104, United States.
| |
Collapse
|
11
|
Petsalaki E, Zachos G. DNA damage response proteins regulating mitotic cell division: double agents preserving genome stability. FEBS J 2020; 287:1700-1721. [PMID: 32027459 DOI: 10.1111/febs.15240] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/10/2020] [Accepted: 02/04/2020] [Indexed: 12/11/2022]
Abstract
The DNA damage response recognizes DNA lesions and coordinates a cell cycle arrest with the repair of the damaged DNA, or removal of the affected cells to prevent the passage of genetic alterations to the next generation. The mitotic cell division, on the other hand, is a series of processes that aims to accurately segregate the genomic material from the maternal to the two daughter cells. Despite their great importance in safeguarding genomic integrity, the DNA damage response and the mitotic cell division were long viewed as unrelated processes, mainly because animal cells that are irradiated during mitosis continue cell division without repairing the broken chromosomes. However, recent studies have demonstrated that DNA damage proteins play an important role in mitotic cell division. This is performed through regulation of the onset of mitosis, mitotic spindle formation, correction of misattached kinetochore-microtubules, spindle checkpoint signaling, or completion of cytokinesis (abscission), in the absence of DNA damage. In this review, we summarize the roles of DNA damage proteins in unperturbed mitosis, analyze the molecular mechanisms involved, and discuss the potential implications of these findings in cancer therapy.
Collapse
Affiliation(s)
- Eleni Petsalaki
- Department of Biology, University of Crete, Heraklion, Greece
| | - George Zachos
- Department of Biology, University of Crete, Heraklion, Greece
| |
Collapse
|
12
|
Schuler F, Afreen S, Manzl C, Häcker G, Erlacher M, Villunger A. Checkpoint kinase 1 is essential for fetal and adult hematopoiesis. EMBO Rep 2019; 20:e47026. [PMID: 31379128 PMCID: PMC6680171 DOI: 10.15252/embr.201847026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 12/15/2022] Open
Abstract
Checkpoint kinase 1 (CHK1) is critical for S-phase fidelity and preventing premature mitotic entry in the presence of DNA damage. Tumor cells have developed a strong dependence on CHK1 for survival, and hence, this kinase has developed into a promising drug target. Chk1 deficiency in mice results in blastocyst death due to G2/M checkpoint failure showing that it is an essential gene and may be difficult to target therapeutically. Here, we show that chemical inhibition of CHK1 kills murine and human hematopoietic stem and progenitor cells (HSPCs) by the induction of BCL2-regulated apoptosis. Cell death in HSPCs is independent of p53 but requires the BH3-only proteins BIM, PUMA, and NOXA. Moreover, Chk1 is essential for definitive hematopoiesis in the embryo. Noteworthy, cell death inhibition in HSPCs cannot restore blood cell formation as HSPCs lacking CHK1 accumulate DNA damage and stop dividing. Moreover, conditional deletion of Chk1 in hematopoietic cells of adult mice selects for blood cells retaining CHK1, suggesting an essential role in maintaining functional hematopoiesis. Our findings establish a previously unrecognized role for CHK1 in establishing and maintaining hematopoiesis.
Collapse
Affiliation(s)
- Fabian Schuler
- Division of Developmental ImmunologyBiocenterMedical University of InnsbruckInnsbruckAustria
| | - Sehar Afreen
- Division of Pediatric Hematology and OncologyDepartment of Pediatrics and Adolescent MedicineFaculty of MedicineUniversity of FreiburgFreiburgGermany
- Faculty of BiologyUniversity of FreiburgFreiburgGermany
| | - Claudia Manzl
- Institute of Pathology, Neuropathology and Molecular pathologyMedical University of InnsbruckInnsbruckAustria
| | - Georg Häcker
- Institute of Medical Microbiology and HygieneUniversity Medical Center FreiburgFreiburgGermany
| | - Miriam Erlacher
- Division of Pediatric Hematology and OncologyDepartment of Pediatrics and Adolescent MedicineFaculty of MedicineUniversity of FreiburgFreiburgGermany
- German Cancer Consortium (DKTK)FreiburgGermany
- German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Andreas Villunger
- Division of Developmental ImmunologyBiocenterMedical University of InnsbruckInnsbruckAustria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
- Ludwig Boltzmann Institute for Rare and Undiagnosed DiseasesViennaAustria
| |
Collapse
|
13
|
Benedict B, van Harn T, Dekker M, Hermsen S, Kucukosmanoglu A, Pieters W, Delzenne-Goette E, Dorsman JC, Petermann E, Foijer F, te Riele H. Loss of p53 suppresses replication-stress-induced DNA breakage in G1/S checkpoint deficient cells. eLife 2018; 7:e37868. [PMID: 30322449 PMCID: PMC6221544 DOI: 10.7554/elife.37868] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 09/28/2018] [Indexed: 12/12/2022] Open
Abstract
In cancer cells, loss of G1/S control is often accompanied by p53 pathway inactivation, the latter usually rationalized as a necessity for suppressing cell cycle arrest and apoptosis. However, we found an unanticipated effect of p53 loss in mouse and human G1-checkpoint-deficient cells: reduction of DNA damage. We show that abrogation of the G1/S-checkpoint allowed cells to enter S-phase under growth-restricting conditions at the expense of severe replication stress manifesting as decelerated DNA replication, reduced origin firing and accumulation of DNA double-strand breaks. In this system, loss of p53 allowed mitogen-independent proliferation, not by suppressing apoptosis, but rather by restoring origin firing and reducing DNA breakage. Loss of G1/S control also caused DNA damage and activation of p53 in an in vivo retinoblastoma model. Moreover, in a teratoma model, loss of p53 reduced DNA breakage. Thus, loss of p53 may promote growth of incipient cancer cells by reducing replication-stress-induced DNA damage.
Collapse
Affiliation(s)
- Bente Benedict
- Division of Tumor Biology and ImmunologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Tanja van Harn
- Division of Tumor Biology and ImmunologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Marleen Dekker
- Division of Tumor Biology and ImmunologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Simone Hermsen
- Division of Tumor Biology and ImmunologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Asli Kucukosmanoglu
- Division of Tumor Biology and ImmunologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Wietske Pieters
- Division of Tumor Biology and ImmunologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Elly Delzenne-Goette
- Division of Tumor Biology and ImmunologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Josephine C Dorsman
- Department of Clinical GeneticsVU University Medical CenterAmsterdamThe Netherlands
| | - Eva Petermann
- School of Cancer SciencesUniversity of BirminghamBirminghamUnited Kingdom
| | - Floris Foijer
- Division of Tumor Biology and ImmunologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- European Research Institute for the Biology of AgeingUniversity Medical Center GroningenAmsterdamThe Netherlands
| | - Hein te Riele
- Division of Tumor Biology and ImmunologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| |
Collapse
|
14
|
Li Y, Zhang D, Yu K, Hu Y, Wu Q, Qian F, Wang Z. CMPD1 inhibited human gastric cancer cell proliferation by inducing apoptosis and G2/M cell cycle arrest. Biol Res 2018; 51:11. [PMID: 29661232 PMCID: PMC5901880 DOI: 10.1186/s40659-018-0159-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 04/10/2018] [Indexed: 01/02/2023] Open
Abstract
Background Gastric cancer occupies the fourth highest morbidity rate of cancers worldwide. Clinical therapies of gastric cancer remain limited because of uncertainty of mechanisms and shortness of effective medicine. Thus, new drug candidates for gastric cancer treatment is urgently needed. Results In this study, CMPD1 as a wildly used MK2 phosphorylation inhibitor was employed to find its impact on gastric cancer cell proliferation, apoptosis and cell cycle using colony formation assay and flow cytometry analysis. Along with its anti-proliferation effect on gastric cancer cell line MKN-45 and SGC7901, CMPD1 also induced massive apoptosis and significant G2/M phase arrest in a time-dependent and dose-dependent manner in MKN-45 cells respectively. Furthermore, Western blot confirmed that the expression of anti-apoptotic proteins Bcl-2 was decreased while BAX, cytochrome c release and cleaved PARP were increased. In addition, oncogene c-Myc was downregulated in response to CMPD1 treatment. Conclusions Our results demonstrated that CMPD1 has anti-tumor effect on human gastric cancer cell line MKN-45 possibly via downregulating oncogene c-Myc expression and CMPD1 could be applied as a potential candidate for treating gastric malignancy. To the best of our knowledge, it is the first report of anti-tumor effect of CMPD-1 on human gastric cancer cells.
Collapse
Affiliation(s)
- Yu Li
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Bengbu, 233004, Anhui, People's Republic of China.,Center for Cancer Precision Medicine, Bengbu Medical College, Bengbu, 233003, Anhui, People's Republic of China
| | - Depeng Zhang
- Engineering Research Center of Cell, & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Kaikai Yu
- Engineering Research Center of Cell, & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yudong Hu
- Engineering Research Center of Cell, & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Qiong Wu
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Bengbu, 233004, Anhui, People's Republic of China.,Center for Cancer Precision Medicine, Bengbu Medical College, Bengbu, 233003, Anhui, People's Republic of China
| | - Feng Qian
- Center for Cancer Precision Medicine, Bengbu Medical College, Bengbu, 233003, Anhui, People's Republic of China. .,Engineering Research Center of Cell, & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, People's Republic of China.
| | - Zishu Wang
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Bengbu, 233004, Anhui, People's Republic of China. .,Center for Cancer Precision Medicine, Bengbu Medical College, Bengbu, 233003, Anhui, People's Republic of China.
| |
Collapse
|
15
|
Piscitello D, Varshney D, Lilla S, Vizioli MG, Reid C, Gorbunova V, Seluanov A, Gillespie DA, Adams PD. AKT overactivation can suppress DNA repair via p70S6 kinase-dependent downregulation of MRE11. Oncogene 2018; 37:427-438. [PMID: 28967905 PMCID: PMC5799716 DOI: 10.1038/onc.2017.340] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 07/22/2017] [Accepted: 08/14/2017] [Indexed: 02/07/2023]
Abstract
Deregulated AKT kinase activity due to PTEN deficiency in cancer cells contributes to oncogenesis by incompletely understood mechanisms. Here, we show that PTEN deletion in HCT116 and DLD1 colon carcinoma cells leads to suppression of CHK1 and CHK2 activation in response to irradiation, impaired G2 checkpoint proficiency and radiosensitization. These defects are associated with reduced expression of MRE11, RAD50 and NBS1, components of the apical MRE11/RAD50/NBS1 (MRN) DNA damage response complex. Consistent with reduced MRN complex function, PTEN-deficient cells fail to resect DNA double-strand breaks efficiently after irradiation and show greatly diminished proficiency for DNA repair via the error-free homologous recombination (HR) repair pathway. MRE11 is highly unstable in PTEN-deficient cells but stability can be significantly restored by inhibiting mTORC1 or p70S6 kinase (p70S6K), downstream kinases whose activities are stimulated by AKT, or by mutating a residue in MRE11 that we show is phosphorylated by p70S6K in vitro. In primary human fibroblasts, activated AKT suppresses MRN complex expression to escalate RAS-induced DNA damage and thereby reinforce oncogene-induced senescence. Taken together, our data demonstrate that deregulation of the PI3K-AKT/ mTORC1/ p70S6K pathways, an event frequently observed in cancer, exert profound effects on genome stability via MRE11 with potential implications for tumour initiation and therapy.
Collapse
Affiliation(s)
- D Piscitello
- Beatson Institute for Cancer Research, Garscube Estate, Glasgow, UK
| | - D Varshney
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - S Lilla
- Beatson Institute for Cancer Research, Garscube Estate, Glasgow, UK
| | - M G Vizioli
- Epigenetics of Cancer and Ageing, University of Glasgow, Glasgow, UK
| | - C Reid
- Epigenetics of Cancer and Ageing, University of Glasgow, Glasgow, UK
| | - V Gorbunova
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - A Seluanov
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - D A Gillespie
- Instituto de Tecnologías Biomédicas, Centro de Investigaciones Biomédicas de Canarias, Facultad de Medicina, Universidad de La Laguna, La Laguna, Tenerife, Spain
| | - P D Adams
- Epigenetics of Cancer and Ageing, University of Glasgow, Glasgow, UK
| |
Collapse
|
16
|
Yuan R, Vos HR, van Es RM, Chen J, Burgering BM, Westendorp B, de Bruin A. Chk1 and 14-3-3 proteins inhibit atypical E2Fs to prevent a permanent cell cycle arrest. EMBO J 2018; 37:embj.201797877. [PMID: 29363506 PMCID: PMC5830916 DOI: 10.15252/embj.201797877] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 12/29/2017] [Accepted: 01/04/2018] [Indexed: 12/22/2022] Open
Abstract
The atypical E2Fs, E2F7 and E2F8, act as potent transcriptional repressors of DNA replication genes providing them with the ability to induce a permanent S-phase arrest and suppress tumorigenesis. Surprisingly in human cancer, transcript levels of atypical E2Fs are frequently elevated in proliferating cancer cells, suggesting that the tumor suppressor functions of atypical E2Fs might be inhibited through unknown post-translational mechanisms. Here, we show that atypical E2Fs can be directly phosphorylated by checkpoint kinase 1 (Chk1) to prevent a permanent cell cycle arrest. We found that 14-3-3 protein isoforms interact with both E2Fs in a Chk1-dependent manner. Strikingly, Chk1 phosphorylation and 14-3-3-binding did not relocate or degrade atypical E2Fs, but instead, 14-3-3 is recruited to E2F7/8 target gene promoters to possibly interfere with transcription. We observed that high levels of 14-3-3 strongly correlate with upregulated transcription of atypical E2F target genes in human cancer. Thus, we reveal that Chk1 and 14-3-3 proteins cooperate to inactivate the transcriptional repressor functions of atypical E2Fs. This mechanism might be of particular importance to cancer cells, since they are exposed frequently to DNA-damaging therapeutic reagents.
Collapse
Affiliation(s)
- Ruixue Yuan
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Harmjan R Vos
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Robert M van Es
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Jing Chen
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Boudewijn Mt Burgering
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Bart Westendorp
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Alain de Bruin
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands .,Division Molecular Genetics, Department Pediatrics, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
17
|
Randomized phase II trial of cytosine arabinoside with and without the CHK1 inhibitor MK-8776 in relapsed and refractory acute myeloid leukemia. Leuk Res 2017; 61:108-116. [PMID: 28957699 DOI: 10.1016/j.leukres.2017.09.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/08/2017] [Accepted: 09/10/2017] [Indexed: 11/23/2022]
Abstract
PURPOSE Cytosine arabinoside (AraC) remains the backbone of most treatment regimens for acute myeloid leukemia (AML). Incorporation of AraC into DNA activates checkpoint kinase 1 (Chk1), leading to cell-cycle arrest and diminished AraC cytotoxicity, which can be reversed by the selective Chk1 inhibitor MK-8776. Building on a Phase I trial, we conducted a phase II trial comparing timed sequential AraC with or without MK-8776. METHODS Patients with relapsed or primary refractory AML were randomized 1:1 to receive either AraC with MK-8776 (Arm A); or AraC alone (Arm B). RESULTS 32 patients were treated: 14 assigned to Arm A and 18 to Arm B. There were 5 (36%) complete responses (CR/CRi) and 1 (7%) partial response (PR) in Arm A, and 8 (44%) CR/CRis and 1 (6%) PR in Arm B. Median survival did not differ significantly between the two groups (5.9months in Arm A vs. 4.5 months in Arm B). MK-8776 led to a robust increase in DNA damage in circulating leukemic blasts as measured by increased γ-H2AX (16.9%±6.1% prior and 36.4%±6.8% at one hour after MK-8776 infusion, p=0.016). CONCLUSION Response rates and survival were similar between the two groups in spite of evidence that MK-8776 augmented DNA damage in circulating leukemic blasts. Better than expected results in the control arm using timed sequential AraC and truncated patient enrollment may have limited the ability to detect clinical benefit from the combination.
Collapse
|
18
|
The impact of replication stress on replication dynamics and DNA damage in vertebrate cells. Nat Rev Genet 2017; 18:535-550. [DOI: 10.1038/nrg.2017.46] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
The G2 checkpoint inhibitor CBP-93872 increases the sensitivity of colorectal and pancreatic cancer cells to chemotherapy. PLoS One 2017; 12:e0178221. [PMID: 28558031 PMCID: PMC5448762 DOI: 10.1371/journal.pone.0178221] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/09/2017] [Indexed: 12/22/2022] Open
Abstract
CBP-93872 suppresses maintenance of DNA double-stranded break-induced G2 checkpoint, by inhibiting the pathway between ataxia-telangiectasia mutated (ATM) and ATM- and Rad3-related (ATR) activation. To examine the potential use of CBP-93872 for clinical applications, we analyzed the synergistic effects of platinum-containing drugs, oxaliplatin and cisplatin, pyrimidine antimetabolites, gemcitabine and 5-fluorouracil (5-FU), in combination with CBP-93872, on cell lethality in colorectal and pancreatic cancer cell lines. Treatment with CBP-93872 significantly increased cancer cell sensitivities to various chemotherapeutic agents tested through suppression of checkpoint activation. Our results thus reveal that combination treatment of CBP-93872 with known chemotherapeutic agents inhibits phosphorylation of ATR and Chk1, and induces cell death.
Collapse
|
20
|
Sun H. Deciphering alternative splicing and nonsense-mediated decay modulate expression in primary lymphoid tissues of birds infected with avian pathogenic E. coli (APEC). BMC Genet 2017; 18:21. [PMID: 28270101 PMCID: PMC5341183 DOI: 10.1186/s12863-017-0488-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 03/03/2017] [Indexed: 01/04/2023] Open
Abstract
Background Avian pathogenic E. coli (APEC) can lead to a loss in millions of dollars in poultry annually because of mortality and produce contamination. Studies have verified that many immune-related genes undergo changes in alternative splicing (AS), along with nonsense mediated decay (NMD), to regulate the immune system under different conditions. Therefore, the splicing profiles of primary lymphoid tissues with systemic APEC infection need to be comprehensively examined. Results Gene expression in RNAseq data were obtained for three different immune tissues (bone marrow, thymus, and bursa) from three phenotype birds (non-challenged, resistant, and susceptible birds) at two time points. Alternative 5′ splice sites and exon skipping/inclusion were identified as the major alternative splicing events in avian primary immune organs under systemic APEC infection. In this study, we detected hundreds of differentially-expressed-transcript-containing genes (DETs) between different phenotype birds at 5 days post-infection (dpi). DETs, PSAP and STT3A, with NMD have important functions under systemic APEC infection. DETs, CDC45, CDK1, RAG2, POLR1B, PSAP, and DNASE1L3, from the same transcription start sites (TSS) indicate that cell death, cell cycle, cellular function, and maintenance were predominant in host under systemic APEC. Conclusions With the use of RNAseq technology and bioinformatics tools, this study provides a portrait of the AS event and NMD in primary lymphoid tissues, which play critical roles in host homeostasis under systemic APEC infection. According to this study, AS plays a pivotal regulatory role in the immune response in chicken under systemic APEC infection via either NMD or alternative TSSs. This study elucidates the regulatory role of AS for the immune complex under systemic APEC infection. Electronic supplementary material The online version of this article (doi:10.1186/s12863-017-0488-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hongyan Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| |
Collapse
|
21
|
Pennisi R, Ascenzi P, di Masi A. Hsp90: A New Player in DNA Repair? Biomolecules 2015; 5:2589-618. [PMID: 26501335 PMCID: PMC4693249 DOI: 10.3390/biom5042589] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/08/2015] [Accepted: 09/10/2015] [Indexed: 12/21/2022] Open
Abstract
Heat shock protein 90 (Hsp90) is an evolutionary conserved molecular chaperone that, together with Hsp70 and co-chaperones makes up the Hsp90 chaperone machinery, stabilizing and activating more than 200 proteins, involved in protein homeostasis (i.e., proteostasis), transcriptional regulation, chromatin remodeling, and DNA repair. Cells respond to DNA damage by activating complex DNA damage response (DDR) pathways that include: (i) cell cycle arrest; (ii) transcriptional and post-translational activation of a subset of genes, including those associated with DNA repair; and (iii) triggering of programmed cell death. The efficacy of the DDR pathways is influenced by the nuclear levels of DNA repair proteins, which are regulated by balancing between protein synthesis and degradation as well as by nuclear import and export. The inability to respond properly to either DNA damage or to DNA repair leads to genetic instability, which in turn may enhance the rate of cancer development. Multiple components of the DNA double strand breaks repair machinery, including BRCA1, BRCA2, CHK1, DNA-PKcs, FANCA, and the MRE11/RAD50/NBN complex, have been described to be client proteins of Hsp90, which acts as a regulator of the diverse DDR pathways. Inhibition of Hsp90 actions leads to the altered localization and stabilization of DDR proteins after DNA damage and may represent a cell-specific and tumor-selective radiosensibilizer. Here, the role of Hsp90-dependent molecular mechanisms involved in cancer onset and in the maintenance of the genome integrity is discussed and highlighted.
Collapse
Affiliation(s)
- Rosa Pennisi
- Department of Sciences, Roma Tre University, Viale Guglielmo Marconi 446, Roma I-00146, Italy.
| | - Paolo Ascenzi
- Department of Sciences, Roma Tre University, Viale Guglielmo Marconi 446, Roma I-00146, Italy.
- Istituto Nazionale di Biostrutture e Biosistemi, Viale Medaglie d'Oro 305, Roma I-00136, Italy.
| | - Alessandra di Masi
- Department of Sciences, Roma Tre University, Viale Guglielmo Marconi 446, Roma I-00146, Italy.
- Istituto Nazionale di Biostrutture e Biosistemi, Viale Medaglie d'Oro 305, Roma I-00136, Italy.
| |
Collapse
|
22
|
Smits VAJ, Gillespie DA. DNA damage control: regulation and functions of checkpoint kinase 1. FEBS J 2015. [DOI: 10.1111/febs.13387] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Veronique A. J. Smits
- Unidad de Investigación; Hospital Universitario de Canarias; Instituto de Tecnologías Biomédicas; Tenerife Spain
| | - David A. Gillespie
- Instituto de Tecnologías Biomédicas; Centro de Investigaciones Biomédicas de Canarias; Facultad de Medicina; Campus Ciencias de la Salud; Universidad de La Laguna; Tenerife Spain
| |
Collapse
|
23
|
Zuazua-Villar P, Ganesh A, Phear G, Gagou ME, Meuth M. Extensive RPA2 hyperphosphorylation promotes apoptosis in response to DNA replication stress in CHK1 inhibited cells. Nucleic Acids Res 2015; 43:9776-87. [PMID: 26271993 PMCID: PMC4787776 DOI: 10.1093/nar/gkv835] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 08/06/2015] [Indexed: 11/14/2022] Open
Abstract
The replication protein A (RPA)-ssDNA complex formed at arrested replication forks recruits key proteins to activate the ATR-CHK1 signalling cascade. When CHK1 is inhibited during DNA replication stress, RPA2 is extensively hyperphosphorylated. Here, we investigated the role of RPA2 hyperphosphorylation in the fate of cells when CHK1 is inhibited. We show that proteins normally involved in DNA repair (RAD51) or control of RPA phosphorylation (the PP4 protein phosphatase complex) are not recruited to the genome after treatment with CHK1 and DNA synthesis inhibitors. This is not due to RPA2 hyperphosphorylation as suppression of this response does not restore loading suggesting that recruitment requires active CHK1. To determine whether RPA2 hyperphosphorylation protects stalled forks from collapse or induction of apoptosis in CHK1 inhibited cells during replication stress, cells expressing RPA2 genes mutated at key phosphorylation sites were characterized. Mutant RPA2 rescued cells from RPA2 depletion and reduced the level of apoptosis induced by treatment with CHK1 and replication inhibitors however the incidence of double strand breaks was not affected. Our data indicate that RPA2 hyperphosphorylation promotes cell death during replication stress when CHK1 function is compromised but does not appear to be essential for replication fork integrity.
Collapse
Affiliation(s)
- Pedro Zuazua-Villar
- Molecular Oncology Unit, Department of Oncology, School of Medicine and Biomedical Sciences, University of Sheffield, Sheffield S10 2RX, UK
| | - Anil Ganesh
- Molecular Oncology Unit, Department of Oncology, School of Medicine and Biomedical Sciences, University of Sheffield, Sheffield S10 2RX, UK
| | - Geraldine Phear
- Molecular Oncology Unit, Department of Oncology, School of Medicine and Biomedical Sciences, University of Sheffield, Sheffield S10 2RX, UK
| | - Mary E Gagou
- Molecular Oncology Unit, Department of Oncology, School of Medicine and Biomedical Sciences, University of Sheffield, Sheffield S10 2RX, UK
| | - Mark Meuth
- Molecular Oncology Unit, Department of Oncology, School of Medicine and Biomedical Sciences, University of Sheffield, Sheffield S10 2RX, UK
| |
Collapse
|
24
|
Opposing effects of pericentrin and microcephalin on the pericentriolar material regulate CHK1 activation in the DNA damage response. Oncogene 2015; 35:2003-10. [DOI: 10.1038/onc.2015.257] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 05/03/2015] [Accepted: 05/26/2015] [Indexed: 12/17/2022]
|
25
|
Gong EY, Smits VAJ, Fumagallo F, Piscitello D, Morrice N, Freire R, Gillespie DA. KA1-targeted regulatory domain mutations activate Chk1 in the absence of DNA damage. Sci Rep 2015; 5:10856. [PMID: 26039276 PMCID: PMC4454167 DOI: 10.1038/srep10856] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 04/30/2015] [Indexed: 12/13/2022] Open
Abstract
The Chk1 protein kinase is activated in response to DNA damage through ATR-mediated phosphorylation at multiple serine-glutamine (SQ) residues within the C-terminal regulatory domain, however the molecular mechanism is not understood. Modelling indicates a high probability that this region of Chk1 contains a kinase-associated 1 (KA1) domain, a small, compact protein fold found in multiple protein kinases including SOS2, AMPK and MARK3. We introduced mutations into Chk1 designed to disrupt specific structural elements of the predicted KA1 domain. Remarkably, six of seven Chk1 KA1 mutants exhibit constitutive biological activity (Chk1-CA) in the absence of DNA damage, profoundly arresting cells in G2 phase of the cell cycle. Cell cycle arrest induced by selected Chk1-CA mutants depends on kinase catalytic activity, which is increased several-fold compared to wild-type, however phosphorylation of the key ATR regulatory site serine 345 (S345) is not required. Thus, mutations targeting the putative Chk1 KA1 domain confer constitutive biological activity by circumventing the need for ATR-mediated positive regulatory phosphorylation.
Collapse
Affiliation(s)
- Eun-Yeung Gong
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow G61 1BD, U.K
| | - Veronique A J Smits
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Tecnologías Biomédicas, Ofra s/n, La Cuesta, La Laguna 38320, Tenerife, Spain
| | - Felipe Fumagallo
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Tecnologías Biomédicas, Ofra s/n, La Cuesta, La Laguna 38320, Tenerife, Spain
| | - Desiree Piscitello
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow G61 1BD, U.K
| | - Nick Morrice
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow G61 1BD, U.K
| | - Raimundo Freire
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Tecnologías Biomédicas, Ofra s/n, La Cuesta, La Laguna 38320, Tenerife, Spain
| | - David A Gillespie
- Instituto de Tecnologías Biomédicas, Centro de Investigaciones Biomédicas de Canarias, Facultad de Medicina, Campus Ciencias de la Salud, Universidad de La Laguna, La Laguna 38071, Tenerife, Spain
| |
Collapse
|
26
|
Abstract
Cell cycle checkpoints are surveillance mechanisms that monitor the order, integrity, and fidelity of the major events of the cell cycle. These include growth to the appropriate cell size, the replication and integrity of the chromosomes, and their accurate segregation at mitosis. Many of these mechanisms are ancient in origin and highly conserved, and hence have been heavily informed by studies in simple organisms such as the yeasts. Others have evolved in higher organisms, and control alternative cell fates with significant impact on tumor suppression. Here, we consider these different checkpoint pathways and the consequences of their dysfunction on cell fate.
Collapse
|
27
|
González Besteiro MA, Gottifredi V. The fork and the kinase: a DNA replication tale from a CHK1 perspective. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 763:168-80. [PMID: 25795119 DOI: 10.1016/j.mrrev.2014.10.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 10/07/2014] [Accepted: 10/10/2014] [Indexed: 11/30/2022]
Abstract
Replication fork progression is being continuously hampered by exogenously introduced and naturally occurring DNA lesions and other physical obstacles. Checkpoint kinase 1 (Chk1) is activated at replication forks that encounter damaged DNA. Subsequently, Chk1 inhibits the initiation of new replication factories and stimulates the firing of dormant origins (those in the vicinity of stalled forks). Chk1 also avoids fork collapse into DSBs (double strand breaks) and promotes fork elongation. At the molecular level, the current model considers stalled forks as the site of Chk1 activation and the nucleoplasm as the location where Chk1 phosphorylates target proteins. This model certainly serves to explain how Chk1 modulates origin firing, but how Chk1 controls the fate of stalled forks is less clear. Interestingly, recent reports demonstrating that Chk1 phosphorylates chromatin-bound proteins and even holds kinase-independent functions might shed light on how Chk1 contributes to the elongation of damaged DNA. Indeed, such findings have unveiled a puzzling connection between Chk1 and DNA lesion bypass, which might be central to promoting fork elongation and checkpoint attenuation. In summary, Chk1 is a multifaceted and versatile signaling factor that acts at ongoing forks and replication origins to determine the extent and quality of the cellular response to replication stress.
Collapse
Affiliation(s)
- Marina A González Besteiro
- Cell Cycle and Genomic Stability Laboratory, Fundación Instituto Leloir, CONICET, Buenos Aires, Argentina
| | - Vanesa Gottifredi
- Cell Cycle and Genomic Stability Laboratory, Fundación Instituto Leloir, CONICET, Buenos Aires, Argentina.
| |
Collapse
|
28
|
Differential response of normal and malignant urothelial cells to CHK1 and ATM inhibitors. Oncogene 2014; 34:2887-96. [PMID: 25043304 DOI: 10.1038/onc.2014.221] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 05/08/2014] [Accepted: 06/09/2014] [Indexed: 01/27/2023]
Abstract
While DNA damage response pathways are well characterized in cancer cells, much less is known about their status in normal cells. These pathways protect tumour cells from DNA damage and replication stress and consequently present potential therapeutic targets. Here we characterize the response of human telomerase reverse transcriptase (hTERT)-immortalized normal human urothelial (NHU) and bladder cancer cell lines to agents that disrupt the DNA damage response. Effects of replication and DNA damage response inhibitors on cell cycle progression, checkpoint induction and apoptosis were analysed in hTERT-NHU and bladder cancer cell lines. The primary signalling cascade responding to replication stress in malignant cells (ataxia telangiectasia-mutated (ATM) and Rad3-related-checkpoint kinase 1 (ATR-CHK1)) is not activated in hTERT-NHU cells after treatment with a replication inhibitor and these cells do not depend upon CHK1 for protection from apoptosis during replication stress. Instead, ATM signalling is rapidly activated under these conditions. Intriguingly, an ATM inhibitor suppressed S-phase checkpoint activation after exposure to replication inhibitors and stopped entry of cells into S-phase indicating G1 checkpoint activation. Consistent with this, hTERT-NHU cells treated with the ATM inhibitor showed increased levels of cyclin-dependent kinase inhibitor p19(INK4D), reduced levels of cyclin D1 and CDK4, and reduced phosphorylation of the retinoblastoma protein. In contrast, a bladder cancer cell line cotreated with ATM and replication inhibitors progressed more slowly through S phase and showed a marked increase in apoptosis. Taken together, our findings suggest that ATM and CHK1 signalling cascades have different roles in tumour and normal epithelial cells, confirming these as promising therapeutic targets.
Collapse
|
29
|
Zuazua-Villar P, Rodriguez R, Gagou ME, Eyers PA, Meuth M. DNA replication stress in CHK1-depleted tumour cells triggers premature (S-phase) mitosis through inappropriate activation of Aurora kinase B. Cell Death Dis 2014; 5:e1253. [PMID: 24853431 PMCID: PMC4047883 DOI: 10.1038/cddis.2014.231] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/11/2014] [Accepted: 04/18/2014] [Indexed: 12/16/2022]
Abstract
The disruption of DNA replication in cells triggers checkpoint responses that slow-down S-phase progression and protect replication fork integrity. These checkpoints are also determinants of cell fate and can help maintain cell viability or trigger cell death pathways. CHK1 has a pivotal role in such S-phase responses. It helps maintain fork integrity during replication stress and protects cells from several catastrophic fates including premature mitosis, premature chromosome condensation and apoptosis. Here we investigated the role of CHK1 in protecting cancer cells from premature mitosis and apoptosis. We show that premature mitosis (characterized by the induction of histone H3 phosphorylation, aberrant chromatin condensation, and persistent RPA foci in arrested S-phase cells) is induced in p53-deficient tumour cells depleted of CHK1 when DNA synthesis is disrupted. These events are accompanied by an activation of Aurora kinase B in S-phase cells that is essential for histone H3 Ser10 phosphorylation. Histone H3 phosphorylation precedes the induction of apoptosis in p53-/- tumour cell lines but does not appear to be required for this fate as an Aurora kinase inhibitor suppresses phosphorylation of both Aurora B and histone H3 but has little effect on cell death. In contrast, only a small fraction of p53+/+ tumour cells shows this premature mitotic response, although they undergo a more rapid and robust apoptotic response. Taken together, our results suggest a novel role for CHK1 in the control of Aurora B activation during DNA replication stress and support the idea that premature mitosis is a distinct cell fate triggered by the disruption of DNA replication when CHK1 function is suppressed.
Collapse
Affiliation(s)
- P Zuazua-Villar
- Molecular Oncology Unit, Department of Oncology, University of Sheffield, School of Medicine and Biomedical Sciences, Sheffield, UK
| | - R Rodriguez
- Hospital Universitario Central de Asturias and Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
| | - M E Gagou
- Molecular Oncology Unit, Department of Oncology, University of Sheffield, School of Medicine and Biomedical Sciences, Sheffield, UK
| | - P A Eyers
- Molecular Oncology Unit, Department of Oncology, University of Sheffield, School of Medicine and Biomedical Sciences, Sheffield, UK
| | - M Meuth
- Molecular Oncology Unit, Department of Oncology, University of Sheffield, School of Medicine and Biomedical Sciences, Sheffield, UK
| |
Collapse
|
30
|
Dillon MT, Good JS, Harrington KJ. Selective targeting of the G2/M cell cycle checkpoint to improve the therapeutic index of radiotherapy. Clin Oncol (R Coll Radiol) 2014; 26:257-65. [PMID: 24581946 DOI: 10.1016/j.clon.2014.01.009] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 01/22/2014] [Accepted: 01/30/2014] [Indexed: 12/31/2022]
Abstract
Despite tremendous advances in radiotherapy techniques, allowing dose escalation to tumour tissues and sparing of organs at risk, cure rates from radiotherapy or chemoradiotherapy remain suboptimal for most cancers. In tandem with our growing understanding of tumour biology, we are beginning to appreciate that targeting the molecular response to radiation-induced DNA damage holds great promise for selective tumour radiosensitisation. In particular, approaches that inhibit cell cycle checkpoint controls offer a means of exploiting molecular differences between tumour and normal cells, thereby inducing so-called cancer-specific synthetic lethality. In this overview, we discuss cellular responses to radiation-induced damage and discuss the potential of using G2/M cell cycle checkpoint inhibitors as a means of enhancing tumour control rates.
Collapse
Affiliation(s)
- M T Dillon
- The Institute of Cancer Research, Targeted Therapy Team, Chester Beatty Laboratories, London, UK; The Royal Marsden Hospital, London, UK
| | - J S Good
- The Royal Marsden Hospital, London, UK
| | - K J Harrington
- The Institute of Cancer Research, Targeted Therapy Team, Chester Beatty Laboratories, London, UK; The Royal Marsden Hospital, London, UK.
| |
Collapse
|
31
|
Yang X, Xu W, Hu Z, Zhang Y, Xu N. Chk1 is required for the metaphase-anaphase transition via regulating the expression and localization of Cdc20 and Mad2. Life Sci 2014; 106:12-8. [PMID: 24747134 DOI: 10.1016/j.lfs.2014.04.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 03/31/2014] [Accepted: 04/07/2014] [Indexed: 11/16/2022]
Abstract
AIMS The checkpoint kinase 1 (Chk1) functions not only in genotoxic stresses but also in normal cell cycle progression, particularly in the initiation, progression and fidelity of unperturbed mitosis. In this study, we investigated the role of Chk1 in regulating the metaphase-anaphase transition in mammalian cells. MAIN METHODS The mitotic progression was monitored by flow cytometry analysis. The levels of cyclin B1, Cdc20 and Mad2 were measured by Western blotting. Metaphase chromosome alignment and the subcellular localization of Cdc20 and Mad2 were analyzed by immunofluorescence and confocal microscopy. KEY FINDINGS Cyclin B1 degradation and the metaphase-anaphase transition were severely blocked by Chk1 siRNA. Depletion of Chk1 induced chromosome alignment defect in metaphase cells. The kinetochore localization of Cdc20, Mad2 was disrupted in Chk1 depleted cells. Chk1 abrogation also dramatically reduced the protein expression levels of Cdc20 and Mad2. SIGNIFICANCE These results strongly suggest that Chk1 is required for the metaphase-anaphase transition via regulating the subcellular localization and the expression of Cdc20 and Mad2.
Collapse
Affiliation(s)
- Xiaoyun Yang
- School of Life Sciences, Tsinghua University, Beijing 100084, PR China; Key Lab in Healthy Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong Province, PR China
| | - Wei Xu
- School of Life Sciences, Tsinghua University, Beijing 100084, PR China; Key Lab in Healthy Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong Province, PR China
| | - Zuowei Hu
- Department of Clinical Oncology, Wuhan No. 1 Hospital, Wuhan, Hubei Province, PR China
| | - Yaou Zhang
- Key Lab in Healthy Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong Province, PR China
| | - Naihan Xu
- Key Lab in Healthy Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong Province, PR China.
| |
Collapse
|
32
|
Hosono Y, Abe T, Higuchi M, Kajii K, Sakuraba S, Tada S, Enomoto T, Seki M. Tipin functions in the protection against topoisomerase I inhibitor. J Biol Chem 2014; 289:11374-11384. [PMID: 24573676 DOI: 10.1074/jbc.m113.531707] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The replication fork temporarily stalls when encountering an obstacle on the DNA, and replication resumes after the barrier is removed. Simultaneously, activation of the replication checkpoint delays the progression of S phase and inhibits late origin firing. Camptothecin (CPT), a topoisomerase I (Top1) inhibitor, acts as a DNA replication barrier by inducing the covalent retention of Top1 on DNA. The Timeless-Tipin complex, a component of the replication fork machinery, plays a role in replication checkpoint activation and stabilization of the replication fork. However, the role of the Timeless-Tipin complex in overcoming the CPT-induced replication block remains elusive. Here, we generated viable TIPIN gene knock-out (KO) DT40 cells showing delayed S phase progression and increased cell death. TIPIN KO cells were hypersensitive to CPT. However, homologous recombination and replication checkpoint were activated normally, whereas DNA synthesis activity was markedly decreased in CPT-treated TIPIN KO cells. Proteasome-dependent degradation of chromatin-bound Top1 was induced in TIPIN KO cells upon CPT treatment, and pretreatment with aphidicolin, a DNA polymerase inhibitor, suppressed both CPT sensitivity and Top1 degradation. Taken together, our data indicate that replication forks formed without Tipin may collide at a high rate with Top1 retained on DNA by CPT treatment, leading to CPT hypersensitivity and Top1 degradation in TIPIN KO cells.
Collapse
Affiliation(s)
- Yoshifumi Hosono
- Molecular Cell Biology Laboratory, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba 6-3, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Takuya Abe
- Instituto FIRC di Oncologia Molecolare (IFOM), Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute for Molecular Oncology Foundation, IFOM-Istituto Europeo di Oncologia Campus, Via Adamello 16, 20139 Milan, Italy
| | - Masato Higuchi
- Molecular Cell Biology Laboratory, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba 6-3, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Kosa Kajii
- Department of Biochemistry, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan
| | - Shuichi Sakuraba
- Molecular Cell Biology Laboratory, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba 6-3, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Shusuke Tada
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, 4-21-2 Nakano, Nakano-ku, Tokyo 164-8530, Japan, and
| | - Takemi Enomoto
- Molecular Cell Biology Laboratory, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan
| | - Masayuki Seki
- Department of Biochemistry, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan,.
| |
Collapse
|
33
|
Sakai H, Fujigaki H, Mazur SJ, Appella E. Wild-type p53-induced phosphatase 1 (Wip1) forestalls cellular premature senescence at physiological oxygen levels by regulating DNA damage response signaling during DNA replication. Cell Cycle 2014; 13:1015-29. [PMID: 24552809 DOI: 10.4161/cc.27920] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Wip1 (protein phosphatase Mg(2+)/Mn(2+)-dependent 1D, Ppm1d) is a nuclear serine/threonine protein phosphatase that is induced by p53 following the activation of DNA damage response (DDR) signaling. Ppm1d(-/-) mouse embryonic fibroblasts (MEFs) exhibit premature senescence under conventional culture conditions; however, little is known regarding the role of Wip1 in regulating cellular senescence. In this study, we found that even at a representative physiological concentration of 3% O2, Ppm1d(-/-) MEFs underwent premature cellular senescence that depended on the functional activation of p53. Interestingly, Ppm1d(-/-) MEFs showed increased H2AX phosphorylation levels without increased levels of reactive oxygen species (ROS) or DNA base damage compared with wild-type (Wt) MEFs, suggesting a decreased threshold for DDR activation or sustained DDR activation during recovery. Notably, the increased H2AX phosphorylation levels observed in Ppm1d(-/-) MEFs were primarily associated with S-phase cells and predominantly dependent on the activation of ATM. Moreover, these same phenotypes were observed when Wt and Ppm1d(-/-) MEFs were either transiently or chronically exposed to low levels of agents that induce replication-mediated double-stranded breaks. These findings suggest that Wip1 prevents the induction of cellular senescence at physiological oxygen levels by attenuating DDR signaling in response to endogenous double-stranded breaks that form during DNA replication.
Collapse
Affiliation(s)
- Hiroyasu Sakai
- Laboratory of Cell Biology; National Cancer Institute; National Institutes of Health; Bethesda, MD USA
| | - Hidetsugu Fujigaki
- Laboratory of Cell Biology; National Cancer Institute; National Institutes of Health; Bethesda, MD USA
| | - Sharlyn J Mazur
- Laboratory of Cell Biology; National Cancer Institute; National Institutes of Health; Bethesda, MD USA
| | - Ettore Appella
- Laboratory of Cell Biology; National Cancer Institute; National Institutes of Health; Bethesda, MD USA
| |
Collapse
|
34
|
Frankenberger S, Davari K, Fischer-Burkart S, Böttcher K, Tomi NS, Zimber-Strobl U, Jungnickel B. Checkpoint kinase 1 negatively regulates somatic hypermutation. Nucleic Acids Res 2014; 42:3666-74. [PMID: 24423870 PMCID: PMC3973322 DOI: 10.1093/nar/gkt1378] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Immunoglobulin (Ig) diversification by somatic hypermutation in germinal center B cells is instrumental for maturation of the humoral immune response, but also bears the risk of excessive or aberrant genetic changes. Thus, introduction of DNA damage by activation-induced cytidine deaminase as well as DNA repair by multiple pathways need to be tightly regulated during the germinal center response to prevent lymphomagenesis. In the present study, we show that DNA damage checkpoint signaling via checkpoint kinase 1 (Chk1) negatively regulates somatic hypermutation. Chk1 inhibition in human B cell lymphoma lines as well as inactivation of Chk1 alleles by gene targeting in DT40 B cells leads to increased somatic hypermutation. This is apparently due to changes in DNA repair pathways regulated by Chk1, such as a decreased homologous recombination efficiency that also leads to decreased Ig gene conversion in DT40. Our data show that Chk1 signaling plays a crucial role in regulation of Ig diversification and sheds unexpected light on potential origins of aberrant somatic hypermutation in B cell lymphomagenesis.
Collapse
Affiliation(s)
- Samantha Frankenberger
- Institute of Clinical and Molecular Biology, Helmholtz Center Munich, Marchioninistrasse 25, 81377 Munich, Germany, Department of Cell Biology, Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine, Friedrich-Schiller University Jena, Hans-Knoell-Strasse 2, 07745 Jena, Germany and Department of Gene Vectors, Helmholtz Center Munich, Marchioninistrasse 25, 81377 Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
35
|
Gómez-Gómez Y, Organista-Nava J, Gariglio P. Deregulation of the miRNAs expression in cervical cancer: human papillomavirus implications. BIOMED RESEARCH INTERNATIONAL 2013; 2013:407052. [PMID: 24490161 PMCID: PMC3899709 DOI: 10.1155/2013/407052] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 09/17/2013] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are a class of small non coding RNAs of 18-25 nucleotides in length. The temporal or short-lived expression of the miRNAs modulates gene expression post transcriptionally. Studies have revealed that miRNAs deregulation correlates and is involved with the initiation and progression of human tumors. Cervical cancer (CC) displays notably increased or decreased expression of a large number of cellular oncogenic or tumor suppressive miRNAs, respectively. However, understanding the potential role of miRNAs in CC is still limited. In CC, the high-risk human papillomaviruses (HR-HPVs) infection can affect the miRNAs expression through oncoprotein E6 and E7 that contribute to viral pathogenesis, although other viral proteins might also be involved. This deregulation in the miRNAs expression has an important role in the hallmarks of CC. Interestingly, the miRNA expression profile in CC can discriminate between normal and tumor tissue and the extraordinary stability of miRNAs makes it suitable to serve as diagnostic and prognostic biomarkers of cancer. In this review, we will summarize the role of the HR-HPVs in miRNA expression, the role of miRNAs in the hallmarks of CC, and the use of miRNAs as potential prognostic biomarkers in CC.
Collapse
Affiliation(s)
- Yazmín Gómez-Gómez
- Instituto de Fisiología Celular (IFC), Universidad Nacional Autónoma de México (UNAM), 04510 México, DF, Mexico
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios, Avanzados, 07360 México, DF, Mexico
| | - Jorge Organista-Nava
- Instituto de Fisiología Celular (IFC), Universidad Nacional Autónoma de México (UNAM), 04510 México, DF, Mexico
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios, Avanzados, 07360 México, DF, Mexico
| | - Patricio Gariglio
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios, Avanzados, 07360 México, DF, Mexico
| |
Collapse
|
36
|
McNeely S, Beckmann R, Bence Lin AK. CHEK again: revisiting the development of CHK1 inhibitors for cancer therapy. Pharmacol Ther 2013; 142:1-10. [PMID: 24140082 DOI: 10.1016/j.pharmthera.2013.10.005] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 10/05/2013] [Indexed: 02/06/2023]
Abstract
CHEK1 encodes the serine/threonine kinase CHK1, a central component of the DNA damage response. CHK1 regulates cell cycle checkpoints following genotoxic stress to prevent the entry of cells with damaged DNA into mitosis and coordinates various aspects of DNA repair. Accordingly, CHK1 has become a target of considerable interest in oncology. CHK1 inhibitors potentiate the efficacy of DNA-damaging chemotherapeutics by abrogating CHK1-mediated cell cycle arrest and preventing repair of damaged DNA. In addition, CHK1 inhibitors interfere with the biological role of CHK1 as a principal regulator of the cell cycle that controls the initiation of DNA replication, stabilizes replication forks, and coordinates mitosis. Since these functions of CHK1 facilitate progression through an unperturbed cell cycle, CHK1 inhibitors are being developed not only as chemopotentiators, but also as single-agent therapies. This review is intended to provide information on the current progress of CHK1 inhibitors in pre-clinical and clinical development and will focus on mechanisms of single-agent activity and potential strategies for patient tailoring and combinations with non-genotoxic agents.
Collapse
Affiliation(s)
- S McNeely
- Eli Lilly and Company, Indianapolis, IN, United States.
| | - R Beckmann
- Eli Lilly and Company, Indianapolis, IN, United States
| | - A K Bence Lin
- Eli Lilly and Company, Indianapolis, IN, United States
| |
Collapse
|
37
|
Damage-induced DNA replication stalling relies on MAPK-activated protein kinase 2 activity. Proc Natl Acad Sci U S A 2013; 110:16856-61. [PMID: 24082115 DOI: 10.1073/pnas.1304355110] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA damage can obstruct replication forks, resulting in replicative stress. By siRNA screening, we identified kinases involved in the accumulation of phosphohistone 2AX (γH2AX) upon UV irradiation-induced replication stress. Surprisingly, the strongest reduction of phosphohistone 2AX followed knockdown of the MAP kinase-activated protein kinase 2 (MK2), a kinase currently implicated in p38 stress signaling and G2 arrest. Depletion or inhibition of MK2 also protected cells from DNA damage-induced cell death, and mice deficient for MK2 displayed decreased apoptosis in the skin upon UV irradiation. Moreover, MK2 activity was required for damage response, accumulation of ssDNA, and decreased survival when cells were treated with the nucleoside analogue gemcitabine or when the checkpoint kinase Chk1 was antagonized. By using DNA fiber assays, we found that MK2 inhibition or knockdown rescued DNA replication impaired by gemcitabine or by Chk1 inhibition. This rescue strictly depended on translesion DNA polymerases. In conclusion, instead of being an unavoidable consequence of DNA damage, alterations of replication speed and origin firing depend on MK2-mediated signaling.
Collapse
|
38
|
HMGA2 inhibits apoptosis through interaction with ATR-CHK1 signaling complex in human cancer cells. Neoplasia 2013; 15:263-80. [PMID: 23479505 DOI: 10.1593/neo.121988] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 01/15/2013] [Accepted: 01/18/2013] [Indexed: 02/08/2023] Open
Abstract
The non-histone chromatin binding protein high mobility group AT-hook 2 (HMGA2) is expressed in stem cells and many cancer cells, including tumor initiating cells, but not translated in normal human somatic cells. The presence of HMGA2 is correlated with advanced neoplastic disease and poor prognosis for patients. We had previously demonstrated a role of HMGA2 in DNA repair pathways. In the present study, we employed different human tumor cell models with endogenous and exogenous expression of HMGA2 and show that upon DNA damage, the presence of HMGA2 caused an increased and sustained phosphorylation of the ataxia telangiectasia and Rad3-related kinase (ATR) and its downstream target checkpoint kinase 1 (CHK1). The presence of activated pCHK1(Ser296) coincided with prolonged G2/M block and increased tumor cell survival, which was enhanced further in the presence of HMGA2. Our study, thus, identifies a novel relationship between the ATR-CHK1 DNA damage response pathway and HMGA2, which may support the DNA repair function of HMGA2 in cancer cells. Furthermore, our data provide a rationale for the use of inhibitors to ATR or CHK1 and HMGA2 in the treatment of HMGA2-positive human cancer cells.
Collapse
|
39
|
Zhang Y, Hunter T. Roles of Chk1 in cell biology and cancer therapy. Int J Cancer 2013; 134:1013-23. [PMID: 23613359 DOI: 10.1002/ijc.28226] [Citation(s) in RCA: 327] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 04/11/2013] [Indexed: 01/05/2023]
Abstract
The evolutionally conserved DNA damage response (DDR) and cell cycle checkpoints preserve genome integrity. Central to these genome surveillance pathways is a protein kinase, Chk1. DNA damage induces activation of Chk1, which then transduces the checkpoint signal and facilitates cell cycle arrest and DNA damage repair. Significant progress has been made recently toward our understanding of Chk1 regulation and its implications in cancer etiology and therapy. Specifically, a model that involves both spatiotemporal and conformational changes of proteins has been proposed for Chk1 activation. Further, emerging evidence suggests that Chk1 does not appear to be a tumor suppressor; instead, it promotes tumor growth and may contribute to anticancer therapy resistance. Recent data from our laboratory suggest that activating, but not inhibiting, Chk1 in the absence of chemotherapy might represent an innovative approach to suppress tumor growth. These findings suggest unique regulation of Chk1 in cell biology and cancer etiology, pointing to novel strategies for targeting Chk1 in cancer therapy.
Collapse
Affiliation(s)
- Youwei Zhang
- Department of Pharmacology, Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH
| | | |
Collapse
|
40
|
Patil M, Pabla N, Dong Z. Checkpoint kinase 1 in DNA damage response and cell cycle regulation. Cell Mol Life Sci 2013; 70:4009-21. [PMID: 23508805 DOI: 10.1007/s00018-013-1307-3] [Citation(s) in RCA: 218] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 01/28/2013] [Accepted: 02/18/2013] [Indexed: 12/19/2022]
Abstract
Originally identified as a mediator of DNA damage response (DDR), checkpoint kinase 1 (Chk1) has a broader role in checkpoint activation in DDR and normal cell cycle regulation. Chk1 activation involves phosphorylation at conserved sites. However, recent work has identified a splice variant of Chk1, which may regulate Chk1 in both DDR and normal cell cycle via molecular interaction. Upon activation, Chk1 phosphorylates a variety of substrate proteins, resulting in the activation of DNA damage checkpoints, cell cycle arrest, DNA repair, and/or cell death. Chk1 and its related signaling may be an effective therapeutic target in diseases such as cancer.
Collapse
Affiliation(s)
- Mallikarjun Patil
- Department of Cellular Biology and Anatomy, Georgia Regents University and Charlie Norwood VA Medical Center, 1459 Laney Walker Blvd., Augusta, GA, 30912, USA
| | | | | |
Collapse
|
41
|
Yekezare M, Gómez-González B, Diffley JFX. Controlling DNA replication origins in response to DNA damage - inhibit globally, activate locally. J Cell Sci 2013; 126:1297-306. [PMID: 23645160 DOI: 10.1242/jcs.096701] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
DNA replication in eukaryotic cells initiates from multiple replication origins that are distributed throughout the genome. Coordinating the usage of these origins is crucial to ensure complete and timely replication of the entire genome precisely once in each cell cycle. Replication origins fire according to a cell-type-specific temporal programme, which is established in the G1 phase of each cell cycle. In response to conditions causing the slowing or stalling of DNA replication forks, the programme of origin firing is altered in two contrasting ways, depending on chromosomal context. First, inactive or 'dormant' replication origins in the vicinity of the stalled replication fork become activated and, second, the S phase checkpoint induces a global shutdown of further origin firing throughout the genome. Here, we review our current understanding on the role of dormant origins and the S phase checkpoint in the rescue of stalled forks and the completion of DNA replication in the presence of replicative stress.
Collapse
Affiliation(s)
- Mona Yekezare
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms EN6 3LD, UK
| | | | | |
Collapse
|
42
|
Petsalaki E, Zachos G. Chk1 and Mps1 jointly regulate correction of merotelic kinetochore attachments. J Cell Sci 2013; 126:1235-46. [PMID: 23321637 DOI: 10.1242/jcs.119677] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
If uncorrected, merotelic kinetochore attachments can induce mis-segregated chromosomes in anaphase. We show that checkpoint kinase 1 (Chk1) protects vertebrate cells against merotelic attachments and lagging chromosomes and is required for correction of merotelic attachments during a prolonged metaphase. Decreased Chk1 activity leads to hyper-stable kinetochore microtubules, unstable binding of MCAK, Kif2b and Mps1 to centromeres or kinetochores and reduced phosphorylation of Hec1 by Aurora-B. Phosphorylation of Aurora-B at serine 331 (Ser331) by Chk1 is high in prometaphase and decreases significantly in metaphase cells. We propose that Ser331 phosphorylation is required for optimal localization of MCAK, Kif2b and Mps1 to centromeres or kinetochores and for Hec1 phosphorylation. Furthermore, inhibition of Mps1 activity diminishes initial recruitment of MCAK and Kif2b to centromeres or kinetochores, impairs Hec1 phosphorylation and exacerbates merotelic attachments in Chk1-deficient cells. We propose that Chk1 and Mps1 jointly regulate Aurora-B, MCAK, Kif2b and Hec1 to correct merotelic attachments. These results suggest a role for Chk1 and Mps1 in error correction.
Collapse
Affiliation(s)
- Eleni Petsalaki
- Department of Biology, University of Crete, Vassilika Vouton, Heraklion 70013, Greece
| | | |
Collapse
|
43
|
Wang Y, Dantas TJ, Lalor P, Dockery P, Morrison CG. Promoter hijack reveals pericentrin functions in mitosis and the DNA damage response. Cell Cycle 2013; 12:635-46. [PMID: 23324397 DOI: 10.4161/cc.23516] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Centrosomes, the principal microtubule-organizing centers of animal somatic cells, consist of two centrioles embedded in the pericentriolar material (PCM). Pericentrin is a large PCM protein that is required for normal PCM assembly. Mutations in PCNT cause primordial dwarfism. Pericentrin has also been implicated in the control of DNA damage responses. To test how pericentrin is involved in cell cycle control after genotoxic stress, we disrupted the Pcnt locus in chicken DT40 cells. Pericentrin-deficient cells proceeded through mitosis more slowly, with a high level of monopolar spindles, and were more sensitive to spindle poisons than controls. Centriole structures appeared normal by light and electron microscopy, but the PCM did not recruit γ-tubulin efficiently. Cell cycle delays after ionizing radiation (IR) treatment were normal in pericentrin-deficient cells. However, pericentrin disruption in Mcph1-/- cells abrogated centrosome hyperamplification after IR. We conclude that pericentrin controls genomic stability by both ensuring appropriate mitotic spindle activity and centrosome regulation.
Collapse
Affiliation(s)
- Yifan Wang
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | | | | | | | | |
Collapse
|
44
|
Karp JE, Thomas BM, Greer JM, Sorge C, Gore SD, Pratz KW, Smith BD, Flatten KS, Peterson K, Schneider P, Mackey K, Freshwater T, Levis MJ, McDevitt MA, Carraway HE, Gladstone DE, Showel MM, Loechner S, Parry DA, Horowitz JA, Isaacs R, Kaufmann SH. Phase I and pharmacologic trial of cytosine arabinoside with the selective checkpoint 1 inhibitor Sch 900776 in refractory acute leukemias. Clin Cancer Res 2012; 18:6723-31. [PMID: 23092873 DOI: 10.1158/1078-0432.ccr-12-2442] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
PURPOSE Incorporation of cytarabine into DNA activates checkpoint kinase 1 (Chk1), which stabilizes stalled replication forks, induces S-phase slowing, and diminishes cytarabine cytotoxicity. The selective Chk1 inhibitor SCH 900776 abrogates cytarabine-induced S-phase arrest and enhances cytarabine cytotoxicity in acute leukemia cell lines and leukemic blasts in vitro. To extend these findings to the clinical setting, we have conducted a phase I study of cytarabine and SCH 900776. EXPERIMENTAL DESIGN Twenty-four adults with relapsed and refractory acute leukemias received timed sequential, continuous infusion cytarabine 2 g/m(2) over 72 hours (667 mg/m(2)/24 hours) beginning on day 1 and again on day 10. SCH 900776 was administered as a 15- to 30-minute infusion on days 2, 3, 11, and 12. The starting dose of SCH 900776 was 10 mg/m(2)/dose. RESULTS Dose-limiting toxicities consisting of corrected QT interval prolongation and grade 3 palmar-plantar erythrodysesthesia occurred at 140 mg flat dosing (dose level 5, equivalent to 80 mg/m(2)). Complete remissions occurred in 8 of 24 (33%) patients, with 7 of 8 at 40 mg/m(2) or higher. SCH 900776 did not accumulate at any dose level. Marrow blasts obtained pretreatment and during therapy showed increased phosphorylation of H2Ax after SCH 900776 beginning at 40 mg/m(2), consistent with unrepaired DNA damage. CONCLUSIONS These data support a randomized phase II trial of cytarabine +/- SCH 900776 at a recommended flat dose of 100 mg (equivalent to 56 mg/m(2)) for adults with poor-risk leukemias. The trial (SP P05247) was registered at www.clinicaltrials.gov as NCT00907517.
Collapse
Affiliation(s)
- Judith E Karp
- Division of Hematologic Malignancies, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Hospital, Baltimore, Maryland 21287, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Okita N, Minato S, Ohmi E, Tanuma SI, Higami Y. DNA damage-induced CHK1 autophosphorylation at Ser296 is regulated by an intramolecular mechanism. FEBS Lett 2012; 586:3974-9. [PMID: 23068608 DOI: 10.1016/j.febslet.2012.09.048] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 09/03/2012] [Accepted: 09/20/2012] [Indexed: 12/11/2022]
Abstract
CHK1 regulates the DNA damage-induced checkpoint involving an ATR- or ATM- dependent pathway. In this paper, we focused on the autophosphorylation of Ser296, one of the DNA damage-induced phosphorylation sites. First, we demonstrated that the Ser296 autophosphorylation of CHK1 is mainly regulated by an intramolecular mechanism in response to DNA damage. In examining the relationship between Ser296 and Ser317/Ser345, the other ATR dependent phosphorylation sites, we found that the Ser296 cis-autophosphorylation was dependent on both Ser317 and Ser345 phosphorylation. Our findings suggest that CHK1 mediates cell cycle checkpoint signals by both cis-autophosphorylation and trans-phosphorylation of downstream factors.
Collapse
Affiliation(s)
- Naoyuki Okita
- Department of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan.
| | | | | | | | | |
Collapse
|
46
|
McIntosh D, Blow JJ. Dormant origins, the licensing checkpoint, and the response to replicative stresses. Cold Spring Harb Perspect Biol 2012; 4:cshperspect.a012955. [PMID: 22904560 DOI: 10.1101/cshperspect.a012955] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Only ∼10% of replication origins that are licensed by loading minichromosome maintenance 2-7 (MCM2-7) complexes are normally used, with the majority remaining dormant. If replication fork progression is inhibited, nearby dormant origins initiate to ensure that all of the chromosomal DNA is replicated. At the same time, DNA damage-response kinases are activated, which preferentially suppress the assembly of new replication factories. This diverts initiation events away from completely new areas of the genome toward regions experiencing replicative stress. Mice hypomorphic for MCM2-7, which activate fewer dormant origins in response to replication inhibition, are cancer-prone and are genetically unstable. The licensing checkpoint delays entry into S phase if an insufficient number of origins have been licensed. In contrast, humans with Meier-Gorlin syndrome have mutations in pre-RC proteins and show defects in cell proliferation that may be a consequence of chronic activation of the licensing checkpoint.
Collapse
Affiliation(s)
- Debbie McIntosh
- Centre for Gene Regulation & Expression, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | | |
Collapse
|
47
|
Llopis A, Salvador N, Ercilla A, Guaita-Esteruelas S, Barrantes IDB, Gupta J, Gaestel M, Davis RJ, Nebreda AR, Agell N. The stress-activated protein kinases p38α/β and JNK1/2 cooperate with Chk1 to inhibit mitotic entry upon DNA replication arrest. Cell Cycle 2012; 11:3627-37. [PMID: 22935704 DOI: 10.4161/cc.21917] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Accurate DNA replication is crucial for the maintenance of genome integrity. To this aim, cells have evolved complex surveillance mechanisms to prevent mitotic entry in the presence of partially replicated DNA. ATR and Chk1 are key elements in the signal transduction pathways of DNA replication checkpoint; however, other kinases also make significant contributions. We show here that the stress kinases p38 and JNK are activated when DNA replication is blocked, and that their activity allows S/M, but not G 2/M, checkpoint maintenance when Chk1 is inhibited. Activation of both kinases by DNA replication inhibition is not mediated by the caffeine-sensitive kinases ATR or ATM. Phosphorylation of MKK3/6 and MKK4, p38 and JNK upstream kinases was also observed upon DNA replication inhibition. Using a genetic approach, we dissected the p38 pathway and showed that both p38α and p38β isoforms collaborate to inhibit mitotic entry. We further defined MKK3/6 and MK2/3 as the key upstream and downstream elements in the p38 signaling cascade after replication arrest. Accordingly, we found that the stress signaling pathways collaborate with Chk1 to keep cyclin B1/Cdk1 complexes inactive when DNA replication is inhibited, thereby preventing cell cycle progression when DNA replication is stalled. Our results show a complex response to replication stress, where multiple pathways are activated and fulfill overlapping roles to prevent mitotic entry with unreplicated DNA.
Collapse
Affiliation(s)
- Alba Llopis
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Elvers I, Hagenkort A, Johansson F, Djureinovic T, Lagerqvist A, Schultz N, Stoimenov I, Erixon K, Helleday T. CHK1 activity is required for continuous replication fork elongation but not stabilization of post-replicative gaps after UV irradiation. Nucleic Acids Res 2012; 40:8440-8. [PMID: 22753029 PMCID: PMC3458576 DOI: 10.1093/nar/gks646] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Ultraviolet (UV)-induced DNA damage causes an efficient block of elongating replication forks. The checkpoint kinase, CHK1 has been shown to stabilize replication forks following hydroxyurea treatment. Therefore, we wanted to test if the increased UV sensitivity caused by the unspecific kinase inhibitor caffeine—inhibiting ATM and ATR amongst other kinases—is explained by inability to activate the CHK1 kinase to stabilize replicative structures. For this, we used cells deficient in polymerase η (Polη), a translesion synthesis polymerase capable of properly bypassing the UV-induced cis–syn TT pyrimidine dimer, which blocks replication. These cells accumulate gaps behind progressing replication forks after UV exposure. We demonstrate that both caffeine and CHK1 inhibition, equally retards continuous replication fork elongation after UV treatment. Interestingly, we found more pronounced UV-sensitization by caffeine than with the CHK1 inhibitor in clonogenic survival experiments. Furthermore, we demonstrate an increased collapse of replicative structures after caffeine treatment, but not after CHK1 inhibition, in UV-irradiated cells. This demonstrates that CHK1 activity is not required for stabilization of gaps induced during replication of UV-damaged DNA. These data suggest that elongation and stabilization of replicative structures at UV-induced DNA damage are distinct mechanisms, and that CHK1 is only involved in replication elongation.
Collapse
Affiliation(s)
- Ingegerd Elvers
- Department of Genetics, Microbiology, and Toxicology, Stockholm University, S-10691, Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Rad9 plays a crucial role in maintaining genomic stability by regulating cell cycle checkpoints, DNA repair, telomere stability, and apoptosis. Rad9 controls these processes mainly as part of the heterotrimeric 9-1-1 (Rad9-Hus1-Rad1) complex. However, in recent years it has been demonstrated that Rad9 can also act independently of the 9-1-1 complex as a transcriptional factor, participate in immunoglobulin class switch recombination, and show 3'-5' exonuclease activity. Aberrant Rad9 expression has been associated with prostate, breast, lung, skin, thyroid, and gastric cancers. High expression of Rad9 is causally related to, at least, human prostate cancer growth. On the other hand, deletion of Mrad9, the mouse homolog, is responsible for increased skin cancer incidence. These results reveal that Rad9 can act as an oncogene or tumor suppressor. Which of the many functions of Rad9 are causally related to initiation and progression of tumorigenesis and the mechanistic details by which Rad9 induces or suppresses tumorigenesis are presently not known, but are crucial for the development of targeted therapeutic interventions.
Collapse
Affiliation(s)
- Constantinos G Broustas
- Center for Radiological Research, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | |
Collapse
|
50
|
Abstract
Prevention and repair of DNA damage is essential for maintenance of genomic stability and cell survival. DNA replication during S-phase can be a source of DNA damage if endogenous or exogenous stresses impair the progression of replication forks. It has become increasingly clear that DNA-damage-response pathways do not only respond to the presence of damaged DNA, but also modulate DNA replication dynamics to prevent DNA damage formation during S-phase. Such observations may help explain the developmental defects or cancer predisposition caused by mutations in DNA-damage-response genes. The present review focuses on molecular mechanisms by which DNA-damage-response pathways control and promote replication dynamics in vertebrate cells. In particular, DNA damage pathways contribute to proper replication by regulating replication initiation, stabilizing transiently stalled forks, promoting replication restart and facilitating fork movement on difficult-to-replicate templates. If replication fork progression fails to be rescued, this may lead to DNA damage and genomic instability via nuclease processing of aberrant fork structures or incomplete sister chromatid separation during mitosis.
Collapse
|