1
|
Camm BJ, Fournier-Level A. Controlling the frequency dynamics of homing gene drives for intermediate outcomes. G3 (BETHESDA, MD.) 2025; 15:jkae300. [PMID: 39698831 PMCID: PMC11797013 DOI: 10.1093/g3journal/jkae300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/02/2024] [Accepted: 12/13/2024] [Indexed: 12/20/2024]
Abstract
Gene drives have enormous potential for solving biological issues by forcing the spread of desired alleles through populations. However, to safeguard from the potentially irreversible consequences on natural populations, gene drives with intermediate outcomes that neither fixate nor get removed from the population are of outstanding interest. To elucidate the conditions leading to intermediate gene drive outcomes, a stochastic, individual allele-focused gene drive model was developed to simulate the diffusion of a homing gene drive in a population. The frequencies of multiple alleles at a locus targeted by a gene drive were tracked under various scenarios. These explored the effect of gene drive conversion efficiency, strength and frequency of resistance alleles, dominance and strength of a fitness cost for the gene drive, and the level of inbreeding. Four outcomes were consistently observed: fixation, loss, temporary, and equilibrium. The latter 2 are defined by the frequency of the gene drive peaking then crashing or plateauing, respectively. No single variable determined the outcome of a drive. The difference between the conversion efficiency and resistance level, modeled quantitatively, differentiated the temporary and equilibrium outcomes. The frequency dynamics of the gene drive within outcomes varied extensively, with different variables driving these dynamics between outcomes. These simulation results highlight the possibility of fine-tuning gene drive outcomes and frequency dynamics. To that end, we provide a web application implementing our model, which will guide the safer design of gene drives able to achieve a range of controllable outcomes tailored to population management needs.
Collapse
Affiliation(s)
- Benjamin J Camm
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | | |
Collapse
|
2
|
Rockman MV. Parental-effect gene-drive elements under partial selfing, or why do Caenorhabditis genomes have hyperdivergent regions? Genetics 2025; 229:1-36. [PMID: 39475455 PMCID: PMC11708918 DOI: 10.1093/genetics/iyae175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 11/06/2024] Open
Abstract
Self-fertile Caenorhabditis nematodes carry a surprising number of Medea elements, alleles that act in heterozygous mothers and cause death or developmental delay in offspring that do not inherit them. At some loci, both alleles in a cross operate as independent Medeas, affecting all the homozygous progeny of a selfing heterozygote. The genomic coincidence of Medea elements and ancient, deeply coalescing haplotypes, which pepper the otherwise homogeneous genomes of these animals, raises questions about how these apparent gene-drive elements persist for long periods of time. Here, I investigate how mating system affects the evolution of Medeas, and their paternal-effect counterparts, peels. Despite an intuition that antagonistic alleles should induce balancing selection by killing homozygotes, models show that, under partial selfing, antagonistic elements experience positive frequency dependence: the common allele drives the rare one extinct, even if the rare one is more penetrant. Analytical results for the threshold frequency required for one allele to invade a population show that a very weakly penetrant allele, one whose effects would escape laboratory detection, could nevertheless prevent a much more penetrant allele from invading under high rates of selfing. Ubiquitous weak antagonistic Medeas and peels could then act as localized barriers to gene flow between populations, generating genomic islands of deep coalescence. Analysis of gene expression data, however, suggests that this cannot be the whole story. A complementary explanation is that ordinary ecological balancing selection generates ancient haplotypes on which Medeas can evolve, while high homozygosity in these selfers minimizes the role of gene drive in their evolution.
Collapse
Affiliation(s)
- Matthew V Rockman
- Department of Biology and Center for Genomics & Systems Biology, New York University, New York, NY 10003, USA
| |
Collapse
|
3
|
Naidoo K, Oliver SV. Gene drives: an alternative approach to malaria control? Gene Ther 2025; 32:25-37. [PMID: 39039203 PMCID: PMC11785527 DOI: 10.1038/s41434-024-00468-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Genetic modification for the control of mosquitoes is frequently touted as a solution for a variety of vector-borne diseases. There has been some success using non-insecticidal methods like sterile or incompatible insect techniques to control arbovirus diseases. However, control by genetic modifications to reduce mosquito populations or create mosquitoes that are refractory to infection with pathogens are less developed. The advent of CRISPR-Cas9-mediated gene drives may advance this mechanism of control. In this review, use and progress of gene drives for vector control, particularly for malaria, is discussed. A brief history of population suppression and replacement gene drives in mosquitoes, rapid advancement of the field over the last decade and how genetic modification fits into the current scope of vector control are described. Mechanisms of alternative vector control by genetic modification to modulate mosquitoes' immune responses and anti-parasite effector molecules as part of a combinational strategy to combat malaria are considered. Finally, the limitations and ethics of using gene drives for mosquito control are discussed.
Collapse
Affiliation(s)
- Kubendran Naidoo
- SAMRC/Wits Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
- National Health Laboratory Service, Johannesburg, South Africa.
- Wits Research Institute for Malaria, Faculty of Health Sciences, National Health Laboratory Service, University of the Witwatersrand, Johannesburg, South Africa.
- Infectious Diseases and Oncology Research Institute (IDORI), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Shüné V Oliver
- Wits Research Institute for Malaria, Faculty of Health Sciences, National Health Laboratory Service, University of the Witwatersrand, Johannesburg, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| |
Collapse
|
4
|
Wang GH, Hoffmann A, Champer J. Gene Drive and Symbiont Technologies for Control of Mosquito-Borne Diseases. ANNUAL REVIEW OF ENTOMOLOGY 2025; 70:229-249. [PMID: 39353088 DOI: 10.1146/annurev-ento-012424-011039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Mosquito-borne diseases, such as dengue and malaria, pose a significant burden to global health. Current control strategies with insecticides are only moderately effective. Scalable solutions are needed to reduce the transmission risk of these diseases. Symbionts and genome engineering-based mosquito control strategies have been proposed to address these problems. Bacterial, fungal, and viral symbionts affect mosquito reproduction, reduce mosquito lifespan, and block pathogen transmission. Field tests of endosymbiont Wolbachia-based methods have yielded promising results, but there are hurdles to overcome due to the large-scale rearing and accurate sex sorting required for Wolbachia-based suppression approaches and the ecological impediments to Wolbachia invasion in replacement approaches. Genome engineering-based methods, in which mosquitoes are genetically altered for the modification or suppression of wild populations, offer an additional approach for control of mosquito-borne diseases. In particular, the use of gene drive alleles that bias inheritance in their favor is a potentially powerful approach. Several drives are frequency dependent, potentially giving them broadly similar population dynamics to Wolbachia. However, public acceptance and the behavior of released drives in natural mosquito populations remain challenges. We summarize the latest developments and discuss the knowledge gaps in both symbiont- and gene drive-based methods.
Collapse
Affiliation(s)
- Guan-Hong Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China;
| | - Ary Hoffmann
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, Australia;
| | - Jackson Champer
- Center for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University, Beijing, China;
| |
Collapse
|
5
|
Feng R, Champer J. Deployment of tethered gene drive for confined suppression in continuous space requires avoiding drive wave interference. Mol Ecol 2024; 33:e17530. [PMID: 39282691 DOI: 10.1111/mec.17530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 10/25/2024]
Abstract
Gene drives have great potential for suppression of pest populations and removal of exotic invasive species. CRISPR homing suppression drive is a powerful but unconfined drive, posing risks of uncontrolled spread. Thus, developing methods for confining a gene drive is of great significance. Tethered drive combines a confined system such as Toxin-Antidote Recessive Embryo drive with a strong drive such as a homing suppression drive. It can prevent the homing drive from spreading beyond the confined drive and can be constructed readily, giving it good prospects for future development. However, we have found that care must be taken when deploying tethered drive systems in some scenarios. Simulations of tethered drive in a panmictic population model reveal that successful deployment requires a proper release ratio between the two components, tailored to prevent the suppression drive from eliminating the confined system before it has the chance to spread. Spatial models where the population moves over a one-dimensional landscape display a more serious phenomenon of drive wave interference between the two tethered drive components. If the faster suppression drive wave catches up to the confined drive wave, success is still possible, but it is dependent on drive performance and ecological parameters. Two-dimensional simulations further restrict the parameter range for drive success. Thus, careful consideration must be given to drive performance and ecological conditions, as well as specific release proposals for potential application of tethered drive systems.
Collapse
Affiliation(s)
- Ruobing Feng
- Center for Bioinformatics, Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Jackson Champer
- Center for Bioinformatics, Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
6
|
Zhang X, Sun W, Kim IK, Messer PW, Champer J. Population dynamics in spatial suppression gene drive models and the effect of resistance, density dependence, and life history. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.14.607913. [PMID: 39185243 PMCID: PMC11343152 DOI: 10.1101/2024.08.14.607913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Due to their super-Mendelian inheritance, gene drive systems have the potential to provide revolutionary solutions to critical public health and environmental problems. For suppression drives, however, spatial structure can cause "chasing" population dynamics that may postpone target population elimination or even cause the drive to fail. In chasing, wild-type individuals elude the drive and recolonize previously suppressed areas. The drive can re-enter these recolonized areas, but often is not able to catch up to wild-type and finally eliminate it. Previous methods for chasing detection are only suitable to limited parameter ranges. In this study with expanded parameter ranges, we found that the shift from chasing dynamics to static equilibrium outcomes is continuous as drive performance is reduced. To quantify this, we defined a Weighted Average Nearest Neighbor statistic to assess the clustering degree during chasing, while also characterizing chasing by the per-generation chance of population elimination and drive loss. To detect chasing dynamics in local areas and to detect the start of chasing, we implemented Density-Based Spatial Clustering of Applications with Noise. Using these techniques, we determined the effect of arena size, resistance allele formation rate in both the germline and in the early embryo from maternally deposited Cas9, life history and reproduction strategies, and density-dependent growth curve shape on chasing outcomes. We found that larger real-world areas will be much more vulnerable to chasing and that species with overlapping generations, fecundity-based density dependence, and concave density-dependent growth curves have smaller and more clustered local chasing with a greater chance of eventual population elimination. We also found that embryo resistance and germline resistance hinder drive performance in different ways. These considerations will be important for determining the necessary drive performance parameters needed for success in different species, and whether future drives could potentially be considered as release candidates.
Collapse
Affiliation(s)
- Xinyue Zhang
- Center for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University, Beijing, China 100871
| | - Weitang Sun
- Center for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University, Beijing, China 100871
| | - Isabel K. Kim
- Department of Computational Biology, Cornell University, Ithaca, NY 14853
| | - Philipp W. Messer
- Department of Computational Biology, Cornell University, Ithaca, NY 14853
| | - Jackson Champer
- Center for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University, Beijing, China 100871
| |
Collapse
|
7
|
Rockman MV. Parental-effect gene-drive elements under partial selfing, or why do Caenorhabditis genomes have hyperdivergent regions? BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.23.604817. [PMID: 39091748 PMCID: PMC11291142 DOI: 10.1101/2024.07.23.604817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Self-fertile Caenorhabditis nematodes carry a surprising number of Medea elements, alleles that act in heterozygous mothers and cause death or developmental delay in offspring that don't inherit them. At some loci, both alleles in a cross operate as independent Medeas, affecting all the homozygous progeny of a selfing heterozygote. The genomic coincidence of Medea elements and ancient, deeply coalescing haplotypes, which pepper the otherwise homogeneous genomes of these animals, raises questions about how these apparent gene-drive elements persist for long periods of time. Here I investigate how mating system affects the evolution of Medeas, and their paternal-effect counterparts, peels. Despite an intuition that antagonistic alleles should induce balancing selection by killing homozygotes, models show that, under partial selfing, antagonistic elements experience positive frequency dependence: the common allele drives the rare one extinct, even if the rare one is more penetrant. Analytical results for the threshold frequency required for one allele to invade a population show that a very weakly penetrant allele, one whose effects would escape laboratory detection, could nevertheless prevent a much more penetrant allele from invading under high rates of selfing. Ubiquitous weak antagonistic Medeas and peels could then act as localized barriers to gene flow between populations, generating genomic islands of deep coalescence. Analysis of gene expression data, however, suggest that this cannot be the whole story. A complementary explanation is that ordinary ecological balancing selection generates ancient haplotypes on which Medeas can evolve, while high homozygosity in these selfers minimizes the role of gene drive in their evolution.
Collapse
Affiliation(s)
- Matthew V Rockman
- Department of Biology and Center for Genomics & Systems Biology, New York University, New York, NY 10003
| |
Collapse
|
8
|
Wang H, Planche L, Shchur V, Nielsen R. Selfing Promotes Spread and Introgression of Segregation Distorters in Hermaphroditic Plants. Mol Biol Evol 2024; 41:msae132. [PMID: 38935581 PMCID: PMC11226791 DOI: 10.1093/molbev/msae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/15/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024] Open
Abstract
Segregation distorters (SDs) are genetic elements that distort the Mendelian segregation ratio to favor their own transmission and are able to spread even when they incur fitness costs on organisms carrying them. Depending on the biology of the host organisms and the genetic architecture of the SDs, the population dynamics of SDs can be highly variable. Inbreeding is considered an effective mechanism for inhibiting the spread of SDs in populations, and can evolve as a defense mechanism against SDs in some systems. However, we show that inbreeding in the form of selfing in fact promotes the spread of SDs acting as pollen killers in a toxin-antidote system in hermaphroditic plants by two mechanisms: (i) By reducing the effective recombination rate between killer and antidote loci in the two-locus system and (ii) by increasing the proportion of SD alleles in individual flowers, rather than in the general gene-pool. We also show that in rice (Oryza sativa L.), a typical hermaphroditic plant, all molecularly characterized SDs associated with pollen killing were involved in population hybridization and have introgressed across different species. Paradoxically, these loci, which are associated with hybrid incompatibility and can be thought of as Bateson-Dobzhansky-Muller incompatibility loci are expected to reduce gene-flow between species, in fact cross species boundaries more frequently than random loci, and may act as important drivers of introgression.
Collapse
Affiliation(s)
- Hongru Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
- Department of Integrative Biology, UC Berkeley, Berkeley, CA, USA
| | - Léo Planche
- Laboratoire Interdisciplinaire des Sciences du Numérique, Université Paris Saclay, Gif-sur-Yvette, France
| | - Vladimir Shchur
- International laboratory of statistical and computational genomics, HSE University, Moscow 109028, Russian Federation
| | - Rasmus Nielsen
- Department of Integrative Biology, UC Berkeley, Berkeley, CA, USA
| |
Collapse
|
9
|
Oberhofer G, Johnson ML, Ivy T, Antoshechkin I, Hay BA. Cleave and Rescue gamete killers create conditions for gene drive in plants. NATURE PLANTS 2024; 10:936-953. [PMID: 38886522 DOI: 10.1038/s41477-024-01701-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/16/2024] [Indexed: 06/20/2024]
Abstract
Gene drive elements promote the spread of linked traits and can be used to change the composition or fate of wild populations. Cleave and Rescue (ClvR) drive elements sit at a fixed chromosomal position and include a DNA sequence-modifying enzyme such as Cas9/gRNAs that disrupts endogenous versions of an essential gene and a recoded version of the essential gene resistant to cleavage. ClvR spreads by creating conditions in which those lacking ClvR die because they lack functional versions of the essential gene. Here we demonstrate the essential features of the ClvR gene drive in the plant Arabidopsis thaliana through killing of gametes that fail to inherit a ClvR that targets the essential gene YKT61. Resistant alleles, which can slow or prevent drive, were not observed. Modelling shows plant ClvRs are robust to certain failure modes and can be used to rapidly drive population modification or suppression. Possible applications are discussed.
Collapse
Affiliation(s)
- Georg Oberhofer
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Michelle L Johnson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Tobin Ivy
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Igor Antoshechkin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Bruce A Hay
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
10
|
Zhang S, Champer J. Performance characteristics allow for confinement of a CRISPR toxin-antidote gene drive for population suppression in a reaction-diffusion model. Proc Biol Sci 2024; 291:20240500. [PMID: 38889790 DOI: 10.1098/rspb.2024.0500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/26/2024] [Indexed: 06/20/2024] Open
Abstract
Gene drive alleles that can bias their own inheritance could engineer populations for control of disease vectors, invasive species and agricultural pests. There are successful examples of suppression drives and confined modification drives, but developing confined suppression drives has proven more difficult. However, CRISPR-based toxin-antidote dominant embryo (TADE) suppression drive may fill this niche. It works by targeting and disrupting a haplolethal target gene in the germline with its gRNAs while rescuing this target. It also disrupts a female fertility gene by driving insertion or additional gRNAs. Here, we used a reaction-diffusion model to assess drive performance in continuous space, where outcomes can be substantially different from those in panmictic populations. We measured drive wave speed and found that moderate fitness costs or target gene disruption in the early embryo from maternally deposited nuclease can eliminate the drive's ability to form a wave of advance. We assessed the required release size, and finally we investigated migration corridor scenarios. It is often possible for the drive to suppress one population and then persist in the corridor without invading the second population, a potentially desirable outcome. Thus, even imperfect variants of TADE suppression drive may be excellent candidates for confined population suppression.
Collapse
Affiliation(s)
- Shijie Zhang
- Center for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University , Beijing 100871, People's Republic of China
| | - Jackson Champer
- Center for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University , Beijing 100871, People's Republic of China
| |
Collapse
|
11
|
Janzen A, Pothula R, Sychla A, Feltman NR, Smanski MJ. Predicting thresholds for population replacement gene drives. BMC Biol 2024; 22:40. [PMID: 38369493 PMCID: PMC10875781 DOI: 10.1186/s12915-024-01823-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/10/2024] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND Threshold-dependent gene drives (TDGDs) could be used to spread desirable traits through a population, and are likely to be less invasive and easier to control than threshold-independent gene drives. Engineered Genetic Incompatibility (EGI) is an extreme underdominance system previously demonstrated in Drosophila melanogaster that can function as a TDGD when EGI agents of both sexes are released into a wild-type population. RESULTS Here we use a single generation fitness assay to compare the fecundity, mating preferences, and temperature-dependent relative fitness to wild-type of two distinct genotypes of EGI agents. We find significant differences in the behavior/performance of these EGI agents that would not be predicted a priori based on their genetic design. We report a surprising temperature-dependent change in the predicted threshold for population replacement in an EGI agent that drives ectopic expression of the developmental morphogen pyramus. CONCLUSIONS The single-generation fitness assay presented here could reduce the amount of time required to estimate the threshold for TDGD strategies for which hybrid genotypes are inviable. Additionally, this work underscores the importance of empirical characterization of multiple engineered lines, as behavioral differences can arise in unique genotypes for unknown reasons.
Collapse
Affiliation(s)
- Anna Janzen
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, 55455, MN, USA
- Biotechnology Institute, University of Minnesota, Saint Paul, 55108, MN, USA
| | - Ratnasri Pothula
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, 55455, MN, USA
- Biotechnology Institute, University of Minnesota, Saint Paul, 55108, MN, USA
| | - Adam Sychla
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, 55455, MN, USA
- Biotechnology Institute, University of Minnesota, Saint Paul, 55108, MN, USA
| | - Nathan R Feltman
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, 55455, MN, USA
- Biotechnology Institute, University of Minnesota, Saint Paul, 55108, MN, USA
| | - Michael J Smanski
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, 55455, MN, USA.
- Biotechnology Institute, University of Minnesota, Saint Paul, 55108, MN, USA.
| |
Collapse
|
12
|
Olejarz JW, Nowak MA. Gene drives for the extinction of wild metapopulations. J Theor Biol 2024; 577:111654. [PMID: 37984587 DOI: 10.1016/j.jtbi.2023.111654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/15/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023]
Abstract
Population-suppressing gene drives may be capable of extinguishing wild populations, with proposed applications in conservation, agriculture, and public health. However, unintended and potentially disastrous consequences of release of drive-engineered individuals are extremely difficult to predict. We propose a model for the dynamics of a sex ratio-biasing drive, and using simulations, we show that failure of the suppression drive is often a natural outcome due to stochastic and spatial effects. We further demonstrate rock-paper-scissors dynamics among wild-type, drive-infected, and extinct populations that can persist for arbitrarily long times. Gene drive-mediated extinction of wild populations entails critical complications that lurk far beyond the reach of laboratory-based studies. Our findings help in addressing these challenges.
Collapse
Affiliation(s)
- Jason W Olejarz
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA; Department of Mathematics, Harvard University, Cambridge, MA, 02138, USA.
| | - Martin A Nowak
- Department of Mathematics, Harvard University, Cambridge, MA, 02138, USA; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
13
|
Lester PJ, O'Sullivan D, Perry GLW. Gene drives for invasive wasp control: Extinction is unlikely, with suppression dependent on dispersal and growth rates. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2912. [PMID: 37615220 DOI: 10.1002/eap.2912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/28/2023] [Accepted: 07/14/2023] [Indexed: 08/25/2023]
Abstract
Gene drives offer a potentially revolutionary method for pest control over large spatial extents. These genetic modifications spread deleterious variants through a population and have been proposed as methods for pest suppression or even eradication. We examined the influence of local dispersal, long-distance and/or human-mediated dispersal, and variation in population growth on the success of a gene drive for the control of invasive social wasps (Vespula vulgaris). Our simulations incorporated a spatially realistic environment containing variable habitat quality in New Zealand. Pest eradication was not observed, except in extreme and unrealistic scenarios of constant, widespread, and spatially intense releases of genetically modified individuals every year for decades. Instead, the regional persistence of genetically modified and wild-type wasps was predicted. Simulations using spatially homogeneous versus realistic landscapes (incorporating uninhabitable areas and dispersal barriers) showed little difference in overall population dynamics. Overall, little impact on wasp abundance was observed in the first 15 years after introduction. After 25 years, populations were suppressed to levels <95% of starting populations. Populations exhibited "chase dynamics" with population cycles in space, with local extinction occurring in some areas while wasps became abundant in others. Increasing the wasps' local dispersal distance increased the spatial and temporal variability of the occupied area and population suppression. Varying levels of human-associated long-distance dispersal had little effect on population dynamics. Increasing intrinsic population growth rates interacted with local dispersal to cause higher mean populations and substantially higher levels of variation in population suppression and the total amount of landscape occupied. Gene drives appear unlikely to cause a rapid and widespread extinction of this and probably other pests but could offer long-term and cost-effective methods of pest suppression. The predicted level of <95% pest suppression would substantially reduce the predation pressure and competitive interactions of this invasive wasp on native species. However, the predicted long-term persistence of genetically modified pests will influence the ethics and likelihood of using gene drives for pest control, especially given concerns that modified wasps would eventually be transported back to their home range.
Collapse
Affiliation(s)
- Philip J Lester
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - David O'Sullivan
- School of Geography, Environment and Earth Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - George L W Perry
- School of Environment, University of Auckland, Auckland, New Zealand
| |
Collapse
|
14
|
Pan M, Champer J. Making waves: Comparative analysis of gene drive spread characteristics in a continuous space model. Mol Ecol 2023; 32:5673-5694. [PMID: 37694511 DOI: 10.1111/mec.17131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 08/16/2023] [Accepted: 08/31/2023] [Indexed: 09/12/2023]
Abstract
With their ability to rapidly increase in frequency, gene drives can be used to modify or suppress target populations after an initial release of drive individuals. Recent advances have revealed many possibilities for different types of drives, and several of these have been realized in experiments. These drives have advantages and disadvantages related to their ease of construction, confinement and capacity to be used for modification or suppression. Though characteristics of these drives have been explored in modelling studies, assessment in continuous space environments has been limited, often focusing on outcomes rather than fundamental properties. Here, we conduct a comparative analysis of many different gene drive types that have the capacity to form a wave of advance in continuous space using individual-based simulations in continuous space. We evaluate the drive wave speed as a function of drive performance and ecological parameters, which reveals substantial differences between drive performance in panmictic versus spatial environments. In particular, we find that suppression drive waves are uniquely vulnerable to fitness costs and undesired CRISPR cleavage activity in embryos by maternal deposition. Some drives, however, retain robust performance even with widely varying efficiency parameters. To gain a better understanding of drive waves, we compare their panmictic performance and find that the rate of wild-type allele removal is correlated with drive wave speed, though this is also affected by other factors. Overall, our results provide a useful resource for understanding the performance of drives in spatially continuous environments, which may be most representative of potential drive deployment in many relevant scenarios.
Collapse
Affiliation(s)
- Mingzuyu Pan
- Center for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University, Beijing, China
| | - Jackson Champer
- Center for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University, Beijing, China
| |
Collapse
|
15
|
Kim J, Harris KD, Kim IK, Shemesh S, Messer PW, Greenbaum G. Incorporating ecology into gene drive modelling. Ecol Lett 2023; 26 Suppl 1:S62-S80. [PMID: 37840022 DOI: 10.1111/ele.14194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 10/17/2023]
Abstract
Gene drive technology, in which fast-spreading engineered drive alleles are introduced into wild populations, represents a promising new tool in the fight against vector-borne diseases, agricultural pests and invasive species. Due to the risks involved, gene drives have so far only been tested in laboratory settings while their population-level behaviour is mainly studied using mathematical and computational models. The spread of a gene drive is a rapid evolutionary process that occurs over timescales similar to many ecological processes. This can potentially generate strong eco-evolutionary feedback that could profoundly affect the dynamics and outcome of a gene drive release. We, therefore, argue for the importance of incorporating ecological features into gene drive models. We describe the key ecological features that could affect gene drive behaviour, such as population structure, life-history, environmental variation and mode of selection. We review previous gene drive modelling efforts and identify areas where further research is needed. As gene drive technology approaches the level of field experimentation, it is crucial to evaluate gene drive dynamics, potential outcomes, and risks realistically by including ecological processes.
Collapse
Affiliation(s)
- Jaehee Kim
- Department of Computational Biology, Cornell University, Ithaca, New York, USA
| | - Keith D Harris
- Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Isabel K Kim
- Department of Computational Biology, Cornell University, Ithaca, New York, USA
| | - Shahar Shemesh
- Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Philipp W Messer
- Department of Computational Biology, Cornell University, Ithaca, New York, USA
| | - Gili Greenbaum
- Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
16
|
Combs MA, Golnar AJ, Overcash JM, Lloyd AL, Hayes KR, O'Brochta DA, Pepin KM. Leveraging eco-evolutionary models for gene drive risk assessment. Trends Genet 2023:S0168-9525(23)00090-2. [PMID: 37198063 DOI: 10.1016/j.tig.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/07/2023] [Accepted: 04/14/2023] [Indexed: 05/19/2023]
Abstract
Engineered gene drives create potential for both widespread benefits and irreversible harms to ecosystems. CRISPR-based systems of allelic conversion have rapidly accelerated gene drive research across diverse taxa, putting field trials and their necessary risk assessments on the horizon. Dynamic process-based models provide flexible quantitative platforms to predict gene drive outcomes in the context of system-specific ecological and evolutionary features. Here, we synthesize gene drive dynamic modeling studies to highlight research trends, knowledge gaps, and emergent principles, organized around their genetic, demographic, spatial, environmental, and implementation features. We identify the phenomena that most significantly influence model predictions, discuss limitations of biological complexity and uncertainty, and provide insights to promote responsible development and model-assisted risk assessment of gene drives.
Collapse
Affiliation(s)
- Matthew A Combs
- National Wildlife Research Center, United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, Fort Collins, CO, 80521, USA.
| | - Andrew J Golnar
- National Wildlife Research Center, United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, Fort Collins, CO, 80521, USA
| | - Justin M Overcash
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Biotechnology Regulatory Services, 20737, USA
| | - Alun L Lloyd
- North Carolina State University, Biomathematics Graduate Program and Department of Mathematics, Raleigh, NC, 27695, USA
| | - Keith R Hayes
- The Commonwealth Scientific and Industrial Research Organisation, Data 61, Hobart, TAS, 7004, Australia
| | - David A O'Brochta
- Foundation for the National Institutes of Health, North Bethesda, MD, 20852, USA
| | - Kim M Pepin
- National Wildlife Research Center, United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, Fort Collins, CO, 80521, USA
| |
Collapse
|
17
|
Zhu Y, Champer J. Simulations Reveal High Efficiency and Confinement of a Population Suppression CRISPR Toxin-Antidote Gene Drive. ACS Synth Biol 2023; 12:809-819. [PMID: 36825354 DOI: 10.1021/acssynbio.2c00611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Though engineered gene drives hold great promise for spreading through and suppressing populations of disease vectors or invasive species, complications such as resistance alleles and spatial population structure can prevent their success. Additionally, most forms of suppression drives, such as homing drives or driving Y chromosomes, will generally spread uncontrollably between populations with even small levels of migration. The previously proposed CRISPR-based toxin-antidote system called toxin-antidote dominant embryo (TADE) suppression drive could potentially address the issues of confinement and resistance. However, it is a relatively weak form of drive compared to homing drives, which might make it particularly vulnerable to spatial population structure. In this study, we investigate TADE suppression drive using individual-based simulations in a continuous spatial landscape. We find that the drive is actually more confined than in simple models without space, even in its most efficient form with low cleavage rate in embryos from maternally deposited Cas9. Furthermore, the drive performed well in continuous space scenarios if the initial release requirements were met, suppressing the population in a timely manner without being severely affected by chasing, a phenomenon in which wild-type individuals avoid the drive by recolonizing empty areas. At higher embryo cut rates, the drive loses its ability to spread, but a single, widespread release can often still induce rapid population collapse. Thus, if TADE suppression gene drives can be successfully constructed, they may play an important role in control of disease vectors and invasive species when stringent confinement to target populations is desired.
Collapse
Affiliation(s)
- Yutong Zhu
- Center for Bioinformatics, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Jackson Champer
- Center for Bioinformatics, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
18
|
Cutter AD. Synthetic gene drives as an anthropogenic evolutionary force. Trends Genet 2023; 39:347-357. [PMID: 36997427 DOI: 10.1016/j.tig.2023.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 03/30/2023]
Abstract
Genetic drive represents a fundamental evolutionary force that can exact profound change to the genetic composition of populations by biasing allele transmission. Herein I propose that the use of synthetic homing gene drives, the human-mediated analog of endogenous genetic drives, warrants the designation of 'genetic welding' as an anthropogenic evolutionary force. Conceptually, this distinction parallels that of artificial and natural selection. Genetic welding is capable of imposing complex and rapid heritable phenotypic change on entire populations, whether motivated by biodiversity conservation or public health. Unanticipated possible long-term evolutionary outcomes, however, demand further investigation and bioethical consideration. The emerging importance of genetic welding also compels our explicit recognition of genetic drive as an addition to the other four fundamental forces of evolution.
Collapse
|
19
|
Champer SE, Kim IK, Clark AG, Messer PW, Champer J. Anopheles homing suppression drive candidates exhibit unexpected performance differences in simulations with spatial structure. eLife 2022; 11:e79121. [PMID: 36239372 PMCID: PMC9596161 DOI: 10.7554/elife.79121] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Recent experiments have produced several Anopheles gambiae homing gene drives that disrupt female fertility genes, thereby eventually inducing population collapse. Such drives may be highly effective tools to combat malaria. One such homing drive, based on the zpg promoter driving CRISPR/Cas9, was able to eliminate a cage population of mosquitoes. A second version, purportedly improved upon the first by incorporating an X-shredder element (which biases inheritance towards male offspring), was similarly successful. Here, we analyze experimental data from each of these gene drives to extract their characteristics and performance parameters and compare these to previous interpretations of their experimental performance. We assess each suppression drive within an individual-based simulation framework that models mosquito population dynamics in continuous space. We find that the combined homing/X-shredder drive is actually less effective at population suppression within the context of our mosquito population model. In particular, the combined drive often fails to completely suppress the population, instead resulting in an unstable equilibrium between drive and wild-type alleles. By contrast, otherwise similar drives based on the nos promoter may prove to be more promising candidates for future development than originally thought.
Collapse
Affiliation(s)
- Samuel E Champer
- Department of Computational Biology, Cornell UniversityIthacaUnited States
| | - Isabel K Kim
- Department of Computational Biology, Cornell UniversityIthacaUnited States
| | - Andrew G Clark
- Department of Computational Biology, Cornell UniversityIthacaUnited States
- Department of Molecular Biology and Genetics, Cornell UniversityIthacaUnited States
| | - Philipp W Messer
- Department of Computational Biology, Cornell UniversityIthacaUnited States
| | - Jackson Champer
- Center for Bioinformatics, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking UniversityBeijingChina
| |
Collapse
|
20
|
Khatri BS, Burt A. A theory of resistance to multiplexed gene drive demonstrates the significant role of weakly deleterious natural genetic variation. Proc Natl Acad Sci U S A 2022; 119:e2200567119. [PMID: 35914131 PMCID: PMC9371675 DOI: 10.1073/pnas.2200567119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/28/2022] [Indexed: 11/18/2022] Open
Abstract
Evolution of resistance is a major barrier to successful deployment of gene-drive systems to suppress natural populations, which could greatly reduce the burden of many vector-borne diseases. Multiplexed guide RNAs (gRNAs) that require resistance mutations in all target cut sites are a promising antiresistance strategy since, in principle, resistance would only arise in unrealistically large populations. Using stochastic simulations that accurately model evolution at very large population sizes, we explore the probability of resistance due to three important mechanisms: 1) nonhomologous end-joining mutations, 2) single-nucleotide mutants arising de novo, or 3) single-nucleotide polymorphisms preexisting as standing variation. Our results explore the relative importance of these mechanisms and highlight a complexity of the mutation-selection-drift balance between haplotypes with complete resistance and those with an incomplete number of resistant alleles. We find that this leads to a phenomenon where weakly deleterious naturally occurring variants greatly amplify the probability of multisite resistance compared to de novo mutation. This key result provides design criterion for antiresistance multiplexed systems, which, in general, will need a larger number of gRNAs compared to de novo expectations. This theory may have wider application to the evolution of resistance or evolutionary rescue when multiple changes are required before selection can act.
Collapse
Affiliation(s)
- Bhavin S. Khatri
- Department of Life Sciences, Imperial College London, Ascot SL5 7PY, United Kingdom
- Chromosome Segregation Laboratory, and Mechanobiology and Biophysics Laboratory, The Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Austin Burt
- Department of Life Sciences, Imperial College London, Ascot SL5 7PY, United Kingdom
| |
Collapse
|
21
|
Paril JF, Phillips BL. Slow and steady wins the race: spatial and stochastic processes and the failure of suppression gene drives. Mol Ecol 2022; 31:4451-4464. [PMID: 35790043 PMCID: PMC9541681 DOI: 10.1111/mec.16598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/20/2022] [Accepted: 06/30/2022] [Indexed: 11/28/2022]
Abstract
Gene drives that skew sex ratios offer a new management tool to suppress or eradicate pest populations. Early models and empirical work suggest that these suppression drives can completely eradicate well‐mixed populations, but models that incorporate stochasticity and space (i.e. drift and recolonization events) often result in loss or failure of the drive. We developed a stochastic model to examine these processes in a simple one‐dimensional space. This simple space allows us to map the events and outcomes that emerged and examine how properties of the drive's wave of invasion affect outcomes. Our simulations, across a biologically realistic section of parameter space, suggest that drive failure might be a common outcome in spatially explicit, stochastic systems, and that properties of the drive wave appear to mediate outcomes. Surprisingly, the drives that would be considered fittest in an aspatial model were strongly associated with failure in the spatial setting. The fittest drives cause relatively fast moving, and narrow waves that have a high chance of being penetrated by wild‐types (WTs) leading to WT recolonization, leading to failure. Our results also show that high rates of dispersal reduce the chance of failure because drive waves get disproportionately wider than WT waves as dispersal rates increase. Overall, wide, slow‐moving drive waves were much less prone to failure. Our results point to the complexity inherent in using a genetic system to effect demographic outcomes and speak to a clear need for ecological and evolutionary modelling to inform the drive design process.
Collapse
Affiliation(s)
- Jeff F. Paril
- School of BioSciences University of Melbourne Parkville VIC
| | | |
Collapse
|
22
|
Yang E, Metzloff M, Langmüller AM, Xu X, Clark AG, Messer PW, Champer J. A homing suppression gene drive with multiplexed gRNAs maintains high drive conversion efficiency and avoids functional resistance alleles. G3 (BETHESDA, MD.) 2022; 12:jkac081. [PMID: 35394026 PMCID: PMC9157102 DOI: 10.1093/g3journal/jkac081] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/30/2022] [Indexed: 11/14/2022]
Abstract
Gene drives are engineered alleles that can bias inheritance in their favor, allowing them to spread throughout a population. They could potentially be used to modify or suppress pest populations, such as mosquitoes that spread diseases. CRISPR/Cas9 homing drives, which copy themselves by homology-directed repair in drive/wild-type heterozygotes, are a powerful form of gene drive, but they are vulnerable to resistance alleles that preserve the function of their target gene. Such resistance alleles can prevent successful population suppression. Here, we constructed a homing suppression drive in Drosophila melanogaster that utilized multiplexed gRNAs to inhibit the formation of functional resistance alleles in its female fertility target gene. The selected gRNA target sites were close together, preventing reduction in drive conversion efficiency. The construct reached a moderate equilibrium frequency in cage populations without apparent formation of resistance alleles. However, a moderate fitness cost prevented elimination of the cage population, showing the importance of using highly efficient drives in a suppression strategy, even if resistance can be addressed. Nevertheless, our results experimentally demonstrate the viability of the multiplexed gRNAs strategy in homing suppression gene drives.
Collapse
Affiliation(s)
- Emily Yang
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Matthew Metzloff
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Anna M Langmüller
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA
- Institut für Populationsgenetik, Vetmeduni Vienna, 1210 Wien, Austria
- Vienna Graduate School of Population Genetics, 1210 Wien, Austria
| | - Xuejiao Xu
- Center for Bioinformatics, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Andrew G Clark
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Philipp W Messer
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA
| | - Jackson Champer
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
- Center for Bioinformatics, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
23
|
Propagation of seminal toxins through binary expression gene drives could suppress populations. Sci Rep 2022; 12:6332. [PMID: 35428855 PMCID: PMC9012762 DOI: 10.1038/s41598-022-10327-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/05/2022] [Indexed: 11/25/2022] Open
Abstract
Gene drives can be highly effective in controlling a target population by disrupting a female fertility gene. To spread across a population, these drives require that disrupted alleles be largely recessive so as not to impose too high of a fitness penalty. We argue that this restriction may be relaxed by using a double gene drive design to spread a split binary expression system. One drive carries a dominant lethal/toxic effector alone and the other a transactivator factor, without which the effector will not act. Only after the drives reach sufficiently high frequencies would individuals have the chance to inherit both system components and the effector be expressed. We explore through mathematical modeling the potential of this design to spread dominant lethal/toxic alleles and suppress populations. We show that this system could be implemented to spread engineered seminal proteins designed to kill females, making it highly effective against polyandrous populations.
Collapse
|
24
|
Liu Y, Champer J. Modelling homing suppression gene drive in haplodiploid organisms. Proc Biol Sci 2022; 289:20220320. [PMID: 35414240 PMCID: PMC9006016 DOI: 10.1098/rspb.2022.0320] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/21/2022] [Indexed: 01/13/2023] Open
Abstract
Gene drives have shown great promise for suppression of pest populations. These engineered alleles can function by a variety of mechanisms, but the most common is the CRISPR homing drive, which converts wild-type alleles to drive alleles in the germline of heterozygotes. Some potential target species are haplodiploid, in which males develop from unfertilized eggs and thus have only one copy of each chromosome. This prevents drive conversion, a substantial disadvantage compared to diploids where drive conversion can take place in both sexes. Here, we study homing suppression gene drives in haplodiploids and find that a drive targeting a female fertility gene could still be successful. However, such drives are less powerful than in diploids and suffer more from functional resistance alleles. They are substantially more vulnerable to high resistance allele formation in the embryo owing to maternally deposited Cas9 and guide RNA and also to somatic cleavage activity. Examining spatial models where organisms move over a continuous landscape, we find that haplodiploid suppression drives surprisingly perform nearly as well as in diploids, possibly owing to their ability to spread further before inducing strong suppression. Together, these results indicate that gene drive can potentially be used to effectively suppress haplodiploid populations.
Collapse
Affiliation(s)
- Yiran Liu
- Center for Bioinformatics, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871 People's Republic of China
| | - Jackson Champer
- Center for Bioinformatics, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871 People's Republic of China
| |
Collapse
|
25
|
Wang GH, Du J, Chu CY, Madhav M, Hughes GL, Champer J. Symbionts and gene drive: two strategies to combat vector-borne disease. Trends Genet 2022; 38:708-723. [PMID: 35314082 DOI: 10.1016/j.tig.2022.02.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 01/26/2023]
Abstract
Mosquitoes bring global health problems by transmitting parasites and viruses such as malaria and dengue. Unfortunately, current insecticide-based control strategies are only moderately effective because of high cost and resistance. Thus, scalable, sustainable, and cost-effective strategies are needed for mosquito-borne disease control. Symbiont-based and genome engineering-based approaches provide new tools that show promise for meeting these criteria, enabling modification or suppression approaches. Symbiotic bacteria like Wolbachia are maternally inherited and manipulate mosquito host reproduction to enhance their vertical transmission. Genome engineering-based gene drive methods, in which mosquitoes are genetically altered to spread drive alleles throughout wild populations, are also proving to be a potentially powerful approach in the laboratory. Here, we review the latest developments in both symbionts and gene drive-based methods. We describe some notable similarities, as well as distinctions and obstacles, relating to these promising technologies.
Collapse
Affiliation(s)
- Guan-Hong Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jie Du
- Center for Bioinformatics, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Chen Yi Chu
- Center for Bioinformatics, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Mukund Madhav
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Grant L Hughes
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Jackson Champer
- Center for Bioinformatics, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
26
|
Beaghton PJ, Burt A. Gene drives and population persistence vs elimination: The impact of spatial structure and inbreeding at low density. Theor Popul Biol 2022; 145:109-125. [PMID: 35247370 DOI: 10.1016/j.tpb.2022.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/15/2022] [Accepted: 02/22/2022] [Indexed: 11/26/2022]
Abstract
Synthetic gene drive constructs are being developed to control disease vectors, invasive species, and other pest species. In a well-mixed random mating population a sufficiently strong gene drive is expected to eliminate a target population, but it is not clear whether the same is true when spatial processes play a role. In species with an appropriate biology it is possible that drive-induced reductions in density might lead to increased inbreeding, reducing the efficacy of drive, eventually leading to suppression rather than elimination, regardless of how strong the drive is. To investigate this question we analyse a series of explicitly solvable stochastic models considering a range of scenarios for the relative timing of mating, reproduction, and dispersal and analyse the impact of two different types of gene drive, a Driving Y chromosome and a homing construct targeting an essential gene. We find in all cases a sufficiently strong Driving Y will go to fixation and the population will be eliminated, except in the one life history scenario (reproduction and mating in patches followed by dispersal) where low density leads to increased inbreeding, in which case the population persists indefinitely, tending to either a stable equilibrium or a limit cycle. These dynamics arise because Driving Y males have reduced mating success, particularly at low densities, due to having fewer sisters to mate with. Increased inbreeding at low densities can also prevent a homing construct from eliminating a population. For both types of drive, if there is strong inbreeding depression, then the population cannot be rescued by inbreeding and it is eliminated. These results highlight the potentially critical role that low-density-induced inbreeding and inbreeding depression (and, by extension, other sources of Allee effects) can have on the eventual impact of a gene drive on a target population.
Collapse
Affiliation(s)
- P J Beaghton
- Institute for Security Science and Technology, South Kensington Campus, Imperial College London, London, UK; Department of Computing, South Kensington Campus, Imperial College London, London, UK.
| | - Austin Burt
- Department of Life Sciences, Silwood Park Campus, Imperial College London, Ascot, UK
| |
Collapse
|
27
|
Cook F, Bull JJ, Gomulkiewicz R. Gene drive escape from resistance depends on mechanism and ecology. Evol Appl 2022; 15:721-734. [PMID: 35603023 PMCID: PMC9108321 DOI: 10.1111/eva.13358] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 11/26/2022] Open
Abstract
Gene drives can potentially be used to suppress pest populations, and the advent of CRISPR technology has made it feasible to engineer them in many species, especially insects. What remains largely unknown for implementations is whether antidrive resistance will evolve to block the population suppression. An especially serious threat to some kinds of drive is mutations in the CRISPR cleavage sequence that block the action of CRISPR, but designs have been proposed to avoid this type of resistance. Various types of resistance at loci away from the cleavage site remain a possibility, which is the focus here. It is known that modest‐effect suppression drives can essentially “outrun” unlinked resistance even when that resistance is present from the start. We demonstrate here how the risk of evolving (unlinked) resistance can be further reduced without compromising overall suppression by introducing multiple suppression drives or by designing drives with specific ecological effects. However, we show that even modest‐effect suppression drives remain vulnerable to the evolution of extreme levels of inbreeding, which halt the spread of the drive without actually interfering with its mechanism. The landscape of resistance evolution against suppression drives is therefore complex, but avenues exist for enhancing gene drive success.
Collapse
Affiliation(s)
- Forest Cook
- School of Electrical Engineering & Computer Science Washington State University Pullman WA 99164 USA
| | - James J. Bull
- Dept of Biological Sciences University of Idaho Moscow ID 83843 USA
| | | |
Collapse
|
28
|
Metchanun N, Borgemeister C, Amzati G, von Braun J, Nikolov M, Selvaraj P, Gerardin J. Modeling impact and cost-effectiveness of driving-Y gene drives for malaria elimination in the Democratic Republic of the Congo. Evol Appl 2022; 15:132-148. [PMID: 35126652 PMCID: PMC8792473 DOI: 10.1111/eva.13331] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 11/15/2021] [Accepted: 11/29/2021] [Indexed: 12/17/2022] Open
Abstract
Malaria elimination will be challenging in countries that currently continue to bear high malaria burden. Sex-ratio-distorting gene drives, such as driving-Y, could play a role in an integrated elimination strategy if they can effectively suppress vector populations. Using a spatially explicit, agent-based model of malaria transmission in eight provinces spanning the range of transmission intensities across the Democratic Republic of the Congo, we predict the impact and cost-effectiveness of integrating driving-Y gene drive mosquitoes in malaria elimination strategies that include existing interventions such as insecticide-treated nets and case management of symptomatic malaria. Gene drive mosquitoes could eliminate malaria and were the most cost-effective intervention overall if the drive component was highly effective with at least 95% X-shredder efficiency at relatively low fertility cost, and associated cost of deployment below 7.17 $int per person per year. Suppression gene drive could be a cost-effective supplemental intervention for malaria elimination, but tight constraints on drive effectiveness and cost ceilings may limit its feasibility.
Collapse
Affiliation(s)
| | | | - Gaston Amzati
- Université Evangélique en AfriqueBukavuDemocratic Republic of the Congo
| | | | | | | | - Jaline Gerardin
- Institute for Disease ModelingBellevueWashingtonUSA
- Department of Preventive Medicine and Institute for Global HealthNorthwestern UniversityChicagoIllinoisUSA
| |
Collapse
|
29
|
Champer SE, Oakes N, Sharma R, García-Díaz P, Champer J, Messer PW. Modeling CRISPR gene drives for suppression of invasive rodents using a supervised machine learning framework. PLoS Comput Biol 2021; 17:e1009660. [PMID: 34965253 PMCID: PMC8716047 DOI: 10.1371/journal.pcbi.1009660] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 11/18/2021] [Indexed: 02/07/2023] Open
Abstract
Invasive rodent populations pose a threat to biodiversity across the globe. When confronted with these invaders, native species that evolved independently are often defenseless. CRISPR gene drive systems could provide a solution to this problem by spreading transgenes among invaders that induce population collapse, and could be deployed even where traditional control methods are impractical or prohibitively expensive. Here, we develop a high-fidelity model of an island population of invasive rodents that includes three types of suppression gene drive systems. The individual-based model is spatially explicit, allows for overlapping generations and a fluctuating population size, and includes variables for drive fitness, efficiency, resistance allele formation rate, as well as a variety of ecological parameters. The computational burden of evaluating a model with such a high number of parameters presents a substantial barrier to a comprehensive understanding of its outcome space. We therefore accompany our population model with a meta-model that utilizes supervised machine learning to approximate the outcome space of the underlying model with a high degree of accuracy. This enables us to conduct an exhaustive inquiry of the population model, including variance-based sensitivity analyses using tens of millions of evaluations. Our results suggest that sufficiently capable gene drive systems have the potential to eliminate island populations of rodents under a wide range of demographic assumptions, though only if resistance can be kept to a minimal level. This study highlights the power of supervised machine learning to identify the key parameters and processes that determine the population dynamics of a complex evolutionary system.
Collapse
Affiliation(s)
- Samuel E. Champer
- Department of Computational Biology, Cornell University, Ithaca, New York, United States of America
| | - Nathan Oakes
- Department of Computational Biology, Cornell University, Ithaca, New York, United States of America
| | - Ronin Sharma
- Department of Computational Biology, Cornell University, Ithaca, New York, United States of America
| | - Pablo García-Díaz
- Manaaki Whenua–Landcare Research, Lincoln, New Zealand and School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Jackson Champer
- Department of Computational Biology, Cornell University, Ithaca, New York, United States of America
| | - Philipp W. Messer
- Department of Computational Biology, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
30
|
Legros M, Marshall JM, Macfadyen S, Hayes KR, Sheppard A, Barrett LG. Gene drive strategies of pest control in agricultural systems: Challenges and opportunities. Evol Appl 2021; 14:2162-2178. [PMID: 34603490 PMCID: PMC8477592 DOI: 10.1111/eva.13285] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 06/24/2021] [Accepted: 07/19/2021] [Indexed: 12/18/2022] Open
Abstract
Recent advances in gene-editing technologies have opened new avenues for genetic pest control strategies, in particular around the use of gene drives to suppress or modify pest populations. Significant uncertainty, however, surrounds the applicability of these strategies to novel target species, their efficacy in natural populations and their eventual safety and acceptability as control methods. In this article, we identify issues associated with the potential use of gene drives in agricultural systems, to control pests and diseases that impose a significant cost to agriculture around the world. We first review the need for innovative approaches and provide an overview of the most relevant biological and ecological traits of agricultural pests that could impact the outcome of gene drive approaches. We then describe the specific challenges associated with using gene drives in agricultural systems, as well as the opportunities that these environments may offer, focusing in particular on the advantages of high-threshold gene drives. Overall, we aim to provide a comprehensive view of the potential opportunities and the remaining uncertainties around the use of gene drives in agricultural systems.
Collapse
Affiliation(s)
- Mathieu Legros
- CSIRO Agriculture and FoodCanberraACTAustralia
- CSIRO Synthetic Biology Future Science PlatformCanberraACTAustralia
| | - John M. Marshall
- Divisions of Biostatistics and Epidemiology – School of Public HealthUniversity of CaliforniaBerkeleyCAUSA
| | | | | | | | - Luke G. Barrett
- CSIRO Agriculture and FoodCanberraACTAustralia
- CSIRO Synthetic Biology Future Science PlatformCanberraACTAustralia
| |
Collapse
|
31
|
Sutter A, Price TA, Wedell N. The impact of female mating strategies on the success of insect control technologies. CURRENT OPINION IN INSECT SCIENCE 2021; 45:75-83. [PMID: 33601059 DOI: 10.1016/j.cois.2021.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/11/2021] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
Attempts to control insect pests and disease vectors have a long history. Recently, new technology has opened a whole new range of possible methods to suppress or transform natural populations. But it has also become clear that a better understanding of the ecology of targeted populations is needed. One key parameter is mating behaviour. Often modified males are released which need to successfully reproduce with females while competing with wild males. Insect control techniques can be affected by target species' mating ecology, and conversely mating ecology is likely to evolve in response to manipulation attempts. A better understanding of (female) mating behaviour will help anticipate and overcome potential challenges, and thus make desirable outcomes more likely.
Collapse
Affiliation(s)
- Andreas Sutter
- School of Biological Sciences, University of East Anglia, Norwich Research Park, NR4 7TJ Norwich, UK
| | - Tom Ar Price
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Nina Wedell
- Biosciences, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK.
| |
Collapse
|
32
|
Martinossi-Allibert I, Veller C, Ament-Velásquez SL, Vogan AA, Rueffler C, Johannesson H. Invasion and maintenance of meiotic drivers in populations of ascomycete fungi. Evolution 2021; 75:1150-1169. [PMID: 33764512 DOI: 10.1111/evo.14214] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 02/25/2021] [Indexed: 12/30/2022]
Abstract
Meiotic drivers (MDs) are selfish genetic elements that are able to become overrepresented among the products of meiosis. This transmission advantage makes it possible for them to spread in a population even when they impose fitness costs on their host organisms. Whether an MD can invade a population, and subsequently reach fixation or coexist in a stable polymorphism, depends on the one hand on the biology of the host organism, including its life cycle, mating system, and population structure, and on the other hand on the specific fitness effects of the driving allele on the host. Here, we present a population genetic model for spore killing, a type of drive specific to fungi. We show how ploidy level, rate of selfing, and efficiency of spore killing affect the invasion probability of a driving allele and the conditions for its stable coexistence with a nondriving allele. Our model can be adapted to different fungal life cycles, and is applied here to two well-studied genera of filamentous ascomycetes known to harbor spore-killing elements, Neurospora and Podospora. We discuss our results in the light of recent empirical findings for these two systems.
Collapse
Affiliation(s)
| | - Carl Veller
- Department of Evolution and Ecology, University of California, Davis, California, 95616
| | | | - Aaron A Vogan
- Department of Organismal Biology, Uppsala University, Uppsala, 75236, Sweden
| | - Claus Rueffler
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala, 75236, Sweden
| | - Hanna Johannesson
- Department of Organismal Biology, Uppsala University, Uppsala, 75236, Sweden
| |
Collapse
|
33
|
Abstract
Gene drives offer the possibility of altering and even suppressing wild populations of countless plant and animal species, and CRISPR technology now provides the technical feasibility of engineering them. However, population-suppression gene drives are prone to select resistance, should it arise. Here, we develop mathematical and computational models to identify conditions under which suppression drives will evade resistance, even if resistance is present initially. Previous models assumed resistance is allelic to the drive. We relax this assumption and show that linkage between the resistance and drive loci is critical to the evolution of resistance and that evolution of resistance requires (negative) linkage disequilibrium between the two loci. When the two loci are unlinked or only partially so, a suppression drive that causes limited inviability can evolve to fixation while causing only a minor increase in resistance frequency. Once fixed, the drive allele no longer selects resistance. Our analyses suggest that among gene drives that cause moderate suppression, toxin-antidote systems are less apt to select for resistance than homing drives. Single drives of moderate effect might cause only moderate population suppression, but multiple drives (perhaps delivered sequentially) would allow arbitrary levels of suppression. The most favorable case for evolution of resistance appears to be with suppression homing drives in which resistance is dominant and fully suppresses transmission distortion; partial suppression by resistance heterozygotes or recessive resistance are less prone to resistance evolution. Given that it is now possible to engineer CRISPR-based gene drives capable of circumventing allelic resistance, this design may allow for the engineering of suppression gene drives that are effectively resistance-proof.
Collapse
Affiliation(s)
- Richard Gomulkiewicz
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Micki L Thies
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - James J Bull
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| |
Collapse
|
34
|
Champer J, Kim IK, Champer SE, Clark AG, Messer PW. Suppression gene drive in continuous space can result in unstable persistence of both drive and wild-type alleles. Mol Ecol 2021; 30:1086-1101. [PMID: 33404162 DOI: 10.1111/mec.15788] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 12/23/2020] [Indexed: 12/31/2022]
Abstract
Rapid evolutionary processes can produce drastically different outcomes when studied in panmictic population models vs. spatial models. One such process is gene drive, which describes the spread of "selfish" genetic elements through a population. Engineered gene drives are being considered for the suppression of disease vectors or invasive species. While laboratory experiments and modelling in panmictic populations have shown that such drives can rapidly eliminate a population, it remains unclear if these results translate to natural environments where individuals inhabit a continuous landscape. Using spatially explicit simulations, we show that the release of a suppression drive can result in what we term "chasing" dynamics, in which wild-type individuals recolonize areas where the drive has locally eliminated the population. Despite the drive subsequently reconquering these areas, complete population suppression often fails to occur or is substantially delayed. This increases the likelihood that the drive is lost or that resistance evolves. We analyse how chasing dynamics are influenced by the type of drive, its efficiency, fitness costs, and ecological factors such as the maximal growth rate of the population and levels of dispersal and inbreeding. We find that chasing is more common for lower efficiency drives when dispersal is low and that some drive mechanisms are substantially more prone to chasing behaviour than others. Our results demonstrate that the population dynamics of suppression gene drives are determined by a complex interplay of genetic and ecological factors, highlighting the need for realistic spatial modelling to predict the outcome of drive releases in natural populations.
Collapse
Affiliation(s)
- Jackson Champer
- Department of Computational Biology, Cornell University, Ithaca, New York, USA.,Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | - Isabel K Kim
- Department of Computational Biology, Cornell University, Ithaca, New York, USA
| | - Samuel E Champer
- Department of Computational Biology, Cornell University, Ithaca, New York, USA
| | - Andrew G Clark
- Department of Computational Biology, Cornell University, Ithaca, New York, USA.,Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | - Philipp W Messer
- Department of Computational Biology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
35
|
Noble LM, Yuen J, Stevens L, Moya N, Persaud R, Moscatelli M, Jackson JL, Zhang G, Chitrakar R, Baugh LR, Braendle C, Andersen EC, Seidel HS, Rockman MV. Selfing is the safest sex for Caenorhabditis tropicalis. eLife 2021; 10:e62587. [PMID: 33427200 PMCID: PMC7853720 DOI: 10.7554/elife.62587] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 01/08/2021] [Indexed: 12/30/2022] Open
Abstract
Mating systems have profound effects on genetic diversity and compatibility. The convergent evolution of self-fertilization in three Caenorhabditis species provides a powerful lens to examine causes and consequences of mating system transitions. Among the selfers, Caenorhabditis tropicalis is the least genetically diverse and most afflicted by outbreeding depression. We generated a chromosomal-scale genome for C. tropicalis and surveyed global diversity. Population structure is very strong, and islands of extreme divergence punctuate a genomic background that is highly homogeneous around the globe. Outbreeding depression in the laboratory is caused largely by multiple Medea-like elements, genetically consistent with maternal toxin/zygotic antidote systems. Loci with Medea activity harbor novel and duplicated genes, and their activity is modified by mito-nuclear background. Segregating Medea elements dramatically reduce fitness, and simulations show that selfing limits their spread. Frequent selfing in C. tropicalis may therefore be a strategy to avoid Medea-mediated outbreeding depression.
Collapse
Affiliation(s)
- Luke M Noble
- Department of Biology and Center for Genomics & Systems Biology, New York UniversityNew YorkUnited States
- Institute de Biologie, École Normale Supérieure, CNRS, InsermParisFrance
| | - John Yuen
- Department of Biology and Center for Genomics & Systems Biology, New York UniversityNew YorkUnited States
| | - Lewis Stevens
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Nicolas Moya
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Riaad Persaud
- Department of Biology and Center for Genomics & Systems Biology, New York UniversityNew YorkUnited States
| | - Marc Moscatelli
- Department of Biology and Center for Genomics & Systems Biology, New York UniversityNew YorkUnited States
| | - Jacqueline L Jackson
- Department of Biology and Center for Genomics & Systems Biology, New York UniversityNew YorkUnited States
| | - Gaotian Zhang
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | | | - L Ryan Baugh
- Department of Biology, Duke UniversityDurhamUnited States
| | - Christian Braendle
- Institut de Biologie Valrose, Université Côte d’Azur, CNRS, InsermNiceFrance
| | - Erik C Andersen
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Hannah S Seidel
- Department of Biology, Eastern Michigan UniversityYpsilantiUnited States
| | - Matthew V Rockman
- Department of Biology and Center for Genomics & Systems Biology, New York UniversityNew YorkUnited States
| |
Collapse
|
36
|
Hay BA, Oberhofer G, Guo M. Engineering the Composition and Fate of Wild Populations with Gene Drive. ANNUAL REVIEW OF ENTOMOLOGY 2021; 66:407-434. [PMID: 33035437 DOI: 10.1146/annurev-ento-020117-043154] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Insects play important roles as predators, prey, pollinators, recyclers, hosts, parasitoids, and sources of economically important products. They can also destroy crops; wound animals; and serve as vectors for plant, animal, and human diseases. Gene drive-a process by which genes, gene complexes, or chromosomes encoding specific traits are made to spread through wild populations, even if these traits result in a fitness cost to carriers-provides new opportunities for altering populations to benefit humanity and the environment in ways that are species specific and sustainable. Gene drive can be used to alter the genetic composition of an existing population, referred to as population modification or replacement, or to bring about population suppression or elimination. We describe technologies under consideration, progress that has been made, and remaining technological hurdles, particularly with respect to evolutionary stability and our ability to control the spread and ultimate fate of genes introduced into populations.
Collapse
Affiliation(s)
- Bruce A Hay
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA; ,
- St. John's College, University of Cambridge, Cambridge CB2 1TP, United Kingdom
| | - Georg Oberhofer
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA; ,
| | - Ming Guo
- Departments of Neurology and Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA;
| |
Collapse
|
37
|
Yuksel MK, Remien CH, Karki B, Bull JJ, Krone SM. Vector dynamics influence spatially imperfect genetic interventions against disease. EVOLUTION MEDICINE AND PUBLIC HEALTH 2020; 9:1-10. [PMID: 33664955 PMCID: PMC7910803 DOI: 10.1093/emph/eoaa035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/18/2020] [Indexed: 11/30/2022]
Abstract
Background and objectives Genetic engineering and similar technologies offer promising new approaches to controlling human diseases by blocking transmission from vectors. However, in spatially structured populations, imperfect coverage of the vector will leave pockets in which the parasite may persist. Movement by humans may disrupt this local persistence and facilitate eradication when these pockets are small, spreading parasite reproduction outside unprotected areas and into areas that block its reproduction. Here, we consider the sensitivity of this process to biological details: do simple generalities emerge that may facilitate interventions? Methodology We develop formal mathematical models of this process similar to standard Ross–Macdonald models, but (i) specifying spatial structure of two patches, with vector transmission blocked in one patch but not in the other, (ii) allowing temporary human movement (travel instead of migration) and (iii) considering two different modes of mosquito biting. Results We find that there is no invariant effect of disrupting spatial structure with travel. For both biting models, travel out of the unprotected patch has different consequences than travel by visitors into the patch, but the effects are reversed between the two biting models. Conclusions and implications Overall, the effect of human travel on the maintenance of vector-borne diseases in structured habitats must be considered in light of the actual biology of mosquito abundances, biting dynamics and human movement patterns. Lay summary: Genetic interventions against pathogens transmitted by insect vectors are promising methods of controlling infectious diseases. These interventions may be imperfect, leaving pockets where the parasite persists. How will human movement between protected and unprotected areas affect persistence? Mathematical models developed here show that the answer is ecology-dependent, depending on vector biting behavior.
Collapse
Affiliation(s)
- Mete K Yuksel
- Department of Mathematics, University of Idaho, Moscow, ID 83844-1103, USA
| | | | - Bandita Karki
- Department of Mathematics, University of Idaho, Moscow, ID 83844-1103, USA
| | - James J Bull
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844-1103, USA
| | - Stephen M Krone
- Department of Mathematics, University of Idaho, Moscow, ID 83844-1103, USA
| |
Collapse
|
38
|
Gardiner DM, Rusu A, Barrett L, Hunter GC, Kazan K. Can natural gene drives be part of future fungal pathogen control strategies in plants? THE NEW PHYTOLOGIST 2020; 228:1431-1439. [PMID: 32593207 DOI: 10.1111/nph.16779] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Globally, fungal pathogens cause enormous crop losses and current control practices are not always effective, economical or environmentally sustainable. Tools enabling genetic management of wild pathogen populations could potentially solve many problems associated with plant diseases. A natural gene drive from a heterologous species can be used in the globally important cereal pathogen Fusarium graminearum to remove pathogenic traits from contained populations of the fungus. The gene drive element became fixed in a freely crossing population in only three generations. Repeat-induced point mutation (RIP), a natural genome defence mechanism in fungi that causes C to T mutations during meiosis in highly similar sequences, may be useful to recall the gene drive following release, should a failsafe mechanism be required. We propose that gene drive technology is a potential tool to control plant pathogens once its efficacy is demonstrated under natural settings.
Collapse
Affiliation(s)
- Donald M Gardiner
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation (CSIRO), 306 Carmody Road, St Lucia, Queensland, 4067, Australia
| | - Anca Rusu
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation (CSIRO), 306 Carmody Road, St Lucia, Queensland, 4067, Australia
| | - Luke Barrett
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clunies Ross Street, Acton, ACT, 2601, Australia
| | - Gavin C Hunter
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clunies Ross Street, Acton, ACT, 2601, Australia
| | - Kemal Kazan
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation (CSIRO), 306 Carmody Road, St Lucia, Queensland, 4067, Australia
| |
Collapse
|
39
|
Dhole S, Lloyd AL, Gould F. Gene Drive Dynamics in Natural Populations: The Importance of Density Dependence, Space, and Sex. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2020; 51:505-531. [PMID: 34366722 PMCID: PMC8340601 DOI: 10.1146/annurev-ecolsys-031120-101013] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The spread of synthetic gene drives is often discussed in the context of panmictic populations connected by gene flow and described with simple deterministic models. Under such assumptions, an entire species could be altered by releasing a single individual carrying an invasive gene drive, such as a standard homing drive. While this remains a theoretical possibility, gene drive spread in natural populations is more complex and merits a more realistic assessment. The fate of any gene drive released in a population would be inextricably linked to the population's ecology. Given the uncertainty often involved in ecological assessment of natural populations, understanding the sensitivity of gene drive spread to important ecological factors is critical. Here we review how different forms of density dependence, spatial heterogeneity, and mating behaviors can impact the spread of self-sustaining gene drives. We highlight specific aspects of gene drive dynamics and the target populations that need further research.
Collapse
Affiliation(s)
- Sumit Dhole
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Alun L Lloyd
- Biomathematics Graduate Program and Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27695-8213, USA
- Genetic Engineering and Society Center, North Carolina State University, Raleigh, North Carolina 27695-7565, USA
| | - Fred Gould
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695, USA
- Genetic Engineering and Society Center, North Carolina State University, Raleigh, North Carolina 27695-7565, USA
| |
Collapse
|
40
|
North AR, Burt A, Godfray HCJ. Modelling the suppression of a malaria vector using a CRISPR-Cas9 gene drive to reduce female fertility. BMC Biol 2020; 18:98. [PMID: 32782000 PMCID: PMC7422583 DOI: 10.1186/s12915-020-00834-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/22/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Gene drives based on CRISPR-Cas9 technology are increasingly being considered as tools for reducing the capacity of mosquito populations to transmit malaria, and one of the most promising options is driving endonuclease genes that reduce the fertility of female mosquitoes. In particular, there is much interest in constructs that target the conserved mosquito doublesex (dsx) gene such that the emergence of functional drive-resistant alleles is unlikely. Proof of principle that these constructs can lead to substantial population suppression has been obtained in population cages, and they are being evaluated for use in sub-Saharan Africa. Here, we use simulation modelling to understand the factors affecting the spread of this type of gene drive over a one million-square kilometre area of West Africa containing substantial environmental and social heterogeneity. RESULTS We found that a driving endonuclease gene targeting female fertility could lead to substantial reductions in malaria vector populations on a regional scale. The exact level of suppression is influenced by additional fitness costs of the transgene such as the somatic expression of Cas9, and its deposition in sperm or eggs leading to damage to the zygote. In the absence of these costs, or of emergent drive-resistant alleles that restore female fertility, population suppression across the study area is predicted to stabilise at ~ 95% 4 years after releases commence. Small additional fitness costs do not greatly affect levels of suppression, though if the fertility of females whose offspring transmit the construct drops by more than ~ 40%, then population suppression is much less efficient. We show the suppression potential of a drive allele with high fitness costs can be enhanced by engineering it also to express male bias in the progeny of transgenic males. Irrespective of the strength of the drive allele, the spatial model predicts somewhat less suppression than equivalent non-spatial models, in particular in highly seasonal regions where dry season stochasticity reduces drive efficiency. We explored the robustness of these results to uncertainties in mosquito ecology, in particular their method of surviving the dry season and their dispersal rates. CONCLUSIONS The modelling presented here indicates that considerable suppression of vector populations can be achieved within a few years of using a female sterility gene drive, though the impact is likely to be heterogeneous in space and time.
Collapse
Affiliation(s)
- Ace R North
- Department of Zoology, University of Oxford, Oxford, UK.
| | | | | |
Collapse
|
41
|
Champer J, Zhao J, Champer SE, Liu J, Messer PW. Population Dynamics of Underdominance Gene Drive Systems in Continuous Space. ACS Synth Biol 2020; 9:779-792. [PMID: 32142612 DOI: 10.1021/acssynbio.9b00452] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Underdominance systems can quickly spread through a population, but only when introduced in considerable numbers. This promises a gene drive mechanism that is less invasive than homing drives, potentially enabling new approaches in the fight against vector-borne diseases. If regional confinement can indeed be achieved, the decision-making process for a release would likely be much simpler compared to other, more invasive types of drives. The capacity of underdominance gene drive systems to spread in a target population without invading other populations is typically assessed via network models of panmictic demes linked by migration. However, it remains less clear how such systems would behave in more realistic population models where organisms move over a continuous landscape. Here, we use individual-based simulations to study the dynamics of several proposed underdominance systems in continuous-space. We find that all these systems can fail to persist in such environments, even after an initially successful establishment in the release area, confirming previous theoretical results from diffusion theory. At the same time, we find that a two-locus two-toxin-antidote system can invade connected demes through a narrow migration corridor. This suggests that the parameter space where underdominance systems can establish and persist in a release area while at the same time remaining confined to that area could be quite limited, depending on how a population is spatially structured. Overall, these results indicate that realistic spatial context must be considered when assessing strategies for the deployment of underdominance drives.
Collapse
|
42
|
Bull JJ, Remien CH, Gomulkiewicz R, Krone SM. Spatial structure undermines parasite suppression by gene drive cargo. PeerJ 2019; 7:e7921. [PMID: 31681512 PMCID: PMC6824332 DOI: 10.7717/peerj.7921] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 09/18/2019] [Indexed: 12/17/2022] Open
Abstract
Gene drives may be used in two ways to curtail vectored diseases. Both involve engineering the drive to spread in the vector population. One approach uses the drive to directly depress vector numbers, possibly to extinction. The other approach leaves intact the vector population but suppresses the disease agent during its interaction with the vector. This second application may use a drive engineered to carry a genetic cargo that blocks the disease agent. An advantage of the second application is that it is far less likely to select vector resistance to block the drive, but the disease agent may instead evolve resistance to the inhibitory cargo. However, some gene drives are expected to spread so fast and attain such high coverage in the vector population that, if the disease agent can evolve resistance only gradually, disease eradication may be feasible. Here we use simple models to show that spatial structure in the vector population can greatly facilitate persistence and evolution of resistance by the disease agent. We suggest simple approaches to avoid some types of spatial structure, but others may be intrinsic to the populations being challenged and difficult to overcome.
Collapse
Affiliation(s)
- James J. Bull
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States of America
| | - Christopher H. Remien
- Department of Mathematics, University of Idaho, Moscow, ID, United States of America
| | - Richard Gomulkiewicz
- School of Biological Sciences, Washington State University, Pullman, WA, United States of America
| | - Stephen M. Krone
- Department of Mathematics, University of Idaho, Moscow, ID, United States of America
| |
Collapse
|
43
|
Barrett LG, Legros M, Kumaran N, Glassop D, Raghu S, Gardiner DM. Gene drives in plants: opportunities and challenges for weed control and engineered resilience. Proc Biol Sci 2019; 286:20191515. [PMID: 31551052 PMCID: PMC6784734 DOI: 10.1098/rspb.2019.1515] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/06/2019] [Indexed: 02/07/2023] Open
Abstract
Plant species, populations and communities are under threat from climate change, invasive pathogens, weeds and habitat fragmentation. Despite considerable research effort invested in genome engineering for crop improvement, the development of genetic tools for the management of wild plant populations has rarely been given detailed consideration. Gene drive systems that allow direct genetic management of plant populations via the spread of fitness-altering genetic modifications could be of great utility. However, despite the rapid development of synthetic tools and their enormous promise, little explicit consideration has been given to their application in plants and, to date, they remain untested. This article considers the potential utility of gene drives for the management of wild plant populations, and examines the factors that might influence the design, spread and efficacy of synthetic drives. To gain insight into optimal ways to design and deploy synthetic drive systems, we investigate the diversity of mechanisms underlying natural gene drives and their dynamics within plant populations and species. We also review potential approaches for engineering gene drives and discuss their potential application to plant genomes. We highlight the importance of considering the impact of plant life-history and genetic architecture on the dynamics of drive, investigate the potential for different types of resistance evolution, and touch on the ethical, regulatory and social challenges ahead.
Collapse
Affiliation(s)
- Luke G. Barrett
- CSIRO Agriculture and Food, Canberra, Australian Capital Territory, Australia
- CSIRO Synthetic Biology Future Science Platform, Canberra, Australian Capital Territory, Australia
| | - Mathieu Legros
- CSIRO Agriculture and Food, Canberra, Australian Capital Territory, Australia
- CSIRO Synthetic Biology Future Science Platform, Canberra, Australian Capital Territory, Australia
| | | | - Donna Glassop
- CSIRO Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | - S. Raghu
- CSIRO Health and Biosecurity, Brisbane, Queensland, Australia
| | - Donald M. Gardiner
- CSIRO Agriculture and Food, Canberra, Australian Capital Territory, Australia
| |
Collapse
|