1
|
Tang X, Estau D, Huang X, Li Z. Edaravone targets PDGFRβ to attenuate VSMC phenotypic transition. Life Sci 2025; 370:123568. [PMID: 40113075 DOI: 10.1016/j.lfs.2025.123568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/06/2025] [Accepted: 03/16/2025] [Indexed: 03/22/2025]
Abstract
AIMS PDGFRβ-driven phenotypic transition of vascular smooth muscle cells (VSMCs) is a pathological hallmark in various cardiovascular diseases, yet effective interventions are lacking. Here, we explored a promising drug targeting PDGFRβ against VSMC phenotypic transition. MATERIALS AND METHODS Connectivity map (CMAP) analysis was employed to identify the promising drug targeting PDGFRβ against VSMC phenotypic transition. A cell model stimulated with PDGF-BB and a mouse model of femoral artery injury were used to study the effects of edaravone (EDA) on VSMC phenotypic transition and PDGFRβ signaling. Molecular docking, drug affinity responsive target stability (DRATS) and cellular thermal shift assay (CETSA) were used to investigate whether EDA targeted PDGFRβ, which was further validated by a titration experiment. KEY FINDINGS Our study revealed that an approved drug EDA might target PDGFRβ against VSMC phenotypic transition. CMAP analysis unraveled EDA as a potential drug related to PDGFRβ. EDA markedly suppressed PDGFRβ-mediated VSMC transition from a contractile to a dedifferentiated phenotype, and reduced neointimal formation in wire-injured arteries. Mechanistically, molecular docking studies showed that EDA interacted with PDGFRβ, which was further confirmed by DRATS and CETSA. Consequently, EDA significantly suppressed PDGFRβ downstream signaling, including AKT and ERK1/2. Furthermore, EDA inhibited VSMC phenotypic transition in a PDGFRβ-dependent manner. SIGNIFICANCE Our work identifies EDA as a repurposed drug targeting PDGFRβ to attenuate VSMC phenotypic transition and provide new intervention measures for cardiovascular diseases associated with VSMC phenotypic transition.
Collapse
MESH Headings
- Animals
- Receptor, Platelet-Derived Growth Factor beta/metabolism
- Receptor, Platelet-Derived Growth Factor beta/antagonists & inhibitors
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/cytology
- Mice
- Edaravone/pharmacology
- Molecular Docking Simulation
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Male
- Mice, Inbred C57BL
- Phenotype
- Humans
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Xueqing Tang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; Beijing Key Laboratory of Cardiovascular Receptors Research; Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Dannya Estau
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China; Department of Pharmaceutical Management and Clinical Pharmacy, College of Pharmacy, Peking University, Beijing, China
| | - Xiaoru Huang
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China; Department of Pharmaceutical Management and Clinical Pharmacy, College of Pharmacy, Peking University, Beijing, China
| | - Zijian Li
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; Beijing Key Laboratory of Cardiovascular Receptors Research; Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China; Department of Pharmaceutical Management and Clinical Pharmacy, College of Pharmacy, Peking University, Beijing, China.
| |
Collapse
|
2
|
Wang S, Shi X, Xiong T, Chen Q, Yang Y, Chen W, Zhang K, Nan Y, Huang Q, Ai K. Inhibiting Mitochondrial Damage for Efficient Treatment of Cerebral Ischemia-Reperfusion Injury Through Sequential Targeting Nanomedicine of Neuronal Mitochondria in Affected Brain Tissue. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409529. [PMID: 39501980 DOI: 10.1002/adma.202409529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/25/2024] [Indexed: 12/13/2024]
Abstract
Oxidative stress, predominantly from neuronal mitochondrial damage and the resultant cytokine storm, is central to cerebral ischemia-reperfusion injury (CIRI). However, delivering drugs to neuronal mitochondria remains challenging due to the blood-brain barrier (BBB), which impedes drug entry into affected brain tissues. This study introduces an innovative tannic acid (TA) and melanin-modified heteropolyacid nanomedicine (MHT), which highly specifically eliminates the neuronal mitochondrial reactive oxygen radicals burst to efficiently reduce neuronal mitochondrial damage through a strategically designed sequential targeting strategy from affected brain tissue to neuronal mitochondria. TA endows MHT with sequential targeting ability by binding to matrix proteins exposed to the damaged BBB and mitochondrial outer membrane proteins of neurons, while melanin significantly enhances the antioxidant capacity of MHT. Consequently, MHT effectively inhibits neuronal apoptosis by protecting mitochondria and reversing the inflammatory immune environment through the deactivation of the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway. MHT demonstrated a strong therapeutic effect on CIRI, with an ultralow dose (2 mg kg-1) proving effective in reversing the condition. This work not only introduces a new avenue to significantly reduce CIRI through sequential targeting therapy but also offers a new paradigm for treating other ischemia-reperfusion injury diseases.
Collapse
Affiliation(s)
- Shuya Wang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, P. R. China
| | - Xiaojing Shi
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, P. R. China
| | - Tingli Xiong
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, P. R. China
| | - Qiaohui Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, P. R. China
| | - Yongqi Yang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, P. R. China
| | - Wensheng Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China
| | - Kexin Zhang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, P. R. China
| | - Yayun Nan
- Geriatric Medical Center, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, 750002, P. R. China
| | - Qiong Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, P. R. China
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China
| |
Collapse
|
3
|
Sun J, Shao Y, Pei L, Zhu Q, Yu X, Yao W. AKAP1 alleviates VSMC phenotypic modulation and neointima formation by inhibiting Drp1-dependent mitochondrial fission. Biomed Pharmacother 2024; 176:116858. [PMID: 38850669 DOI: 10.1016/j.biopha.2024.116858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/26/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
The roles and mechanisms of A-kinase anchoring protein 1 (AKAP1) in vascular smooth muscle cell (VSMC) phenotypic modulation and neointima formation are currently unknown. AKAP1 is a mitochondrial PKA-anchored protein and maintains mitochondrial homeostasis. This study aimed to investigate how AKAP1/PKA signaling plays a protective role in inhibiting VSMC phenotypic transformation and neointima formation by regulating mitochondrial fission. The results showed that both PDGF-BB treatment and balloon injury reduced the transcription, expression, and mitochondrial anchoring of AKAP1. In vitro, the overexpression of AKAP1 significantly inhibited PDGF-BB mediated VSMC proliferation and migration, whereas AKAP1 knockdown further aggravated VSMC phenotypic transformation. Additionally, in the balloon injury model in vivo, AKAP1 overexpression reduced neointima formation, the muscle fiber area ratio, and rat VSMC proliferation and migration. Furthermore, PDGF-BB and balloon injury inhibited Drp1 phosphorylation at Ser637 and promoted Drp1 activity and mitochondrial midzone fission; AKAP1 overexpression reversed these effects. AKAP1 overexpression also inhibited the distribution of mitochondria at the plasma membrane and the reduction of PKARIIβ expression induced by PDGF-BB, as evidenced by an increase in mitochondria-plasma membrane distance as well as PKARIIβ protein levels. Moreover, the PKA agonist promoted Drp1 phosphorylation (Ser637) and inhibited PDGF-BB-mediated mitochondrial fission, cell proliferation, and migration. The PKA antagonist reversed the increase in Drp1 phosphorylation (Ser637) and the decline in mitochondrial midzone fission and VSMC phenotypic transformation caused by AKAP1 overexpression. The results of this study reveal that AKAP1 protects VSMCs against phenotypic modulation by improving Drp1 phosphorylation at Ser637 through PKA and inhibiting mitochondrial fission, thereby preventing neointima formation.
Collapse
MESH Headings
- Animals
- Male
- Rats
- A Kinase Anchor Proteins/metabolism
- A Kinase Anchor Proteins/genetics
- Becaplermin/pharmacology
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Cells, Cultured
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Dynamins/metabolism
- Mitochondrial Dynamics/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/pathology
- Neointima/metabolism
- Neointima/pathology
- Phenotype
- Phosphorylation
- Rats, Sprague-Dawley
- Signal Transduction
Collapse
Affiliation(s)
- Jingwen Sun
- School of Pharmacy, Nantong University, 19 QiXiu Road, Nantong 226001, China
| | - Yuting Shao
- School of Pharmacy, Nantong University, 19 QiXiu Road, Nantong 226001, China
| | - Lele Pei
- School of Pharmacy, Nantong University, 19 QiXiu Road, Nantong 226001, China
| | - Qingyu Zhu
- School of Pharmacy, Nantong University, 19 QiXiu Road, Nantong 226001, China
| | - Xiaoqiang Yu
- Department of Vascular Surgery, The First People's Hospital of Nantong, Nantong 226001, China
| | - Wenjuan Yao
- School of Pharmacy, Nantong University, 19 QiXiu Road, Nantong 226001, China.
| |
Collapse
|
4
|
Kessler T, Sager HB, Mann M. Role of the extracellular matrix in cell-cell communication: a new therapeutic target? Eur Heart J 2023; 44:3495-3497. [PMID: 36801989 PMCID: PMC7615145 DOI: 10.1093/eurheartj/ehad061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/20/2023] Open
Affiliation(s)
- Thorsten Kessler
- German Heart Centre Munich, Department of Cardiology, Technical University of Munich, Munich, Germany
- German Centre for Cardiovascular Research (DZHK e.V.), partner site Munich Heart Alliance, Munich, Germany
| | - Hendrik B. Sager
- German Heart Centre Munich, Department of Cardiology, Technical University of Munich, Munich, Germany
- German Centre for Cardiovascular Research (DZHK e.V.), partner site Munich Heart Alliance, Munich, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
5
|
Lozano Í, Bangueses R, Rodríguez I, Pevida M, Rodríguez-Aguilar R, Rodríguez D, Espasandín-Arias M, Llames S, Meana Á, Suárez A, Rodríguez-Carrio J. In-stent restenosis is associated with proliferative skin healing and specific immune and endothelial cell profiles: results from the RACHEL trial. Front Immunol 2023; 14:1138247. [PMID: 37325628 PMCID: PMC10265483 DOI: 10.3389/fimmu.2023.1138247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction In-stent restenosis (ISR) is a major challenge in interventional cardiology. Both ISR and excessive skin healing are aberrant hyperplasic responses, which may be functionally related. However, the cellular component underlying ISR remains unclear, especially regarding vascular homeostasis. Recent evidence suggest that novel immune cell populations may be involved in vascular repair and damage, but their role in ISR has not been explored. The aims of this study is to analyze (i) the association between ISR and skin healing outcomes, and (ii) the alterations in vascular homeostasis mediators in ISR in univariate and integrative analyses. Methods 30 patients with ≥1 previous stent implantation with restenosis and 30 patients with ≥1 stent without restenosis both confirmed in a second angiogram were recruited. Cellular mediators were quantified in peripheral blood by flow cytometry. Skin healing outcomes were analyzed after two consecutive biopsies. Results Hypertrophic skin healing was more frequent in ISR patients (36.7%) compared to those ISR-free (16.7%). Patients with ISR were more likely to develop hypertrophic skin healing patterns (OR 4.334 [95% CI 1.044-18.073], p=0.033), even after correcting for confounders. ISR was associated with decreased circulating angiogenic T-cells (p=0.005) and endothelial progenitor cells (p<0.001), whereas CD4+CD28null and detached endothelial cells counts were higher (p<0.0001 and p=0.006, respectively) compared to their ISR-free counterparts. No differences in the frequency of monocyte subsets were found, although Angiotensin-Converting Enzyme expression was increased (non-classical: p<0.001; and intermediate: p<0.0001) in ISR. Despite no differences were noted in Low-Density Granulocytes, a relative increase in the CD16- compartment was observed in ISR (p=0.004). An unsupervised cluster analysis revealed the presence of three profiles with different clinical severity, unrelated to stent types or traditional risk factors. Conclusion ISR is linked to excessive skin healing and profound alterations in cellular populations related to vascular repair and endothelial damage. Distinct cellular profiles can be distinguished within ISR, suggesting that different alterations may uncover different ISR clinical phenotypes.
Collapse
Affiliation(s)
- Íñigo Lozano
- Department of Cardiology, Hospital Universitario Cabueñes, Gijón, Asturias, Spain
- Cardiac Pathology Research Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - Roi Bangueses
- Department of Cardiology, Hospital Universitario Cabueñes, Gijón, Asturias, Spain
| | - Isabel Rodríguez
- Cardiac Pathology Research Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - Marta Pevida
- Blood Tansfusion Center and Tissue Bank of Asturias, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Oviedo, Asturias, Spain
- Grupo de Investigación en Oftalmología, Ciencias de la Visión y Terapias Avanzadas (GOVITA), Instituto de Salud del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Oviedo, Asturias, Spain
| | - Raúl Rodríguez-Aguilar
- Department of Pathology Anatomy, Hospital Universitario Cabueñes, Gijón, Asturias, Spain
| | - Diana Rodríguez
- Department of Pathology Anatomy, Hospital Universitario Cabueñes, Gijón, Asturias, Spain
| | | | - Sara Llames
- Blood Tansfusion Center and Tissue Bank of Asturias, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Oviedo, Asturias, Spain
- Grupo de Investigación en Oftalmología, Ciencias de la Visión y Terapias Avanzadas (GOVITA), Instituto de Salud del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Fundación Jiménez Díaz, Madrid, Spain
| | - Álvaro Meana
- Blood Tansfusion Center and Tissue Bank of Asturias, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Oviedo, Asturias, Spain
- Grupo de Investigación en Oftalmología, Ciencias de la Visión y Terapias Avanzadas (GOVITA), Instituto de Salud del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Oviedo, Asturias, Spain
| | - Ana Suárez
- Area of Immunology, Department of Functional Biology, University of Oviedo, Oviedo, Asturias, Spain
- Grupo de Investigación Básica y Traslacional en Enfermedades Inflamatorias, Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Asturias, Spain
| | - Javier Rodríguez-Carrio
- Area of Immunology, Department of Functional Biology, University of Oviedo, Oviedo, Asturias, Spain
- Grupo de Investigación Básica y Traslacional en Enfermedades Inflamatorias, Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Asturias, Spain
| |
Collapse
|
6
|
Sarohi V, Basak T. Perturbed post-translational modification (PTM) network atlas of collagen I during stent-induced neointima formation. J Proteomics 2023; 276:104842. [PMID: 36775122 DOI: 10.1016/j.jprot.2023.104842] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 12/30/2022] [Accepted: 02/05/2023] [Indexed: 02/12/2023]
Abstract
Myocardial infarction (MI) leading to heart failure contributes to almost 85% of deaths associated with CVDs. MI results from plaque formation in the coronary artery which leads to a lack of oxygen and nutrients in the myocardium. To date, stenting is a widely used gold-standard technique to maintain the proper blood flow through coronary circulation in the myocardium. Bare metal stents (BMS) and drug-eluting stents (DES) are majorly used in implantation. However, BMS and DES both can induce neointima formation by depositing excessive collagens in the coronary arteries leading to restenosis. Identification and quantitative analysis of site-specific post-translational modifications (PTMs) of deposited COL1A1 from neointima ECM are not known. Applying our in-house workflow, we re-analyzed a previously published mass-spectrometry data set to comprehensively map site-specific prolyl-hydroxylation, lysyl hydroxylation, and O-glycosylation sites in COL1A1 from neointima ECM. Furthermore, we quantitated the occupancy level of 9 3-hydroxyproline (3-HyP) sites, 2 hydroxylysine sites, and glycosylation microheterogeneity on 6 lysine sites of COL1A1. Although the total level of COL1A1 was decreased in DES-induced neointima, the occupancy levels of 2 3-HyP sites (P872, and P881) and 2 HyK (K435 and K768) sites of COL1A1 were significantly (p < 0.05) elevated in DES-induced neointima compared to BMS-induced neointima. We also found O-glycosylation to be significantly elevated on 3 lysine sites (K573, K339, and K and K849) of COL1A1 in DES-induced neointima compared to BMS-induced neointima. Taken together, our first comprehensive PTM analysis of COL1A1 reflected significant site-specific alterations that may play a very important role in the ECM remodeling during stent-induced neointima formation in MI patients. SIGNIFICANCE: The knowledge about site-specific post-translational modifications (PTMs) of collagen 1 deposited in the neointima ECM during the post-stenting restenosis process is absent. Here for the first time, we report the altered levels of COL1A1 PTMs during metal stent and drug-eluting stent-induced neointima formation. Our study showcases a novel ECM remodeling through site-specific collagen PTMs during stent-induced restenosis.
Collapse
Affiliation(s)
- Vivek Sarohi
- School of Biosciences and Bioengineering (SBB), Indian Institute of Technology (IIT)- Mandi, India; BioX Center, IIT-Mandi, Himachal Pradesh 175075, India
| | - Trayambak Basak
- School of Biosciences and Bioengineering (SBB), Indian Institute of Technology (IIT)- Mandi, India; BioX Center, IIT-Mandi, Himachal Pradesh 175075, India.
| |
Collapse
|
7
|
Pesce M, Pompilio G, Bartunek J. The LIMA: A Drug-Eluting Graft and Coronary Flow Shock Absorber. Mayo Clin Proc 2023; 98:15-17. [PMID: 36603942 DOI: 10.1016/j.mayocp.2022.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 01/04/2023]
Affiliation(s)
| | - Giulio Pompilio
- Centro Cardiologico Monzino, IRCCS, Milan, Italy; Università di Milano, Milan, Italy
| | | |
Collapse
|
8
|
Xu H, Fang B, Bao C, Mao X, Zhu C, Ye L, Liu Q, Li Y, Du C, Qi H, Zhang X, Guan Y. The Prostaglandin E2 Receptor EP4 Promotes Vascular Neointimal Hyperplasia through Translational Control of Tenascin C via the cAPM/PKA/mTORC1/rpS6 Pathway. Cells 2022; 11:cells11172720. [PMID: 36078128 PMCID: PMC9454981 DOI: 10.3390/cells11172720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 12/05/2022] Open
Abstract
Prostaglandin E2 (PGE2) is an important metabolite of arachidonic acid which plays a crucial role in vascular physiology and pathophysiology via its four receptors (EP1-4). However, the role of vascular smooth muscle cell (VSMC) EP4 in neointimal hyperplasia is largely unknown. Here we showed that VSMC-specific deletion of EP4 (VSMC-EP4) ameliorated, while VSMC-specific overexpression of human EP4 promoted, neointimal hyperplasia in mice subjected to femoral artery wire injury or carotid artery ligation. In vitro studies revealed that pharmacological activation of EP4 promoted, whereas inhibition of EP4 suppressed, proliferation and migration of primary-cultured VSMCs. Mechanically, EP4 significantly increased the protein expression of tenascin C (TN-C), a pro-proliferative and pro-migratory extracellular matrix protein, at the translational level. Knockdown of TN-C markedly suppressed EP4 agonist-induced VSMC proliferation and migration. Further studies uncovered that EP4 upregulated TN-C protein expression via the PKA/mTORC1/Ribosomal protein S6 (rpS6) pathway. Together, our findings demonstrate that VSMC EP4 increases TN-C protein expression to promote neointimal hyperplasia via the PKA-mTORC1-rpS6 pathway. Therefore, VSMC EP4 may represent a potential therapeutic target for vascular restenosis.
Collapse
Affiliation(s)
- Hu Xu
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116041, China
| | - Bingying Fang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116041, China
| | - Chengzhen Bao
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116041, China
| | - Xiuhui Mao
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116041, China
| | - Chunhua Zhu
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116041, China
| | - Lan Ye
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116041, China
| | - Qian Liu
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116041, China
| | - Yaqing Li
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116041, China
| | - Chunxiu Du
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116041, China
| | - Hang Qi
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116041, China
| | - Xiaoyan Zhang
- Health Science Center, East China Normal University, Shanghai 200241, China
- Correspondence: (X.Z.); (Y.G.)
| | - Youfei Guan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116041, China
- Correspondence: (X.Z.); (Y.G.)
| |
Collapse
|
9
|
Chen C, Lu T, Wu Z, Xie X, Liu Y, Huang C, Liu Y. A proteomics analysis of neointima formation on decellularized vascular grafts reveals regenerative alterations in protein signature running head: Proteomics analysis of neointima formation. Front Bioeng Biotechnol 2022; 10:894956. [PMID: 36406232 PMCID: PMC9673820 DOI: 10.3389/fbioe.2022.894956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Neointima formation contributes to vascular grafts stenosis and thrombosis. It is a complex reaction that plays a significant role in the performance of vascular grafts. Despite its critical implications, little is known about the mechanisms underlying neointima formation. This study compares neointima proteome in different stages and plasma samples. Methods: Heterogenous acellular native arteries were implanted as abdominal aortic interposition grafts in a rabbit model. Grafts were harvested at 0.5, 1, 4, 6, 7, 14, 21, and 28 days post-surgery for histological and proteomic analysis of the neointima. Results: Histological examination showed a transformed morphological pattern and components, including serum proteins, inflammatory cells, and regenerative cells. Proteomics analysis of the neointima showed distinct characteristics after 14 days of implantation compared to early implantation. Early changes in the neointima samples were proteins involved in acute inflammation and thrombosis, followed by the accumulation of extracellular matrix (ECM) proteins. A total of 110 proteins were found to be differentially expressed in later samples of neointima compared to early controls. The enriched pathways were mainly protein digestion and adsorption, focal adhesion, PI3K-Akt signaling pathway, and ECM-receptor interaction in the late stage. All distributions of proteins in the neointima are different compared to plasma. Conclusion: The biological processes of neointima formation at different stages identified with proteome found developmental characteristics of vascular structure on a decellularized small vascular graft, and significant differences were identified by proteomics in the neointima of early-stage and late-stage after implantation. In the acute unstable phase, the loose and uniform neointima was mainly composed of plasma proteins and inflammatory cells. However, in the relatively stable later stage, the most notable results were an up-regulation of ECM components. The present study demonstrates an interaction between biological matter and vascular graft, provides insights into biological process changes of neointima and facilitates the construction of a functional bioengineered small vascular graft for future clinical applications.
Collapse
Affiliation(s)
- Chunyang Chen
- Department of Cardiovascular surgery, Second Xiangya Hospital of Central South University, Changsha, China
- Engineering Laboratory of Hunan Province for Cardiovascular Biomaterials, Changsha, China
| | - Ting Lu
- Department of Cardiovascular surgery, Second Xiangya Hospital of Central South University, Changsha, China
- Engineering Laboratory of Hunan Province for Cardiovascular Biomaterials, Changsha, China
| | - Zhongshi Wu
- Department of Cardiovascular surgery, Second Xiangya Hospital of Central South University, Changsha, China
- Engineering Laboratory of Hunan Province for Cardiovascular Biomaterials, Changsha, China
| | - Xinlong Xie
- Department of Cardiovascular surgery, Second Xiangya Hospital of Central South University, Changsha, China
- Engineering Laboratory of Hunan Province for Cardiovascular Biomaterials, Changsha, China
| | - Yalin Liu
- Department of Cardiovascular surgery, Second Xiangya Hospital of Central South University, Changsha, China
- Engineering Laboratory of Hunan Province for Cardiovascular Biomaterials, Changsha, China
| | - Can Huang
- Department of Cardiovascular surgery, Second Xiangya Hospital of Central South University, Changsha, China
- Engineering Laboratory of Hunan Province for Cardiovascular Biomaterials, Changsha, China
| | - Yuhong Liu
- Department of Cardiovascular surgery, Second Xiangya Hospital of Central South University, Changsha, China
- Engineering Laboratory of Hunan Province for Cardiovascular Biomaterials, Changsha, China
| |
Collapse
|
10
|
Zhang C, Liu C, Feng W. A Long-Term Clearing Cranial Window for Longitudinal Imaging of Cortical and Calvarial Ischemic Injury through the Intact Skull. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105893. [PMID: 35396810 PMCID: PMC9189679 DOI: 10.1002/advs.202105893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/01/2022] [Indexed: 05/26/2023]
Abstract
Skull is a reservoir for supplying immune cells that mediate brain immune surveillance. However, during intravital optical imaging of brain, conventional cranial windows requiring skull thinning or removal disrupt brain immunity integrity. Here, a novel long-term clearing cranial window (LCCW) based on the intact skull, dedicated to chronic skull transparency maintenance, is proposed. It significantly improves optical imaging resolution and depth, by which the cortical and calvarial vascular injury and regeneration processes after ischemic injury are longitudinally monitored in awake mice. Results show that calvarial blood vessels recover earlier than the cortex. And the transcriptome analysis reveals that gene expression patterns and immune cells abundances exist substantial differences between brain and skull after ischemic injury, which may be one of the causes for the time lag between their vascular recovery. These findings bring great enlightenment to vascular regeneration and reconstruction. Moreover, LCCW provides a minimally invasive approach for imaging the brain and skull bone marrow.
Collapse
Affiliation(s)
- Chao Zhang
- Zhanjiang Institute of Clinical MedicineCentral People's Hospital of ZhanjiangZhanjiangGuangdong524045China
- Zhanjiang Central HospitalGuangdong Medical UniversityZhanjiangGuangdong524045China
| | - Chun‐Jie Liu
- Center for Computational and Genomic MedicineThe Children's Hospital of PhiladelphiaPhiladelphiaPA19104USA
| | - Wei Feng
- Zhanjiang Institute of Clinical MedicineCentral People's Hospital of ZhanjiangZhanjiangGuangdong524045China
- Zhanjiang Central HospitalGuangdong Medical UniversityZhanjiangGuangdong524045China
| |
Collapse
|
11
|
Jacobs T, Abdinghoff J, Tschernig T. Protein detection and localization of the non-selective cation channel TRPC6 in the human heart. Eur J Pharmacol 2022; 924:174972. [PMID: 35483666 DOI: 10.1016/j.ejphar.2022.174972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/28/2022] [Accepted: 04/19/2022] [Indexed: 11/03/2022]
Abstract
Due to longer lifespans in societies in industrialized countries, cardiovascular diseases are becoming increasingly important for medical research. It has already been shown that the cell membrane-bound, non-selective TRPC6 ion channel is important in the pathogenesis of heart diseases. Among other things, it is permeable to calcium ion, which plays a critical role in cardiac contraction and relaxation. The TRPC6 ion channel is a promising therapeutic target in the treatment of cardiovascular diseases. A deeper understanding of the physiological and pathophysiological role as well as the localization of TRPC6 in human cardiac tissue is the basis for new drug development. Although the TRPC6 channel has been detected in animal studies, at the mRNA level in humans, and sparse TRPC6 protein has been detected in humans, there are no systematic studies of TRPC6 protein detection in the human heart. For the first time, TRPC6 ion channel protein was detected histologically in human heart tissue from body donors in different structures, localizations, and histological layers - particularly in cardiomyocytes and intramuscular arterioles - by immunohistochemistry, just as TRPC6 expression has already been shown in animal models of the heart by other research groups. In the sense of the translational concept, this indicates a possible transferability of research results from animal models to humans.
Collapse
Affiliation(s)
- Tobias Jacobs
- Institute of Anatomy and Cell Biology, Saarland University, Medical Campus, Homburg, Saar, Germany
| | - Jan Abdinghoff
- Institute of Anatomy and Cell Biology, Saarland University, Medical Campus, Homburg, Saar, Germany
| | - Thomas Tschernig
- Institute of Anatomy and Cell Biology, Saarland University, Medical Campus, Homburg, Saar, Germany.
| |
Collapse
|
12
|
Abdinghoff J, Servello D, Jacobs T, Beckmann A, Tschernig T. Evaluation of the presence of TRPC6 channels in human vessels: A pilot study using immunohistochemistry. Biomed Rep 2022; 16:42. [PMID: 35371476 PMCID: PMC8972230 DOI: 10.3892/br.2022.1525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/22/2022] [Indexed: 11/10/2022] Open
Abstract
The TRPC6 channel is permeable to calcium ions as well as other ions and plays an important role in the physiology and pathophysiology of vessels. Findings from animal and cell culture experiments have shown its involvement in important vascular processes such as the Bayliss effect or endothelial-mediated vasodilatation. Furthermore, the relevance of TRPC6 channels in humans has become apparent based on diseases such as idiopathic pulmonary arterial hypertension, focal segmental glomerulosclerosis and atherosclerosis, amongst others. However, histological evidence that systematically detects TRPC6 channels in human vessels has not been provided to date. In this study, 40 vessel sections from nine body donors were obtained, processed and stained with a knockout-validated antibody against the TRPC6 protein using immunohistochemistry and western blotting. More than half of the samples yielded evidence of TRPC6 channel expression in the intima and adventitia. TRPC6 channels were detected in the tunica media in only one of 40 cases. TRPC6 detection in the human intima confirmed several demonstrated physiological aspects of the TRPC6 channels in the vasculature and may also be involved in associated human diseases. The near absence of TRPC6 channels in the tunica media was in contrast to a view that is primarily based on animal studies, from which its presence was assumed.
Collapse
Affiliation(s)
- Jan Abdinghoff
- Institute of Anatomy and Cell Biology, Saarland University, Medical Campus, D‑66424 Homburg/Saar, Germany
| | - Davide Servello
- Institute of Anatomy and Cell Biology, Saarland University, Medical Campus, D‑66424 Homburg/Saar, Germany
| | - Tobias Jacobs
- Institute of Anatomy and Cell Biology, Saarland University, Medical Campus, D‑66424 Homburg/Saar, Germany
| | - Anja Beckmann
- Institute of Anatomy and Cell Biology, Saarland University, Medical Campus, D‑66424 Homburg/Saar, Germany
| | - Thomas Tschernig
- Institute of Anatomy and Cell Biology, Saarland University, Medical Campus, D‑66424 Homburg/Saar, Germany
| |
Collapse
|
13
|
Mao C, Ma Z, Jia Y, Li W, Xie N, Zhao G, Ma B, Yu F, Sun J, Zhou Y, Cui Q, Fu Y, Kong W. Nidogen-2 Maintains the Contractile Phenotype of Vascular Smooth Muscle Cells and Prevents Neointima Formation via Bridging Jagged1-Notch3 Signaling. Circulation 2021; 144:1244-1261. [PMID: 34315224 DOI: 10.1161/circulationaha.120.053361] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: How the extracellular matrix (ECM) microenvironment modulates the contractile phenotype of vascular smooth muscle cells (VSMCs) and confers vascular homeostasis remains elusive. Methods: To explore the key ECM proteins in the maintenance of the contractile phenotype of VSMCs, we applied protein-protein interaction (PPI) network analysis to explore novel ECM proteins associated with the VSMC phenotype. By combining in vitro and in vivo genetic mice vascular injury model, we identified nidogen-2, a basement membrane (BM) glycoprotein, as a key ECM protein for maintenance of vascular smooth muscle cell identity. Results: We collected a VSMC phenotype-related gene dataset (VSMCPRG dataset) by using Gene Ontology (GO) annotation combined with a literature search. A computational analysis of protein-protein interactions between ECM protein genes and the genes from the VSMCPRG dataset revealed the candidate gene nidogen-2, a BM glycoprotein involved in regulation of the VSMC phenotype. Indeed, nidogen-2-deficient VSMCs exhibited loss of contractile phenotype in vitro, and compared with wild-type (WT) mice, nidogen-2-/- mice showed aggravated post-wire injury neointima formation of carotid arteries. Further bioinformatics analysis, co-immunoprecipitation assays and luciferase assays revealed that nidogen-2 specifically interacted with Jagged1, a conventional Notch ligand. Nidogen-2 maintained the VSMC contractile phenotype via Jagged1-Notch3 signaling but not Notch1 or Notch2 signaling. Notably, nidogen-2 enhanced Jagged1 and Notch3 interaction and subsequent Notch3 activation. Reciprocally, Jagged1 and Notch3 interaction, signaling activation, and Jagged1-triggered VSMC differentiation were significantly repressed in nidogen-2-deficient VSMCs. In accordance, the suppressive effect of Jagged1 overexpression on neointima formation was attenuated in nidogen-2-/- mice compared to wild-type mice. Conclusions: Nidogen-2 maintains the contractile phenotype of VSMCs through Jagged1-Notch3 signaling in vitro and in vivo. Nidogen-2 is required for Jagged1-Notch3 signaling.
Collapse
Affiliation(s)
- Chenfeng Mao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Zihan Ma
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Yiting Jia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Weihao Li
- Department of Vascular Surgery, Peking University People's Hospital, Peking University, Beijing, China
| | - Nan Xie
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Guizhen Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Baihui Ma
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Fang Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Jinpeng Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yuan Zhou
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Qinghua Cui
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yi Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| |
Collapse
|