1
|
Shurigin V, Li L, Alaylar B, Egamberdieva D, Liu YH, Li WJ. Plant beneficial traits of endophytic bacteria associated with fennel ( Foeniculum vulgare Mill.). AIMS Microbiol 2024; 10:449-467. [PMID: 38919721 PMCID: PMC11194617 DOI: 10.3934/microbiol.2024022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 06/03/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
In this study, we used 16S rRNA gene sequence analysis to describe the diversity of cultivable endophytic bacteria associated with fennel (Foeniculum vulgare Mill.) and determined their plant-beneficial traits. The bacterial isolates from the roots of fennel belonged to four phyla: Firmicutes (BRN1 and BRN3), Proteobacteria (BRN5, BRN6, and BRN7), Gammaproteobacteria (BRN2), and Actinobacteria (BRN4). The bacterial isolates from the shoot of fennel represented the phyla Proteobacteria (BSN1, BSN2, BSN3, BSN5, BSN6, BSN7, and BSN8), Firmicutes (BSN4, BRN1, and BRN3), and Actinobacteria (BRN4). The bacterial species Bacillus megaterium, Bacillus aryabhattai, and Brevibacterium frigoritolerans were found both in the roots and shoots of fennel. The bacterial isolates were found to produce siderophores, HCN, and indole-3-acetic acid (IAA), as well as hydrolytic enzymes such as chitinase, protease, glucanase, and lipase. Seven bacterial isolates showed antagonistic activity against Fusarium culmorum, Fusarium solani, and Rhizoctonia. solani. Our findings show that medicinal plants with antibacterial activity may serve as a source for the selection of microorganisms that exhibit antagonistic activity against plant fungal infections and may be considered as a viable option for the management of fungal diseases. They can also serve as an active part of biopreparation, improving plant growth.
Collapse
Affiliation(s)
- Vyacheslav Shurigin
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China
| | - Li Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China
| | - Burak Alaylar
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Agri Ibrahim Cecen University, Agri 04100, Turkey
| | - Dilfuza Egamberdieva
- Institute of Fundamental and Applied Research, National Research University TIIAME, Tashkent 100000, Uzbekistan
- Faculty of Biology, National University of Uzbekistan, Tashkent 100174, Uzbekistan
| | - Yong-Hong Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China
| | - Wen-Jun Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Stress Biology, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
2
|
Zhao Y, Sun T, Li Y, Yang Z, Chen J, Wang J, Yu X, Tang X, Xiao H. The host sex contributes to the endophytic bacterial community in Sargassum thunbergii and their receptacles. Front Microbiol 2024; 15:1334918. [PMID: 38559345 PMCID: PMC10978810 DOI: 10.3389/fmicb.2024.1334918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/14/2024] [Indexed: 04/04/2024] Open
Abstract
Endophytic bacteria have a complex coevolutionary relationship with their host macroalgae. Dioecious macroalgae are important producers in marine ecosystems, but there is still a lack of research on how sex influences their endophytic bacteria. In this study, the endophytic bacterial communities in male and female S. thunbergii and their reproductive tissues (receptacles) were compared using culture methods and high-throughput sequencing. The endophytic bacterial communities detected by the two methods were different. Among the 78 isolated strains, the dominant phylum, genus, and species were Bacillota, Alkalihalobacillus, and Alkalihalobacillus algicola, respectively, in the algal bodies, while in the receptacles, they were Bacillota, Vibrio, and Vibrio alginolyticus. However, 24 phyla and 349 genera of endophytic bacteria were identified by high-throughput sequencing, and the dominant phylum and genus were Pseudomonadota and Sva0996_ Marine_ Group, respectively, in both the algal body and the receptacles. The two methods showed similar compositions of endophytic bacterial communities between the samples of different sexes, but the relative abundances of dominant and specific taxa were different. The high-throughput sequencing results showed more clearly that the sex of the host alga had an effect on its endophyte community assembly and a greater effect on the endophytic bacterial community in the receptacles. Moreover, most specific bacteria and predicted functional genes that differed between the samples from the males and females were related to metabolism, suggesting that metabolic differences are the main causes of sex differences in the endophytic bacterial community. Our research is the first to show that host sex contributes to the composition of endophytic bacterial communities in dioecious marine macroalgae. The results enrich the database of endophytic bacteria of dioecious marine macroalgae and pave the way for better understanding the assembly mechanism of the endophytic bacterial community of algae.
Collapse
Affiliation(s)
- Yayun Zhao
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Tao Sun
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Qingdao Branch CCCC Water Transportation Consultants Co.,LTD, Qingdao, China
| | - Yang Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Shandong Marine Forecast and Hazard Mitigation Service, Qingdao, China
| | - Zhibo Yang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Jun Chen
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Jing Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xinlong Yu
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xuexi Tang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Hui Xiao
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
| |
Collapse
|
3
|
Chavan J, Patil P, Patil A, Deshmukh A, Panari P, Mohite A, Lawand P, Yadav P, Bodhe M, Kadam A, Namdas D, Pawar B, Jadhav A, Shekhawat M, Santa-Catarina C. Salacia spp.: recent insights on biotechnological interventions and future perspectives. Appl Microbiol Biotechnol 2024; 108:200. [PMID: 38326604 PMCID: PMC10850189 DOI: 10.1007/s00253-023-12998-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/13/2023] [Accepted: 12/27/2023] [Indexed: 02/09/2024]
Abstract
The plants of the genus Salacia L. are the storehouse of several bioactive compounds, and are involved in treating human diseases and disorders. Hitherto, a number of reports have been published on in vitro biotechnology as well as microbial involvement in the improvement of Salacia spp. The present review provides comprehensive insights into biotechnological interventions such as tissue culture for plant propagation, in vitro cultures, and endophytic microbes for up-scaling the secondary metabolites and biological potential of Salacia spp. Other biotechnological interventions such as molecular markers and bio-nanomaterials for up-grading the prospective of Salacia spp. are also considered. The in vitro biotechnology of Salacia spp. is largely focused on plant regeneration, callus culture, cell suspension culture, somatic embryogenesis, and subsequent ex vitro establishment of the in vitro-raised plantlets. The compiled information on tissue cultural strategies, involvement of endophytes, molecular markers, and nanomaterials will assist the advanced research related to in vitro manipulation, domestication, and commercial cultivation of elite clones of Salacia spp. Moreover, the genetic diversity and other molecular-marker based assessments will aid in designing conservation policies as well as support upgrading and breeding initiatives for Salacia spp. KEY POINTS: • Salacia spp. plays a multifaceted role in human health and disease management. • Critical and updated assessment of tissue culture, endophytic microbes, metabolites, molecular markers, and bio-nanomaterials of Salacia spp. • Key shortcomings and future research directions for Salacia biotechnology.
Collapse
Affiliation(s)
- Jaykumar Chavan
- Department of Botany, Yashavantrao Chavan Institute of Science (Autonomous), Lead College of Karmaveer Bhaurao Patil University, Satara, 415001, India.
| | - Priyanka Patil
- Department of Botany, Yashavantrao Chavan Institute of Science (Autonomous), Lead College of Karmaveer Bhaurao Patil University, Satara, 415001, India
| | - Avdhoot Patil
- Department of Botany, Yashavantrao Chavan Institute of Science (Autonomous), Lead College of Karmaveer Bhaurao Patil University, Satara, 415001, India
| | - Akshay Deshmukh
- Department of Botany, Yashavantrao Chavan Institute of Science (Autonomous), Lead College of Karmaveer Bhaurao Patil University, Satara, 415001, India
| | - Pallavi Panari
- Department of Botany, Yashavantrao Chavan Institute of Science (Autonomous), Lead College of Karmaveer Bhaurao Patil University, Satara, 415001, India
| | - Ashwini Mohite
- Department of Botany, Yashavantrao Chavan Institute of Science (Autonomous), Lead College of Karmaveer Bhaurao Patil University, Satara, 415001, India
| | - Pramod Lawand
- Department of Botany, Yashavantrao Chavan Institute of Science (Autonomous), Lead College of Karmaveer Bhaurao Patil University, Satara, 415001, India
| | - Pradnya Yadav
- Department of Botany, Yashavantrao Chavan Institute of Science (Autonomous), Lead College of Karmaveer Bhaurao Patil University, Satara, 415001, India
| | - Minal Bodhe
- Department of Botany, Yashavantrao Chavan Institute of Science (Autonomous), Lead College of Karmaveer Bhaurao Patil University, Satara, 415001, India
| | - Abhijit Kadam
- Department of Botany, Yashavantrao Chavan Institute of Science (Autonomous), Lead College of Karmaveer Bhaurao Patil University, Satara, 415001, India
| | - Dada Namdas
- Department of Botany, Yashavantrao Chavan Institute of Science (Autonomous), Lead College of Karmaveer Bhaurao Patil University, Satara, 415001, India
| | - Bandu Pawar
- Department of Microbiology, Yashavantrao Chavan Institute of Science (Autonomous), Lead College of Karmaveer Bhaurao Patil University, Satara, 415001, India
| | - Amol Jadhav
- Department of Microbiology, Yashavantrao Chavan Institute of Science (Autonomous), Lead College of Karmaveer Bhaurao Patil University, Satara, 415001, India
| | - Mahipal Shekhawat
- Plant Biotechnology Unit, Kanchi Mamunivar Government Institute for Postgraduate Studies and Research, Puducherry, 605008, India
| | - Claudette Santa-Catarina
- Laboratório de Biologia Celular E Tecidual (LBCT), Centro de Biociências E Biotecnologia (CBB), Universidade Estadual Do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego 2000, Campos Dos Goytacazes, RJ, 28013-602, Brazil
| |
Collapse
|
4
|
Emitaro WO, Kawaka F, Musyimi DM, Adienge A. Diversity of endophytic bacteria isolated from leguminous agroforestry trees in western Kenya. AMB Express 2024; 14:18. [PMID: 38329624 PMCID: PMC10853127 DOI: 10.1186/s13568-024-01676-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/31/2024] [Indexed: 02/09/2024] Open
Abstract
Plants have diverse and vast niches colonized by endophytic microorganisms that promote the wellbeing of host plant. These microbes inhabit internal plant tissues with no signs of ill health. Bacterial endophytes from many plants have been isolated and characterized due to their beneficial roles however their diversity in leguminous plants still remain unexploited. Diversity of bacterial endophytes isolated from Sesbania sesban, Leucaena diversifolia and Calliandra calothyrsus was assessed using morphological and molecular characteristics. A total of 27 pure isolates were recovered from C. Calothyrsus, L. diversifolia and S. sesban constituting 44.4%, 33.3% and 22.2% from the leaves, stems and roots respectively. The isolates differentiated into Gram positive and negative with rods and spherical shapes. Analysis of 16S rRNA gene sequences revealed 8 closely related bacterial genera that consisted of Bacillus (33.3%), Staphylococcus (22.2%), Alcaligens (11.1%), Pantoea (11.1%), Xanthomonas,and Sphingomonas (7.4%) each. Others included Acinetobacter, and Pseudomonas at 3.7% each. Bacterial endophytes of genus bacillus were isolated from all the three plants. These results indicate the presence of high diversity of endophytic bacteria associated with the different parts of L. diversifolia, S. sesban and C. salothyrsus growing in western Kenya.
Collapse
Affiliation(s)
- William Omuketi Emitaro
- Department of Biological Sciences, Jaramogi Oginga Odinga University of Science and Technology, 210, Bondo, 40601, Kenya.
| | - Fanuel Kawaka
- Department of Biological Sciences, Jaramogi Oginga Odinga University of Science and Technology, 210, Bondo, 40601, Kenya
| | | | - Asenath Adienge
- Department of Biotechnology, Kenya Forestry Research Institute, 20412-00200, Nairobi, Kenya
| |
Collapse
|
5
|
Webster G, Mullins AJ, Petrova YD, Mahenthiralingam E. Polyyne-producing Burkholderia suppress Globisporangium ultimum damping-off disease of Pisum sativum (pea). Front Microbiol 2023; 14:1240206. [PMID: 37692405 PMCID: PMC10485841 DOI: 10.3389/fmicb.2023.1240206] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
Extensive crop losses are caused by oomycete and fungal damping-off diseases. Agriculture relies heavily on chemical pesticides to control disease, but due to safety concerns multiple agents have been withdrawn. Burkholderia were successfully used as commercial biopesticides because of their fungicidal activity and plant protective traits. However, their potential for opportunistic pathogenicity led to a moratorium on their registration as biopesticides. Subsequently, Burkholderia were shown to produce multiple specialised metabolites including potent antimicrobial polyynes. Cepacin A, a polyyne produced by Burkholderia ambifaria biopesticide strains was shown to be an important metabolite for the protection of germinating peas against Globisporangium ultimum (formerly Pythium) damping-off disease. Recently, there has been an expansion in bacterial polyyne discovery, with the metabolites and their biosynthetic gene pathways found in several bacterial genera including Burkholderia, Collimonas, Trinickia, and Pseudomonas. To define the efficacy of these bacterial polyyne producers as biopesticidal agents, we systematically evaluated metabolite production, in vitro microbial antagonism, and G. ultimum biocontrol across a panel of 30 strains representing four bacterial genera. In vitro polyyne production and antimicrobial activity was demonstrated for most strains, but only Burkholderia polyyne producers were protective within the in vivo G. ultimum damping-off pea protection model. B. ambifaria was the most effective cepacin-expressing biopesticide, and despite their known potential for plant pathogenicity Burkholderia gladioli and Burkholderia plantarii were uniquely shown to be protective as caryoynencin-producing biopesticides. In summary, Burkholderia are effective biopesticides due to their suite of antimicrobials, but the ability to deploy polyyne metabolites, caryoynencin and cepacin, is strain and species dependent. Graphical Abstract.
Collapse
|
6
|
Naranjo HD, Rat A, De Zutter N, De Ridder E, Lebbe L, Audenaert K, Willems A. Uncovering Genomic Features and Biosynthetic Gene Clusters in Endophytic Bacteria from Roots of the Medicinal Plant Alkanna tinctoria Tausch as a Strategy To Identify Novel Biocontrol Bacteria. Microbiol Spectr 2023; 11:e0074723. [PMID: 37436171 PMCID: PMC10434035 DOI: 10.1128/spectrum.00747-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/25/2023] [Indexed: 07/13/2023] Open
Abstract
The world's population is increasing at a rate not seen in the past. Agriculture, providing food for this increasing population, is reaching its boundaries of space and natural resources. In addition, changing legislation and increased ecological awareness are forcing agriculture to reduce its environmental impact. This entails the replacement of agrochemicals with nature-based solutions. In this regard, the search for effective biocontrol agents that protect crops from pathogens is in the spotlight. In this study, we have investigated the biocontrol activity of endophytic bacteria isolated from the medicinal plant Alkanna tinctoria Tausch. To do so, an extensive collection of bacterial strains was initially genome sequenced and in silico screened for features related to plant stimulation and biocontrol. Based on this information, a selection of bacteria was tested in vitro for antifungal activity using direct antagonism in a plate assay and in planta with a detached-leaf assay. Bacterial strains were tested individually and in combinations to assess the best-performing treatments. The results revealed that many bacteria could produce metabolites that efficiently inhibit the proliferation of several fungi, especially Fusarium graminearum. Among these, Pseudomonas sp. strain R-71838 showed a strong antifungal effect, in both dual-culture and in planta assays, making it the most promising candidate for biocontrol application. Using microbes from medicinal plants, this study highlights the opportunities of using genomic information to speed up the screening of a taxonomically diverse set of bacteria with biocontrol properties. IMPORTANCE Phytopathogenic fungi are a major threat to global food production. The most common management practice to prevent plant infections involves the intensive use of fungicides. However, with the growing awareness of the ecological and human impacts of chemicals, there is a need for alternative strategies, such as the use of bacterial biocontrol agents. Limitations in the design of bacterial biocontrol included the need for labor-intensive and time-consuming experiments to test a wide diversity of strains and the lack of reproducibility of their activity against pathogens. Here, we show that genomic information is an effective tool to select bacteria of interest quickly. Also, we highlight that the strain Pseudomonas sp. R-71838 produced a reproducible antifungal effect both in vitro and in planta. These findings build a foundation for designing a biocontrol strategy based on Pseudomonas sp. R-71838.
Collapse
Affiliation(s)
- Henry D. Naranjo
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Angélique Rat
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Noémie De Zutter
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Emmelie De Ridder
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Liesbeth Lebbe
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Kris Audenaert
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Anne Willems
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
7
|
Zou L, Zhang Y, Wang Q, Wang S, Li M, Huang J. Genetic diversity, plant growth promotion potential, and antimicrobial activity of culturable endophytic actinobacteria isolated from Aconitum carmichaelii Debeaux. J Appl Microbiol 2023; 134:lxad185. [PMID: 37580141 DOI: 10.1093/jambio/lxad185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/26/2023] [Accepted: 08/13/2023] [Indexed: 08/16/2023]
Abstract
AIM This study evaluated the phylogenetic diversity, plant growth promotion capacity, antifungal activity, and biocontrol potential of culturable actinobacterial endophytes isolated from the medicinal plant Aconitum carmichaelii Debeaux. METHODS AND RESULTS Isolation of actinobacteria from healthy A. carmichaelii plants was carried out on six different media. Full-length 16S rRNA gene was amplified by PCR from the genomic DNA of each strain. Indole-3-acetic acid and siderophore production were quantitatively assessed by the Salkowski and Chrome Azurol S methods, respectively. Rice seeds germination and seedling growth were employed to evaluate plant growth promotion capacities of candidate strains. Dual-culture assay and pot experiments were performed to investigate the antifungal and biocontrol potential of isolates. We obtained 129 actinobacterial isolates from A. carmichaelii, and they belonged to 49 species in 7 genera. These strains exhibited diverse plant growth promotion ability, among which one strain significantly enhanced rice seeds germination, while 31 strains significantly facilitated rice seedling growth. SWUST-123 showed strong antifungal activity against four pathogens in vitro and was most compatible with Qingchuan cultivar. SWUST-123 reduced around 40% of southern blight disease occurrence compared to blank control treatment. . CONCLUSION Aconitum carmichaelii harbored genetically diverse actinobacterial endophytes exhibiting diverse plant growth promotion and antifungal potential, some of which can be served as good candidates for biofertilizers and biocontrol agents.
Collapse
Affiliation(s)
- Lan Zou
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Yaopeng Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Qian Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Siyu Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Muyi Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Jing Huang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| |
Collapse
|
8
|
Santra HK, Banerjee D. Antifungal activity of volatile and non-volatile metabolites of endophytes of Chloranthus elatior Sw. FRONTIERS IN PLANT SCIENCE 2023; 14:1156323. [PMID: 37265637 PMCID: PMC10229785 DOI: 10.3389/fpls.2023.1156323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/18/2023] [Indexed: 06/03/2023]
Abstract
Agriculture crops that have fungal infections suffer significant economic losses and reduced crop output. Chemical fungicides are used to tackle the problem, although this has additional detrimental side effects. There is an urgent need for safe and novel antifungals. Volatiles from plant-beneficial endophytic fungi are considered promising alternatives for the biological control of fungal pathogens as a sustainable approach in an agroecosystem. In the present investigation, a volatile-emitting sterile endophytic fungus, Diaporthe sp. CEL3 with bio-fumigation activity, was isolated from leaves of the ethnomedicinal plant Chloranthus elatior Sw., collected from the Passighat forest of North-East India. The camphor odor volatiles of CEL3 showed an inhibitory effect against eight fungal pathogens in vitro and minimized the infections of Monilinia fructicola, a causal agent of cherry fruit rot, in VOC-exposed cherry fruits. Rhizoctonia solani, Botrytis cinerea, Pythium ultimum, and M. fructicola were maximally inhibited up to 51.5%, 55.8%, 61.9%, and 78.5%, respectively, in comparison to control by the volatiles. Another isolate, CEL7, identified as Curvularia sp., synthesized non-volatile, soluble antifungal metabolites in its cell-free extracts and exhibited antifungal action. Bioassay-guided fractionation revealed the presence of imidazole compounds- (2-aminoethyl)-1H-imidazole-2-carbaldehyde, Pyrazole 4, 5 imidazole, 1-formyl 3-ethyl, phenol compounds-Phenol, 4-[2-(methylamino) ethyl]-, 6-Nitro-3-chlorophenol, Phenol, 2,4,6-tri-tert-butyl-, etc., in the cell-free extracts, with a MIC value of 250-2,000 µg ml-1. Optimum VOC emission was achieved in a modified PDA medium with instantly smashed potato (150 g L-1), dextrose (20 g L-1), wheat husk (20 g L-1), and yeast extract (20 g L-1), with additional salts. Interestingly, endophytic CEL3 emitted different types of volatiles, and trans-verbenol (32.25%), geraniol (30.32%), trans-ocimenol (12.90%), and mentha-4,8-diene (5.16%) were the prime ones. These VOCs cause lethal leakage of protein and necessary intracellular molecules from the fungal pathogens. Thus, CEL3 could potentially be used as a bio-fumigating agent to control post-harvest infections caused by fungal pathogens. This study opens a new approach to the use of endophytic fungi in biocontrol.
Collapse
Affiliation(s)
- Hiran Kanti Santra
- Microbiology and Microbial Biotechnology Laboratory, Department of Botany and Forestry, Vidyasagar University, Midnapore, India
| | - Debdulal Banerjee
- Microbiology and Microbial Biotechnology Laboratory, Department of Botany and Forestry, Vidyasagar University, Midnapore, India
- Center for Life Sciences, Vidyasagar University, Midnapore, India
| |
Collapse
|
9
|
Ghare U, Narvekar S, Lodha T, Mallebhari R, Dastager S, Barvkar VT, Dhotre D, Karmalkar NR, Pable AA. Bacterial Communities and Diversity of Western Ghats Soil: A Study of a Biodiversity Hotspot. Curr Microbiol 2023; 80:108. [PMID: 36807001 DOI: 10.1007/s00284-023-03207-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/31/2023] [Indexed: 02/19/2023]
Abstract
The Western Ghats is one of India's mega-diversity hotspots and an ecologically and geologically important area for the diversity of endemic plants and animals. The present study provides insights into the aerobic bacterial diversity and composition of the soils of North Western Ghats located in Maharashtra state (NWGM), India. The samples for the culture-dependent study were collected from 6 different locations namely Malshej Ghat, Bhimashankar, Lonavala, Mulshi, Tail-Baila, and Mahabaleshwar. A total of 173 isolates were obtained from the different samples, which belonged to Proteobacteria (43%), Firmicutes (36%), and Actinobacteria (19%). Sequences of 15 strains shared ≤ 98.7% similarity (a species cut-off) which represent potential novel species. Metagenomic analysis revealed the presence of Actinobacteria and Proteobacteria as the most dominant phyla at both MB and MG. However, both sites showed variation in the composition of rare phyla and other dominant phyla. This difference in bacterial community composition could be due to differences in altitude or other physicochemical properties. The functional prediction from the amplicon sequencing showed the abundance of carbohydrate, protein, and lipid metabolism which was corroborated by screening the isolated bacterial strains for the same. The present study has a unique take on microbial diversity and defines the importance of community assembly processes such as drift, dispersal, and selection. Such processes are relatively important in controlling community diversity, distribution, as well as succession. This study has shown that the microbial community of NWGM is a rich source of polysaccharide degrading bacteria having biotechnological potential.
Collapse
Affiliation(s)
- Uma Ghare
- Department of Microbiology, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India
| | - Simran Narvekar
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, India
| | - Tushar Lodha
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, India
| | - Rubiya Mallebhari
- Department of Microbiology, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India
| | - Syed Dastager
- National Collection of Industrial Microorganisms (NCIM), National Chemical Laboratory, Pune, India
| | - Vitthal T Barvkar
- Department of Botany, Savitribai Phule Pune University, Ganeshkhind, Pune, India
| | | | | | - Anupama A Pable
- Department of Microbiology, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India.
| |
Collapse
|
10
|
Tsalgatidou PC, Thomloudi EE, Nifakos K, Delis C, Venieraki A, Katinakis P. Calendula officinalis-A Great Source of Plant Growth Promoting Endophytic Bacteria (PGPEB) and Biological Control Agents (BCA). Microorganisms 2023; 11:microorganisms11010206. [PMID: 36677498 PMCID: PMC9865722 DOI: 10.3390/microorganisms11010206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
The application of beneficial bacteria may present an alternative approach to chemical plant protection and fertilization products as they enhance growth and resistance to biotic and abiotic stresses. Plant growth-promoting bacteria are found in the rhizosphere, epiphytically or endophytically (Plant Growth Promoting Endophytic Bacteria, PGPEB). In the present study, 36 out of 119 isolated endophytic bacterial strains from roots, leaves and flowers of the pharmaceutical plant Calendula officinalis were further identified and classified into Bacillus, Pseudomonas, Pantoea, Stenotrophomonas and Rhizobium genera. Selected endophytes were evaluated depending on positive reaction to different plant growth promoting (PGP) traits, motility, survival rate and inhibition of phytopathogenic fungi in vitro and ex vivo (tomato fruit). Bacteria were further assessed for their plant growth effect on Arabidopsis thaliana seedlings and on seed bio-primed tomato plantlets, in vitro. Our results indicated that many bacterial endophytes increased seed germination, promoted plant growth and changed root structure by increasing lateral root density and length and root hair formation. The most promising antagonistic PGPEB strains (Cal.r.29, Cal.l.30, Cal.f.4, Cal.l.11, Cal.f.2.1, Cal.r.19 and Cal.r.11) are indicated as effective biological control agents (BCA) against Botrytis cinerea on detached tomato fruits. Results underlie the utility of beneficial endophytic bacteria for sustainable and efficient crop production and disease control.
Collapse
Affiliation(s)
- Polina C. Tsalgatidou
- Laboratory of General and Agricultural Microbiology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
- Department of Agriculture, University of the Peloponnese, 24100 Kalamata, Greece
- Correspondence: (P.C.T.); (A.V.)
| | - Eirini-Evangelia Thomloudi
- Laboratory of General and Agricultural Microbiology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Kallimachos Nifakos
- Laboratory of General and Agricultural Microbiology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
- Department of Agriculture, University of the Peloponnese, 24100 Kalamata, Greece
| | - Costas Delis
- Department of Agriculture, University of the Peloponnese, 24100 Kalamata, Greece
| | - Anastasia Venieraki
- Laboratory of Plant Pathology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
- Correspondence: (P.C.T.); (A.V.)
| | - Panagiotis Katinakis
- Laboratory of General and Agricultural Microbiology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| |
Collapse
|
11
|
Production and Functionalities of Specialized Metabolites from Different Organic Sources. Metabolites 2022; 12:metabo12060534. [PMID: 35736468 PMCID: PMC9228302 DOI: 10.3390/metabo12060534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 02/05/2023] Open
Abstract
Medicinal plants are rich sources of specialized metabolites that are of great importance to plants, animals, and humans. The usefulness of active biological compounds cuts across different fields, such as agriculture, forestry, food processing and packaging, biofuels, biocatalysts, and environmental remediation. In recent years, research has shifted toward the use of microbes, especially endophytes (bacteria, fungi, and viruses), and the combination of these organisms with other alternatives to optimize the production and regulation of these compounds. This review reinforces the production of specialized metabolites, especially by plants and microorganisms, and the effectiveness of microorganisms in increasing the production/concentration of these compounds in plants. The study also highlights the functions of these compounds in plants and their applications in various fields. New research areas that should be explored to produce and regulate these compounds, especially in plants and microbes, have been identified. Methods involving molecular studies are yet to be fully explored, and next-generation sequencing possesses an interesting and reliable approach.
Collapse
|
12
|
Dong C, Shao Q, Ren Y, Ge W, Yao T, Hu H, Huang J, Liang Z, Han Y. Assembly, Core Microbiota, and Function of the Rhizosphere Soil and Bark Microbiota in Eucommia ulmoides. Front Microbiol 2022; 13:855317. [PMID: 35591983 PMCID: PMC9110929 DOI: 10.3389/fmicb.2022.855317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 04/13/2022] [Indexed: 11/16/2022] Open
Abstract
Medicinal plants are inhabited by diverse microbes in every compartment, and which play an essential role in host growth and development, nutrient absorption, synthesis of secondary metabolites, and resistance to biological and abiotic stress. However, the ecological processes that manage microbiota assembly and the phenotypic and metabolic characteristics of the core microbiota of Eucommia ulmoides remain poorly explored. Here, we systematically evaluated the effects of genotypes, compartment niches, and environmental conditions (climate, soil nutrition, and secondary metabolites) on the assembly of rhizosphere soil and bark associated bacterial communities. In addition, phenotypic and metabolic characteristics of E. ulmoides core microbiota, and their relationship with dominant taxa, rare taxa, and pharmacologically active compounds were deciphered. Results suggested that microbiota assembly along the two compartments were predominantly shaped by the environment (especially pH, relative humidity, and geniposide acid) and not by host genotype or compartment niche. There were 690 shared genera in the rhizosphere soil and bark, and the bark microbiota was mainly derived from rhizosphere soil. Core microbiota of E. ulmoides was a highly interactive “hub” microbes connecting dominant and rare taxa, and its phenotypic characteristics had a selective effect on compartment niches. Metabolic functions of the core microbiota included ammonia oxidation, nitrogen fixation, and polyhydroxybutyrate storage, which are closely related to plant growth or metabolism. Moreover, some core taxa were also significantly correlated with three active compounds. These findings provide an important scientific basis for sustainable agricultural management based on the precise regulation of the rhizosphere soil and bark microbiota of E. ulmoides.
Collapse
Affiliation(s)
- Chunbo Dong
- Institute of Fungus Resources, Department of Ecology, College of Life Sciences, Guizhou University, Guiyang, China
| | - Qiuyu Shao
- Institute of Fungus Resources, Department of Ecology, College of Life Sciences, Guizhou University, Guiyang, China
| | - Yulian Ren
- Institute of Fungus Resources, Department of Ecology, College of Life Sciences, Guizhou University, Guiyang, China
| | - Wei Ge
- Institute of Fungus Resources, Department of Ecology, College of Life Sciences, Guizhou University, Guiyang, China
| | - Ting Yao
- Analysis and Test Center, Huangshan University, Huangshan, China
| | - Haiyan Hu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
| | - Jianzhong Huang
- Engineering Research Centre of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou, China
| | - Zongqi Liang
- Institute of Fungus Resources, Department of Ecology, College of Life Sciences, Guizhou University, Guiyang, China
| | - Yanfeng Han
- Institute of Fungus Resources, Department of Ecology, College of Life Sciences, Guizhou University, Guiyang, China.,Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, China
| |
Collapse
|
13
|
Singh D, Thapa S, Mahawar H, Kumar D, Geat N, Singh SK. Prospecting potential of endophytes for modulation of biosynthesis of therapeutic bioactive secondary metabolites and plant growth promotion of medicinal and aromatic plants. Antonie van Leeuwenhoek 2022; 115:699-730. [PMID: 35460457 DOI: 10.1007/s10482-022-01736-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 03/26/2022] [Indexed: 01/13/2023]
Abstract
Medicinal and aromatic plants possess pharmacological properties (antidiabetes, anticancer, antihypertension, anticardiovascular, antileprosy, etc.) because of their potential to synthesize a wide range of therapeutic bioactive secondary metabolites. The concentration of bioactive secondry metabolites depends on plant species, local environment, soil type and internal microbiome. The internal microbiome of medicinal plants plays the crucial role in the production of bioactive secondary metabolites, namely alkaloids, steroids, terpenoids, peptides, polyketones, flavonoids, quinols and phenols. In this review, the host specific secondry metabolites produced by endophytes, their therapeutic properties and host-endophytes interaction in relation to production of bioactive secondry metaboloites and the role of endophytes in enhancing the production of bioactive secondry metabolites is discussed. How biological nitrogen fixation, phosphorus solubilization, micronutrient uptake, phytohormone production, disease suppression, etc. can play a vital role in enhacing the plant growth and development.The role of endophytes in enhancing the plant growth and content of bioactive secondary metabolites in medicinal and aromatic plants in a sustainable mode is highlighted.
Collapse
Affiliation(s)
- Devendra Singh
- ICAR-Central Arid Zone Research Institute, Jodhpur, Rajasthan, 342003, India.
| | - Shobit Thapa
- ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Mau Nath Bhanjan, Uttar Pradesh, 275103, India
| | - Himanshu Mahawar
- ICAR-Directorate of Weed Research (DWR), Maharajpur, Jabalpur, Madhya Pradesh, 482004, India
| | - Dharmendra Kumar
- ICAR- Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Neelam Geat
- Agricultural Research Station, Agriculture University, Jodhpur, Rajasthan, 342304, India
| | - S K Singh
- ICAR-Central Arid Zone Research Institute, Jodhpur, Rajasthan, 342003, India
| |
Collapse
|
14
|
Jain R, Bhardwaj P, Pandey SS, Kumar S. Arnebia euchroma, a Plant Species of Cold Desert in the Himalayas, Harbors Beneficial Cultivable Endophytes in Roots and Leaves. Front Microbiol 2021; 12:696667. [PMID: 34335527 PMCID: PMC8322769 DOI: 10.3389/fmicb.2021.696667] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/08/2021] [Indexed: 12/03/2022] Open
Abstract
The endophytic mutualism of plants with microorganisms often leads to several benefits to its host including plant health and survival under extreme environments. Arnebia euchroma is an endangered medicinal plant that grows naturally in extreme cold and arid environments in the Himalayas. The present study was conducted to decipher the cultivable endophytic diversity associated with the leaf and root tissues of A. euchroma. A total of 60 bacteria and 33 fungi including nine yeasts were isolated and characterized at the molecular level. Among these, Proteobacteria was the most abundant bacterial phylum with the abundance of Gammaproteobacteria (76.67%) and genus Pseudomonas. Ascomycota was the most abundant phylum (72.73%) dominated by class Eurotiales (42.42%) and genus Penicillium among isolated fungal endophytes. Leaf tissues showed a higher richness (Schao1) of both bacterial and fungal communities as compared to root tissues. The abilities of endophytes to display plant growth promotion (PGP) through phosphorus (P) and potassium (K) solubilization and production of ACC deaminase (ACCD), indole acetic acid (IAA), and siderophores were also investigated under in vitro conditions. Of all the endophytes, 21.51% produced ACCD, 89.25% solubilized P, 43.01% solubilized K, 68.82% produced IAA, and 76.34% produced siderophores. Six bacteria and one fungal endophyte displayed all the five PGP traits. The study demonstrated that A. euchroma is a promising source of beneficial endophytes with multiple growth-promoting traits. These endophytes can be used for improving stress tolerance in plants under nutrient-deficient and cold/arid conditions.
Collapse
Affiliation(s)
- Rahul Jain
- Biotechnology Division, Council of Scientific and Industrial Research (CSIR)-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Priyanka Bhardwaj
- Biotechnology Division, Council of Scientific and Industrial Research (CSIR)-Institute of Himalayan Bioresource Technology, Palampur, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Shiv Shanker Pandey
- Biotechnology Division, Council of Scientific and Industrial Research (CSIR)-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Sanjay Kumar
- Biotechnology Division, Council of Scientific and Industrial Research (CSIR)-Institute of Himalayan Bioresource Technology, Palampur, India
| |
Collapse
|
15
|
Wang N, Han N, Tian R, Chen J, Gao X, Wu Z, Liu Y, Huang L. Role of the Type VI Secretion System in the Pathogenicity of Pseudomonas syringae pv. actinidiae, the Causative Agent of Kiwifruit Bacterial Canker. Front Microbiol 2021; 12:627785. [PMID: 33679650 PMCID: PMC7933208 DOI: 10.3389/fmicb.2021.627785] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/29/2021] [Indexed: 02/03/2023] Open
Abstract
The type VI secretion system (T6SS), a macromolecular machine, plays an important role in the pathogenicity of many Gram-negative bacteria. However, the role of T6SS in the pathogenicity of Pseudomonas syringae pv. actinidiae (Psa), the pathogen of kiwifruit bacterial canker, is yet to be studied. Here, we found a T6SS gene cluster consisting of 13 core genes (A-J) in the genome of Psa M228 based on a genome-wide analysis. To determine whether the T6SS gene cluster affects the pathogenicity of Psa M228, T6SS and its 13 core gene deletion mutants were constructed and their pathogenicity was determined. The deletion mutants showed different degrees of reduction in pathogenicity compared with the wild-type strain M228; in tssM and tssJ mutants, pathogenicity was significantly reduced by 78.7 and 71.3%, respectively. The pathogenicity results were also confirmed by electron microscopy. To further confirm that the reduction in pathogenicity is related to the function of T6SS, we selected the T6SS gene cluster, comprising tssM and tssJ, for further analyses. Western blot results revealed that tssM and tssJ were necessary for hemolytic co-regulatory protein secretion, indicating that they encode a functional T6SS. Further, we explored the mechanism by which T6SS affects the pathogenicity of Psa M228. The ability of bacterial competition, biofilm formation, hydrogen peroxide tolerance, and proteolytic activity were all weakened in the deletion mutants M228ΔT6SS, M228ΔtssM, and M228ΔtssJ. All these properties of the two gene complementation mutants were restored to the same levels as those of the wild-type strain, M228. Quantitative real-time results showed that during the interaction between the deletion mutant M228ΔT6SS and the host, expression levels of T3SS transcriptional regulatory gene hrpR, structural genes hrpZ, hrcC, hopP1, and effector genes hopH1 and hopM1 were down-regulated at different levels. Taken together, our data provide evidence for the first time that the T6SS plays an important role in the pathogenicity of Psa, probably via effects on bacterial competition, biofilm formation, and environmental adaptability. Moreover, a complicated relationship exists between T6SS and T3SS.
Collapse
Affiliation(s)
- Nana Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China.,College of Life Science, Northwest A&F University, Yangling, China
| | - Ning Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China.,College of Plant Protection, Northwest A&F University, Yangling, China
| | - Runze Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China.,College of Plant Protection, Northwest A&F University, Yangling, China
| | - Jiliang Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China.,College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xiaoning Gao
- Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Zhiran Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China.,College of Plant Protection, Northwest A&F University, Yangling, China
| | - Yuqi Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China.,College of Life Science, Northwest A&F University, Yangling, China
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China.,College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
16
|
Singh S, Ghadge VA, Kumar P, Mathew DE, Dhimmar A, Sahastrabudhe H, Nalli Y, Rathod MR, Shinde PB. Biodiversity and antimicrobial potential of bacterial endophytes from halophyte Salicornia brachiata. Antonie Van Leeuwenhoek 2021; 114:591-608. [PMID: 33674993 DOI: 10.1007/s10482-021-01544-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/13/2021] [Indexed: 12/01/2022]
Abstract
Extreme natural habitats like halophytes, marsh land, and marine environment are suitable arena for chemical ecology between plants and microbes having environmental impact. Endophytes are an ecofriendly option for the promotion of plant growth and to serve as sustainable resource of novel bioactive natural products. The present study, focusing on biodiversity of bacterial endophytes from Salicornia brachiata, led to isolation of around 336 bacterial endophytes. Phylogenetic analysis of 63 endophytes revealed 13 genera with 27 different species, belonging to 3 major groups: Firmicutes, Proteobacteria, and Actinobacteria. 30% endophytic isolates belonging to various genera demonstrated broad-spectrum antibacterial and antifungal activities against a panel of human, plant, and aquatic infectious agents. An endophytic isolate Bacillus amyloliquefaciens 5NPA-1, exhibited strong in-vitro antibacterial activity against human pathogen Staphylococcus aureus and phytopathogen Xanthomonas campestris. Investigation through LC-MS/MS-based molecular networking and bioactivity-guided purification led to the identification of three bioactive compounds belonging to lipopeptide class based on 1H-, 13C-NMR and MS analysis. To our knowledge, this is the first report studying bacterial endophytic biodiversity of Salicornia brachiata and the isolation of bioactive compounds from its endophyte. Overall, the present study provides insights into the diversity of endophytes associated with the plants from the extreme environment as a rich source of metabolites with remarkable agricultural applications and therapeutic properties.
Collapse
Affiliation(s)
- Sanju Singh
- Natural Products and Green Chemistry Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Bhavnagar, Gujarat, 364002, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vishal A Ghadge
- Natural Products and Green Chemistry Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Bhavnagar, Gujarat, 364002, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pankaj Kumar
- Natural Products and Green Chemistry Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Bhavnagar, Gujarat, 364002, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Doniya Elze Mathew
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.,Applied Phycology and Biotechnology Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Bhavnagar, Gujarat, 364002, India
| | - Asmita Dhimmar
- Natural Products and Green Chemistry Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Bhavnagar, Gujarat, 364002, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Harshal Sahastrabudhe
- Natural Products and Green Chemistry Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Bhavnagar, Gujarat, 364002, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Yedukondalu Nalli
- Natural Products and Green Chemistry Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Bhavnagar, Gujarat, 364002, India
| | - Mina R Rathod
- Natural Products and Green Chemistry Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Bhavnagar, Gujarat, 364002, India
| | - Pramod B Shinde
- Natural Products and Green Chemistry Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Bhavnagar, Gujarat, 364002, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|