1
|
Grisnik M, Walker DM. Bat Cutaneous Microbial Assemblage Functional Redundancy Across a Host-Mediated Disturbance. MICROBIAL ECOLOGY 2024; 87:161. [PMID: 39708121 DOI: 10.1007/s00248-024-02480-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Understanding the processes and factors that influence the structure of host-associated microbial assemblages has been a major area of research as these assemblages play a role in host defense against pathogens. Previous work has found that bacterial taxa within bat cutaneous microbial assemblages have antifungal capabilities against the emerging fungal pathogen, Pseudogymnoascus destructans. However, our understanding of natural fluctuations in these cutaneous microbial assemblages over time due to shifts in host habitat is lacking. The objective of this work was to understand how the taxonomic and functional bat cutaneous microbial assemblage responds to seasonal shifts in host habitat. We hypothesized that at the community level, there will be turnover in taxonomic structure but functional redundancy across seasons. On a finer scale, we hypothesized that there will be differences in the relative abundance of functional genes that code for select pathways across seasons. Results showed that, on a broad scale, the bat cutaneous microbial assemblage is seasonally taxonomically dynamic but functionally redundant. Additionally, although there was almost complete taxonomic turnover between winter and summer bat microbial assemblages, there was no difference in assemblage structure across winters. This functional redundancy was also observed at finer scales, with no differences in the abundance of genes within pathways of hypothesized importance across seasons or winters. Taken together, results suggest species sorting mechanisms correlated with shifts in host habitat use, drive taxonomic but not functional host-associated cutaneous microbial community assembly.
Collapse
Affiliation(s)
- Matthew Grisnik
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, 37132, USA.
- Department of Biology, Coastal Carolina University, Conway, SC, 29528, USA.
| | - Donald M Walker
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| |
Collapse
|
2
|
Zhao J, Yuan T, Huang H, Lu X. Phenomenological investigation of organic modified cements as biocompatible substrates interfacing model marine organisms. Biointerphases 2024; 19:051002. [PMID: 39316422 DOI: 10.1116/6.0003811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/05/2024] [Indexed: 09/25/2024] Open
Abstract
Organic modification can generally endow inorganic materials with novel and promotional characteristics to fit into new functionalities. In this paper, new cement-based composite materials, with Portland cement as the substrate and polyacrylamide (PAM, alone) and PAM/chitosan as the functional components mixed with cement (bulk modified) or served as the surface coating (surface modified), were prepared and engineered as sampling substrates for biofilm and coral co-culture. In comparison to the bulk modified substrate and pure cement material, the surface modified substrate showed a balanced mechanical property, considering both bending and compressive strengths and distinctive surface features toward facilitating biofilm and coral growth, as characterized by spectroscopic, morphological, mechanical, and biofilm and coral co-culture experiments. We, thus, believe that the as-prepared surface modified substrate has the very potential to be applied as a substitute/alternative for the conventional cement material in the construction and engineering of artificial facilities with ecological protection functions.
Collapse
Affiliation(s)
- Jinglun Zhao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, People's Republic of China
| | - Tao Yuan
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, University of Chinese Academy of Sciences, Guangzhou 510301, China
| | - Hui Huang
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, University of Chinese Academy of Sciences, Guangzhou 510301, China
| | - Xiaolin Lu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, People's Republic of China
| |
Collapse
|
3
|
Hamamoto K, Mizuyama M, Nishijima M, Maeda A, Gibu K, Poliseno A, Iguchi A, Reimer JD. Diversity, composition and potential roles of sedimentary microbial communities in different coastal substrates around subtropical Okinawa Island, Japan. ENVIRONMENTAL MICROBIOME 2024; 19:54. [PMID: 39080706 PMCID: PMC11290285 DOI: 10.1186/s40793-024-00594-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Marine benthic prokaryotic communities play crucial roles in material recycling within coastal environments, including coral reefs. Coastal sedimentary microbiomes are particularly important as potential reservoirs of symbiotic, beneficial, and pathogenic bacteria in coral reef environments, and therefore presumably play a core role in local ecosystem functioning. However, there is a lack of studies comparing different environments with multiple sites on the island scale, particularly studies focusing on prokaryotic communities, as previous investigations have focused mainly on a single site or on specific environmental conditions. In our study, we collected coastal sediments from seven sites around Okinawa Island, Japan, including three different benthic types; sandy bottoms, seagrass meadows, and hard substratum with living scleractinian corals. We then used metabarcoding to identify prokaryotic compositions and estimate enzymes encoded by genes to infer their functions. RESULTS The results showed that the three substrata had significantly different prokaryotic compositions. Seagrass meadow sites exhibited significantly higher prokaryotic alpha-diversity compared to sandy bottom sites. ANCOM analysis revealed that multiple bacterial orders were differentially abundant within each substratum. At coral reef sites, putative disease- and thermal stress-related opportunistic bacteria such as Rhodobacterales, Verrucomicrobiales, and Cytophagales were comparatively abundant, while seagrass meadow sites abundantly harbored Desulfobacterales, Steroidobacterales and Chromatiales, which are common bacterial orders in seagrass meadows. According to our gene-coded enzyme analyses the numbers of differentially abundant enzymes were highest in coral reef sites. Notably, superoxide dismutase, an important enzyme for anti-oxidative stress in coral tissue, was abundant at coral sites. Our results provide a list of prokaryotes to look into in each substrate, and further emphasize the importance of considering the microbiome, especially when focusing on environmental conservation. CONCLUSION Our findings prove that prokaryotic metabarcoding is capable of capturing compositional differences and the diversity of microbial communities in three different environments. Furthermore, several taxa were suggested to be differentially more abundant in specific environments, and gene-coded enzymic compositions also showed possible differences in ecological functions. Further study, in combination with field observations and temporal sampling, is key to achieving a better understanding of the interactions between the local microbiome and the surrounding benthic community.
Collapse
Affiliation(s)
- Kohei Hamamoto
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8567, Japan.
- Molecular Invertebrate Systematics and Ecology (MISE) Laboratory, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, 903-0213, Japan.
| | - Masaru Mizuyama
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8567, Japan
- Department of Health Informatics, Faculty of Human Health Sciences, Meio University, Nago, Okinawa, 905-8585, Japan
| | - Miyuki Nishijima
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8567, Japan
| | - Ayumi Maeda
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, 277-8564, Japan
| | - Kodai Gibu
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8567, Japan
| | - Angelo Poliseno
- Molecular Invertebrate Systematics and Ecology (MISE) Laboratory, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, 903-0213, Japan
| | - Akira Iguchi
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8567, Japan.
- Research Laboratory on Environmentally-Conscious Developments and Technologies [E-code], National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8567, Japan.
| | - James Davis Reimer
- Molecular Invertebrate Systematics and Ecology (MISE) Laboratory, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, 903-0213, Japan
- Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, 903-0213, Japan
| |
Collapse
|
4
|
Zvi-Kedem T, Lalzar M, Sun J, Li J, Tchernov D, Meron D. Exploring the Microbial Mosaic: Insights into Composition, Diversity, and Environmental Drivers in the Pearl River Estuary Sediments. Microorganisms 2024; 12:1273. [PMID: 39065043 PMCID: PMC11279356 DOI: 10.3390/microorganisms12071273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/04/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
River estuaries are dynamic and complex ecosystems influenced by various natural processes, including climatic fluctuations and anthropogenic activities. The Pearl River Estuary (PRE), one of the largest in China, receives significant land-based pollutants due to its proximity to densely populated areas and urban development. This study aimed to characterize the composition, diversity, and distribution patterns of sediment microbial communities (bacteria, archaea, and eukaryotes) and investigated the connection with environmental parameters within the PRE and adjacent shelf. Physicochemical conditions, such as oxygen levels, nitrogen compounds, and carbon content, were analyzed. The study found that the microbial community structure was mainly influenced by site location and core depth, which explained approximately 67% of the variation in each kingdom. Sites and core depths varied in sediment properties such as organic matter content and redox conditions, leading to distinct microbial groups associated with specific chemical properties of the sediment, notably C/N ratio and NH4+ concentration. Despite these differences, certain dominant taxonomic groups were consistently present across all sites: Gammaproteobacteria in bacteria; Bathyarchaeia, Nitrososphaeria, and Thermoplasmata in archaea; and SAR in Eukaryota. The community diversity index was the highest in the bacteria kingdom, while the lowest values were observed at site P03 across the three kingdoms and were significantly different from all other sites. Overall, this study highlights the effect of depth, core depth, and chemical properties on sediment microbiota composition. The sensitivity and dynamism of the microbiota, along with the possibility of identifying specific markers for changes in environmental conditions, is valuable for managing and preserving the health of estuaries and coastal ecosystems.
Collapse
Affiliation(s)
- Tal Zvi-Kedem
- Morris Kahn Marine Research Station, Faculty of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel; (T.Z.-K.); (D.T.)
| | - Maya Lalzar
- Bioinformatics Services Unit, University of Haifa, Haifa 3498838, Israel;
| | - Jing Sun
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China; (J.S.); (J.L.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Zhuhai 519080, China
| | - Jiying Li
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China; (J.S.); (J.L.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Zhuhai 519080, China
| | - Dan Tchernov
- Morris Kahn Marine Research Station, Faculty of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel; (T.Z.-K.); (D.T.)
| | - Dalit Meron
- Morris Kahn Marine Research Station, Faculty of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel; (T.Z.-K.); (D.T.)
| |
Collapse
|
5
|
Martin-Pozas T, Fernandez-Cortes A, Cuezva S, Cañaveras JC, Benavente D, Duarte E, Saiz-Jimenez C, Sanchez-Moral S. New insights into the structure, microbial diversity and ecology of yellow biofilms in a Paleolithic rock art cave (Pindal Cave, Asturias, Spain). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165218. [PMID: 37419360 DOI: 10.1016/j.scitotenv.2023.165218] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/13/2023] [Accepted: 06/28/2023] [Indexed: 07/09/2023]
Abstract
In the absence of sunlight, caves harbor a great diversity of microbial colonies to extensive biofilms with different sizes and colors visible to the naked eye. One of the most widespread and visible types of biofilm are those with yellow hues that can constitute a serious problem for the conservation of cultural heritage in many caves, such as Pindal Cave (Asturias, Spain). This cave, declared a World Heritage Site by UNESCO for its Paleolithic parietal art, shows a high degree of development of yellow biofilms that represents a real threat to the conservation of painted and engraved figures. This study aims to: 1) identify the microbial structures and the most characteristic taxa composing the yellow biofilms, 2) seek the linked microbiome reservoir primarily contributing to their growth; 3) seed light on the driving vectors that contribute to their formation and determine the subsequent proliferation and spatial distribution. To achieve this goal, we used amplicon-based massive sequencing, in combination with other techniques such as microscopy, in situ hybridization and environmental monitoring, to compare the microbial communities of yellow biofilms with those of drip waters, cave sediments and exterior soil. The results revealed microbial structures related to the phylum Actinomycetota and the most characteristic bacteria in yellow biofilms, represented by the genera wb1-P19, Crossiella, Nitrospira, and Arenimonas. Our findings suggest that sediments serve as potential reservoirs and colonization sites for these bacteria that can develop into biofilms under favorable environmental and substrate conditions, with a particular affinity for speleothems and rugged-surfaced rocks found in condensation-prone areas. This study presents an exhaustive study of microbial communities of yellow biofilms in a cave, which could be used as a procedure for the identification of similar biofilms in other caves and to design effective conservation strategies in caves with valuable cultural heritage.
Collapse
Affiliation(s)
- Tamara Martin-Pozas
- Department of Geology, National Museum of Natural Sciences (MNCN-CSIC), 28006 Madrid, Spain.
| | | | - Soledad Cuezva
- Department of Geology, Geography and Environment, University of Alcala, Campus Cientifico-Tecnologico, 28802 Alcala de Henares, Spain.
| | - Juan Carlos Cañaveras
- Department of Environmental and Earth Sciences, University of Alicante, Campus San Vicente del Raspeig, 03690 Alicante, Spain.
| | - David Benavente
- Department of Environmental and Earth Sciences, University of Alicante, Campus San Vicente del Raspeig, 03690 Alicante, Spain.
| | - Elsa Duarte
- Department of History, University of Oviedo, 33011 Oviedo, Spain.
| | - Cesareo Saiz-Jimenez
- Department of Agrochemistry, Environmental Microbiology and Soil and Water Protection, Institute of Natural Resources and Agricultural Biology (IRNAS-CSIC), 41012 Seville, Spain.
| | - Sergio Sanchez-Moral
- Department of Geology, National Museum of Natural Sciences (MNCN-CSIC), 28006 Madrid, Spain.
| |
Collapse
|
6
|
Fernández-Valero AD, Reñé A, Timoneda N, Pou-Solà N, Gordi J, Sampedro N, Garcés E. The succession of epiphytic microalgae conditions fungal community composition: how chytrids respond to blooms of dinoflagellates. ISME COMMUNICATIONS 2023; 3:103. [PMID: 37752353 PMCID: PMC10522651 DOI: 10.1038/s43705-023-00304-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/28/2023]
Abstract
This study aims to investigate the temporal dynamics of the epiphytic protist community on macroalgae, during the summer months, with a specific focus on fungi, and the interactions between zoosporic chytrid parasites and the proliferation of the dinoflagellates. We employed a combination of environmental sequencing techniques, incubation of natural samples, isolation of target organisms and laboratory experiments. Metabarcoding sequencing revealed changes in the dominant members of the epiphytic fungal community. Initially, fungi comprised < 1% of the protist community, mostly accounted for by Basidiomycota and Ascomycota, but with the emergence of Chytridiomycota during the mature phase of the biofilm, the fungal contribution increased to almost 30%. Chytridiomycota became dominant in parallel with an increase in the relative abundance of dinoflagellates in the community. Microscopy observations showed a general presence of chytrids following the peak proliferation of the dinoflagellate Ostreopsis sp., with the parasite, D. arenysensis as the dominant chytrid. The maximum infection prevalence was 2% indicating host-parasite coexistence. To further understand the in-situ prevalence of chytrids, we characterised the dynamics of the host abundance and prevalence of chytrids through co-culture. These laboratory experiments revealed intraspecific variability of D. arenysensis in its interaction with Ostreopsis, exhibiting a range from stable coexistence to the near-extinction of the host population. Moreover, while chytrids preferentially parasitized dinoflagellate cells, one of the strains examined displayed the ability to utilize pollen as a resource to maintain its viability, thus illustrating a facultative parasitic lifestyle. Our findings not only enrich our understanding of the diversity, ecology, and progression of epiphytic microalgal and fungal communities on Mediterranean coastal macroalgae, but they also shed light on the presence of zoosporic parasites in less-explored benthic habitats.
Collapse
Affiliation(s)
- Alan Denis Fernández-Valero
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (CSIC), Pg. Marítim de la Barceloneta, 37-49, 08003, Barcelona, Catalonia, Spain.
| | - Albert Reñé
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (CSIC), Pg. Marítim de la Barceloneta, 37-49, 08003, Barcelona, Catalonia, Spain
| | - Natàlia Timoneda
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (CSIC), Pg. Marítim de la Barceloneta, 37-49, 08003, Barcelona, Catalonia, Spain
| | - Núria Pou-Solà
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (CSIC), Pg. Marítim de la Barceloneta, 37-49, 08003, Barcelona, Catalonia, Spain
| | - Jordina Gordi
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (CSIC), Pg. Marítim de la Barceloneta, 37-49, 08003, Barcelona, Catalonia, Spain
| | - Nagore Sampedro
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (CSIC), Pg. Marítim de la Barceloneta, 37-49, 08003, Barcelona, Catalonia, Spain
| | - Esther Garcés
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (CSIC), Pg. Marítim de la Barceloneta, 37-49, 08003, Barcelona, Catalonia, Spain
| |
Collapse
|
7
|
Guo Z, Wang L, Song M, Jiang Z, Liang Z. The effects of flow field on the succession of the microbial community on artificial reefs. MARINE POLLUTION BULLETIN 2023; 191:114920. [PMID: 37060891 DOI: 10.1016/j.marpolbul.2023.114920] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/14/2023] [Accepted: 04/04/2023] [Indexed: 05/13/2023]
Abstract
The flow field is one of the most important external conditions affecting the development of biofouling community on artificial reefs (ARs), especially the microbial community. In this article, we investigated the temporal dynamics of microbial communities between the stoss side and the lee side of ARs. The results showed that the composition and structure of microbial and macrobenthic communities between the stoss side and the lee side both presented obvious temporal variations. Microbial diversity and richness were higher on the stoss side than that on the lee side. There was a greater impact on bacterial and archaeal communities on temporal scale compared to that on micro-spatial scale, which was not suitable for the fungal community. The organism biomass, abundance and coverage of macrobenthic community on the lee side were higher than those on the stoss side, and the microbial diversity on the stoss side increased significantly with the organism coverage.
Collapse
Affiliation(s)
- Zhansheng Guo
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Lu Wang
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Minpeng Song
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Zhaoyang Jiang
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Zhenlin Liang
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| |
Collapse
|
8
|
Segal Y, Lubinevsky H. Spatiotemporal distribution of seabed litter in the SE Levantine Basin during 2012-2021. MARINE POLLUTION BULLETIN 2023; 188:114714. [PMID: 36860013 DOI: 10.1016/j.marpolbul.2023.114714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 01/29/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
This study explores the first record of spatiotemporal distributions of macro and micro-litter on the seafloor in the Southeastern (SE) Levantine Basin (LB) during 2012-2021. Macro-litter was surveyed by bottom trawls in water depths of 20-1600 m and micro-litter by sediment box corer/grab at a depths range of 4-1950 m. Maximal macro-litter concentrations were recorded at the upper continental slope (200 m), averaging 4700 ± 3000 items/km2. Plastic bags and packages were the most abundant items (77 ± 9 %) with a maximum of 89 % at 200 m depth, and their size decreased with increasing water depth. Micro-litter debris were found mainly in shelf sediments (≤30 m water depth) with an average concentration of 40 ± 50 items/kg, while shit particles transferred to the deep sea. These findings suggest an extensive distribution of plastic bags and packages in the SE LB, predominantly accumulating in the upper continental slope and deeper, based on their size.
Collapse
Affiliation(s)
- Yael Segal
- Israel Oceanographic & Limnological Research, National Institute of Oceanography, Haifa, Israel.
| | - Hadas Lubinevsky
- Israel Oceanographic & Limnological Research, National Institute of Oceanography, Haifa, Israel
| |
Collapse
|
9
|
Lalzar M, Zvi-Kedem T, Kroin Y, Martinez S, Tchernov D, Meron D. Sediment Microbiota as a Proxy of Environmental Health: Discovering Inter- and Intrakingdom Dynamics along the Eastern Mediterranean Continental Shelf. Microbiol Spectr 2023; 11:e0224222. [PMID: 36645271 PMCID: PMC9927165 DOI: 10.1128/spectrum.02242-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Sedimentary marine habitats are the largest ecosystem on our planet in terms of area. Marine sediment microbiota govern most of the benthic biological processes and therefore are responsible for much of the global biogeochemical activity. Sediment microbiota respond, even rapidly, to natural change in environmental conditions as well as disturbances of anthropogenic sources. The latter greatly impact the continental shelf. Characterization and monitoring of the sediment microbiota may serve as an important tool for assessing environmental health and indicate changes in the marine ecosystem. This study examined the suitability of marine sediment microbiota as a bioindicator for environmental health in the eastern Mediterranean Sea. Integration of information from Bacteria, Archaea, and Eukaryota enabled robust assessment of environmental factors controlling sediment microbiota composition: seafloor-depth (here representing sediment grain size and total organic carbon), core depth, and season (11%, 4.2%, and 2.5% of the variance, respectively). Furthermore, inter- and intrakingdom cooccurrence patterns indicate that ecological filtration as well as stochastic processes may control sediment microbiota assembly. The results show that the sediment microbiota was robust over 3 years of sampling, in terms of both representation of region (outside the model sites) and robustness of microbial markers. Furthermore, anthropogenic disturbance was reflected by significant transformations in sediment microbiota. We therefore propose sediment microbiota analysis as a sensitive approach to detect disturbances, which is applicable for long-term monitoring of marine environmental health. IMPORTANCE Analysis of data, curated over 3 years of sediment sampling, improves our understanding of microbiota assembly in marine sediment. Furthermore, we demonstrate the importance of cross-kingdom integration of information in the study of microbial community ecology. Finally, the urgent need to propose an applicable approach for environmental health monitoring is addressed here by establishment of sediment microbiota as a robust and sensitive model.
Collapse
Affiliation(s)
- Maya Lalzar
- Bioinformatics Services Unit, University of Haifa, Haifa, Israel
| | - Tal Zvi-Kedem
- Morris Kahn Marine Research Station, Faculty of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Yael Kroin
- Morris Kahn Marine Research Station, Faculty of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Stephane Martinez
- Morris Kahn Marine Research Station, Faculty of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Dan Tchernov
- Morris Kahn Marine Research Station, Faculty of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Dalit Meron
- Morris Kahn Marine Research Station, Faculty of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
10
|
The Culturable Mycobiota of Sediments and Associated Microplastics: From a Harbor to a Marine Protected Area, a Comparative Study. J Fungi (Basel) 2022; 8:jof8090927. [PMID: 36135652 PMCID: PMC9501098 DOI: 10.3390/jof8090927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Fungi are an essential component of marine ecosystems, although little is known about their global distribution and underwater diversity, especially in sediments. Microplastics (MPs) are widespread contaminants worldwide and threaten the organisms present in the oceans. In this study, we investigated the fungal abundance and diversity in sediments, as well as the MPs, of three sites with different anthropogenic impacts in the Mediterranean Sea: the harbor of Livorno, the marine protected area “Secche della Meloria”; and an intermediate point, respectively. A total of 1526 isolates were cultured and identified using a polyphasic approach. For many of the fungal species this is the first record in a marine environment. A comparison with the mycobiota associated with the sediments and MPs underlined a “substrate specificity”, highlighting the complexity of MP-associated fungal assemblages, potentially leading to altered microbial activities and hence changes in ecosystem functions. A further driving force that acts on the fungal communities associated with sediments and MPs is sampling sites with different anthropogenic impacts.
Collapse
|