1
|
Patton S, Silva DP, Fuques E, Klinges G, Muller EM, Thurber RLV. Antibiotic type and dose variably affect microbiomes of a disease-resistant Acropora cervicornis genotype. ENVIRONMENTAL MICROBIOME 2025; 20:46. [PMID: 40317056 PMCID: PMC12049008 DOI: 10.1186/s40793-025-00709-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 04/16/2025] [Indexed: 05/04/2025]
Abstract
BACKGROUND As coral diseases become more prevalent and frequent, the need for new intervention strategies also increases to counteract the rapid spread of disease. Recent advances in coral disease mitigation have resulted in increased use of antibiotics on reefs, as their application may halt disease lesion progression. Although efficacious, consequences of deliberate microbiome manipulation resulting from antibiotic administration are less well-understood- especially in non-diseased corals that appear visually healthy. Therefore, to understand how apparently healthy corals are affected by antibiotics, we investigated how three individual antibiotics, and a mixture of the three, impact the microbiome structure and diversity of a disease-resistant Caribbean staghorn coral (Acropora cervicornis) genotype. Over a 96-hour, aquarium-based antibiotic exposure experiment, we collected and processed coral tissue and water samples for 16S rRNA gene analysis. RESULTS We found that antibiotic type and dose distinctively impact microbiome alpha diversity, beta diversity, and community composition. In experimental controls, microbiome composition was dominated by an unclassified bacterial taxon from the order Campylobacterales, while each antibiotic treatment significantly reduced the relative abundance of this taxon. Those taxa that persisted following antibiotic treatment largely differed by antibiotic type and dose, thereby indicating that antibiotic treatment may result in varying potential for opportunist establishment. CONCLUSION Together, these data suggest that antibiotics induce microbiome dysbiosis- hallmarked by the loss of a dominant bacterium and the increase in taxa associated with coral stress responses. Understanding the off-target consequences of antibiotic administration is critical not only for informed, long-term coral restoration practices, but also for highlighting the importance of responsible antibiotic dissemination into natural environments.
Collapse
Affiliation(s)
- Sunni Patton
- Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, 93106-9620, USA.
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA.
| | - Denise P Silva
- Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, 93106-9620, USA
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA
| | - Eddie Fuques
- Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, 93106-9620, USA
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA
| | - Grace Klinges
- Center for Global Discovery and Conservation Science, Arizona State University, Hilo, HI, 96720, USA
- Mote Marine Laboratory, 1600 Ken Thompson Pkwy, Sarasota, FL, 34236, USA
- Mote Marine Laboratory International Center for Coral Reef Research and Restoration, 24244 Overseas Hwy, Summerland Key, FL, 33042, USA
| | - Erinn M Muller
- Mote Marine Laboratory, 1600 Ken Thompson Pkwy, Sarasota, FL, 34236, USA
- Mote Marine Laboratory International Center for Coral Reef Research and Restoration, 24244 Overseas Hwy, Summerland Key, FL, 33042, USA
| | - Rebecca L Vega Thurber
- Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, 93106-9620, USA
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA
| |
Collapse
|
2
|
Palacio-Castro AM, Kroesche D, Enochs IC, Kelble C, Smith I, Baker AC, Rosales SM. Genotypes of Acropora cervicornis in Florida show resistance to either elevated nutrients or disease, but not both in combination. PLoS One 2025; 20:e0320378. [PMID: 40138278 PMCID: PMC11940558 DOI: 10.1371/journal.pone.0320378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 02/17/2025] [Indexed: 03/29/2025] Open
Abstract
Coral restoration programs are expanding to revive coral populations and ecosystem services, but local and global stressors still threaten coral survival. In the Caribbean, the ESA-listed staghorn coral Acropora cervicornis has experienced profound declines due to multiple stressors, including disease and nutrient pollution. We studied the impact of these two stressors on ten A. cervicornis genotypes for which disease susceptibility was previously ranked in a disease transmission experiment. Results showed that elevated ammonium, disease, and their combination negatively affected A. cervicornis survivorship, with variable susceptibility among genotypes. Three genotypes were susceptible to elevated ammonium alone and experienced mortality in up to 80% of their fragments. Exposure to a disease homogenate under ambient ammonium caused mortality in 100% of the fragments in four coral genotypes, intermediate mortality in five (33-66% of their fragments), and no mortality in one genotype. However, all genotypes experienced mortality (30-100% of their fragments) when exposed to both elevated ammonium and disease. Despite the detrimental effects of ammonium on coral survivorship, corals under elevated ammonium presented higher photochemical efficiency (Fv/Fm) of the algal symbionts. Disease susceptibility did not align with the genotypic ranking established in a previous study, suggesting that, while genotypes may vary in their disease resistance, rankings may change due to environmental factors or disease type. Regardless of individual susceptibility, our results suggest that water quality improvement is necessary for increasing A. cervicornis survivorship.
Collapse
Affiliation(s)
- Ana M. Palacio-Castro
- Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, Florida, United States of America
- Atlantic Oceanographic and Meteorological Laboratory, NOAA, Miami, Florida, United States of America
| | - Danielle Kroesche
- Department of Marine Biology and Ecology, University of Miami, Miami, Florida, United States of America
- NOVA Southeastern University, Davie, Florida, United States of America
| | - Ian C. Enochs
- Atlantic Oceanographic and Meteorological Laboratory, NOAA, Miami, Florida, United States of America
| | - Chris Kelble
- Atlantic Oceanographic and Meteorological Laboratory, NOAA, Miami, Florida, United States of America
| | - Ian Smith
- Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, Florida, United States of America
- Atlantic Oceanographic and Meteorological Laboratory, NOAA, Miami, Florida, United States of America
| | - Andrew C. Baker
- Department of Marine Biology and Ecology, University of Miami, Miami, Florida, United States of America
| | - Stephanie M. Rosales
- Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, Florida, United States of America
- Atlantic Oceanographic and Meteorological Laboratory, NOAA, Miami, Florida, United States of America
| |
Collapse
|
3
|
Vega Thurber RL, Silva D, Speare L, Croquer A, Veglia AJ, Alvarez-Filip L, Zaneveld JR, Muller EM, Correa AMS. Coral Disease: Direct and Indirect Agents, Mechanisms of Disease, and Innovations for Increasing Resistance and Resilience. ANNUAL REVIEW OF MARINE SCIENCE 2025; 17:227-255. [PMID: 39227183 DOI: 10.1146/annurev-marine-011123-102337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
As climate change drives health declines of tropical reef species, diseases are further eroding ecosystem function and habitat resilience. Coral disease impacts many areas around the world, removing some foundation species to recorded low levels and thwarting worldwide efforts to restore reefs. What we know about coral disease processes remains insufficient to overcome many current challenges in reef conservation, yet cumulative research and management practices are revealing new disease agents (including bacteria, viruses, and eukaryotes), genetic host disease resistance factors, and innovative methods to prevent and mitigate epizootic events (probiotics, antibiotics, and disease resistance breeding programs). The recent outbreak of stony coral tissue loss disease across the Caribbean has reenergized and mobilized the research community to think bigger and do more. This review therefore focuses largely on novel emerging insights into the causes and mechanisms of coral disease and their applications to coral restoration and conservation.
Collapse
Affiliation(s)
- Rebecca L Vega Thurber
- Marine Science Institute and Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, California, USA
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA;
| | - Denise Silva
- Marine Science Institute and Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, California, USA
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA;
| | - Lauren Speare
- School of Biological Sciences and Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA;
| | - Aldo Croquer
- The Nature Conservancy, Caribbean Division, Punta Cana, La Altagracia, Dominican Republic
| | - Alex J Veglia
- EcoAzul, La Parguera, Puerto Rico, USA
- Department of Biology, University of Puerto Rico at Mayagüez, Mayagüez, Puerto Rico, USA
| | - Lorenzo Alvarez-Filip
- Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| | - Jesse R Zaneveld
- Division of Biological Sciences, School of Science, Technology, Engineering, and Mathematics, University of Washington Bothell, Bothell, Washington, USA
| | | | - Adrienne M S Correa
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California, USA
| |
Collapse
|
4
|
Martin-Cuadrado AB, Rubio-Portillo E, Rosselló F, Antón J. The coral Oculina patagonica holobiont and its response to confinement, temperature, and Vibrio infections. MICROBIOME 2024; 12:222. [PMID: 39472959 PMCID: PMC11520598 DOI: 10.1186/s40168-024-01921-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 08/28/2024] [Indexed: 11/02/2024]
Abstract
BACKGROUND Extensive research on the diversity and functional roles of the microorganisms associated with reef-building corals has been promoted as a consequence of the rapid global decline of coral reefs attributed to climate change. Several studies have highlighted the importance of coral-associated algae (Symbiodinium) and bacteria and their potential roles in promoting coral host fitness and survival. However, the complex coral holobiont extends beyond these components to encompass other entities such as protists, fungi, and viruses. While each constituent has been individually investigated in corals, a comprehensive understanding of their collective roles is imperative for a holistic comprehension of coral health and resilience. RESULTS The metagenomic analysis of the microbiome of the coral Oculina patagonica has revealed that fungi of the genera Aspergillus, Fusarium, and Rhizofagus together with the prokaryotic genera Streptomyces, Pseudomonas, and Bacillus were abundant members of the coral holobiont. This study also assessed changes in microeukaryotic, prokaryotic, and viral communities under three stress conditions: aquaria confinement, heat stress, and Vibrio infections. In general, stress conditions led to an increase in Rhodobacteraceae, Flavobacteraceae, and Vibrionaceae families, accompanied by a decrease in Streptomycetaceae. Concurrently, there was a significant decline in both the abundance and richness of microeukaryotic species and a reduction in genes associated with antimicrobial compound production by the coral itself, as well as by Symbiodinium and fungi. CONCLUSION Our findings suggest that the interplay between microeukaryotic and prokaryotic components of the coral holobiont may be disrupted by stress conditions, such as confinement, increase of seawater temperature, or Vibrio infection, leading to a dysbiosis in the global microbial community that may increase coral susceptibility to diseases. Further, microeukaryotic community seems to exert influence on the prokaryotic community dynamics, possibly through predation or the production of secondary metabolites with anti-bacterial activity. Video Abstract.
Collapse
Affiliation(s)
| | - Esther Rubio-Portillo
- Dpt. Fisiología, Genética y Microbiología, University of Alicante, San Vicente del Raspeig, Spain.
| | - Francesc Rosselló
- Mathematics and Computer Science Dept, University of the Balearic Islands, Palma, Spain
- Balearic Islands Health Research Institute (IdISBa), Palma, Spain
| | - Josefa Antón
- Dpt. Fisiología, Genética y Microbiología, University of Alicante, San Vicente del Raspeig, Spain
| |
Collapse
|
5
|
Selwyn JD, Despard BA, Vollmer MV, Trytten EC, Vollmer SV. Identification of putative coral pathogens in endangered Caribbean staghorn coral using machine learning. Environ Microbiol 2024; 26:e16700. [PMID: 39289821 DOI: 10.1111/1462-2920.16700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024]
Abstract
Coral diseases contribute to the rapid decline in coral reefs worldwide, and yet coral bacterial pathogens have proved difficult to identify because 16S rRNA gene surveys typically identify tens to hundreds of disease-associate bacteria as putative pathogens. An example is white band disease (WBD), which has killed up to 95% of the now-endangered Caribbean Acropora corals since 1979, yet the pathogen is still unknown. The 16S rRNA gene surveys have identified hundreds of WBD-associated bacterial amplicon sequencing variants (ASVs) from at least nine bacterial families with little consensus across studies. We conducted a multi-year, multi-site 16S rRNA gene sequencing comparison of 269 healthy and 143 WBD-infected Acropora cervicornis and used machine learning modelling to accurately predict disease outcomes and identify the top ASVs contributing to disease. Our ensemble ML models accurately predicted disease with greater than 97% accuracy and identified 19 disease-associated ASVs and five healthy-associated ASVs that were consistently differentially abundant across sampling periods. Using a tank-based transmission experiment, we tested whether the 19 disease-associated ASVs met the assumption of a pathogen and identified two pathogenic candidate ASVs-ASV25 Cysteiniphilum litorale and ASV8 Vibrio sp. to target for future isolation, cultivation, and confirmation of Henle-Koch's postulate via transmission assays.
Collapse
Affiliation(s)
- Jason D Selwyn
- Marine Science Center, Northeastern University, Nahant, Massachusetts, USA
- Department of Marine and Environmental Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Brecia A Despard
- Marine Science Center, Northeastern University, Nahant, Massachusetts, USA
- Department of Marine and Environmental Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Miles V Vollmer
- Marine Science Center, Northeastern University, Nahant, Massachusetts, USA
- Department of Marine and Environmental Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Emily C Trytten
- Marine Science Center, Northeastern University, Nahant, Massachusetts, USA
- Department of Marine and Environmental Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Steven V Vollmer
- Marine Science Center, Northeastern University, Nahant, Massachusetts, USA
- Department of Marine and Environmental Sciences, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Vohsen SA, Herrera S. Coral microbiomes are structured by environmental gradients in deep waters. ENVIRONMENTAL MICROBIOME 2024; 19:38. [PMID: 38858739 PMCID: PMC11165896 DOI: 10.1186/s40793-024-00579-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/02/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND Coral-associated microbiomes vary greatly between colonies and localities with functional consequences on the host. However, the full extent of variability across the ranges of most coral species remains unknown, especially for corals living in deep waters which span greater ranges. Here, we characterized the microbiomes of four octocoral species from mesophotic and bathyal deep-sea habitats in the northern Gulf of Mexico, Muricea pendula, Swiftia exserta, Callogorgia delta, and Paramuricea biscaya, using 16S rRNA gene metabarcoding. We sampled extensively across their ranges to test for microbiome differentiation between and within species, examining the influence of environmental factors that vary with depth (53-2224 m) and geographic location (over 680 m) as well as the host coral's genotype using RAD-sequencing. RESULTS Coral microbiomes were often dominated by amplicon sequence variants whose abundances varied across their hosts' ranges, including symbiotic taxa: corallicolids, Endozoicomonas, members of the Mollicutes, and the BD1-7 clade. Coral species, depth, and geographic location significantly affected diversity, microbial community composition, and the relative abundance of individual microbes. Depth was the strongest environmental factor determining microbiome structure within species, which influenced the abundance of most dominant symbiotic taxa. Differences in host genotype, bottom temperature, and surface primary productivity could explain a significant part of the microbiome variation associated with depth and geographic location. CONCLUSIONS Altogether, this work demonstrates that the microbiomes of corals in deep waters vary substantially across their ranges in accordance with depth and other environmental conditions. It reveals that the influence of depth on the ecology of mesophotic and deep-sea corals extends to its effects on their microbiomes which may have functional consequences. This work also identifies the distributions of microbes including potential parasites which can be used to inform restoration plans in response to the Deepwater Horizon oil spill.
Collapse
Affiliation(s)
- Samuel A Vohsen
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA.
- Lehigh Oceans Research Center, Lehigh University, Bethlehem, PA, USA.
| | - Santiago Herrera
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA.
- Lehigh Oceans Research Center, Lehigh University, Bethlehem, PA, USA.
| |
Collapse
|
7
|
Pogoreutz C, Ziegler M. Frenemies on the reef? Resolving the coral-Endozoicomonas association. Trends Microbiol 2024; 32:422-434. [PMID: 38216372 DOI: 10.1016/j.tim.2023.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 01/14/2024]
Abstract
Stony corals are poster child holobionts due to their intimate association with diverse microorganisms from all domains of life. We are only beginning to understand the diverse functions of most of these microbial associates, including potential main contributors to holobiont health and resilience. Among these, bacteria of the elusive genus Endozoicomonas are widely perceived as beneficial symbionts based on their genomic potential and their high prevalence and ubiquitous presence in coral tissues. Simultaneously, evidence of pathogenic and parasitic Endozoicomonas lineages in other marine animals is emerging. Synthesizing the current knowledge on the association of Endozoicomonas with marine holobionts, we challenge the perception of a purely mutualistic coral-Endozoicomonas relationship and propose directions to elucidate its role along the symbiotic spectrum.
Collapse
Affiliation(s)
- Claudia Pogoreutz
- EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan Cedex, France.
| | - Maren Ziegler
- Department of Animal Ecology and Systematics, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32 (IFZ), 35392, Giessen, Germany.
| |
Collapse
|
8
|
Williams A. Multiomics data integration, limitations, and prospects to reveal the metabolic activity of the coral holobiont. FEMS Microbiol Ecol 2024; 100:fiae058. [PMID: 38653719 PMCID: PMC11067971 DOI: 10.1093/femsec/fiae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/25/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024] Open
Abstract
Since their radiation in the Middle Triassic period ∼240 million years ago, stony corals have survived past climate fluctuations and five mass extinctions. Their long-term survival underscores the inherent resilience of corals, particularly when considering the nutrient-poor marine environments in which they have thrived. However, coral bleaching has emerged as a global threat to coral survival, requiring rapid advancements in coral research to understand holobiont stress responses and allow for interventions before extensive bleaching occurs. This review encompasses the potential, as well as the limits, of multiomics data applications when applied to the coral holobiont. Synopses for how different omics tools have been applied to date and their current restrictions are discussed, in addition to ways these restrictions may be overcome, such as recruiting new technology to studies, utilizing novel bioinformatics approaches, and generally integrating omics data. Lastly, this review presents considerations for the design of holobiont multiomics studies to support lab-to-field advancements of coral stress marker monitoring systems. Although much of the bleaching mechanism has eluded investigation to date, multiomic studies have already produced key findings regarding the holobiont's stress response, and have the potential to advance the field further.
Collapse
Affiliation(s)
- Amanda Williams
- Microbial Biology Graduate Program, Rutgers University, 76 Lipman Drive, New Brunswick, NJ 08901, United States
- Department of Biochemistry and Microbiology, Rutgers University, 76 Lipman Drive, New Brunswick, NJ 08901, United States
| |
Collapse
|
9
|
Klinges JG, Patel SH, Duke WC, Muller EM, Vega Thurber RL. Microbiomes of a disease-resistant genotype of Acropora cervicornis are resistant to acute, but not chronic, nutrient enrichment. Sci Rep 2023; 13:3617. [PMID: 36869057 PMCID: PMC9984465 DOI: 10.1038/s41598-023-30615-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
Chronically high levels of inorganic nutrients have been documented in Florida's coral reefs and are linked to increased prevalence and severity of coral bleaching and disease. Naturally disease-resistant genotypes of the staghorn coral Acropora cervicornis are rare, and it is unknown whether prolonged exposure to acute or chronic high nutrient levels will reduce the disease tolerance of these genotypes. Recently, the relative abundance of the bacterial genus Aquarickettsia was identified as a significant indicator of disease susceptibility in A. cervicornis, and the abundance of this bacterial species was previously found to increase under chronic and acute nutrient enrichment. We therefore examined the impact of common constituents of nutrient pollution (phosphate, nitrate, and ammonium) on microbial community structure in a disease-resistant genotype with naturally low abundances of Aquarickettsia. We found that although this putative parasite responded positively to nutrient enrichment in a disease-resistant host, relative abundances remained low (< 0.5%). Further, while microbial diversity was not altered significantly after 3 weeks of nutrient enrichment, 6 weeks of enrichment was sufficient to shift microbiome diversity and composition. Coral growth rates were also reduced by 6 weeks of nitrate treatment compared to untreated conditions. Together these data suggest that the microbiomes of disease-resistant A. cervicornis may be initially resistant to shifts in microbial community structure, but succumb to compositional and diversity alterations after more sustained environmental pressure. As the maintenance of disease-resistant genotypes is critical for coral population management and restoration, a complete understanding of how these genotypes respond to environmental stressors is necessary to predict their longevity.
Collapse
Affiliation(s)
- J Grace Klinges
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA.
- Mote Marine Laboratory International Center for Coral Reef Research and Restoration, 24244 Overseas Hwy, Summerland Key, FL, 33042, USA.
| | - Shalvi H Patel
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA
| | - William C Duke
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA
| | - Erinn M Muller
- Mote Marine Laboratory International Center for Coral Reef Research and Restoration, 24244 Overseas Hwy, Summerland Key, FL, 33042, USA
- Mote Marine Laboratory, 1600 Ken Thompson Pkwy, Sarasota, FL, 34236, USA
| | - Rebecca L Vega Thurber
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA
| |
Collapse
|
10
|
Williams SD, Klinges JG, Zinman S, Clark AS, Bartels E, Villoch Diaz Maurino M, Muller EM. Geographically driven differences in microbiomes of Acropora cervicornis originating from different regions of Florida's Coral Reef. PeerJ 2022; 10:e13574. [PMID: 35729906 PMCID: PMC9206844 DOI: 10.7717/peerj.13574] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 05/22/2022] [Indexed: 01/17/2023] Open
Abstract
Effective coral restoration must include comprehensive investigations of the targeted coral community that consider all aspects of the coral holobiont-the coral host, symbiotic algae, and microbiome. For example, the richness and composition of microorganisms associated with corals may be indicative of the corals' health status and thus help guide restoration activities. Potential differences in microbiomes of restoration corals due to differences in host genetics, environmental condition, or geographic location, may then influence outplant success. The objective of the present study was to characterize and compare the microbiomes of apparently healthy Acropora cervicornis genotypes that were originally collected from environmentally distinct regions of Florida's Coral Reef and sampled after residing within Mote Marine Laboratory's in situ nursery near Looe Key, FL (USA) for multiple years. By using 16S rRNA high-throughput sequencing, we described the microbial communities of 74 A. cervicornis genotypes originating from the Lower Florida Keys (n = 40 genotypes), the Middle Florida Keys (n = 15 genotypes), and the Upper Florida Keys (n = 19 genotypes). Our findings demonstrated that the bacterial communities of A. cervicornis originating from the Lower Keys were significantly different from the bacterial communities of those originating from the Upper and Middle Keys even after these corals were held within the same common garden nursery for an average of 3.4 years. However, the bacterial communities of corals originating in the Upper Keys were not significantly different from those in the Middle Keys. The majority of the genotypes, regardless of collection region, were dominated by Alphaproteobacteria, namely an obligate intracellular parasite of the genus Ca. Aquarickettsia. Genotypes from the Upper and Middle Keys also had high relative abundances of Spirochaeta bacteria. Several genotypes originating from both the Lower and Upper Keys had lower abundances of Aquarickettsia, resulting in significantly higher species richness and diversity. Low abundance of Aquarickettsia has been previously identified as a signature of disease resistance. While the low-Aquarickettsia corals from both the Upper and Lower Keys had high abundances of an unclassified Proteobacteria, the genotypes in the Upper Keys were also dominated by Spirochaeta. The results of this study suggest that the abundance of Aquarickettsia and Spirochaeta may play an important role in distinguishing bacterial communities among A. cervicornis populations and compositional differences of these bacterial communities may be driven by regional processes that are influenced by both the environmental history and genetic relatedness of the host. Additionally, the high microbial diversity of low-Aquarickettsia genotypes may provide resilience to their hosts, and these genotypes may be a potential resource for restoration practices and management.
Collapse
Affiliation(s)
| | - J. Grace Klinges
- Mote Marine Laboratory, Elizabeth Moore International Center for Coral Reef Research & Restoration, Summerland Key, FL, United States of America
| | - Samara Zinman
- Nova Southeastern University, Dania Beach, FL, United States of America
| | - Abigail S. Clark
- Mote Marine Laboratory, Elizabeth Moore International Center for Coral Reef Research & Restoration, Summerland Key, FL, United States of America,The College of the Florida Keys, Key West, FL, United States of America
| | - Erich Bartels
- Mote Marine Laboratory, Elizabeth Moore International Center for Coral Reef Research & Restoration, Summerland Key, FL, United States of America
| | - Marina Villoch Diaz Maurino
- Mote Marine Laboratory, Elizabeth Moore International Center for Coral Reef Research & Restoration, Summerland Key, FL, United States of America
| | - Erinn M. Muller
- Mote Marine Laboratory, Sarasota, FL, United States of America
| |
Collapse
|