1
|
Molnar NB, Weigel BL, Fales RJ, Pfister CA. Warming Seawater Temperature and Nutrient Depletion Alters Microbial Community Composition on a Foundational Canopy Kelp Species. Environ Microbiol 2025; 27:e70077. [PMID: 40075558 PMCID: PMC11903912 DOI: 10.1111/1462-2920.70077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 02/07/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025]
Abstract
Warming seawater temperatures and low dissolved inorganic nitrogen (DIN) levels are environmental stressors that affect the health and abundance of marine macroalgae and their microbiomes. Nereocystis luetkeana, a canopy-forming species of brown algae that forms critical habitat along the Pacific coast, has declined in regions impacted by these synergistic stressors. Little is known about how these environmental factors affect the microbiome of N. luetkeana, which could affect nutrient availability, vitamin production, and stress response for the host. We experimentally tested the interactive effects of three seawater temperatures (13°C, 16°C, 21°C) crossed with abundant and replete DIN levels on the diversity and composition of blade-associated microbiomes from two spatially separated kelp host populations. We hypothesised that kelp microbiomes exposed to high temperatures and low DIN would experience the lowest diversity. Contrary to our hypothesis, the highest temperature treatment resulted in the largest increase in microbial diversity, and microbiomes in all temperature treatments experienced a decrease in previously dominant taxa. Temperature had a larger effect than DIN on the kelp microbiome in all cases. The disruption to the kelp microbiome across all temperatures, especially at the highest temperature, suggests that the effects of warming on N. luetkeana extend to the microbiome.
Collapse
Affiliation(s)
| | - Brooke L. Weigel
- University of Washington, Friday Harbor LabsFriday HarborWashingtonUSA
| | - Robin J. Fales
- University of Washington, Friday Harbor LabsFriday HarborWashingtonUSA
- University of WashingtonDepartment of BiologySeattleWashingtonUSA
| | - Catherine A. Pfister
- The College, The University of ChicagoChicagoIllinoisUSA
- Department of Ecology and EvolutionThe University of ChicagoChicagoIllinoisUSA
| |
Collapse
|
2
|
Febvre C, Goldblatt C, El-Sabaawi R. Thermal performance of ecosystems: Modeling how physiological responses to temperature scale up in communities. J Theor Biol 2024; 585:111792. [PMID: 38513968 DOI: 10.1016/j.jtbi.2024.111792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/20/2024] [Accepted: 03/10/2024] [Indexed: 03/23/2024]
Abstract
Understanding how ecosystems respond to their environmental temperature is a major challenge. Thermodynamic constraints on species' metabolic rates are expected to affect ecosystem characteristics, but species interactions and interspecific variation in physiological thermal response curves (TRC) may obscure ecosystem-level responses to temperature. As a result, macroecological patterns related to temperature are still poorly understood. We investigate how physiological TRC scale up to ecosystem-level thermal responses by modifying the Tangled Nature (TaNa) model, a stochastic network model of ecology and evolution. We include new parameterizations that make reproduction, death, and mutation temperature-dependent. We find that ecosystem survival probability depends on how the minimum fitness required for species survival varies with temperature. The thermal response of ecosystem survival probability is the only ecosystem property that is sensitive to interspecific variation in TRC. Species richness scales up directly from the TRC of mutation rate, and average species population sizes are inversely related to mutation rate, with Species Abundance Distributions (SADs) exhibiting more rare species in warmer temperatures. Interactions between species are also inversely related to mutation, with positive interactions occurring more frequently in colder temperatures. The abundance of surviving ecosystems is not sensitive to temperature. This work helps clarify the specific relationships between physiological responses to temperature and ecosystem-level repercussions when species are interacting and adapting to their thermal environments.
Collapse
Affiliation(s)
- Camille Febvre
- School of Earth & Ocean Sciences, University of Victoria, 3600 Finnerty Road, Victoria, BC, Canada; Department of Biology, University of Victoria, 3600 Finnerty Road, Victoria, BC, Canada.
| | - Colin Goldblatt
- School of Earth & Ocean Sciences, University of Victoria, 3600 Finnerty Road, Victoria, BC, Canada
| | - Rana El-Sabaawi
- Department of Biology, University of Victoria, 3600 Finnerty Road, Victoria, BC, Canada
| |
Collapse
|
3
|
Garrido Zornoza M, Mitarai N, Haerter JO. Stochastic microbial dispersal drives local extinction and global diversity. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231301. [PMID: 39076806 PMCID: PMC11285425 DOI: 10.1098/rsos.231301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/17/2024] [Accepted: 02/20/2024] [Indexed: 07/31/2024]
Abstract
Airborne dispersal of microorganisms is a ubiquitous migration mechanism, allowing otherwise independent microbial habitats to interact via biomass exchange. Here, we study the ecological implications of such advective transport using a simple spatial model for bacteria-phage interactions: the population dynamics at each habitat are described by classical Lotka-Volterra equations; however, species populations are taken as integer, that is, a discrete, positive extinction threshold exists. Spatially, species can spread from habitat to habitat by stochastic airborne dispersal. In any given habitat, the spatial biomass exchange causes incessant population density oscillations, which, as a consequence, occasionally drive species to extinction. The balance between local extinction events and dispersal-induced migration allows species to persist globally, even though diversity would be depleted by competitive exclusion, locally. The disruptive effect of biomass dispersal thus acts to increase microbial diversity, allowing system-scale coexistence of multiple species that would not coexist locally.
Collapse
Affiliation(s)
| | - Namiko Mitarai
- The Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Jan O. Haerter
- The Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
- Constructor University, Bremen, Germany
- Leibniz Centre for Tropical Marine Research, Bremen, Germany
- Department of Physics and Astronomy, University of Potsdam, Potsdam, Germany
| |
Collapse
|
4
|
Barbosa AB, Mosley BA, Galvão HM, Domingues RB. Short-Term Effects of Climate Change on Planktonic Heterotrophic Prokaryotes in a Temperate Coastal Lagoon: Temperature Is Good, Ultraviolet Radiation Is Bad, and CO 2 Is Neutral. Microorganisms 2023; 11:2559. [PMID: 37894217 PMCID: PMC10609585 DOI: 10.3390/microorganisms11102559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/05/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Planktonic heterotrophic prokaryotes (HProks) are a pivotal functional group in marine ecosystems and are highly sensitive to environmental variability and climate change. This study aimed to investigate the short-term effects of increasing carbon dioxide (CO2), ultraviolet radiation (UVR), and temperature on natural assemblages of HProks in the Ria Formosa coastal lagoon during winter. Two multi-stressor microcosm experiments were used to evaluate the isolated and combined effects of these environmental changes on HProk abundance, production, growth, and mortality rates. The isolated and combined effects of increased CO2 on HProks were not significant. However, HProk production, cellular activity, instantaneous growth rate, and mortality rate were negatively influenced by elevated UVR and positively influenced by warming. Stronger effects were detected on HProk mortality in relation to specific growth rate, leading to higher HProk net growth rates and abundance under elevated UVR and lower values under warming conditions.
Collapse
Affiliation(s)
| | | | | | - Rita B. Domingues
- CIMA—Centre for Marine and Environmental Research & ARNET—Infrastructure Network in Aquatic Research, Campus de Gambelas, University of Algarve, 8005-139 Faro, Portugal
| |
Collapse
|
5
|
Kumakura D, Yamaguchi R, Hara A, Nakaoka S. Disentangling the growth curve of microbial culture. J Theor Biol 2023; 573:111597. [PMID: 37598762 DOI: 10.1016/j.jtbi.2023.111597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/18/2023] [Accepted: 08/07/2023] [Indexed: 08/22/2023]
Abstract
Many researchers have studied the population dynamics of microbe of microbes as a typical example of population dynamics. The Monod equation, which mainly focuses on the growth and stationary phases, is used when plotting a growth curve. However, the growth potential in the late stage of culture has been overlooked. Previous studies considered the direct degradation of products to the limiting substrate. In this study, we considered microbial growth during the stationary phase, which enables us to describe the dynamics precisely. The microbes were divided into two populations: one grew by consuming the limiting substrate and the other degraded the products by metabolism. According to the numerical analysis of our model, microbes may choose one of two strategies: one consumes substrates and expands quickly, and the other grows slowly while cleaning up the environment in which they thrive. Furthermore, we found three types of microbial growth depending on their ability to detect metabolite accumulation. Using experimentally measured data, this model can estimate the dynamics of cell density, the substrates, and the metabolites used. The model's disentangling of growth curves offers novel interpretive possibilities for culture system dynamics.
Collapse
Affiliation(s)
- Daiki Kumakura
- Graduate School of Life Science, Hokkaido University, Hokkaido, Japan; Interdisciplinary Theoretical and Mathematical Sciences (iTHEMS), RIKEN, Saitama, Japan.
| | - Ryo Yamaguchi
- Faculty of Advanced Life Science, Hokkaido University, Hokkaido, Japan; Department of Zoology & Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Akane Hara
- Laboratory of Pharmaceutical Quality Assurance and Assessment, Faculty of Pharmacy and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Shinji Nakaoka
- Faculty of Advanced Life Science, Hokkaido University, Hokkaido, Japan
| |
Collapse
|
6
|
Abreu CI, Dal Bello M, Bunse C, Pinhassi J, Gore J. Warmer temperatures favor slower-growing bacteria in natural marine communities. SCIENCE ADVANCES 2023; 9:eade8352. [PMID: 37163596 PMCID: PMC10171810 DOI: 10.1126/sciadv.ade8352] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Earth's life-sustaining oceans harbor diverse bacterial communities that display varying composition across time and space. While particular patterns of variation have been linked to a range of factors, unifying rules are lacking, preventing the prediction of future changes. Here, analyzing the distribution of fast- and slow-growing bacteria in ocean datasets spanning seasons, latitude, and depth, we show that higher seawater temperatures universally favor slower-growing taxa, in agreement with theoretical predictions of how temperature-dependent growth rates differentially modulate the impact of mortality on species abundances. Changes in bacterial community structure promoted by temperature are independent of variations in nutrients along spatial and temporal gradients. Our results help explain why slow growers dominate at the ocean surface, during summer, and near the tropics and provide a framework to understand how bacterial communities will change in a warmer world.
Collapse
Affiliation(s)
- Clare I Abreu
- Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Martina Dal Bello
- Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Carina Bunse
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Jarone Pinhassi
- Centre for Ecology and Evolution of Microbial Model Systems, Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Jeff Gore
- Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
7
|
Morán XAG, Arandia‐Gorostidi N, Huete‐Stauffer TM, Alonso‐Sáez L. Temperature enhances the functional diversity of dissolved organic matter utilization by coastal marine bacteria. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:31-37. [PMID: 36102203 PMCID: PMC10103754 DOI: 10.1111/1758-2229.13123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/15/2022] [Indexed: 05/20/2023]
Abstract
Although bulk bacterial metabolism in response to temperature has been determined for different oceanic regions, the impact of temperature on the functional diversity of dissolved organic matter (DOM) utilization has been largely unexplored. Here, we hypothesized that besides modifying the rates of carbon utilization, temperature can also alter the diversity of substrates utilized. The patterns of utilization of 31 model DOM compounds (as represented in Biolog EcoPlate™) by bacterioplankton were assessed using inocula from surface waters of the southern Bay of Biscay continental shelf over 1 year. Bacteria utilized more polymers and carbohydrates in late spring and summer than in winter, likely reflecting changes in substrate availability linked to the release and accumulation of DOM in phytoplankton post-bloom conditions. Seawater temperature correlated positively with the number of substrates utilized (i.e. functional richness) and this relationship was maintained in monthly experimental incubations spanning 3°C below and above in situ values. The enhancement of functional richness with experimental warming displayed a unimodal response to ambient temperature, peaking at 16°C. This temperature acted as a threshold separating nutrient-sufficient from nutrient-deficient conditions at the study site, suggesting that trophic conditions will be critical in the response of microbial DOM utilization to future warming.
Collapse
Affiliation(s)
| | - Nestor Arandia‐Gorostidi
- Centro Oceanográfico de Gijón/XixónIEO‐CSICGijón/XixónSpain
- Department of Marine Biology and OceanographyInstitute of Marine Sciences, CSICBarcelonaSpain
| | | | - Laura Alonso‐Sáez
- Centro Oceanográfico de Gijón/XixónIEO‐CSICGijón/XixónSpain
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA)SukarrietaSpain
| |
Collapse
|
8
|
Kim HH, Laufkötter C, Lovato T, Doney SC, Ducklow HW. Projected 21st-century changes in marine heterotrophic bacteria under climate change. Front Microbiol 2023; 14:1049579. [PMID: 36876093 PMCID: PMC9978487 DOI: 10.3389/fmicb.2023.1049579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/19/2023] [Indexed: 02/18/2023] Open
Abstract
Marine heterotrophic Bacteria (or referred to as bacteria) play an important role in the ocean carbon cycle by utilizing, respiring, and remineralizing organic matter exported from the surface to deep ocean. Here, we investigate the responses of bacteria to climate change using a three-dimensional coupled ocean biogeochemical model with explicit bacterial dynamics as part of the Coupled Model Intercomparison Project Phase 6. First, we assess the credibility of the century-scale projections (2015-2099) of bacterial carbon stock and rates in the upper 100 m layer using skill scores and compilations of the measurements for the contemporary period (1988-2011). Second, we demonstrate that across different climate scenarios, the simulated bacterial biomass trends (2076-2099) are sensitive to the regional trends in temperature and organic carbon stocks. Bacterial carbon biomass declines by 5-10% globally, while it increases by 3-5% in the Southern Ocean where semi-labile dissolved organic carbon (DOC) stocks are relatively low and particle-attached bacteria dominate. While a full analysis of drivers underpinning the simulated changes in all bacterial stock and rates is not possible due to data constraints, we investigate the mechanisms of the changes in DOC uptake rates of free-living bacteria using the first-order Taylor decomposition. The results demonstrate that the increase in semi-labile DOC stocks drives the increase in DOC uptake rates in the Southern Ocean, while the increase in temperature drives the increase in DOC uptake rates in the northern high and low latitudes. Our study provides a systematic analysis of bacteria at global scale and a critical step toward a better understanding of how bacteria affect the functioning of the biological carbon pump and partitioning of organic carbon pools between surface and deep layers.
Collapse
Affiliation(s)
- Heather H Kim
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - Charlotte Laufkötter
- Division of Climate and Environmental Physics, Physics Institute, University of Bern, Bern, Switzerland.,Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
| | - Tomas Lovato
- Ocean Modeling and Data Assimilation Division, Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici - CMCC, Bologna, Italy
| | - Scott C Doney
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA, United States
| | - Hugh W Ducklow
- Department of Earth and Environmental Sciences, Columbia University, New York, NY, United States
| |
Collapse
|
9
|
Labban A, Shibl AA, Calleja ML, Hong PY, Morán XAG. Growth dynamics and transcriptional responses of a Red Sea Prochlorococcus strain to varying temperatures. Environ Microbiol 2022; 25:1007-1021. [PMID: 36567447 DOI: 10.1111/1462-2920.16326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/11/2022] [Indexed: 12/27/2022]
Abstract
Prochlorococcus play a crucial role in the ocean's biogeochemical cycling, but it remains controversial how they will respond to global warming. Here we assessed the response to temperature (22-30°C) of the growth dynamics and gene expression profiles of a Red Sea Prochlorococcus strain (RSP50) in a non-axenic culture. Both the specific growth rate (0.55-0.80 day-1 ) and cell size (0.04-0.07 μm3 ) of Prochlorococcus increased significantly with temperature. The primary production released extracellularly ranged from 20% to 34%, with humic-like fluorescent compounds increasing up to fivefold as Prochlorococcus reached its maximum abundance. At 30°C, genes involved in carbon fixation such as CsoS2 and CsoS3 and photosynthetic electron transport including PTOX were downregulated, suggesting a cellular homeostasis and energy saving mechanism response. In contrast, PTOX was found upregulated at 22°C and 24°C. Similar results were found for transaldolase, related to carbon metabolism, and citrate synthase, an important enzyme in the TCA cycle. Our data suggest that in spite of the currently warm temperatures of the Red Sea, Prochlorococcus can modulate its gene expression profiles to permit growth at temperatures lower than its optimum temperature (28°C) but is unable to cope with temperatures exceeding 30°C.
Collapse
Affiliation(s)
- Abbrar Labban
- Marine Science, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.,Environmental Science and Engineering, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Ahmed A Shibl
- Genetic Heritage Group, Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.,Public Health Research Center, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Maria Ll Calleja
- Climate Geochemistry Department, Max Plank Institute for Chemistry, Mainz, Germany
| | - Pei-Ying Hong
- Environmental Science and Engineering, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Xosé Anxelu G Morán
- Marine Science, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.,Centro Oceanográfico de Gijón/Xixón, Instituto Español de Oceanografía (IEO-CSIC), Gijón/Xixón, Spain
| |
Collapse
|
10
|
Debroas D, Hochart C, Galand PE. Seasonal microbial dynamics in the ocean inferred from assembled and unassembled data: a view on the unknown biosphere. ISME COMMUNICATIONS 2022; 2:87. [PMID: 37938749 PMCID: PMC9723795 DOI: 10.1038/s43705-022-00167-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/23/2022] [Accepted: 09/02/2022] [Indexed: 11/09/2023]
Abstract
In environmental metagenomic experiments, a very high proportion of the microbial sequencing data (> 70%) remains largely unexploited because rare and closely related genomes are missed in short-read assemblies. The identity and the potential metabolisms of a large fraction of natural microbial communities thus remain inaccessible to researchers. The purpose of this study was to explore the genomic content of unassembled metagenomic data and test their level of novelty. We used data from a three-year microbial metagenomic time series of the NW Mediterranean Sea, and conducted reference-free and database-guided analysis. The results revealed a significant genomic difference between the assembled and unassembled reads. The unassembled reads had a lower mean identity against public databases, and fewer metabolic pathways could be reconstructed. In addition, the unassembled fraction presented a clear temporal pattern, unlike the assembled ones, and a specific community composition that was similar to the rare communities defined by metabarcoding using the 16S rRNA gene. The rare gene pool was characterised by keystone bacterial taxa, and the presence of viruses, suggesting that viral lysis could maintain some taxa in a state of rarity. Our study demonstrates that unassembled metagenomic data can provide important information on the structure and functioning of microbial communities.
Collapse
Affiliation(s)
- Didier Debroas
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Genome et Environnement, 63000, Clermont-Ferrand, France.
| | - Corentin Hochart
- Sorbonne Universités, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de Banyuls, Banyuls sur Mer, France
| | - Pierre E Galand
- Sorbonne Universités, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de Banyuls, Banyuls sur Mer, France
| |
Collapse
|
11
|
Lewis LA, Urban CM, Hashim SA. A Non-Invasive Determination of Ketosis-Induced Elimination of Chronic Daytime Somnolence in a Patient with Late-Stage Dementia (Assessed with Type 3 Diabetes): A Potential Role of Neurogenesis. J Alzheimers Dis Rep 2022; 5:827-846. [PMID: 35088033 PMCID: PMC8764628 DOI: 10.3233/adr-210315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/20/2021] [Indexed: 11/15/2022] Open
Abstract
Background The study involved a female patient diagnosed with late-stage dementia, with chronic daytime somnolence (CDS) as a prominent symptom. Objective To explore whether her dementia resulted from Type 3 diabetes, and whether it could be reversed through ketosis therapy. Methods A ketogenic diet (KD) generating low-dose 100 μM Blood Ketone Levels (BKL) enhanced by a brief Ketone Mono Ester (KME) regimen with high-dose 2-4 mM BKLs was used. Results Three sets of data describe relief (assessed by % days awake) from CDS: 1) incremental, slow, time-dependent KD plus KME-induced sigmoid curve responses which resulted in partial wakefulness (0-40% in 255 days) and complete wakefulness (40-85% in 50 days); 2) both levels of wakefulness were shown to be permanent; 3) initial permanent relief from CDS with low-dose ketosis from 6.7% to 40% took 87 days. Subsequent low-dose recovery from illness-induced CDS (6.9% to 40%) took 10 days. We deduce that the first restoration involved permanent repair, and the second energized the repaired circuits. Conclusion The results suggest a role for ketosis in the elimination of CDS with the permanent functional restoration of the awake neural circuits of the Sleep-Wake cycle. We discuss whether available evidence supports ketosis-induced bioenergetics alone or whether other mechanisms of functional renewal were the basis for the elimination of CDS. Given evidence for permanent repair, two direct links between ketosis and neurogenesis in the adult mammalian brain are discussed: Ketosis-induced 1) brain-derived neurotrophic factor, resulting in neural progenitor/stem cell proliferation, and 2) mitochondrial bioenergetics-induced stem cell biogenesis.
Collapse
Affiliation(s)
- Leslie A Lewis
- York College of the City University of New York, Jamaica, NY, USA
| | - Carl M Urban
- Department of Medicine, The Dr. James J. Rahal, Jr. Division of Infectious Diseases, New York Presbyterian/Queens, Flushing, NY, USA
| | - Sami A Hashim
- Division of Endocrinology, Mt. Sinai Morningside, New York, NY, USA
| |
Collapse
|
12
|
Silva L, Calleja ML, Huete-Stauffer TM, Ivetic S, Ansari MI, Viegas M, Morán XAG. Heterotrophic Bacterioplankton Growth and Physiological Properties in Red Sea Tropical Shallow Ecosystems With Different Dissolved Organic Matter Sources. Front Microbiol 2022; 12:784325. [PMID: 35046913 PMCID: PMC8762102 DOI: 10.3389/fmicb.2021.784325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/06/2021] [Indexed: 11/21/2022] Open
Abstract
Despite the key role of heterotrophic bacterioplankton in the biogeochemistry of tropical coastal waters, their dynamics have been poorly investigated in relation to the different dissolved organic matter (DOM) pools usually available. In this study we conducted four seasonal incubations of unfiltered and predator-free seawater (Community and Filtered treatment, respectively) at three Red Sea coastal sites characterized by different dominant DOM sources: Seagrass, Mangrove, and Phytoplankton. Bacterial abundance, growth and physiological status were assessed by flow cytometry and community composition by 16S rRNA gene amplicons. The Seagrass site showed the highest initial abundances (6.93 ± 0.30 × 105 cells mL-1), coincident with maximum DOC concentrations (>100 μmol C L-1), while growth rates peaked at the Mangrove site (1.11 ± 0.09 d-1) and were consistently higher in the Filtered treatment. The ratio between the Filtered and Community maximum bacterial abundance (a proxy for top-down control by protistan grazers) showed minimum values at the Seagrass site (1.05 ± 0.05) and maximum at the Phytoplankton site (1.24 ± 0.30), suggesting protistan grazing was higher in open waters, especially in the first half of the year. Since the Mangrove and Seagrass sites shared a similar bacterial diversity, the unexpected lack of bacterial response to predators removal at the latter site should be explained by differences in DOM characteristics. Nitrogen-rich DOM and fluorescent protein-like components were significantly associated with enhanced specific growth rates along the inshore-offshore gradient. Our study confirms the hypotheses that top-down factors control bacterial standing stocks while specific growth rates are bottom-up controlled in representative Red Sea shallow, oligotrophic ecosystems.
Collapse
Affiliation(s)
- Luis Silva
- Division of Biological and Environmental Sciences and Engineering, Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Maria Ll. Calleja
- Division of Biological and Environmental Sciences and Engineering, Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Department of Climate Geochemistry, Max Planck Institute for Chemistry, Mainz, Germany
| | - Tamara M. Huete-Stauffer
- Division of Biological and Environmental Sciences and Engineering, Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Snjezana Ivetic
- Division of Biological and Environmental Sciences and Engineering, Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Mohd I. Ansari
- Division of Biological and Environmental Sciences and Engineering, Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Department of Biosciences, Integral University, Lucknow, India
| | - Miguel Viegas
- Division of Biological and Environmental Sciences and Engineering, Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Xosé Anxelu G. Morán
- Division of Biological and Environmental Sciences and Engineering, Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Centro Oceanográfico de Gijón/Xixón (IEO, CSIC), Gijón, Spain
| |
Collapse
|
13
|
Garlapati D, Kumar BC, Muthukumar C, Madeswaran P, Ramu K, Murthy MVR. Assessing the in situ bacterial diversity and composition at anthropogenically active sites using the environmental DNA (eDNA). MARINE POLLUTION BULLETIN 2021; 170:112593. [PMID: 34126444 DOI: 10.1016/j.marpolbul.2021.112593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 05/28/2021] [Accepted: 05/30/2021] [Indexed: 06/12/2023]
Abstract
In this study, we identified the in situ bacterial groups and their community structure in coastal waters influenced by anthropogenic inputs. The use of environmental DNA (eDNA) and high throughput sequencing (HTS) were employed to derive accurate and reliable information on bacterial abundance. The V3 and V4 hypervariable regions of the 16S rRNA gene were amplified and the sequences were clustered into operational taxonomic units to analyze the site-specific variations in community composition. The percentage composition within the bacterial orders varied significantly among nearshore anthropogenic hotspots and offshore (5 km) samples. The microbial network constructed taking the bacterial abundance as nodes displayed strong positive and negative correlations within the bacterial families. Overall, the use of eDNA coupled with HTS is an incredible means for monitoring and assessing the abundance of bacterial communities and also serves as a biomonitoring tool to understand the degree of anthropogenic contamination in coastal waters.
Collapse
Affiliation(s)
- Deviram Garlapati
- National Centre for Coastal Research, Ministry of Earth Sciences (MoES), Government of India, Chennai 600100, India.
| | - B Charan Kumar
- National Centre for Coastal Research, Ministry of Earth Sciences (MoES), Government of India, Chennai 600100, India
| | - C Muthukumar
- National Centre for Coastal Research, Ministry of Earth Sciences (MoES), Government of India, Chennai 600100, India
| | - P Madeswaran
- National Centre for Coastal Research, Ministry of Earth Sciences (MoES), Government of India, Chennai 600100, India
| | - K Ramu
- National Centre for Coastal Research, Ministry of Earth Sciences (MoES), Government of India, Chennai 600100, India
| | - M V Ramana Murthy
- National Centre for Coastal Research, Ministry of Earth Sciences (MoES), Government of India, Chennai 600100, India
| |
Collapse
|
14
|
Wilson JM, Chamberlain EJ, Erazo N, Carter ML, Bowman JS. Recurrent microbial community types driven by nearshore and seasonal processes in coastal Southern California. Environ Microbiol 2021; 23:3225-3239. [PMID: 33928761 DOI: 10.1111/1462-2920.15548] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/26/2021] [Indexed: 01/04/2023]
Abstract
A multitude of concurrent biological and physical processes contribute to microbial community turnover, especially in highly dynamic coastal environments. Characterizing what factors contribute most to shifts in microbial community structure and the specific organisms that correlate with changes in the products of photosynthesis improves our understanding of nearshore microbial ecosystem functions. We conducted high frequency sampling in nearshore Southern California in order to capture sub-weekly microbial community dynamics. Microbial communities were characterized by flow cytometry and 16S rRNA gene sequencing, and placed in the context of physicochemical parameters. Within our time-series, season and nutrient availability corresponded to changes in dominant microbial community members. Concurrent aseasonal drivers with overlapping scales of variability were also apparent when we used network analysis to assess the microbial community as subsets of the whole. Our analyses revealed the microbial community as a mosaic, with overlapping groups of taxa that varied on different timescales and correlated with unique abiotic and biotic factors. Specifically, a subnetwork associated with chlorophyll a exhibited rapid turnover, indicating that ecologically important subsets of the microbial community can change on timescales different than and in response to factors other than those that govern turnover of most members of the assemblage.
Collapse
Affiliation(s)
- Jesse M Wilson
- Scripps Institution of Oceanography, UCSD, La Jolla, CA, USA
| | | | - Natalia Erazo
- Scripps Institution of Oceanography, UCSD, La Jolla, CA, USA
| | | | - Jeff S Bowman
- Scripps Institution of Oceanography, UCSD, La Jolla, CA, USA.,Center for Microbiome Innovation, UCSD, La Jolla, CA, USA.,Center for Marine Biodiversity and Conservation, UCSD, La Jolla, CA, USA
| |
Collapse
|
15
|
Labban A, Palacio AS, García FC, Hadaidi G, Ansari MI, López-Urrutia Á, Alonso-Sáez L, Hong PY, Morán XAG. Temperature Responses of Heterotrophic Bacteria in Co-culture With a Red Sea Synechococcus Strain. Front Microbiol 2021; 12:612732. [PMID: 34040590 PMCID: PMC8141594 DOI: 10.3389/fmicb.2021.612732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/29/2021] [Indexed: 11/29/2022] Open
Abstract
Interactions between autotrophic and heterotrophic bacteria are fundamental for marine biogeochemical cycling. How global warming will affect the dynamics of these essential microbial players is not fully understood. The aims of this study were to identify the major groups of heterotrophic bacteria present in a Synechococcus culture originally isolated from the Red Sea and assess their joint responses to experimental warming within the metabolic ecology framework. A co-culture of Synechococcus sp. RS9907 and their associated heterotrophic bacteria, after determining their taxonomic affiliation by 16S rRNA gene sequencing, was acclimated and maintained in the lab at different temperatures (24-34°C). The abundance and cellular properties of Synechococcus and the three dominant heterotrophic bacterial groups (pertaining to the genera Paracoccus, Marinobacter, and Muricauda) were monitored by flow cytometry. The activation energy of Synechococcus, which grew at 0.94-1.38 d-1, was very similar (0.34 ± 0.02 eV) to the value hypothesized by the metabolic theory of ecology (MTE) for autotrophs (0.32 eV), while the values of the three heterotrophic bacteria ranged from 0.16 to 1.15 eV and were negatively correlated with their corresponding specific growth rates (2.38-24.4 d-1). The corresponding carrying capacities did not always follow the inverse relationship with temperature predicted by MTE, nor did we observe a consistent response of bacterial cell size and temperature. Our results show that the responses to future ocean warming of autotrophic and heterotrophic bacteria in microbial consortia might not be well described by theoretical universal rules.
Collapse
Affiliation(s)
- Abbrar Labban
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Water Desalination and Reuse Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Antonio S. Palacio
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Sukarrieta, Spain
| | - Francisca C. García
- Environment and Sustainability Institute, University of Exeter, Penryn, United Kingdom
| | - Ghaida Hadaidi
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Mohd I. Ansari
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Ángel López-Urrutia
- Centro Oceanográfico de Gijón/Xixón, Instituto Español de Oceanografía, Gijón, Spain
| | - Laura Alonso-Sáez
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Sukarrieta, Spain
| | - Pei-Ying Hong
- Water Desalination and Reuse Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Xosé Anxelu G. Morán
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Centro Oceanográfico de Gijón/Xixón, Instituto Español de Oceanografía, Gijón, Spain
| |
Collapse
|
16
|
Manna V, De Vittor C, Giani M, Del Negro P, Celussi M. Long-term patterns and drivers of microbial organic matter utilization in the northernmost basin of the Mediterranean Sea. MARINE ENVIRONMENTAL RESEARCH 2021; 164:105245. [PMID: 33429217 DOI: 10.1016/j.marenvres.2020.105245] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/17/2020] [Accepted: 12/26/2020] [Indexed: 06/12/2023]
Abstract
Marine heterotrophic prokaryotes degrade, transform, and utilize half of the organic matter (OM) produced by photosynthesis, either in dissolved or particulate form. Microbial metabolic rates are affected by a plethora of different factors, spanning from environmental variables to OM composition. To tease apart the environmental drivers underlying the observed organic matter utilization rates, we analysed a 21 year-long time series from the Gulf of Trieste (NE Adriatic Sea). Heterotrophic carbon production (HCP) time series analysis highlighted a long-term structure made up by three periods of coherent observations (1999-2007; 2008-2011; 2012-2019), shared also by OM concentration time series. Temporal patterns of HCP drivers, extracted with a random forest approach, demonstrated that a period of high salinity anomalies (2002-2008) was the main driver of this structure. The reduced river runoff and the consequent depletion of river-borne inorganic nutrients induced a long-term Chl a decline (2006-2009), followed by a steady increase until 2014. HCP driving features over the three periods substantially changed in their seasonal patterns, suggesting that the years following the draught period represented a transition between two long-term regimes. Overall, temperature and particulate organic carbon concentration were the main factors driving HCP rates. The emergence of these variables highlighted the strong control exerted by the temperature-substrate co-limitation on microbial growth. Further exploration revealed that HCP rates did not follow the Arrhenius' linear response to temperature between 2008 and 2011, demonstrating that microbial growth was substrate-limited following the draught event. By teasing apart the environmental drivers of microbial growth on a long-term perspective, we demonstrated that a substantial change happened in the biogeochemistry of one of the most productive areas of the Mediterranean Sea. As planktonic microbes are the foundation of marine ecosystems, understanding their past dynamics may help to explain present and future changes.
Collapse
Affiliation(s)
- Vincenzo Manna
- National Institute of Oceanography and Applied Geophysics - OGS, Trieste, Italy; University of Trieste, Department of Life Sciences, Trieste, Italy.
| | - Cinzia De Vittor
- National Institute of Oceanography and Applied Geophysics - OGS, Trieste, Italy
| | - Michele Giani
- National Institute of Oceanography and Applied Geophysics - OGS, Trieste, Italy
| | - Paola Del Negro
- National Institute of Oceanography and Applied Geophysics - OGS, Trieste, Italy
| | - Mauro Celussi
- National Institute of Oceanography and Applied Geophysics - OGS, Trieste, Italy
| |
Collapse
|
17
|
Silva L, Calleja ML, Ivetic S, Huete-Stauffer T, Roth F, Carvalho S, Morán XAG. Heterotrophic bacterioplankton responses in coral- and algae-dominated Red Sea reefs show they might benefit from future regime shift. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:141628. [PMID: 32896805 DOI: 10.1016/j.scitotenv.2020.141628] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/06/2020] [Accepted: 08/09/2020] [Indexed: 06/11/2023]
Abstract
In coral reefs, dissolved organic matter (DOM) cycling is a critical process for sustaining ecosystem functioning. However, global and local stressors have caused persistent shifts from coral- to algae-dominated benthic communities. The influence of such phase shifts on DOM nature and its utilization by heterotrophic bacterioplankton remains poorly studied. Every second month for one year, we retrieved seawater samples enriched in DOM produced by coral- and algae-dominated benthic communities in a central Red Sea reef during a full annual cycle. Seawater incubations were conducted in the laboratory under in situ temperature and light conditions by inoculating enriched DOM samples with bacterial assemblages collected in the surrounding waters. Dissolved organic carbon (DOC) concentrations were higher in the warmer months (May-September) in both communities, resulting in higher specific growth rates and bacterial growth efficiencies (BGE). However, these high summer values were significantly enhanced in algal-DOM relative to coral-DOM, suggesting the potential for bacterioplankton biomass increase in reefs with algae replacing healthy coral cover under warmer conditions. The potential exacerbation of heterotrophic bacterial activity in the ongoing widespread regime shift from coral- to algae-dominated communities may have detrimental consequences for the overall health of tropical coral reefs.
Collapse
Affiliation(s)
- Luis Silva
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Thuwal 23955-6900, Saudi Arabia.
| | - Maria Ll Calleja
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Thuwal 23955-6900, Saudi Arabia; Department of Climate Geochemistry, Max Planck Institute for Chemistry (MPIC), Hahn-Meitner-Weg 1, 55128 Mainz, Germany
| | | | - Tamara Huete-Stauffer
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Thuwal 23955-6900, Saudi Arabia
| | - Florian Roth
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Thuwal 23955-6900, Saudi Arabia; Baltic Sea Centre, Stockholm University, 11418 Stockholm, Sweden; Tvärminne Zoological Station, University of Helsinki, 00100 Helsinki, Finland
| | - Susana Carvalho
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Thuwal 23955-6900, Saudi Arabia
| | - Xosé Anxelu G Morán
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
18
|
Sabbagh EI, Huete-Stauffer TM, Calleja MLL, Silva L, Viegas M, Morán XAG. Weekly variations of viruses and heterotrophic nanoflagellates and their potential impact on bacterioplankton in shallow waters of the central Red Sea. FEMS Microbiol Ecol 2020; 96:5800985. [PMID: 32149360 PMCID: PMC7104677 DOI: 10.1093/femsec/fiaa033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 03/08/2020] [Indexed: 11/14/2022] Open
Abstract
Bacterioplankton play a pivotal role in marine ecosystems. However, their temporal dynamics and underlying control mechanisms are poorly understood in tropical regions such as the Red Sea. Here, we assessed the impact of bottom-up (resource availability) and top-down (viruses and heterotrophic nanoflagellates) controls on bacterioplankton abundances by weekly sampling a coastal central Red Sea site in 2017. We monitored microbial abundances by flow cytometry together with a set of environmental variables including temperature, salinity, dissolved organic and inorganic nutrients and chlorophyll a. We distinguished five groups of heterotrophic bacteria depending on their physiological properties relative nucleic acid content, membrane integrity and cell-specific respiratory activity, two groups of Synechococcus cyanobacteria and three groups of viruses. Viruses controlled heterotrophic bacteria for most of the year, as supported by a negative correlation between their respective abundances and a positive one between bacterial mortality rates and mean viral abundances. On the contrary, heterotrophic nanoflagellates abundance covaried with that of heterotrophic bacteria. Heterotrophic nanoflagellates showed preference for larger bacteria from both the high and low nucleic acid content groups. Our results demonstrate that top-down control is fundamental in keeping heterotrophic bacterioplankton abundances low (< 5 × 10 5 cells mL−1) in Red Sea coastal waters.
Collapse
Affiliation(s)
- Eman I Sabbagh
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, Thuwal, Kingdom of Saudi Arabia
| | - Tamara M Huete-Stauffer
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, Thuwal, Kingdom of Saudi Arabia
| | - Maria L L Calleja
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, Thuwal, Kingdom of Saudi Arabia.,Max Planck Institute for Chemistry, Hahn-Meitner Weg 1, 55128 Mainz, Germany
| | - Luis Silva
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, Thuwal, Kingdom of Saudi Arabia
| | - Miguel Viegas
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, Thuwal, Kingdom of Saudi Arabia
| | - Xosé Anxelu G Morán
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, Thuwal, Kingdom of Saudi Arabia
| |
Collapse
|
19
|
Arandia-Gorostidi N, González JM, Huete-Stauffer TM, Ansari MI, Morán XAG, Alonso-Sáez L. Light supports cell-integrity and growth rates of taxonomically diverse coastal photoheterotrophs. Environ Microbiol 2020; 22:3823-3837. [PMID: 32643243 DOI: 10.1111/1462-2920.15158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/29/2020] [Accepted: 07/06/2020] [Indexed: 11/28/2022]
Abstract
Despite the widespread distribution of proteorhodopsin (PR)-containing bacteria in the oceans, the use of light-derived energy to promote bacterial growth has only been shown in a few bacterial isolates, and there is a paucity of data describing the metabolic effects of light on environmental photoheterotrophic taxa. Here, we assessed the effects of light on the taxonomic composition, cell integrity and growth responses of microbial communities in monthly incubations between spring and autumn under different environmental conditions. The photoheterotrophs expressing PR in situ were dominated by Pelagibacterales and SAR116 in July and November, while members of Euryarchaeota, Gammaproteobacteria and Bacteroidetes dominated the PR expression in spring. Cell-membrane integrity decreased under dark conditions throughout most of the assessment, with maximal effects in summer, under low-nutrient conditions. A positive effect of light on growth was observed in one incubation (out of nine), coinciding with a declining phytoplankton bloom. Light-enhanced growth was found in Gammaproteobacteria (Alteromonadales) and Bacteroidetes (Polaribacter and Tenacibaculum). Unexpectedly, some Pelagibacterales also exhibited higher growth rates under light conditions. We propose that the energy harvested by PRs helps to maintain cell viability in dominant coastal photoheterotrophic oligotrophs while promoting the growth of some widespread taxa benefiting from the decline of phytoplankton blooms.
Collapse
Affiliation(s)
- Nestor Arandia-Gorostidi
- Instituto Español de Oceanografía, Centro Oceanográfico de Gijón/Xixón, Gijón/Xixón, Asturias, Spain.,Department of Earth System Science, Stanford University, Stanford, CA, USA
| | - José M González
- Department of Microbiology, University of La Laguna, La Laguna, Spain
| | - Tamara M Huete-Stauffer
- Instituto Español de Oceanografía, Centro Oceanográfico de Gijón/Xixón, Gijón/Xixón, Asturias, Spain.,Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Mohd I Ansari
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Xosé Anxelu G Morán
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Laura Alonso-Sáez
- Instituto Español de Oceanografía, Centro Oceanográfico de Gijón/Xixón, Gijón/Xixón, Asturias, Spain.,AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Txatxarramendi ugartea z/g, Sukarrieta, Bizkaia, 48395, Spain
| |
Collapse
|
20
|
Morán XAG, Baltar F, Carreira C, Lønborg C. Responses of physiological groups of tropical heterotrophic bacteria to temperature and dissolved organic matter additions: food matters more than warming. Environ Microbiol 2020; 22:1930-1943. [PMID: 32249543 PMCID: PMC7384166 DOI: 10.1111/1462-2920.15007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/09/2020] [Accepted: 03/07/2020] [Indexed: 12/18/2022]
Abstract
Compared to higher latitudes, tropical heterotrophic bacteria may be less responsive to warming because of strong bottom‐up control. In order to separate both drivers, we determined the growth responses of bacterial physiological groups to temperature after adding dissolved organic matter (DOM) from mangroves, seagrasses and glucose to natural seawater from the Great Barrier Reef. Low (LNA) and high (HNA) nucleic acid content, membrane‐intact (Live) and membrane‐damaged (Dead) plus actively respiring (CTC+) cells were monitored for 4 days. Specific growth rates of the whole community were significantly higher (1.9 day‐1) in the mangrove treatment relative to the rest (0.2–0.4 day‐1) at in situ temperature and their temperature dependence, estimated as activation energy, was also consistently higher. Strong bottom‐up control was suggested in the other treatments. Cell size depended more on DOM than temperature. Mangrove DOM resulted in significantly higher contributions of Live, HNA and CTC+ cells to total abundance, while the seagrass leachate reduced Live cells below 50%. Warming significantly decreased Live and CTC+ cells contributions in most treatments. Our results suggest that only in the presence of highly labile compounds, such as mangroves DOM, can we anticipate increases in heterotrophic bacteria biomass in response to warming in tropical regions.
Collapse
Affiliation(s)
- Xosé Anxelu G Morán
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC), Thuwal, 23955-6900, Saudi Arabia
| | - Federico Baltar
- Department of Functional and Evolutionary Ecology, University of Vienna, 1090, Althanstraße 14, Vienna, Austria.,Department of Marine Science, University of Otago, Dunedin, 9054, New Zealand.,NIWA/University of Otago Research Centre for Oceanography, Dunedin, 9054, New Zealand
| | - Cátia Carreira
- Departamento de Biologia and CESAM, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Christian Lønborg
- Australian Institute of Marine Science, Townsville, Queensland, 4810, Australia
| |
Collapse
|
21
|
Changes in the Trophic Pathways within the Microbial Food Web in the Global Warming Scenario: An Experimental Study in the Adriatic Sea. Microorganisms 2020; 8:microorganisms8040510. [PMID: 32260074 PMCID: PMC7232256 DOI: 10.3390/microorganisms8040510] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 11/21/2022] Open
Abstract
A recent analysis of the Mediterranean Sea surface temperature showed significant annual warming. Since small picoplankton microorganisms play an important role in all major biogeochemical cycles, fluxes and processes occurring in marine systems (the changes at the base of the food web) as a response to human-induced temperature increase, could be amplified through the trophic chains and could also significantly affect different aspects of the structure and functioning of marine ecosystems. In this study, manipulative laboratory growth/grazing experiments were performed under in situ simulated conditions to study the structural and functional changes within the microbial food web after a 3 °C increase in temperature. The results show that a rise in temperature affects the changes in: (1) the growth and grazing rates of picoplankton, (2) their growth efficiency, (3) carrying capacities, (4) sensitivity of their production and grazing mortality to temperature, (5) satisfying protistan grazer carbon demands, (6) their preference in the selection of prey, (7) predator niche breadth and their overlap, (8) apparent uptake rates of nutrients, and (9) carbon biomass flow through the microbial food web. Furthermore, temperature affects the autotrophic and heterotrophic components of picoplankton in different ways.
Collapse
|
22
|
Arandia-Gorostidi N, Alonso-Sáez L, Stryhanyuk H, Richnow HH, Morán XAG, Musat N. Warming the phycosphere: Differential effect of temperature on the use of diatom-derived carbon by two copiotrophic bacterial taxa. Environ Microbiol 2020; 22:1381-1396. [PMID: 32090403 DOI: 10.1111/1462-2920.14954] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 01/25/2020] [Indexed: 11/28/2022]
Abstract
Heterotrophic bacteria associated with microphytoplankton, particularly those colonizing the phycosphere, are major players in the remineralization of algal-derived carbon. Ocean warming might impact dissolved organic carbon (DOC) uptake by microphytoplankton-associated bacteria with unknown biogeochemical implications. Here, by incubating natural seawater samples at three different temperatures, we analysed the effect of experimental warming on the abundance and C and N uptake activity of Rhodobacteraceae and Flavobacteria, two bacterial groups typically associated with microphytoplankton. Using a nano-scale secondary ion mass spectrometry (nanoSIMS) single-cell analysis, we quantified the temperature sensitivity of these two taxonomic groups to the uptake of algal-derived DOC in the microphytoplankton associated fraction with 13 C-bicarbonate and 15 N-leucine as tracers. We found that cell-specific 13 C uptake was similar for both groups (~0.42 fg C h-1 μm-3 ), but Rhodobacteraceae were more active in 15 N-leucine uptake. Due to the higher abundance of Flavobacteria associated with microphytoplankton, this group incorporated fourfold more carbon than Rhodobacteraceae. Cell-specific 13 C uptake was influenced by temperature, but no significant differences were found for 15 N-leucine uptake. Our results show that the contribution of Flavobacteria and Rhodobacteraceae to C assimilation increased up to sixfold and twofold, respectively, with an increase of 3°C above ambient temperature, suggesting that warming may differently affect the contribution of distinct copiotrophic bacterial taxa to carbon cycling.
Collapse
Affiliation(s)
- Nestor Arandia-Gorostidi
- Department of Earth System Science, Stanford University, Green Earth Sciences Building, 367 Panama St., Room 129, Stanford, CA, 94305-4216, USA.,Instituto Español de Oceanografía, Centro Oceanográfico de Gijón/Xixón, Av. Príncipe de Asturias, 70 bis 33212, Gijón, Asturias, Spain
| | - Laura Alonso-Sáez
- AZTI, Marine Research Unit, Txatxarramendi Irla s/n, 48395, Sukarrieta, Bizkaia, Spain
| | - Hryhoriy Stryhanyuk
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Hans H Richnow
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Xosé Anxelu G Morán
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, 23955, Thuwal, Saudi Arabia
| | - Niculina Musat
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| |
Collapse
|
23
|
Lønborg C, Baltar F, Carreira C, Morán XAG. Dissolved Organic Carbon Source Influences Tropical Coastal Heterotrophic Bacterioplankton Response to Experimental Warming. Front Microbiol 2019; 10:2807. [PMID: 31866976 PMCID: PMC6906166 DOI: 10.3389/fmicb.2019.02807] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/19/2019] [Indexed: 01/08/2023] Open
Abstract
Global change impacts on marine biogeochemistry will be partly mediated by heterotrophic bacteria. Besides ocean warming, future environmental changes have been suggested to affect the quantity and quality of organic matter available for bacterial growth. However, it is yet to be determined in what way warming and changing substrate conditions will impact marine heterotrophic bacteria activity. Using short-term (4 days) experiments conducted at three temperatures (−3°C, in situ, +3°C) we assessed the temperature dependence of bacterial cycling of marine surface water used as a control and three different dissolved organic carbon (DOC) substrates (glucose, seagrass, and mangrove) in tropical coastal waters of the Great Barrier Reef, Australia. Our study shows that DOC source had the largest effect on the measured bacterial response, but this response was amplified by increasing temperature. We specifically demonstrate that (1) extracellular enzymatic activity and DOC consumption increased with warming, (2) this enhanced DOC consumption did not result in increased biomass production, since the increases in respiration were larger than for bacterial growth with warming, and (3) different DOC bioavailability affected the magnitude of the microbial community response to warming. We suggest that in coastal tropical waters, the magnitude of heterotrophic bacterial productivity and enzyme activity response to warming will depend partly on the DOC source bioavailability.
Collapse
Affiliation(s)
| | - Federico Baltar
- Department of Limnology and Bio-Oceanography, University of Vienna, Vienna, Austria.,Department of Marine Science, University of Otago, Dunedin, New Zealand
| | - Cátia Carreira
- Departamento de Biologia and CESAM, Universidade de Aveiro, Aveiro, Portugal
| | - Xosé Anxelu G Morán
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
24
|
González-Benítez N, García-Corral LS, Morán XAG, Middelburg JJ, Pizay MD, Gattuso JP. Drivers of Microbial Carbon Fluxes Variability in Two Oligotrophic Mediterranean Coastal Systems. Sci Rep 2019; 9:17669. [PMID: 31776462 PMCID: PMC6881365 DOI: 10.1038/s41598-019-53650-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/28/2019] [Indexed: 11/09/2022] Open
Abstract
The carbon fluxes between phytoplankton and heterotrophic bacterioplankton were studied in two coastal oligotrophic sites in the NW Mediterranean. Phytoplankton and bacterial production rates were measured under natural conditions using different methods. In the Bay of Villefranche, the temporal variability revealed net heterotrophy in July-October and net autotrophy in December-March. The spatial variability was studied in the Bay of Palma, showing net autotrophic areas in the west and heterotrophic areas in the east. On average bacterial respiration, represented 62% of the total community respiration. Bacterial growth efficiency (BGE) values were significantly higher in autotrophic conditions than in heterotrophic ones. During autotrophic periods, dissolved primary production (DPP) was enough to sustained bacterial metabolism, although it showed a positive correlation with organic carbon stock (DOC). Under heterotrophic conditions, DPP did not sustain bacterial metabolism but bacterial respiration correlated with DPP and bacterial production with DOC. Temperature affected positively, DOC, BGE, bacterial respiration and production when the trophic status was autotrophic. To summarize, the response of bacterial metabolism to temperature and carbon sources depends on the trophic status within these oligotrophic coastal systems.
Collapse
Affiliation(s)
- Natalia González-Benítez
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, 181 chemin du Lazaret, F-06230, Villefranche-sur-mer, France. .,Institute for Sustainable Development and International Relations, Sciences Po, 27 rue Saint Guillaume, F-75007, Paris, France. .,Department of Biology, Geology, Physics and Inorganic Chemistry, King Juan Carlos University, C/Tulipán s/n, 28933, Móstoles, Madrid, Spain.
| | - Lara S García-Corral
- Department of Biology, Geology, Physics and Inorganic Chemistry, King Juan Carlos University, C/Tulipán s/n, 28933, Móstoles, Madrid, Spain
| | - Xosé Anxelu G Morán
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, 23955-6900, Thuwal, Saudi Arabia
| | - Jack J Middelburg
- Department of Estuarine and Delta Systems, NIOZ Royal Netherlands Institute for Sea Research and Utrecht University, Yerseke, The Netherlands.,Department of Earth Sciences, Utrecht University, Princetonlaan 8A, 3584 CB, Utrecht, The Netherlands
| | - Marie Dominique Pizay
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, 181 chemin du Lazaret, F-06230, Villefranche-sur-mer, France.,Institute for Sustainable Development and International Relations, Sciences Po, 27 rue Saint Guillaume, F-75007, Paris, France
| | - Jean-Pierre Gattuso
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, 181 chemin du Lazaret, F-06230, Villefranche-sur-mer, France.,Institute for Sustainable Development and International Relations, Sciences Po, 27 rue Saint Guillaume, F-75007, Paris, France
| |
Collapse
|
25
|
Baña Z, Abad N, Uranga A, Azúa I, Artolozaga I, Unanue M, Iriberri J, Arrieta JM, Ayo B. Recurrent seasonal changes in bacterial growth efficiency, metabolism and community composition in coastal waters. Environ Microbiol 2019; 22:369-380. [PMID: 31713276 DOI: 10.1111/1462-2920.14853] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 09/25/2019] [Accepted: 11/03/2019] [Indexed: 11/28/2022]
Abstract
The microbial response to environmental changes in coastal waters of the eastern Cantabrian Sea was explored for four years by analysing a broad set of environmental variables along with bacterial community metabolism and composition. A recurrent seasonal cycle emerged, consisting of two stable periods, characterized by low bacterial metabolic activity (winter) from October to March, and high bacterial metabolic activity (summer) from May to August. These two contrasting periods were linked by short transition periods in April (TA ) and September (TS ). The phylogenetic groups Alphaproteobacteria and Bacteroidetes were dominant during winter and summer respectively, and their recurrent alternation was mainly driven by the bloom of eukaryotic phytoplankton before TA and the bloom of prokaryotic phytoplankton before TS . Bacterial growth efficiency remained high and stable during the winter and summer periods but dropped during the two short transition periods. Our results suggest that bacterial growth efficiency should be considered a very resilient property that reflects different stages in the adaptation of the bacterial community composition to the environmental changes occurring throughout the seasonal cycle in this coastal ecosystem.
Collapse
Affiliation(s)
- Zuriñe Baña
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of Basque Country (UPV/EHU), Sarriena S/N, Leioa, 48940, Spain
| | - Naiara Abad
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of Basque Country (UPV/EHU), Sarriena S/N, Leioa, 48940, Spain
| | - Ainhoa Uranga
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of Basque Country (UPV/EHU), Sarriena S/N, Leioa, 48940, Spain
| | - Iñigo Azúa
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of Basque Country (UPV/EHU), Sarriena S/N, Leioa, 48940, Spain
| | - Itxaso Artolozaga
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of Basque Country (UPV/EHU), Sarriena S/N, Leioa, 48940, Spain
| | - Marian Unanue
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of Basque Country (UPV/EHU), Sarriena S/N, Leioa, 48940, Spain
| | - Juan Iriberri
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of Basque Country (UPV/EHU), Sarriena S/N, Leioa, 48940, Spain.,Research Centre for Experimental Marine Biology and Biotechnology PiE-UPV/EHU, Areatza Hiribidea 47, Plentzia, 48620, Spain
| | - Jesus M Arrieta
- Oceanographic Center of Canary Island, Spanish Institute of Oceanography IEO, Vía Espaldón, Parcela 8, Santa Cruz De Tenerife, 38180, Spain
| | - Begoña Ayo
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of Basque Country (UPV/EHU), Sarriena S/N, Leioa, 48940, Spain.,Research Centre for Experimental Marine Biology and Biotechnology PiE-UPV/EHU, Areatza Hiribidea 47, Plentzia, 48620, Spain
| |
Collapse
|
26
|
Šolić M, Šantić D, Šestanović S, Bojanić N, Jozić S, Vrdoljak A, Ordulj M, Kušpilić G. Temperature and phosphorus interacts in controlling the picoplankton carbon flux in the Adriatic Sea: an experimental versus field study. Environ Microbiol 2019; 21:2469-2484. [DOI: 10.1111/1462-2920.14634] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/12/2019] [Accepted: 04/16/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Mladen Šolić
- Institute of Oceanography and Fisheries Split Croatia
| | | | | | | | - Slaven Jozić
- Institute of Oceanography and Fisheries Split Croatia
| | - Ana Vrdoljak
- Institute of Oceanography and Fisheries Split Croatia
| | - Marin Ordulj
- Department of Marine StudiesUniversity of Split Split Croatia
| | | |
Collapse
|
27
|
Silva L, Calleja ML, Huete-Stauffer TM, Ivetic S, Ansari MI, Viegas M, Morán XAG. Low Abundances but High Growth Rates of Coastal Heterotrophic Bacteria in the Red Sea. Front Microbiol 2019; 9:3244. [PMID: 30666244 PMCID: PMC6330340 DOI: 10.3389/fmicb.2018.03244] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/13/2018] [Indexed: 11/29/2022] Open
Abstract
Characterized by some of the highest naturally occurring sea surface temperatures, the Red Sea remains unexplored regarding the dynamics of heterotrophic prokaryotes. Over 16 months, we used flow cytometry to characterize the abundance and growth of four physiological groups of heterotrophic bacteria: membrane-intact (Live), high and low nucleic acid content (HNA and LNA) and actively respiring (CTC+) cells in shallow coastal waters. Chlorophyll a, dissolved organic matter (DOC and DON) concentrations, and their fluorescent properties were also measured as proxies of bottom-up control. We performed short-term incubations (6 days) with the whole microbial community (Community treatment), and with the bacterial community only after removing predators by filtration (Filtered treatment). Initial bacterial abundances ranged from 1.46 to 4.80 × 105 cells mL-1. Total specific growth rates in the Filtered treatment ranged from 0.76 to 2.02 d-1. Live and HNA cells displayed similar seasonal patterns, with higher values during late summer and fall (2.13 and 2.33 d-1, respectively) and lower in late spring (1.02 and 1.01 d-1, respectively). LNA cells were outgrown by the other physiological groups (0.33-1.08 d-1) while CTC+ cells (0.28-1.85 d-1) showed weaker seasonality. The Filtered treatment yielded higher bacterial abundances than the Community treatment in all but 2 of the incubations, and carrying capacities peaked in November 2016 (1.04 × 106 cells mL-1), with minimum values (3.61 × 105 cells mL-1) observed in May 2017. The high temperatures experienced from May through October 2016 (33.4 ± 0.4°C) did not constrain the growth of heterotrophic bacteria. Indeed, bacterial growth efficiencies were positively correlated with environmental temperature, reflecting the presence of more labile compounds (high DON concentrations resulting in lower C:N ratios) in summer. The overall high specific growth rates and the consistently higher carrying capacities in the Filtered treatment suggest that strong top-down control by protistan grazers was the likely cause for the low heterotrophic bacteria abundances.
Collapse
Affiliation(s)
- Luis Silva
- Division of Biological and Environmental Sciences and Engineering, Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | | | | | | | | | | | - Xosé Anxelu G. Morán
- Division of Biological and Environmental Sciences and Engineering, Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
28
|
Morán XAG, Calvo-Díaz A, Arandia-Gorostidi N, Huete-Stauffer TM. Temperature sensitivities of microbial plankton net growth rates are seasonally coherent and linked to nutrient availability. Environ Microbiol 2018; 20:3798-3810. [PMID: 30159999 DOI: 10.1111/1462-2920.14393] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 08/24/2018] [Indexed: 11/27/2022]
Abstract
Recent work suggests that temperature effects on marine heterotrophic bacteria are strongly seasonal, but few attempts have been made to concurrently assess them across trophic levels. Here, we estimated the temperature sensitivities (using activation energies, E) of autotrophic and heterotrophic microbial plankton net growth rates over an annual cycle in NE Atlantic coastal waters. Phytoplankton grew in winter and late autumn (0.41 ± 0.16 SE d-1 ) and decayed in the remaining months (-0.42 ± 0.10 d-1 ). Heterotrophic microbes shared a similar seasonality, with positive net growth for bacteria (0.14-1.48 d-1 ), while nanoflagellates had higher values (> 0.4 d-1 ) in winter and spring relative to the rest of the year (-0.46 to 0.29 d-1 ). Net growth rates activation energies showed similar dynamics in the three groups (-1.07 to 1.51 eV), characterized by maxima in winter, minima in summer and resumed increases in autumn. Microbial plankton E values were significantly correlated with nitrate concentrations as a proxy for nutrient availability. Nutrient-sufficiency (i.e., > 1 μmol l-1 nitrate) resulted in significantly higher activation energies of phytoplankton and heterotrophic nanoflagellates relative to nutrient-limited conditions. We suggest that only within spatio-temporal windows of both moderate bottom-up and top-down controls will temperature have a major enhancing effect on microbial growth.
Collapse
Affiliation(s)
- Xosé Anxelu G Morán
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, Thuwal, Saudi Arabia
| | - Alejandra Calvo-Díaz
- Centro Oceanográfico de Gijón/Xixón, Instituto Español de Oceanografía (IEO), Gijón/Xixón, Spain
| | - Nestor Arandia-Gorostidi
- Centro Oceanográfico de Gijón/Xixón, Instituto Español de Oceanografía (IEO), Gijón/Xixón, Spain.,Department of Earth System Science, Stanford University, Stanford, CA, USA
| | - Tamara Megan Huete-Stauffer
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, Thuwal, Saudi Arabia.,Centro Oceanográfico de Gijón/Xixón, Instituto Español de Oceanografía (IEO), Gijón/Xixón, Spain
| |
Collapse
|
29
|
Large Plankton Enhance Heterotrophy Under Experimental Warming in a Temperate Coastal Ecosystem. Ecosystems 2017. [DOI: 10.1007/s10021-017-0208-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
30
|
Arandia-Gorostidi N, Huete-Stauffer TM, Alonso-Sáez L, G Morán XA. Testing the metabolic theory of ecology with marine bacteria: different temperature sensitivity of major phylogenetic groups during the spring phytoplankton bloom. Environ Microbiol 2017; 19:4493-4505. [PMID: 28836731 DOI: 10.1111/1462-2920.13898] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 08/16/2017] [Accepted: 08/17/2017] [Indexed: 11/27/2022]
Abstract
Although temperature is a key driver of bacterioplankton metabolism, the effect of ocean warming on different bacterial phylogenetic groups remains unclear. Here, we conducted monthly short-term incubations with natural coastal bacterial communities over an annual cycle to test the effect of experimental temperature on the growth rates and carrying capacities of four phylogenetic groups: SAR11, Rhodobacteraceae, Gammaproteobacteria and Bacteroidetes. SAR11 was the most abundant group year-round as analysed by CARD-FISH, with maximum abundances in summer, while the other taxa peaked in spring. All groups, including SAR11, showed high temperature-sensitivity of growth rates and/or carrying capacities in spring, under phytoplankton bloom or post-bloom conditions. In that season, Rhodobacteraceae showed the strongest temperature response in growth rates, estimated here as activation energy (E, 1.43 eV), suggesting an advantage to outcompete other groups under warmer conditions. In summer E values were in general lower than 0.65 eV, the value predicted by the Metabolic Theory of Ecology (MTE). Contrary to MTE predictions, carrying capacity tended to increase with warming for all bacterial groups. Our analysis confirms that resource availability is key when addressing the temperature response of heterotrophic bacterioplankton. We further show that even under nutrient-sufficient conditions, warming differentially affected distinct bacterioplankton taxa.
Collapse
Affiliation(s)
- Nestor Arandia-Gorostidi
- Plankton Ecology and Pelagic Ecosystem Dynamics Division, Instituto Español de Oceanografía, Centro Oceanográfico de Gijón/Xixón, Gijón/Xixón, Asturias, Spain
| | - Tamara Megan Huete-Stauffer
- Plankton Ecology and Pelagic Ecosystem Dynamics Division, Instituto Español de Oceanografía, Centro Oceanográfico de Gijón/Xixón, Gijón/Xixón, Asturias, Spain.,Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Thuwal, Saudi Arabia
| | - Laura Alonso-Sáez
- Plankton Ecology and Pelagic Ecosystem Dynamics Division, Instituto Español de Oceanografía, Centro Oceanográfico de Gijón/Xixón, Gijón/Xixón, Asturias, Spain.,Marine Research Division, AZTI, Sukarrieta, Bizkaia, Spain
| | - Xosé Anxelu G Morán
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Thuwal, Saudi Arabia
| |
Collapse
|
31
|
Morán XAG, Gasol JM, Pernice MC, Mangot JF, Massana R, Lara E, Vaqué D, Duarte CM. Temperature regulation of marine heterotrophic prokaryotes increases latitudinally as a breach between bottom-up and top-down controls. GLOBAL CHANGE BIOLOGY 2017; 23:3956-3964. [PMID: 28423463 DOI: 10.1111/gcb.13730] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 04/07/2017] [Indexed: 06/07/2023]
Abstract
Planktonic heterotrophic prokaryotes make up the largest living biomass and process most organic matter in the ocean. Determining when and where the biomass and activity of heterotrophic prokaryotes are controlled by resource availability (bottom-up), predation and viral lysis (top-down) or temperature will help in future carbon cycling predictions. We conducted an extensive survey across subtropical and tropical waters of the Atlantic, Indian and Pacific Oceans during the Malaspina 2010 Global Circumnavigation Expedition and assessed indices for these three types of controls at 109 stations (mostly from the surface to 4,000 m depth). Temperature control was approached by the apparent activation energy in eV (ranging from 0.46 to 3.41), bottom-up control by the slope of the log-log relationship between biomass and production rate (ranging from -0.12 to 1.09) and top-down control by an index that considers the relative abundances of heterotrophic nanoflagellates and viruses (ranging from 0.82 to 4.83). We conclude that temperature becomes dominant (i.e. activation energy >1.5 eV) within a narrow window of intermediate values of bottom-up (0.3-0.6) and top-down 0.8-1.2) controls. A pervasive latitudinal pattern of decreasing temperature regulation towards the Equator, regardless of the oceanic basin, suggests that the impact of global warming on marine microbes and their biogeochemical function will be more intense at higher latitudes. Our analysis predicts that 1°C ocean warming will result in increased biomass of heterotrophic prokaryoplankton only in waters with <26°C of mean annual surface temperature.
Collapse
Affiliation(s)
- Xosé Anxelu G Morán
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Josep M Gasol
- Institut de Ciències del Mar, CSIC, Barcelona, Catalonia, Spain
| | - Massimo C Pernice
- Institut de Ciències del Mar, CSIC, Barcelona, Catalonia, Spain
- University of Stockholm, Stockholm, Sweden
| | | | - Ramon Massana
- Institut de Ciències del Mar, CSIC, Barcelona, Catalonia, Spain
| | - Elena Lara
- Institut de Ciències del Mar, CSIC, Barcelona, Catalonia, Spain
| | - Dolors Vaqué
- Institut de Ciències del Mar, CSIC, Barcelona, Catalonia, Spain
| | - Carlos M Duarte
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
32
|
Huete-Stauffer TM, Arandia-Gorostidi N, Alonso-Sáez L, Morán XAG. Experimental Warming Decreases the Average Size and Nucleic Acid Content of Marine Bacterial Communities. Front Microbiol 2016; 7:730. [PMID: 27242747 PMCID: PMC4876119 DOI: 10.3389/fmicb.2016.00730] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/02/2016] [Indexed: 12/16/2022] Open
Abstract
Organism size reduction with increasing temperature has been suggested as a universal response to global warming. Since genome size is usually correlated to cell size, reduction of genome size in unicells could be a parallel outcome of warming at ecological and evolutionary time scales. In this study, the short-term response of cell size and nucleic acid content of coastal marine prokaryotic communities to temperature was studied over a full annual cycle at a NE Atlantic temperate site. We used flow cytometry and experimental warming incubations, spanning a 6°C range, to analyze the hypothesized reduction with temperature in the size of the widespread flow cytometric bacterial groups of high and low nucleic acid content (HNA and LNA bacteria, respectively). Our results showed decreases in size in response to experimental warming, which were more marked in 0.8 μm pre-filtered treatment rather than in the whole community treatment, thus excluding the role of protistan grazers in our findings. Interestingly, a significant effect of temperature on reducing the average nucleic acid content (NAC) of prokaryotic cells in the communities was also observed. Cell size and nucleic acid decrease with temperature were correlated, showing a common mean decrease of 0.4% per °C. The usually larger HNA bacteria consistently showed a greater reduction in cell and NAC compared with their LNA counterparts, especially during the spring phytoplankton bloom period associated to maximum bacterial growth rates in response to nutrient availability. Our results show that the already smallest planktonic microbes, yet with key roles in global biogeochemical cycling, are likely undergoing important structural shrinkage in response to rising temperatures.
Collapse
Affiliation(s)
- Tamara M Huete-Stauffer
- Plankton Ecology and Pelagic Ecosystem Dynamics, Centro Oceanográfico de Gijón/Xixón, Instituto Español de Oceanografía Gijón/Xixón, Spain
| | - Nestor Arandia-Gorostidi
- Plankton Ecology and Pelagic Ecosystem Dynamics, Centro Oceanográfico de Gijón/Xixón, Instituto Español de Oceanografía Gijón/Xixón, Spain
| | - Laura Alonso-Sáez
- Plankton Ecology and Pelagic Ecosystem Dynamics, Centro Oceanográfico de Gijón/Xixón, Instituto Español de OceanografíaGijón/Xixón, Spain; Marine Research Division, AZTISukarrieta, Spain
| | - Xosé Anxelu G Morán
- Plankton Ecology and Pelagic Ecosystem Dynamics, Centro Oceanográfico de Gijón/Xixón, Instituto Español de OceanografíaGijón/Xixón, Spain; Division of Biological and Environmental Sciences and Engineering, Red Sea Research Center, King Abdullah University of Science and TechnologyThuwal, Saudi Arabia
| |
Collapse
|