1
|
Rizzo C, Caruso G, Maimone G, Patrolecco L, Termine M, Bertolino M, Giannarelli S, Rappazzo AC, Elster J, Lena A, Papale M, Pescatore T, Rauseo J, Soldano R, Spataro F, Aspholm PE, Azzaro M, Lo Giudice A. Microbiome and pollutants in the freshwater sponges Ephydatia muelleri (Lieberkühn, 1856) and Spongilla lacustris (Linnaeus, 1758) from the sub-Arctic Pasvik river (Northern Fennoscandia). ENVIRONMENTAL RESEARCH 2025; 273:121126. [PMID: 39978622 DOI: 10.1016/j.envres.2025.121126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/16/2025] [Accepted: 02/12/2025] [Indexed: 02/22/2025]
Abstract
Despite the ecosystem functions offered by sponges in freshwater habitats, fragmentary studies have targeted their microbiome and the bioaccumulation of legacy and emerging organic micropollutants, making it difficult to test hypotheses about sponge-microbe specificity and response to environmental factors and stressors. The sponge species Ephydatia muelleri and Spongilla lacustris, coexisting in two sites of the Pasvik River (northern Fennoscandia), were analyzed for persistent organic pollutant (POPs) and chemicals of emerging concern (CECs), along with quali-quantitative microbiological features. River water and sediment were similarly treated to establish if the obtained data were site- or sponge-specific. CECs mainly occurred in abiotic matrices, with trimethoprim and ciprofloxacin prevailing in water and sediment, respectively. Only ciprofloxacin and diclofenac were detected in sponges, with higher concentrations generally determined in S. lacustris than E. muelleri. Overall, POP concentrations were in the order polycyclic aromatic hydrocarbons > chlorobenzenes > polychlorobiphenyls > polychloronaphthalenes, with higher values in sponges with respect to abiotic matrices. Generally, POPs occurred at higher concentrations in S. lacustris than E. muelleri. Enzyme activity measurements displayed diverse trends across samples and sites, with E. muelleri displaying higher glycolytic activity than S. lacustris. Prokaryotic abundance in sponges generally exceeded that found in abiotic matrices. Proteobacteria, Planctomycetota, Actinobacteriota, Verrucomicrobiota, and Cyanobacteria predominated in sponge samples, with slight differences between sponge species and sampling sites, whereas Desulfobacterota and Acidobacterota were retrieved mostly in sediment samples. The sponge-associated bacterial communities appeared to be differently affected by pollutant concentration at the site level. Overall, this study highlights the ecological role of freshwater sponges, shedding light on their microbial associations, pollutant bioaccumulation, and potential as bioindicators of aquatic ecosystem health. The findings emphasize the importance of considering both microbial diversity and contaminant accumulation for a holistic understanding of the roles played by freshwater sponges in human-impacted environments.
Collapse
Affiliation(s)
- Carmen Rizzo
- Stazione Zoologica Anton Dohrn, Sicily Marine Centre, Department Ecosustainable Marine Biotechnology, Villa Pace, Contrada Porticatello 29, 98167, Messina, Italy; Institute of Polar Sciences, National Research Council, Spianata S. Raineri 86, 98122, Messina, Italy
| | - Gabriella Caruso
- Institute of Polar Sciences, National Research Council, Spianata S. Raineri 86, 98122, Messina, Italy
| | - Giovanna Maimone
- Institute of Polar Sciences, National Research Council, Spianata S. Raineri 86, 98122, Messina, Italy
| | - Luisa Patrolecco
- Institute of Polar Sciences, National Research Council, CNR Area della Ricerca di Roma 1, Via Salaria km 29, Montelibretti (RM), 300 00015, Italy; National Biodiversity Future Center (NCBF), Piazza Marina 61, 90133, Palermo, Italy
| | - Marco Termine
- Dept. Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi, 13, 56124, Pisa, Italy
| | - Marco Bertolino
- Department of the Earth, Environment and Life Science (DiSTAV), University of Genoa, Corso Europa 26, 16132, Genoa, Italy
| | - Stefania Giannarelli
- Dept. Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi, 13, 56124, Pisa, Italy
| | - Alessandro Ciro Rappazzo
- Institute of Polar Sciences, National Research Council, Spianata S. Raineri 86, 98122, Messina, Italy; Cà Foscari University of Venice, Dorsoduro 3246, 30123, Venezia, Italy
| | - Josef Elster
- Institute of Botany, Czech Academy of Science, Třeboň, Czech Republic; Centre for Polar Ecology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Alessio Lena
- Institute of Polar Sciences, National Research Council, Spianata S. Raineri 86, 98122, Messina, Italy; University of Messina, Department ChiBioFarAm, V.le Ferdinando Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Maria Papale
- Institute of Polar Sciences, National Research Council, Spianata S. Raineri 86, 98122, Messina, Italy
| | - Tanita Pescatore
- Institute of Polar Sciences, National Research Council, CNR Area della Ricerca di Roma 1, Via Salaria km 29, Montelibretti (RM), 300 00015, Italy
| | - Jasmin Rauseo
- Institute of Polar Sciences, National Research Council, CNR Area della Ricerca di Roma 1, Via Salaria km 29, Montelibretti (RM), 300 00015, Italy; National Biodiversity Future Center (NCBF), Piazza Marina 61, 90133, Palermo, Italy
| | - Rosamaria Soldano
- Institute of Polar Sciences, National Research Council, Spianata S. Raineri 86, 98122, Messina, Italy; University of Messina, Department ChiBioFarAm, V.le Ferdinando Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Francesca Spataro
- Institute of Polar Sciences, National Research Council, CNR Area della Ricerca di Roma 1, Via Salaria km 29, Montelibretti (RM), 300 00015, Italy; National Biodiversity Future Center (NCBF), Piazza Marina 61, 90133, Palermo, Italy
| | - Paul Eric Aspholm
- Norwegian Institute of Bioeconomy Research (NIBIO) Svanhovd 23, 9925, Norway
| | - Maurizio Azzaro
- Institute of Polar Sciences, National Research Council, Spianata S. Raineri 86, 98122, Messina, Italy
| | - Angelina Lo Giudice
- Institute of Polar Sciences, National Research Council, Spianata S. Raineri 86, 98122, Messina, Italy; National Biodiversity Future Center (NCBF), Piazza Marina 61, 90133, Palermo, Italy.
| |
Collapse
|
2
|
Hao Y, Liu H, Li J, Mu L. Environmental tipping points for global soil nitrogen-fixing microorganisms. iScience 2025; 28:111634. [PMID: 39850356 PMCID: PMC11754074 DOI: 10.1016/j.isci.2024.111634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/03/2024] [Accepted: 12/17/2024] [Indexed: 01/25/2025] Open
Abstract
Nitrogen-fixing microorganisms (NFMs) are important components of soil N sinks and are influenced by multiple environmental factors. We established a random forest model optimized by the distributed delayed particle swarm optimization (RODDPSO) algorithm to analyze the global NFM data. Soil pH, organic carbon (OC), mean annual precipitation (MAP), altitude, and total phosphorus (TP) are factors with contributions greater than 10% to NFMs. pH, OC, and MAP are the top three factors at the global scale. The tipping points of pH and OC for the NFMs were 7.84 and 2.71%, respectively. The contribution of MAP first increased but then decreased with peak value at 1,265.65 mm. Under the scenario SSP 8.5, 12% of the NFMs increase occur in Africa in 2100; 16% and 36% of the NFMs decrease in North America and Oceania in 2100, respectively. Our work created a global NFMs map and identified the critical tipping points.
Collapse
Affiliation(s)
- Yueqi Hao
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety (Ministry of Agriculture and Rural Affairs), Tianjin Key Laboratory of Agro-environment and Safe-product, Institute of Agro-environmental Protection, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300080, China
| | - Hao Liu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300080, China
| | - Jiawei Li
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300080, China
| | - Li Mu
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety (Ministry of Agriculture and Rural Affairs), Tianjin Key Laboratory of Agro-environment and Safe-product, Institute of Agro-environmental Protection, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| |
Collapse
|
3
|
Mas Martinez I, Pushkareva E, Keilholz LA, Linne von Berg KH, Karsten U, Kammann S, Becker B. Role of Climate and Edaphic Factors on the Community Composition of Biocrusts Along an Elevation Gradient in the High Arctic. Microorganisms 2024; 12:2606. [PMID: 39770808 PMCID: PMC11676250 DOI: 10.3390/microorganisms12122606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Biological soil crusts are integral to Arctic ecosystems, playing a crucial role in primary production, nitrogen fixation and nutrient cycling, as well as maintaining soil stability. However, the composition and complex relationships between the diverse organisms within these biocrusts are not well studied. This study investigates how the microbial community composition within Arctic biocrusts is influenced by environmental factors along an altitudinal gradient (101 m to 314 m). Metagenomic analyses were used to provide insights into the community composition, revealing that temperature, pH, and nutrient availability significantly shaped the community. In contrast, altitude did not directly influence the microbial composition significantly. Eukaryotic communities were dominated by Chloroplastida and fungi, while Proteobacteria and Actinobacteria prevailed among prokaryotes. Cyanobacteria, particularly orders such as Pseudoanabaenales, Pleurocapsales, and Nostocales, emerged as the most abundant photoautotrophic organisms. Our findings highlight the impact of environmental gradients on microbial diversity and the functional dynamics of biocrusts, emphasizing their critical role in Arctic tundra ecosystems. Arctic biocrusts are intricate micro-ecosystems, whose structure is strongly shaped by local physicochemical parameters, likely affecting essential ecological functions.
Collapse
Affiliation(s)
- Isabel Mas Martinez
- Department of Biology, Institute for Plant Sciences, University of Cologne, 50674 Cologne, Germany; (I.M.M.); (E.P.); (L.A.K.); (K.-H.L.v.B.)
| | - Ekaterina Pushkareva
- Department of Biology, Institute for Plant Sciences, University of Cologne, 50674 Cologne, Germany; (I.M.M.); (E.P.); (L.A.K.); (K.-H.L.v.B.)
| | - Leonie Agnes Keilholz
- Department of Biology, Institute for Plant Sciences, University of Cologne, 50674 Cologne, Germany; (I.M.M.); (E.P.); (L.A.K.); (K.-H.L.v.B.)
| | - Karl-Heinz Linne von Berg
- Department of Biology, Institute for Plant Sciences, University of Cologne, 50674 Cologne, Germany; (I.M.M.); (E.P.); (L.A.K.); (K.-H.L.v.B.)
| | - Ulf Karsten
- Institute for Biological Sciences, University of Rostock, 18059 Rostock, Germany; (U.K.)
| | - Sandra Kammann
- Institute for Biological Sciences, University of Rostock, 18059 Rostock, Germany; (U.K.)
| | - Burkhard Becker
- Institute for Biological Sciences, University of Rostock, 18059 Rostock, Germany; (U.K.)
| |
Collapse
|
4
|
Pushkareva E, Hejduková E, Elster J, Becker B. Microbial response to seasonal variation in arctic biocrusts with a focus on fungi and cyanobacteria. ENVIRONMENTAL RESEARCH 2024; 263:120110. [PMID: 39374753 DOI: 10.1016/j.envres.2024.120110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
Biocrusts are crucial components of Arctic ecosystems, playing significant roles in carbon and nitrogen cycling, especially in regions where plant growth is limited. However, the microbial communities within Arctic biocrusts and their strategies for surviving the harsh conditions remain poorly understood. In this study, the microbial profiles of Arctic biocrusts across different seasons (summer, autumn, and winter) were investigated in order to elucidate their survival strategies in extreme conditions. Metagenomic and metatranscriptomic analyses revealed significant differences in microbial community composition among the sites located in different elevations. The bacterial communities were dominated by Actinobacteria and Proteobacteria, while the fungal communities were mainly represented by Ascomycota and Basidiomycota, with lichenized and saprotrophic traits prevailing. Cyanobacteria were primarily composed of heterocystous cyanobacteria. Furthermore, the study identified molecular mechanisms underlying cold adaptation, including the expression of heat shock proteins and cold-inducible RNA helicases in cyanobacteria and fungi. Overall, the microbial communities appear to be permanently well adapted to the extreme environment.
Collapse
Affiliation(s)
- Ekaterina Pushkareva
- Department of Biology, Botanical Institute, University of Cologne, Zulpicher Str. 47B, 50674 Cologne, Germany.
| | - Eva Hejduková
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, 128 44 Prague 2, Czech Republic; Institute of Botany, Academy of Sciences of the Czech Republic, Dukelská 135, 37982 Třeboň, Czech Republic
| | - Josef Elster
- Institute of Botany, Academy of Sciences of the Czech Republic, Dukelská 135, 37982 Třeboň, Czech Republic; Centre for Polar Ecology, University of South Bohemia, Na Zlaté Stoce 3, 37005 České Budějovice, Czech Republic
| | - Burkhard Becker
- Department of Biology, Botanical Institute, University of Cologne, Zulpicher Str. 47B, 50674 Cologne, Germany
| |
Collapse
|
5
|
Grettenberger CL, Sumner DY. Physiology, Not Nutrient Availability, May Have Limited Primary Productivity After the Emergence of Oxygenic Photosynthesis. GEOBIOLOGY 2024; 22:e12622. [PMID: 39324846 DOI: 10.1111/gbi.12622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 07/08/2024] [Accepted: 09/09/2024] [Indexed: 09/27/2024]
Abstract
The evolution of oxygenic photosynthesis in Cyanobacteria was a transformative event in Earth's history. However, the scientific community disagrees over the duration of the delay between the origin of oxygenic photosynthesis and oxygenation of Earth's atmosphere, with estimates ranging from less than a hundred thousand to more than a billion years, depending on assumptions about rates of oxygen production and fluxes of reductants. Here, we propose a novel ecological hypothesis that a geologically significant delay could have been caused by biomolecular inefficiencies within proto-Cyanobacteria-ancestors of modern Cyanobacteria-that limited their maximum rates of oxygen production. Consideration of evolutionary processes and genomic data suggest to us that proto-cyanobacterial primary productivity was initially limited by photosystem instability, oxidative damage, and photoinhibition rather than nutrients or ecological competition. We propose that during the Archean era, cyanobacterial photosystems experienced protracted evolution, with biomolecular inefficiencies initially limiting primary productivity and oxygen production. Natural selection led to increases in efficiency and thus primary productivity through time. Eventually, evolutionary advances produced sufficient biomolecular efficiency that environmental factors, such as nutrient availability, limited primary productivity and shifted controls on oxygen production from physiological to environmental limitations. If correct, our novel hypothesis predicts a geologically significant interval of time between the first local oxygen production and sufficient production for oxygenation of environments. It also predicts that evolutionary rates were likely highly variable due to strong environmental selection pressures and potentially high mutation rates but low competitive interactions.
Collapse
Affiliation(s)
- Christen L Grettenberger
- Department of Earth and Planetary Sciences, University of California Davis, Davis, California, USA
- Department of Environmental Toxicology, University of California Davis, Davis, California, USA
| | - Dawn Y Sumner
- Department of Earth and Planetary Sciences, University of California Davis, Davis, California, USA
| |
Collapse
|
6
|
Mugnai G, Pinchuk I, Borruso L, Tiziani R, Sannino C, Canini F, Turchetti B, Mimmo T, Zucconi L, Buzzini P. The hidden network of biocrust successional stages in the High Arctic: Revealing abiotic and biotic factors shaping microbial and metazoan communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171786. [PMID: 38508248 DOI: 10.1016/j.scitotenv.2024.171786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/05/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024]
Abstract
Despite the important role that biocrust communities play in maintaining ecosystem structure and functioning in deglaciated barren soil, few studies have been conducted on the dynamics of biotic communities and the impact of physicochemical characteristics in shaping the different successional stages. In this study an integrated approach encompassing physicochemical parameters and molecular taxonomy was used for identifying the indicator taxa and the presence of intra- and inter-kingdom interactions in five different crust/biocrust successional stages: i) physical crust, ii) cyanobacteria-dominated biocrust, iii) cyanobacteria/moss-dominated biocrust, iv) moss-dominated biocrust and v) bryophyte carpet. The phylum Gemmatimonadota was the bacterial indicator taxon in the early stage, promoting both inter- and intra-kingdom interactions, while Cyanobacteria and Nematoda phyla played a pivotal role in formation and dynamics of cyanobacteria-dominated biocrusts. A multitrophic community, characterized by a shift from oligotrophic to copiotrophic bacteria and the presence of saproxylic arthropod and herbivore insects was found in the cyanobacteria/moss-dominated biocrust, while a more complex biota, characterized by an increased fungal abundance (classes Sordariomycetes, Leotiomycetes, and Dothideomycetes, phylum Ascomycota), associated with highly trophic consumer invertebrates (phyla Arthropoda, Rotifera, Tardigrada), was observed in moss-dominated biocrusts. The class Bdelloidea and the family Hypsibiidae (phyla Rotifera and Tardigrada, respectively) were metazoan indicator taxon in bryophyte carpet, suggesting their potential role in shaping structure and function of this late successional stage. Nitrogen and phosphorus were the main physicochemical limiting factors driving the shift among different crust/biocrust successional stages. Identification and characterization of indicator taxa, biological intra- and inter-kingdom interactions and abiotic factors driving the shift among different crust/biocrust successional stages provide a detailed picture on crust/biocrust dynamics, revealing a strong interconnection among micro- and macrobiota systems. These findings enhance our understanding of biocrust ecosystems in High Arctic, providing valuable insights for their conservation and management in response to environmental shifts due to climate change.
Collapse
Affiliation(s)
- Gianmarco Mugnai
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, Perugia 06121, Italy.
| | - Irina Pinchuk
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, Perugia 06121, Italy
| | - Luigimaria Borruso
- Faculty of Agricultural, Environmental and Food Science, Free University of Bolzano-Bozen, Bozen-Bolzano, 39100, Italy
| | - Raphael Tiziani
- Faculty of Agricultural, Environmental and Food Science, Free University of Bolzano-Bozen, Bozen-Bolzano, 39100, Italy
| | - Ciro Sannino
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, Perugia 06121, Italy
| | - Fabiana Canini
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo 01100, Italy
| | - Benedetta Turchetti
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, Perugia 06121, Italy
| | - Tanja Mimmo
- Faculty of Agricultural, Environmental and Food Science, Free University of Bolzano-Bozen, Bozen-Bolzano, 39100, Italy
| | - Laura Zucconi
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo 01100, Italy
| | - Pietro Buzzini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, Perugia 06121, Italy
| |
Collapse
|
7
|
Lu Q, Liu Y, Zhao J, Yao M. Successive accumulation of biotic assemblages at a fine spatial scale along glacier-fed waters. iScience 2024; 27:109476. [PMID: 38617565 PMCID: PMC11015461 DOI: 10.1016/j.isci.2024.109476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/14/2024] [Accepted: 03/08/2024] [Indexed: 04/16/2024] Open
Abstract
Glacier-fed waters create strong environmental filtering for biota, whereby different organisms may assume distinct distribution patterns. By using environmental DNA-based metabarcoding, we investigated the multi-group biodiversity distribution patterns of the Parlung No. 4 Glacier, on the Tibetan Plateau. Altogether, 642 taxa were identified from the meltwater stream and the downstream Ranwu Lake, including 125 cyanobacteria, 316 diatom, 183 invertebrate, and 18 vertebrate taxa. As the distance increased from the glacier terminus, community complexity increased via sequential occurrences of cyanobacteria, diatoms, invertebrates, and vertebrates, as well as increasing taxa numbers. The stream and lake showed different community compositions and distinct taxa. Furthermore, the correlations with environmental factors and community assembly mechanisms showed group- and habitat-specific patterns. Our results reveal the rapid spatial succession and increasing community complexity along glacial flowpaths and highlight the varying adaptivity of different organisms, while also providing insight into the ecosystem responses to global change.
Collapse
Affiliation(s)
- Qi Lu
- School of Life Sciences, Peking University, Beijing 100871, China
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yongqin Liu
- Center for Pan-Third Pole Environment, Lanzhou University, Lanzhou 730000, China
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Jindong Zhao
- School of Life Sciences, Peking University, Beijing 100871, China
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Meng Yao
- School of Life Sciences, Peking University, Beijing 100871, China
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
8
|
Roncero-Ramos B, Savaglia V, Durieu B, Van de Vreken I, Richel A, Wilmotte A. Ecophysiological and genomic approaches to cyanobacterial hardening for restoration. JOURNAL OF PHYCOLOGY 2024; 60:465-482. [PMID: 38373045 DOI: 10.1111/jpy.13436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 02/20/2024]
Abstract
Cyanobacteria inhabit extreme environments, including drylands, providing multiple benefits to the ecosystem. Soil degradation in warm drylands is increasing due to land use intensification. Restoration methods adapted to the extreme stress in drylands are being developed, such as cyanobacteria inoculation to recover biocrusts. For this type of restoration method to be a success, it is crucial to optimize the survival of inoculated cyanobacteria in the field. One strategy is to harden them to be acclimated to stressful conditions after laboratory culturing. Here, we analyzed the genome and ecophysiological response to osmotic desiccation and UVR stresses of an Antarctic cyanobacterium, Stenomitos frigidus ULC029, which is closely related to other cyanobacteria from warm and cold dryland soils. Chlorophyll a concentrations showed that preculturing ULC029 under moderate osmotic stress improved its survival during an assay of desiccation plus rehydration under UVR. Additionally, its sequential exposure to these stress factors increased the production of exopolysaccharides, carotenoids, and scytonemin. Desiccation, but not osmotic stress, increased the concentrations of the osmoprotectants trehalose and sucrose. However, osmotic stress might induce the production of other osmoprotectants, for which the complete pathways were observed in the ULC029 genome. In total, 140 genes known to be involved in stress resistance were annotated. Here, we confirm that the sequential application of moderate osmotic stress and dehydration could improve cyanobacterial hardening for soil restoration by inducing several resistance mechanisms. We provide a high-quality genome of ULC029 and a description of the main resistance mechanisms (i.e., production of exopolysaccharides, osmoprotectants, chlorophyll, and carotenoids; DNA repair; and oxidative stress protection).
Collapse
Affiliation(s)
- Beatriz Roncero-Ramos
- InBios-Molecular Diversity and Ecology of Cyanobacteria, University of Liège, Liege, Belgium
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Sevilla, Spain
| | - Valentina Savaglia
- InBios-Molecular Diversity and Ecology of Cyanobacteria, University of Liège, Liege, Belgium
- Laboratory of Protistology & Aquatic Ecology, Ghent University, Ghent, Belgium
| | - Benoit Durieu
- InBios-Molecular Diversity and Ecology of Cyanobacteria, University of Liège, Liege, Belgium
| | | | - Aurore Richel
- TERRA-Biomass and Green Technologies, University of Liège, Gembloux, Belgium
| | - Annick Wilmotte
- InBios-Molecular Diversity and Ecology of Cyanobacteria, University of Liège, Liege, Belgium
| |
Collapse
|
9
|
Duan Y, Li Y, Zhao J, Zhang J, Luo C, Jia R, Liu X. Changes in Microbial Composition During the Succession of Biological Soil Crusts in Alpine Hulun Buir Sandy Land, China. MICROBIAL ECOLOGY 2024; 87:43. [PMID: 38363394 PMCID: PMC10873229 DOI: 10.1007/s00248-024-02359-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/02/2024] [Indexed: 02/17/2024]
Abstract
Biological soil crusts (biocrusts) are considered "desert ecosystem engineers" because they play a vital role in the restoration and stability maintenance of deserts, including those cold sandy land ecosystems at high latitudes, which are especially understudied. Microorganisms participate in the formation and succession of biocrusts, contributing to soil properties' improvement and the stability of soil aggregates, and thus vegetation development. Accordingly, understanding the composition and successional characteristics of microorganisms is a prerequisite for analyzing the ecological functions of biocrusts and related applications. Here, the Hulun Buir Sandy Land region in northeastern China-lying at the highest latitude of any sandy land in the country-was selected for study. Through a field investigation and next-generation sequencing (Illumina MiSeq PE300 Platform), our goal was to assess the shifts in diversity and community composition of soil bacteria and fungi across different stages during the succession of biocrusts in this region, and to uncover the main factors involved in shaping their soil microbial community. The results revealed that the nutrient enrichment capacity of biocrusts for available nitrogen, total nitrogen, total phosphorus, total content of water-soluble salt, available potassium, soil organic matter, and available phosphorus was progressively enhanced by the succession of cyanobacterial crusts to lichen crusts and then to moss crusts. In tandem, soil bacterial diversity increased as biocrust succession proceeded but fungal diversity decreased. A total of 32 bacterial phyla and 11 fungal phyla were identified, these also known to occur in other desert ecosystems. Among those taxa, the relative abundance of Proteobacteria and Cyanobacteria significantly increased and decreased, respectively, along the cyanobacterial crust-lichen-moss crust successional gradient. However, for Actinobacteria, Chloroflexi, and Acidobacteria their changed relative abundance was significantly hump-shaped, increasing in the shift from cyanobacterial crust to lichen crust, and then decreasing as lichen crust shifted to moss crust. In this process, the improved soil properties effectively enhanced soil bacterial and fungal community composition. Altogether, these findings broaden our understanding about how soil microbial properties can change during the succession of biocrusts in high-latitude, cold sandy land ecosystems.
Collapse
Affiliation(s)
- Yulong Duan
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Tongliao, 028300, China
- Key Laboratory of Strategic Mineral Resources of the Upper Yellow River, Ministry of Natural Resources, Lanzhou, 730000, China
| | - Yuqiang Li
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Tongliao, 028300, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Strategic Mineral Resources of the Upper Yellow River, Ministry of Natural Resources, Lanzhou, 730000, China
| | - Jianhua Zhao
- Shanghai Majorbio Bio-Pharm Technology Co., Ltd, Shanghai, 200120, China
| | - Junbiao Zhang
- Shanghai Majorbio Bio-Pharm Technology Co., Ltd, Shanghai, 200120, China
| | - Chun Luo
- Shanghai Majorbio Bio-Pharm Technology Co., Ltd, Shanghai, 200120, China
| | - Rongliang Jia
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Zhongwei, 755007, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xinping Liu
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Tongliao, 028300, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
10
|
Hay MC, Mitchell AC, Soares AR, Debbonaire AR, Mogrovejo DC, Els N, Edwards A. Metagenome-assembled genomes from High Arctic glaciers highlight the vulnerability of glacier-associated microbiota and their activities to habitat loss. Microb Genom 2023; 9. [PMID: 37937832 DOI: 10.1099/mgen.0.001131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023] Open
Abstract
The rapid warming of the Arctic is threatening the demise of its glaciers and their associated ecosystems. Therefore, there is an urgent need to explore and understand the diversity of genomes resident within glacial ecosystems endangered by human-induced climate change. In this study we use genome-resolved metagenomics to explore the taxonomic and functional diversity of different habitats within glacier-occupied catchments. Comparing different habitats within such catchments offers a natural experiment for understanding the effects of changing habitat extent or even loss upon Arctic microbiota. Through binning and annotation of metagenome-assembled genomes (MAGs) we describe the spatial differences in taxon distribution and their implications for glacier-associated biogeochemical cycling. Multiple taxa associated with carbon cycling included organisms with the potential for carbon monoxide oxidation. Meanwhile, nitrogen fixation was mediated by a single taxon, although diverse taxa contribute to other nitrogen conversions. Genes for sulphur oxidation were prevalent within MAGs implying the potential capacity for sulphur cycling. Finally, we focused on cyanobacterial MAGs, and those within cryoconite, a biodiverse microbe-mineral granular aggregate responsible for darkening glacier surfaces. Although the metagenome-assembled genome of Phormidesmis priestleyi, the cyanobacterium responsible for forming Arctic cryoconite was represented with high coverage, evidence for the biosynthesis of multiple vitamins and co-factors was absent from its MAG. Our results indicate the potential for cross-feeding to sustain P. priestleyi within granular cryoconite. Taken together, genome-resolved metagenomics reveals the vulnerability of glacier-associated microbiota to the deletion of glacial habitats through the rapid warming of the Arctic.
Collapse
Affiliation(s)
- Melanie C Hay
- Department of Life Sciences (DLS), Aberystwyth University, Wales, UK
- Interdisciplinary Centre for Environmental Microbiology (iCEM), Aberystwyth University, Wales, UK
- Department of Geography and Earth Sciences (DGES), Aberystwyth University, Wales, UK
- Present address: Department of Pathobiology and Population Sciences, The Royal Veterinary College, North Mymms, Hertfordshire, UK
| | - Andrew C Mitchell
- Interdisciplinary Centre for Environmental Microbiology (iCEM), Aberystwyth University, Wales, UK
- Department of Geography and Earth Sciences (DGES), Aberystwyth University, Wales, UK
| | - Andre R Soares
- Department of Life Sciences (DLS), Aberystwyth University, Wales, UK
- Interdisciplinary Centre for Environmental Microbiology (iCEM), Aberystwyth University, Wales, UK
- Department of Geography and Earth Sciences (DGES), Aberystwyth University, Wales, UK
- Present address: Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Aliyah R Debbonaire
- Department of Life Sciences (DLS), Aberystwyth University, Wales, UK
- Interdisciplinary Centre for Environmental Microbiology (iCEM), Aberystwyth University, Wales, UK
| | - Diana C Mogrovejo
- Dr. Brill + Partner GmbH Institut für Hygiene und Mikrobiologie, Hamburg, Germany
| | - Nora Els
- Department of Lake and Glacier Research, Institute of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Arwyn Edwards
- Department of Life Sciences (DLS), Aberystwyth University, Wales, UK
- Interdisciplinary Centre for Environmental Microbiology (iCEM), Aberystwyth University, Wales, UK
- Department of Arctic Biology, University Centre in Svalbard (UNIS), Longyearbyen, Svalbard and Jan Mayen
| |
Collapse
|
11
|
Pessi IS, Popin RV, Durieu B, Lara Y, Tytgat B, Savaglia V, Roncero-Ramos B, Hultman J, Verleyen E, Vyverman W, Wilmotte A. Novel diversity of polar Cyanobacteria revealed by genome-resolved metagenomics. Microb Genom 2023; 9:mgen001056. [PMID: 37417735 PMCID: PMC10438808 DOI: 10.1099/mgen.0.001056] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/30/2023] [Indexed: 07/08/2023] Open
Abstract
Benthic microbial mats dominated by Cyanobacteria are important features of polar lakes. Although culture-independent studies have provided important insights into the diversity of polar Cyanobacteria, only a handful of genomes have been sequenced to date. Here, we applied a genome-resolved metagenomics approach to data obtained from Arctic, sub-Antarctic and Antarctic microbial mats. We recovered 37 metagenome-assembled genomes (MAGs) of Cyanobacteria representing 17 distinct species, most of which are only distantly related to genomes that have been sequenced so far. These include (i) lineages that are common in polar microbial mats such as the filamentous taxa Pseudanabaena, Leptolyngbya, Microcoleus/Tychonema and Phormidium; (ii) the less common taxa Crinalium and Chamaesiphon; (iii) an enigmatic Chroococcales lineage only distantly related to Microcystis; and (iv) an early branching lineage in the order Gloeobacterales that is distributed across the cold biosphere, for which we propose the name Candidatus Sivonenia alaskensis. Our results show that genome-resolved metagenomics is a powerful tool for expanding our understanding of the diversity of Cyanobacteria, especially in understudied remote and extreme environments.
Collapse
Affiliation(s)
- Igor S. Pessi
- Department of Microbiology, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Sustainability Science (HELSUS), Helsinki, Finland
| | - Rafael V. Popin
- Department of Microbiology, University of Helsinki, Helsinki, Finland
| | - Benoit Durieu
- InBioS – Centre for Protein Engineering, University of Liège, Liège, Belgium
| | - Yannick Lara
- Early Life Traces & Evolution-Astrobiology, UR-Astrobiology, University of Liège, Liège, Belgium
| | - Bjorn Tytgat
- Laboratory of Protistology & Aquatic Ecology, Ghent University, Ghent, Belgium
| | - Valentina Savaglia
- InBioS – Centre for Protein Engineering, University of Liège, Liège, Belgium
- Laboratory of Protistology & Aquatic Ecology, Ghent University, Ghent, Belgium
| | - Beatriz Roncero-Ramos
- InBioS – Centre for Protein Engineering, University of Liège, Liège, Belgium
- Department of Plant Biology and Ecology, University of Sevilla, Sevilla, Spain
| | - Jenni Hultman
- Department of Microbiology, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Sustainability Science (HELSUS), Helsinki, Finland
- Natural Resources Institute Finland (LUKE), Helsinki, Finland
| | - Elie Verleyen
- Laboratory of Protistology & Aquatic Ecology, Ghent University, Ghent, Belgium
| | - Wim Vyverman
- Laboratory of Protistology & Aquatic Ecology, Ghent University, Ghent, Belgium
| | - Annick Wilmotte
- InBioS – Centre for Protein Engineering, University of Liège, Liège, Belgium
| |
Collapse
|
12
|
Chen Q, Yan N, Xiong K, Zhao J. Cyanobacterial diversity of biological soil crusts and soil properties in karst desertification area. Front Microbiol 2023; 14:1113707. [PMID: 36992925 PMCID: PMC10040852 DOI: 10.3389/fmicb.2023.1113707] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/22/2023] [Indexed: 03/18/2023] Open
Abstract
As important components of the biological soil crusts (BSCs) and of the primary stage of crust succession, cyanobacterial communities occupy an important ecological niche and play an important ecological role in desertification areas. In this study, we focused on the karst desertification area, which also belongs to the same category of desertification, and selected three study areas, Guanling-Zhenfeng Huajiang (HJ), Bijie Salaxi (SLX), and Shibing (SB), in the Guizhou Plateau, which represents the overall ecological environment of South China karst, to conduct surveys on the diversity of BSC species and soil properties. Analysis of the cyanobacterial communities and physicochemical properties using the Shannon-Wiener diversity index, principal component analysis, and redundancy analysis revealed that: (1) The three study areas had common cyanobacterial species, with a total of 200 species distributed across 22 genera, 2 classes, 5 orders, and 6 families belonging to the Oscillatoriales (39%), Scytonematales (24.5%), Chroococcales (23%), Nostocales (11.5%), and Rivulariales (2%), (2) The number of species increased with the intensity of karst desertification—while Oscillatoriaceae was the dominant family in HJ and moderate–severe desertification areas, Chroococcaceae and Scytonemataceae were dominant in the mild and potential desertification areas SLX and SB, (3) The Shannon-Wiener diversity indices followed the trend: SLX (3.56) > SB (3.08) > HJ (3.01), indicating that the species were more evenly distributed in mild desertification, (4) In the carbonate background, shrubland harbored the largest number of cyanobacterial species compared to grassland, bare land, and arbor woodland; however, the highest number was documented in arbor woodland in dolomite karst, (5) The soil is weathered limestone or yellow soil in all three areas, with pH ranging from 5.73 to 6.85, fine sand dominated, and soil nutrients increased with the intensity of desertification, and (6) Redundancy analysis showed that organic carbon, soil moisture content (0–5 cm), and total nitrogen substantially influenced cyanobacterial diversity. These results reveal that differences in soil nutrient content play an important role in regulating the cyanobacterial diversity and composition, thereby establishing a foundation for further research and application of soil ecological restoration of cyanobacteria in BSCs of karst desertification areas.
Collapse
Affiliation(s)
- Qian Chen
- School of Karst Science, Guizhou Normal University, Guiyang, China
- State Engineering Technology Institute for Karst Desertification Control, Guizhou Normal University, Guiyang, China
| | - Ni Yan
- School of Karst Science, Guizhou Normal University, Guiyang, China
- State Engineering Technology Institute for Karst Desertification Control, Guizhou Normal University, Guiyang, China
- School of Life Science, Guizhou Normal University, Guiyang, China
| | - Kangning Xiong
- School of Karst Science, Guizhou Normal University, Guiyang, China
- State Engineering Technology Institute for Karst Desertification Control, Guizhou Normal University, Guiyang, China
- *Correspondence: Kangning Xiong,
| | - Jiawei Zhao
- School of Karst Science, Guizhou Normal University, Guiyang, China
- State Engineering Technology Institute for Karst Desertification Control, Guizhou Normal University, Guiyang, China
| |
Collapse
|
13
|
Employment of algae-based biological soil crust to control desertification for the sustainable development: A mini-review. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Wang L, Li J, Zhang S. A Comprehensive Network Integrating Signature Microbes and Crucial Soil Properties During Early Biological Soil Crust Formation on Tropical Reef Islands. Front Microbiol 2022; 13:831710. [PMID: 35369528 PMCID: PMC8969229 DOI: 10.3389/fmicb.2022.831710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/15/2022] [Indexed: 11/26/2022] Open
Abstract
Biological soil crusts (BSCs/biocrusts), which are distributed across various climatic zones and well-studied in terrestrial drylands, harbor polyextremotolerant microbial topsoil communities and provide ecological service for local and global ecosystem. Here, we evaluated BSCs in the tropical reef islands of the South China Sea. Specifically, we collected 41 BSCs, subsurface, and bare soil samples from the Xisha and Nansha Archipelagos. High-throughput amplicon sequencing was performed to analyze the bacterial, fungal, and archaeal compositions of these samples. Physicochemical measurement and enzyme activity assays were conducted to characterize the soil properties. Advanced computational analysis revealed 47 biocrust-specific microbes and 10 biocrust-specific soil properties, as well as their correlations in BSC microbial community. We highlighted the previously underestimated impact of manganese on fungal community regulation and BSC formation. We provide comprehensive insight into BSC formation networks on tropical reef islands and established a foundation for BSC-directed environmental restoration.
Collapse
Affiliation(s)
- Lin Wang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Jie Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
- *Correspondence: Jie Li,
| | - Si Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
- Si Zhang,
| |
Collapse
|
15
|
Alvarenga DO, Rousk K. Indirect effects of climate change inhibit N 2 fixation associated with the feathermoss Hylocomium splendens in subarctic tundra. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148676. [PMID: 34247067 DOI: 10.1016/j.scitotenv.2021.148676] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/15/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Mosses can be responsible for up to 100% of net primary production in arctic and subarctic tundra, and their associations with diazotrophic cyanobacteria have an important role in increasing nitrogen (N) availability in these pristine ecosystems. Predictions about the consequences of climate change in subarctic environments point to increased N mineralization in soil and higher litter deposition due to warming. It is not clear yet how these indirect climate change effects impact moss-cyanobacteria associations and N2 fixation. This work aimed to evaluate the effects of increased N and litter input on biological N2 fixation rates associated with the feathermoss Hylocomium splendens from a tundra heath. H. splendens samples were collected near Abisko, northern Sweden, from a field experiment with annual additions of ammonium chloride and dried birch litter and the combination of both for three years. Samples were analyzed for N2 fixation, cyanobacterial colonization, C and N content and pH. Despite the high N additions, no significant differences in moss N content were found. However, differences between treatments were observed in N2 fixation rates, cyanobacterial colonization and pH, with the combined ammonium+litter treatment causing a significant reduction in the number of branch-colonizing cyanobacteria and N2 fixation, and ammonium additions significantly lowering moss pH. A significant, positive relationship was found between N2 fixation rates, moss colonization by cyanobacteria and pH levels, showing a clear drop in N2 fixation rates at lower pH levels even if larger cyanobacterial populations were present. These results suggest that increased N availability and litter deposition resulting from climate change not only interferes with N2 fixation directly, but also acidifies moss microhabitats and reduces the abundance of associated cyanobacteria, which could eventually impact the N cycle in the Subarctic.
Collapse
Affiliation(s)
- Danillo O Alvarenga
- Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark; Centre for Permafrost, University of Copenhagen, Øster Voldgade 10, DK-1350 Copenhagen, Denmark.
| | - Kathrin Rousk
- Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark; Centre for Permafrost, University of Copenhagen, Øster Voldgade 10, DK-1350 Copenhagen, Denmark
| |
Collapse
|
16
|
Extreme freeze-thaw cycles do not affect moss-associated nitrogen fixation across a temperature gradient, but affect nutrient loss from mosses. ACTA OECOLOGICA 2021. [DOI: 10.1016/j.actao.2021.103796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Microbial Diversity in Subarctic Biocrusts from West Iceland following an Elevation Gradient. Microorganisms 2021; 9:microorganisms9112195. [PMID: 34835321 PMCID: PMC8624075 DOI: 10.3390/microorganisms9112195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 11/16/2022] Open
Abstract
Biological soil crusts (biocrusts) are essential communities of organisms in the Icelandic soil ecosystem, as they prevent erosion and cryoturbation and provide nutrients to vascular plants. However, biocrust microbial composition in Iceland remains understudied. To address this gap in knowledge, we applied high-throughput sequencing to study microbial community composition in biocrusts collected along an elevation gradient (11–157 m a.s.l.) stretching away perpendicular to the marine coast. Four groups of organisms were targeted: bacteria and cyanobacteria (16S rRNA gene), fungi (transcribed spacer region), and other eukaryotes (18S rRNA gene). The amplicon sequencing of the 16S rRNA gene revealed the dominance of Proteobacteria, Bacteroidetes, and Actinobacteria. Within the cyanobacteria, filamentous forms from the orders Synechococcales and Oscillatoriales prevailed. Furthermore, fungi in the biocrusts were dominated by Ascomycota, while the majority of reads obtained from sequencing of the 18S rRNA gene belonged to Archaeplastida. In addition, microbial photoautotrophs isolated from the biocrusts were assigned to the cyanobacterial genera Phormidesmis, Microcoleus, Wilmottia, and Oscillatoria and to two microalgal phyla Chlorophyta and Charophyta. In general, the taxonomic diversity of microorganisms in the biocrusts increased following the elevation gradient and community composition differed among the sites, suggesting that microclimatic and soil parameters might shape biocrust microbiota.
Collapse
|
18
|
Nandagopal P, Steven AN, Chan LW, Rahmat Z, Jamaluddin H, Mohd Noh NI. Bioactive Metabolites Produced by Cyanobacteria for Growth Adaptation and Their Pharmacological Properties. BIOLOGY 2021; 10:1061. [PMID: 34681158 PMCID: PMC8533319 DOI: 10.3390/biology10101061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/10/2021] [Accepted: 10/14/2021] [Indexed: 02/08/2023]
Abstract
Cyanobacteria are the most abundant oxygenic photosynthetic organisms inhabiting various ecosystems on earth. As with all other photosynthetic organisms, cyanobacteria release oxygen as a byproduct during photosynthesis. In fact, some cyanobacterial species are involved in the global nitrogen cycles by fixing atmospheric nitrogen. Environmental factors influence the dynamic, physiological characteristics, and metabolic profiles of cyanobacteria, which results in their great adaptation ability to survive in diverse ecosystems. The evolution of these primitive bacteria resulted from the unique settings of photosynthetic machineries and the production of bioactive compounds. Specifically, bioactive compounds play roles as regulators to provide protection against extrinsic factors and act as intracellular signaling molecules to promote colonization. In addition to the roles of bioactive metabolites as indole alkaloids, terpenoids, mycosporine-like amino acids, non-ribosomal peptides, polyketides, ribosomal peptides, phenolic acid, flavonoids, vitamins, and antimetabolites for cyanobacterial survival in numerous habitats, which is the focus of this review, the bioactivities of these compounds for the treatment of various diseases are also discussed.
Collapse
Affiliation(s)
- Pavitra Nandagopal
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Malaysia; (P.N.); (L.-W.C.); (Z.R.); (H.J.)
| | - Anthony Nyangson Steven
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Malaysia;
| | - Liong-Wai Chan
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Malaysia; (P.N.); (L.-W.C.); (Z.R.); (H.J.)
| | - Zaidah Rahmat
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Malaysia; (P.N.); (L.-W.C.); (Z.R.); (H.J.)
- Institute of Bioproduct Development, Universiti Teknologi Malaysia, Skudai 81310, Malaysia
| | - Haryati Jamaluddin
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Malaysia; (P.N.); (L.-W.C.); (Z.R.); (H.J.)
| | - Nur Izzati Mohd Noh
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Malaysia; (P.N.); (L.-W.C.); (Z.R.); (H.J.)
| |
Collapse
|
19
|
|
20
|
Abstract
Photosynthetic Cyanobacteria and their descendants are the only known organisms capable of oxygenic photosynthesis. Their metabolism permanently changed the Earth’s surface and the evolutionary trajectory of life, but little is known about their evolutionary history. Genomes of the Gloeobacterales, an order of deeply divergent photosynthetic Cyanobacteria, may hold clues about the evolutionary process. However, there are only three published genomes within this order, and it is difficult to make broad inferences based on such little data. Here, I describe five species within the Gloeobacterales retrieved from publicly available databases and examine their photosynthetic gene content and the environments in which Gloeobacterales genomes and 16S rRNA gene sequences are found. The Gloeobacterales contain reduced photosystems and inhabit cold, wet-rock, and low-light environments. They are likely present in low abundances due to their low growth rate. Future searches for Gloeobacterales should target these environments, and samples should be deeply sequenced to capture the low-abundance taxa. Publicly available databases contain undescribed taxa within the Gloeobacterales. However, searching through all available data with current methods is computationally expensive. Therefore, new methods must be developed to search for these and other evolutionarily important taxa. Once identified, these novel photosynthetic Cyanobacteria will help illuminate the origin and evolution of oxygenic photosynthesis. IMPORTANCE Early branching photosynthetic Cyanobacteria such as the Gloeobacterales may provide clues into the evolutionary history of oxygenic photosynthesis, but there are few genomes or cultured taxa from this order. Five new metagenome-assembled genomes suggest that members of the Gloeobacterales all contain reduced photosystems and lack genes associated with thylakoids and circadian rhythms. Their distribution suggests that they may thrive in environments that are marginal for other species, including wet-rock and cold environments. These traits may aid in the discovery and cultivation of novel species in this clade.
Collapse
|
21
|
Pushkareva E, Sommer V, Barrantes I, Karsten U. Diversity of Microorganisms in Biocrusts Surrounding Highly Saline Potash Tailing Piles in Germany. Microorganisms 2021; 9:714. [PMID: 33808463 PMCID: PMC8066527 DOI: 10.3390/microorganisms9040714] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/24/2021] [Accepted: 03/28/2021] [Indexed: 12/04/2022] Open
Abstract
Potash tailing piles located in Germany represent extremely hypersaline locations that negatively affect neighbouring environments and limit the development of higher vegetation. However, biocrusts, as cryptogamic covers, inhabit some of these areas and provide essential ecological functions, but, nevertheless, they remain poorly described. Here, we applied high-throughput sequencing (HTS) and targeted four groups of microorganisms: bacteria, cyanobacteria, fungi and other eukaryotes. The sequencing of the 16S rRNA gene revealed the dominance of Proteobacteria, Cyanobacteria and Actinobacteria. Additionally, we applied yanobacteria-specific primers for a detailed assessment of the cyanobacterial community, which was dominated by members of the filamentous orders Synechococcales and Oscillatoriales. Furthermore, the majority of reads in the studied biocrusts obtained by sequencing of the 18S rRNA gene belonged to eukaryotic microalgae. In addition, sequencing of the internal rDNA transcribed spacer region (ITS) showed the dominance of Ascomycota within the fungal community. Overall, these molecular data provided the first detailed overview of microorganisms associated with biocrusts inhabiting highly saline potash tailing piles and showed the dissimilarities in microbial diversity among the samples.
Collapse
Affiliation(s)
- Ekaterina Pushkareva
- Department of Applied Ecology and Phycology, Institute of Biological Sciences, University of Rostock, 18059 Rostock, Germany; (V.S.); (U.K.)
- Department of Biology, Botanical Institute, University of Cologne, 50674 Cologne, Germany
| | - Veronika Sommer
- Department of Applied Ecology and Phycology, Institute of Biological Sciences, University of Rostock, 18059 Rostock, Germany; (V.S.); (U.K.)
| | - Israel Barrantes
- Research Group Translational Bioinformatics, Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, 18057 Rostock, Germany;
| | - Ulf Karsten
- Department of Applied Ecology and Phycology, Institute of Biological Sciences, University of Rostock, 18059 Rostock, Germany; (V.S.); (U.K.)
| |
Collapse
|
22
|
Wang J, Zhang P, Bao JT, Zhao JC, Song G, Yang HT, Huang L, He MZ, Li XR. Comparison of cyanobacterial communities in temperate deserts: A cue for artificial inoculation of biological soil crusts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 745:140970. [PMID: 32731072 DOI: 10.1016/j.scitotenv.2020.140970] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/12/2020] [Accepted: 07/12/2020] [Indexed: 06/11/2023]
Abstract
The topsoil cyanobacteria in biological soil crusts (BSCs) play a vital role in stabilizing soil surface of disturbed habitats in water and nutrient-poor ecosystems. Currently, artificial inoculation of BSCs is considered as an effective approach to restore habitats and accelerate ecosystem regeneration. Understanding the character of cyanobacterial communities is the necessary prerequisite to explore the artificial inoculation of BSCs. For this reason, cyanobacterial communities in BSCs were compared between two mid-latitute temperate deserts with distinct precipitation patterns. The results showed that Oscillatoriales and Nostocales dominated crusts in the Tengger desert with majority of rainfall in summer and early autumn while Oscillatoriales dominated crusts in the Kyzyl kum desert with more rainfall in winter and early spring. Moreover, filamentous Microcoleus vaginatus overwhelmingly dominated all the crusts in both deserts with Mastigocladopsis sp. and Chroococcidiopsis spp. as the dominant heterocystous cyanobacteria. Of note, genus Wilmottia kept a relative stable and high abundance in both deserts. The top two abundantly shared cyanobacteria (> 1% of total sequences) were M. vaginatus and Mastigocladopsis sp. in both deserts, while 16 genera with significant variances were found between the two deserts (P <0.05). Total variations of cyanobacterial communities across the deserts were largely explained by a combination of biotic factors (microbial biomass C and N) and abiotic factors (soil pH, soil water content, soil water holding capacity, and soil available potassium). Compared to better-developed crusts, cyanobacterial abundance was higher in cyanobacterial crusts. BSC type and/or geographic location significantly affected cyanobacterial Shannon diversity without significantly influencing species richness. Our data suggest that the basic and major groups (e.g. M. vaginatus, Wilmottia spp., Mastigocladopsis sp., and Chroococcidiopsis spp.), and the abundantly shared phylotypes which showed significant difference in cyanobacterial communities between deserts, should be focused on to further explore the artificial inoculation of BSCs in temperate drylands.
Collapse
Affiliation(s)
- Jin Wang
- Shapotou Desert Research and Experiment Station, Key Laboratory of Stress Physiology and Ecology of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Peng Zhang
- Shapotou Desert Research and Experiment Station, Key Laboratory of Stress Physiology and Ecology of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jing-Ting Bao
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Jie-Cai Zhao
- Shapotou Desert Research and Experiment Station, Key Laboratory of Stress Physiology and Ecology of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Guang Song
- Shapotou Desert Research and Experiment Station, Key Laboratory of Stress Physiology and Ecology of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Hao-Tian Yang
- Shapotou Desert Research and Experiment Station, Key Laboratory of Stress Physiology and Ecology of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Lei Huang
- Shapotou Desert Research and Experiment Station, Key Laboratory of Stress Physiology and Ecology of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Ming-Zhu He
- Shapotou Desert Research and Experiment Station, Key Laboratory of Stress Physiology and Ecology of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xin-Rong Li
- Shapotou Desert Research and Experiment Station, Key Laboratory of Stress Physiology and Ecology of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.
| |
Collapse
|
23
|
Mugnai G, Rossi F, Mascalchi C, Ventura S, De Philippis R. High Arctic biocrusts: characterization of the exopolysaccharidic matrix. Polar Biol 2020. [DOI: 10.1007/s00300-020-02746-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractBiocrusts can be found in a wide array of habitats, where they provide important ecosystem services. These microbial associations are particularly important in High Arctic environments, where biocrust colonize the newly exposed barren soil after glacier retreat and significantly contribute to soil stabilization and nutrient cycling. Starting from incipient, structurally simple biolayers, they develop in complexity, increasing from the glacier terminus. Starting from a simple community structure, mainly constituted by cyanobacteria, heterotrophic bacteria and fungi immersed in a self-secreted extracellular polymeric matrix (cyanobacterial crusts), they later may recruit mosses and lichens (moss crusts and lichen crusts, respectively). The extracellular polymeric matrix protects the biocrust community from abiotic constraints, notably drought and freezing stress, from external physical harming factors, and from predation. The physicochemical characteristics of the extracellular matrix are related to several of its properties, such as its soil-stabilizing effect and water retention. We analysed the chemical (monosaccharidic composition) and macromolecular (molecular weight distribution) properties of the extracellular polymeric matrix of biocrusts with different morphologies collected in northwestern Spitsbergen, Norway. The uronic acid content and molecular weight (MW) distribution of the extracellular polysaccharidic matrices (EPMs) appeared in accordance with the developmental stages of the biocrusts. The MW distribution also showed significant differences between the samples, possibly reflecting differences in microbial enzymatic activities leading to the degradation of high-MW polymers into smaller compounds. The MW distribution profiles presented some important differences, reflecting differences in environmental conditions and, probably, the seasonal variance in microbial community composition that is known to characterize the environment examined in the present study.
Collapse
|
24
|
Trout-Haney JV, Heindel RC, Virginia RA. Picocyanobacterial cells in near-surface air above terrestrial and freshwater substrates in Greenland and Antarctica. ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 12:296-305. [PMID: 32134187 DOI: 10.1111/1758-2229.12832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 02/26/2020] [Accepted: 03/01/2020] [Indexed: 06/10/2023]
Abstract
Bioaerosols are an important component of the total atmospheric aerosol load, with implications for human health, climate feedbacks and the distribution and dispersal of microbial taxa. Bioaerosols are sourced from marine, freshwater and terrestrial surfaces, with different mechanisms potentially responsible for releasing biological particles from these substrates. Little is known about the production of freshwater and terrestrial bioaerosols in polar regions. We used portable collection devices to test for the presence of picocyanobacterial aerosols above freshwater and soil substrates in the southwestern Greenland tundra and the McMurdo Dry Valleys of Antarctica. We show that picocyanobacterial cells are present in the near-surface air at concentrations ranging from 2,431 to 28,355 cells m-3 of air, with no significant differences among substrates or between polar regions. Our concentrations are lower than those measured using the same methods in temperate ecosystems. We suggest that aerosolization is an important process linking terrestrial and aquatic ecosystems in these polar environments, and that future work is needed to explore aerosolization mechanisms and taxon-specific aerosolization rates. Our study is a first step toward understanding the production of bioaerosols in extreme environments dominated by microbial life.
Collapse
Affiliation(s)
- Jessica V Trout-Haney
- Department of Biological Sciences, Life Sciences Center, Dartmouth College, Hanover, NH, 03755
| | - Ruth C Heindel
- Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, CO
| | - Ross A Virginia
- Environmental Studies Program and Institute of Arctic Studies, Dartmouth College, Hanover, NH, 03755
| |
Collapse
|
25
|
Miralles I, Lázaro R, Sánchez-Marañón M, Soriano M, Ortega R. Biocrust cover and successional stages influence soil bacterial composition and diversity in semiarid ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 709:134654. [PMID: 31905575 DOI: 10.1016/j.scitotenv.2019.134654] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
Biocrusts are an important drylands landscape component, which enriches the upper millimeters of the soil with organic matter and initiates biogeochemical cycles. However, little is known about the influence of biocrusts on soil bacterial community structure and diversity. Different biocrust types representing a successional gradient were studied. This gradient, from the earliest to the latest successional stages, consisted of an incipient cyanobacterial biocrust < mature cyanobacterial biocrusts < biocrust dominated by the Squamarina lentigera and Diploschistes diacapsis lichens < Biocrust characterized by the Lepraria isidiata lichen. Moreover, in each biocrust type, four different percentages of biocrust cover were also selected. Soil diversity gradually increased with biocrust successional stage and percentage of biocrust cover. The biocrust cover had an important role in the total abundance of bacteria, generally increasing in soils colonized by the highest percentages of cover. Biocrust successional stage was the most important factor, significantly influencing 108 soil bacteria genera, whereas biocrust cover showed significant differences in only 10 genera. Principal Component Analysis showed contrasting microbial composition across the biocrust successional gradient. Some bacterial taxa were dominant in the soil colonized by different biocrust types. Thus, Leptolyngbya, Rubrobacter, Solirubrobacter, Geodermatophilus, etc., were more abundant in incipient cyanobacteria; Nostocales, Chroococcidiopsaceae, Coleofasciculaceae etc., under mature cyanobacterial biocrusts; Truepera, Sphingobacteriaceae, Actinophytocola, Kribella, etc., below the S. lentigera and D. diacapsis community, and Bryobacter, Ohtaekwangia, Opitutus, Pedosphaeraceae, etc., in soils colonized by L. isidiata. Several soil bacteria taxa showed significant correlations (p < 0.05) with chemical soil properties (pH, total nitrogen, total organic carbon, available phosphorous and electrical conductivity). We discuss the role of biocrusts influencing these chemical soil parameters, including the presence of certain metabolites secreted by biocrusts, and also their effects on soil moisture and several physical soil features, as well as their association with different microclimates, all of which could favor a more selective environment for certain bacteria.
Collapse
Affiliation(s)
- I Miralles
- Department of Agronomy & Center for Intensive Mediterranean Agrosystems and Agri-food Biotechnology (CIAIMBITAL), University of Almeria, E-04120, Almería, Spain.
| | - R Lázaro
- Experimental Station of Arid Zones (CSIC), Almería, Spain
| | - M Sánchez-Marañón
- Department of Soil Science and Chemical Agriculture, University of Granada, 18071 Granada, Spain
| | - M Soriano
- Department of Agronomy & Center for Intensive Mediterranean Agrosystems and Agri-food Biotechnology (CIAIMBITAL), University of Almeria, E-04120, Almería, Spain
| | - R Ortega
- Department of Agronomy & Center for Intensive Mediterranean Agrosystems and Agri-food Biotechnology (CIAIMBITAL), University of Almeria, E-04120, Almería, Spain
| |
Collapse
|
26
|
Jasser I, Kostrzewska-Szlakowska I, Kwiatowski J, Navruzshoev D, Suska-Malawska M, Khomutovska N. Morphological and Molecular Diversity of Benthic Cyanobacteria Communities Versus Environmental Conditions in Shallow, High Mountain Water Bodies in Eastern Pamir Mountains (Tajikistan). POLISH JOURNAL OF ECOLOGY 2020. [DOI: 10.3161/15052249pje2019.67.4.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Iwona Jasser
- University of Warsaw, Department of Plant Ecology and Environmental Conservation, Faculty of Biology, Biological and Chemical Research Centre, Żwirki i Wigury 101, 02–089 Warszawa, Poland
| | | | - Jan Kwiatowski
- University of Warsaw, Faculty of Biology, Miecznikowa 1, 02–089, Warszawa, Poland
| | - Dovutsho Navruzshoev
- Kh.Yu. Yusufbekov Pamir Biological Institute of the Academy of Sciences of the Republic of Tajikistan, Khorog, Tajikistan
| | - Małgorzata Suska-Malawska
- University of Warsaw, Department of Plant Ecology and Environmental Conservation, Faculty of Biology, Biological and Chemical Research Centre, Żwirki i Wigury 101, 02–089 Warszawa, Poland
| | - Nataliia Khomutovska
- University of Warsaw, Department of Plant Ecology and Environmental Conservation, Faculty of Biology, Biological and Chemical Research Centre, Żwirki i Wigury 101, 02–089 Warszawa, Poland
| |
Collapse
|
27
|
Machado-de-Lima NM, Fernandes VMC, Roush D, Velasco Ayuso S, Rigonato J, Garcia-Pichel F, Branco LHZ. The Compositionally Distinct Cyanobacterial Biocrusts From Brazilian Savanna and Their Environmental Drivers of Community Diversity. Front Microbiol 2019; 10:2798. [PMID: 31921007 PMCID: PMC6929519 DOI: 10.3389/fmicb.2019.02798] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 11/18/2019] [Indexed: 02/01/2023] Open
Abstract
The last decade was marked by efforts to define and identify the main cyanobacterial players in biological crusts around the world. However, not much is known about biocrusts in Brazil’s tropical savanna (cerrado), despite the existence of environments favorable to their development and ecological relevance. We examined the community composition of cyanobacteria in biocrusts from six sites distributed in the Southeast of the country using high throughput sequencing of 16S rRNA and phylogenetic placement in the wider context of biocrusts from deserts. Sequences ascribable to 22 genera of cyanobacteria were identified. Although a significant proportion of sequences did not match those of known cyanobacteria, several clades of Leptolyngbya and Porphyrosiphon were found to be the most abundant. We identified significant differences in dominance and overall composition among the cerrado sites, much larger than within-site variability. The composition of cerrado cyanobacterial communities was distinct from those known in biocrusts from North American deserts. Among several environmental drivers considered, the opposing trend of annual precipitation and mean annual temperature best explained the variability in community composition within Brazilian biocrusts. Their compositional uniqueness speaks of the need for dedicated efforts to study the ecophysiology of tropical savanna biocrust and their roles in ecosystem function for management and preservation.
Collapse
Affiliation(s)
- Náthali Maria Machado-de-Lima
- Microbiology Graduation Program, Department of Zoology and Botany, São Paulo State University (UNESP), São Paulo, Brazil
| | | | - Daniel Roush
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Sergio Velasco Ayuso
- Facultad de Agronomía, Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Janaina Rigonato
- Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, Brazil
| | - Ferran Garcia-Pichel
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Luis Henrique Zanini Branco
- Microbiology Graduation Program, Department of Zoology and Botany, São Paulo State University (UNESP), São Paulo, Brazil
| |
Collapse
|
28
|
Pushkareva E, Wilmotte A, Láska K, Elster J. Comparison of Microphototrophic Communities Living in Different Soil Environments in the High Arctic. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00393] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
29
|
Kern R, Hotter V, Frossard A, Albrecht M, Baum C, Tytgat B, De Maeyer L, Velazquez D, Seppey C, Frey B, Plötze M, Verleyen E, Quesada A, Svenning MM, Glaser K, Karsten U. Comparative vegetation survey with focus on cryptogamic covers in the high Arctic along two differing catenas. Polar Biol 2019. [DOI: 10.1007/s00300-019-02588-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
30
|
Sayed AM, Hassan MHA, Alhadrami HA, Hassan HM, Goodfellow M, Rateb ME. Extreme environments: microbiology leading to specialized metabolites. J Appl Microbiol 2019; 128:630-657. [PMID: 31310419 DOI: 10.1111/jam.14386] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/18/2019] [Accepted: 07/10/2019] [Indexed: 12/19/2022]
Abstract
The prevalence of multidrug-resistant microbial pathogens due to the continued misuse and overuse of antibiotics in agriculture and medicine is raising the prospect of a return to the preantibiotic days of medicine at the time of diminishing numbers of drug leads. The good news is that an increased understanding of the nature and extent of microbial diversity in natural habitats coupled with the application of new technologies in microbiology and chemistry is opening up new strategies in the search for new specialized products with therapeutic properties. This review explores the premise that harsh environmental conditions in extreme biomes, notably in deserts, permafrost soils and deep-sea sediments select for micro-organisms, especially actinobacteria, cyanobacteria and fungi, with the potential to synthesize new druggable molecules. There is evidence over the past decade that micro-organisms adapted to life in extreme habitats are a rich source of new specialized metabolites. Extreme habitats by their very nature tend to be fragile hence there is a need to conserve those known to be hot-spots of novel gifted micro-organisms needed to drive drug discovery campaigns and innovative biotechnology. This review also provides an overview of microbial-derived molecules and their biological activities focusing on the period from 2010 until 2018, over this time 186 novel structures were isolated from 129 representatives of microbial taxa recovered from extreme habitats.
Collapse
Affiliation(s)
- A M Sayed
- Pharmacognosy Department, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - M H A Hassan
- Pharmacognosy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - H A Alhadrami
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia.,Special Infectious Agent Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - H M Hassan
- Pharmacognosy Department, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt.,Pharmacognosy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - M Goodfellow
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - M E Rateb
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley, UK
| |
Collapse
|
31
|
Rego A, Raio F, Martins TP, Ribeiro H, Sousa AGG, Séneca J, Baptista MS, Lee CK, Cary SC, Ramos V, Carvalho MF, Leão PN, Magalhães C. Actinobacteria and Cyanobacteria Diversity in Terrestrial Antarctic Microenvironments Evaluated by Culture-Dependent and Independent Methods. Front Microbiol 2019; 10:1018. [PMID: 31214128 PMCID: PMC6555387 DOI: 10.3389/fmicb.2019.01018] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 04/24/2019] [Indexed: 12/13/2022] Open
Abstract
Bacterial diversity from McMurdo Dry Valleys in Antarctica, the coldest desert on earth, has become more easily assessed with the development of High Throughput Sequencing (HTS) techniques. However, some of the diversity remains inaccessible by the power of sequencing. In this study, we combine cultivation and HTS techniques to survey actinobacteria and cyanobacteria diversity along different soil and endolithic micro-environments of Victoria Valley in McMurdo Dry Valleys. Our results demonstrate that the Dry Valleys actinobacteria and cyanobacteria distribution is driven by environmental forces, in particular the effect of water availability and endolithic environments clearly conditioned the distribution of those communities. Data derived from HTS show that the percentage of cyanobacteria decreases from about 20% in the sample closest to the water source to negligible values on the last three samples of the transect with less water availability. Inversely, actinobacteria relative abundance increases from about 20% in wet soils to over 50% in the driest samples. Over 30% of the total HTS data set was composed of actinobacterial strains, mainly distributed by 5 families: Sporichthyaceae, Euzebyaceae, Patulibacteraceae, Nocardioidaceae, and Rubrobacteraceae. However, the 11 actinobacterial strains isolated in this study, belonged to Micrococcaceae and Dermacoccaceae families that were underrepresented in the HTS data set. A total of 10 cyanobacterial strains from the order Synechococcales were also isolated, distributed by 4 different genera (Nodosilinea, Leptolyngbya, Pectolyngbya, and Acaryochloris-like). In agreement with the cultivation results, Leptolyngbya was identified as dominant genus in the HTS data set. Acaryochloris-like cyanobacteria were found exclusively in the endolithic sample and represented 44% of the total 16S rRNA sequences, although despite our efforts we were not able to properly isolate any strain from this Acaryochloris-related group. The importance of combining cultivation and sequencing techniques is highlighted, as we have shown that culture-dependent methods employed in this study were able to retrieve actinobacteria and cyanobacteria taxa that were not detected in HTS data set, suggesting that the combination of both strategies can be usefull to recover both abundant and rare members of the communities.
Collapse
Affiliation(s)
- Adriana Rego
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Francisco Raio
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal
| | - Teresa P Martins
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal
| | - Hugo Ribeiro
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - António G G Sousa
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal
| | - Joana Séneca
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal
| | - Mafalda S Baptista
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal.,International Centre for Terrestrial Antarctic Research, University of Waikato, Hamilton, New Zealand
| | - Charles K Lee
- International Centre for Terrestrial Antarctic Research, University of Waikato, Hamilton, New Zealand.,School of Science, University of Waikato, Hamilton, New Zealand
| | - S Craig Cary
- International Centre for Terrestrial Antarctic Research, University of Waikato, Hamilton, New Zealand.,School of Science, University of Waikato, Hamilton, New Zealand
| | - Vitor Ramos
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal
| | - Maria F Carvalho
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal
| | - Pedro N Leão
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal
| | - Catarina Magalhães
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal.,Faculty of Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
32
|
The pioneer lichen Placopsis in maritime Antarctica: Genetic diversity of their mycobionts and green algal symbionts, and their correlation with deglaciation time. Symbiosis 2019. [DOI: 10.1007/s13199-019-00624-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
33
|
Becerra-Absalón I, Muñoz-Martín MÁ, Montejano G, Mateo P. Differences in the Cyanobacterial Community Composition of Biocrusts From the Drylands of Central Mexico. Are There Endemic Species? Front Microbiol 2019; 10:937. [PMID: 31130933 PMCID: PMC6510263 DOI: 10.3389/fmicb.2019.00937] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/12/2019] [Indexed: 11/13/2022] Open
Abstract
In drylands worldwide, biocrusts, topsoil microbial communities, are prevalent, contributing to the biostabilization of soils and allowing the subsequent establishment and growth of vascular plants. In early successional biocrusts, cyanobacteria are the first dominant colonizers of bare ground, largely determining their functioning. However, there are large gaps in our knowledge of the cyanobacterial diversity in biocrusts, particularly in understudied geographic regions, such as the tropical latitudes. We analyzed the diversity of the cyanobacteria inhabiting the biocrusts of semideserts from Central Mexico in two localities belonging to the same desert system (Chihuahuan Desert) that are separated by a cordillera that crosses the center of Mexico. Morphological identification of the cyanobacteria was carried out after cultivation in parallel with the direct observation of the environmental samples and was supported by genetic characterization through analysis of the 16S rRNA gene of the isolated strains and by next-generation sequencing of the soil samples. Taxonomic assignment revealed a clear dominance of heterocystous cyanobacteria at one of the studied locations (Actopan, Hidalgo state). Although heterocystous forms were abundant at the other location (Atexcac, Puebla state), almost a third of the cyanobacterial phylotypes were represented by unicellular/colonial cyanobacteria, mostly Chroococcidiopsis spp. Only 28.4% of the phylotypes were found to be common to both soils. Most of the other taxa, however, were biocrust-type specific, and approximately 35% of the phylotypes were found to be unique to the soil they were collected in. In addition, differences in the abundances of the shared cyanobacteria between the locations were also found. These differences in the cyanobacterial distribution were supported by the distinct responses of the isolated strains representative of the sites to extreme heat and desiccation in bioassays. Some cyanobacteria with high abundance or only present at the hottest Actopan site, such as Scytonema hyalinum, Scytonema crispum, Nostoc commune, Nostoc sp., and Calothrix parietina, survived extreme heat and desiccation. However, Tolypothrix distorta and Chroococcidiopsis spp. were clearly sensitive to these extreme conditions in relation to their lower abundances at Actopan as opposed to Atexcac. Since novel biocrust-associated phylotypes were also found, the emergence of endemic cyanobacterial taxa is discussed.
Collapse
Affiliation(s)
- Itzel Becerra-Absalón
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
- Departamento de Biología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - M. Ángeles Muñoz-Martín
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Gustavo Montejano
- Departamento de Biología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Pilar Mateo
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
34
|
Roncero-Ramos B, Muñoz-Martín MÁ, Chamizo S, Fernández-Valbuena L, Mendoza D, Perona E, Cantón Y, Mateo P. Polyphasic evaluation of key cyanobacteria in biocrusts from the most arid region in Europe. PeerJ 2019; 7:e6169. [PMID: 30627491 PMCID: PMC6321753 DOI: 10.7717/peerj.6169] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 11/27/2018] [Indexed: 11/20/2022] Open
Abstract
Cyanobacteria are key microbes in topsoil communities that have important roles in preventing soil erosion, carbon and nitrogen fixation, and influencing soil hydrology. However, little is known regarding the identity and distribution of the microbial components in the photosynthetic assemblages that form a cohesive biological soil crust (biocrust) in drylands of Europe. In this study, we investigated the cyanobacterial species colonizing biocrusts in three representative dryland ecosystems from the most arid region in Europe (SE Spain) that are characterized by different soil conditions. Isolated cyanobacterial cultures were identified by a polyphasic approach, including 16S rRNA gene sequencing, phylogenetic relationship determination, and morphological and ecological habitat assessments. Three well-differentiated groups were identified: heterocystous-cyanobacteria (Nostoc commune, Nostoc calcicola, Tolypothrix distorta and Scytonema hyalinum), which play an important role in N and C cycling in soil; nonheterocystous bundle-forming cyanobacteria (Microcoleus steenstrupii, Trichocoleus desertorum, and Schizothrix cf. calcicola); and narrow filamentous cyanobacteria (Leptolyngbya frigida and Oculatella kazantipica), all of which are essential genera for initial biocrust formation. The results of this study contribute to our understanding of cyanobacterial species composition in biocrusts from important and understudied European habitats, such as the Mediterranean Basin, a hotspot of biodiversity, where these species are keystone pioneer organisms.
Collapse
Affiliation(s)
| | | | - Sonia Chamizo
- Department of Agrifood Production and Environmental Sciences, University of Florence, Florence, Italy
| | | | - Diego Mendoza
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
| | - Elvira Perona
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
| | - Yolanda Cantón
- Departamento de Agronomía, Universidad de Almería, Almería, Spain.,Centro de Investigación de Colecciones Científicas de la Universidad de Almería, Universidad de Almería, Almería, Spain
| | - Pilar Mateo
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
35
|
Muñoz-Martín MÁ, Becerra-Absalón I, Perona E, Fernández-Valbuena L, Garcia-Pichel F, Mateo P. Cyanobacterial biocrust diversity in Mediterranean ecosystems along a latitudinal and climatic gradient. THE NEW PHYTOLOGIST 2019; 221:123-141. [PMID: 30047599 DOI: 10.1111/nph.15355] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 06/17/2018] [Indexed: 06/08/2023]
Abstract
Cyanobacteria are a key biotic component as primary producers in biocrusts, topsoil communities that have important roles in the functioning of drylands. Yet, major knowledge gaps exist regarding the composition of biocrust cyanobacterial diversity and distribution in Mediterranean ecosystems. We describe cyanobacterial diversity in Mediterranean semiarid soil crusts along an aridity gradient by using next-generation sequencing and bioinformatics analyses, and detect clear shifts along it in cyanobacterial dominance. Statistical analyses show that temperature and precipitation were major parameters determining cyanobacterial composition, suggesting the presence of differentiated climatic niches for distinct cyanobacteria. The responses to temperature of a set of cultivated, pedigreed strains representative of the field populations lend direct support to that contention, with psychrotolerant vs thermotolerant physiology being strain dependent, and consistent with their dominance along the natural gradient. Our results suggest a possible replacement, as global warming proceeds, of cool-adapted by warm-adapted nitrogen-fixing cyanobacteria (such as Scytonema) and a switch in the dominance of Microcoleus vaginatus by thermotolerant, novel phylotypes of bundle-forming cyanobacteria. These differential sensitivities of cyanobacteria to rising temperatures and decreasing precipitation, their ubiquity, and their low generation time point to their potential as bioindicators of global change.
Collapse
Affiliation(s)
- M Ángeles Muñoz-Martín
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Itzel Becerra-Absalón
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
- Departamento de Biología Comparada, Facultad de Ciencia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Elvira Perona
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Lara Fernández-Valbuena
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Pilar Mateo
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
36
|
Pessi IS, Pushkareva E, Lara Y, Borderie F, Wilmotte A, Elster J. Marked Succession of Cyanobacterial Communities Following Glacier Retreat in the High Arctic. MICROBIAL ECOLOGY 2019; 77:136-147. [PMID: 29796758 DOI: 10.1007/s00248-018-1203-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 05/08/2018] [Indexed: 06/08/2023]
Abstract
Cyanobacteria are important colonizers of recently deglaciated proglacial soil but an in-depth investigation of cyanobacterial succession following glacier retreat has not yet been carried out. Here, we report on the successional trajectories of cyanobacterial communities in biological soil crusts (BSCs) along a 100-year deglaciation gradient in three glacier forefields in central Svalbard, High Arctic. Distance from the glacier terminus was used as a proxy for soil age (years since deglaciation), and cyanobacterial abundance and community composition were evaluated by epifluorescence microscopy and pyrosequencing of partial 16S rRNA gene sequences, respectively. Succession was characterized by a decrease in phylotype richness and a marked shift in community structure, resulting in a clear separation between early (10-20 years since deglaciation), mid (30-50 years), and late (80-100 years) communities. Changes in cyanobacterial community structure were mainly connected with soil age and associated shifts in soil chemical composition (mainly moisture, SOC, SMN, K, and Na concentrations). Phylotypes associated with early communities were related either to potentially novel lineages (< 97.5% similar to sequences currently available in GenBank) or lineages predominantly restricted to polar and alpine biotopes, suggesting that the initial colonization of proglacial soil is accomplished by cyanobacteria transported from nearby glacial environments. Late communities, on the other hand, included more widely distributed genotypes, which appear to establish only after the microenvironment has been modified by the pioneering taxa.
Collapse
Affiliation(s)
- Igor S Pessi
- InBioS - Centre for Protein Engineering, University of Liège, Allée du Six Août 13, B6a, Quartier Agora, Sart-Tilman, 4000, Liège, Belgium.
- Department of Microbiology, University of Helsinki, P.O. Box 56 (Viikinkaari 9), 00014, Helsinki, Finland.
| | - Ekaterina Pushkareva
- Centre for Polar Ecology, University of South Bohemia, Na Zlaté Stoce 3, 37005, České Budějovice, Czech Republic
| | - Yannick Lara
- InBioS - Centre for Protein Engineering, University of Liège, Allée du Six Août 13, B6a, Quartier Agora, Sart-Tilman, 4000, Liège, Belgium
- UR Geology - Palaeobiogeology-Palaeobotany-Palaeopalynology, University of Liège, Allée du Six Août14, B18, Quartier Agora, Sart-Tilman, 4000, Liège, Belgium
| | - Fabien Borderie
- InBioS - Centre for Protein Engineering, University of Liège, Allée du Six Août 13, B6a, Quartier Agora, Sart-Tilman, 4000, Liège, Belgium
- Laboratoire Chrono-environnement, UMR 6249 CNRS Université Bourgogne Franche-Comté UsC INRA, Campus La Bouloie, Route de Gray 16, 25030, Besançon, France
| | - Annick Wilmotte
- InBioS - Centre for Protein Engineering, University of Liège, Allée du Six Août 13, B6a, Quartier Agora, Sart-Tilman, 4000, Liège, Belgium
| | - Josef Elster
- Centre for Polar Ecology, University of South Bohemia, Na Zlaté Stoce 3, 37005, České Budějovice, Czech Republic
- Institute of Botany, Academy of Sciences of the Czech Republic, Dukelská 135, 37982, Třeboň, Czech Republic
| |
Collapse
|
37
|
Ghiloufi W, Seo J, Kim J, Chaieb M, Kang H. Effects of Biological Soil Crusts on Enzyme Activities and Microbial Community in Soils of an Arid Ecosystem. MICROBIAL ECOLOGY 2019; 77:201-216. [PMID: 29922904 DOI: 10.1007/s00248-018-1219-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 06/04/2018] [Indexed: 06/08/2023]
Abstract
Arid ecosystems constitute 41% of land's surface and play an important role in global carbon cycle. In particular, biological soil crusts (BSC) are known to be a hotspot of carbon fixation as well as mineralization in arid ecosystems. However, little information is available on carbon decomposition and microbes in BSC and key controlling variables for microbial activities in arid ecosystems. The current study, carried out in South Mediterranean arid ecosystem, aimed to evaluate the effects of intact and removed cyanobacteria/lichen crusts on soil properties, soil enzyme activities, and microbial abundances (bacteria and fungi). We compared five different treatments (bare soil, soil with intact cyanobacteria, soil with cyanobacteria removed, soil with intact lichens, and soil with lichens removed) in four different soil layers (0-5, 5-10, 10-15, and 15-20 cm). Regardless of soil treatments, activities of hydrolases and water content increased with increasing soil depth. The presence of lichens increased significantly hydrolase activities, which appeared to be associated with greater organic matter, nitrogen, and water contents. However, phenol oxidase was mainly controlled by pH and oxygen availability. Neither fungal nor bacterial abundance exhibited a significant correlation with enzyme activities suggesting that soil enzyme activities are mainly controlled by edaphic and environmental conditions rather than source microbes. Interestingly, the presence of lichens reduced the abundance of bacteria of which mechanism is still to be investigated.
Collapse
Affiliation(s)
- Wahida Ghiloufi
- Unit of Research Plant Biodiversity and Ecosystems in Arid Environments, University of Sfax, Sfax, Tunisia
| | - Juyoung Seo
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, South Korea
| | - Jinhyun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, South Korea
| | - Mohamed Chaieb
- Unit of Research Plant Biodiversity and Ecosystems in Arid Environments, University of Sfax, Sfax, Tunisia
| | - Hojeong Kang
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, South Korea.
| |
Collapse
|
38
|
Malard LA, Pearce DA. Microbial diversity and biogeography in Arctic soils. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:611-625. [PMID: 30028082 DOI: 10.1111/1758-2229.12680] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 07/13/2018] [Accepted: 07/17/2018] [Indexed: 06/08/2023]
Abstract
Microorganisms dominate terrestrial environments in the polar regions and Arctic soils are known to harbour significant microbial diversity, far more diverse and numerous in the region than was once thought. Furthermore, the geographic distribution and structure of Arctic microbial communities remains elusive, despite their important roles in both biogeochemical cycling and in the generation and decomposition of climate active gases. Critically, Arctic soils are estimated to store over 1500 Pg of carbon and, thus, have the potential to generate positive feedback within the climate system. As the Arctic region is currently undergoing rapid change, the likelihood of faster release of greenhouse gases such as CO2 , CH4 and N2 O is increasing. Understanding the microbial communities in the region, in terms of their diversity, abundance and functional activity, is key to producing accurate models of greenhouse gas release. This review brings together existing data to determine what we know about microbial diversity and biogeography in Arctic soils.
Collapse
Affiliation(s)
- Lucie A Malard
- Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, NE1 8ST, UK
| | - David A Pearce
- Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, NE1 8ST, UK
| |
Collapse
|
39
|
|
40
|
Jung P, Briegel-Williams L, Schermer M, Büdel B. Strong in combination: Polyphasic approach enhances arguments for cold-assigned cyanobacterial endemism. Microbiologyopen 2018; 8:e00729. [PMID: 30239166 PMCID: PMC6528576 DOI: 10.1002/mbo3.729] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 11/24/2022] Open
Abstract
Cyanobacteria of biological soil crusts (BSCs) represent an important part of circumpolar and Alpine ecosystems, serve as indicators for ecological condition and climate change, and function as ecosystem engineers by soil stabilization or carbon and nitrogen input. The characterization of cyanobacteria from both polar regions remains extremely important to understand geographic distribution patterns and community compositions. This study is the first of its kind revealing the efficiency of combining denaturing gradient gel electrophoresis (DGGE), light microscopy and culture‐based 16S rRNA gene sequencing, applied to polar and Alpine cyanobacteria dominated BSCs. This study aimed to show the living proportion of cyanobacteria as an extension to previously published meta‐transcriptome data of the same study sites. Molecular fingerprints showed a distinct clustering of cyanobacterial communities with a close relationship between Arctic and Alpine populations, which differed from those found in Antarctica. Species richness and diversity supported these results, which were also confirmed by microscopic investigations of living cyanobacteria from the BSCs. Isolate‐based sequencing corroborated these trends as cold biome clades were assigned, which included a potentially new Arctic clade of Oculatella. Thus, our results contribute to the debate regarding biogeography of cyanobacteria of cold biomes.
Collapse
Affiliation(s)
- Patrick Jung
- Plant Ecology and Systematics, Biology Institute, University of Kaiserslautern, Kaiserslautern, Germany
| | - Laura Briegel-Williams
- Plant Ecology and Systematics, Biology Institute, University of Kaiserslautern, Kaiserslautern, Germany
| | - Michael Schermer
- Plant Ecology and Systematics, Biology Institute, University of Kaiserslautern, Kaiserslautern, Germany
| | - Burkhard Büdel
- Plant Ecology and Systematics, Biology Institute, University of Kaiserslautern, Kaiserslautern, Germany
| |
Collapse
|
41
|
Pushkareva E, Pessi IS, Namsaraev Z, Mano MJ, Elster J, Wilmotte A. Cyanobacteria inhabiting biological soil crusts of a polar desert: Sør Rondane Mountains, Antarctica. Syst Appl Microbiol 2018; 41:363-373. [DOI: 10.1016/j.syapm.2018.01.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 12/12/2017] [Accepted: 01/10/2018] [Indexed: 11/30/2022]
|
42
|
Chrismas NAM, Anesio AM, Sánchez-Baracaldo P. The future of genomics in polar and alpine cyanobacteria. FEMS Microbiol Ecol 2018; 94:4904125. [PMID: 29506259 PMCID: PMC5939894 DOI: 10.1093/femsec/fiy032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 02/23/2018] [Indexed: 01/01/2023] Open
Abstract
In recent years, genomic analyses have arisen as an exciting way of investigating the functional capacity and environmental adaptations of numerous micro-organisms of global relevance, including cyanobacteria. In the extreme cold of Arctic, Antarctic and alpine environments, cyanobacteria are of fundamental ecological importance as primary producers and ecosystem engineers. While their role in biogeochemical cycles is well appreciated, little is known about the genomic makeup of polar and alpine cyanobacteria. In this article, we present ways that genomic techniques might be used to further our understanding of cyanobacteria in cold environments in terms of their evolution and ecology. Existing examples from other environments (e.g. marine/hot springs) are used to discuss how methods developed there might be used to investigate specific questions in the cryosphere. Phylogenomics, comparative genomics and population genomics are identified as methods for understanding the evolution and biogeography of polar and alpine cyanobacteria. Transcriptomics will allow us to investigate gene expression under extreme environmental conditions, and metagenomics can be used to complement tradition amplicon-based methods of community profiling. Finally, new techniques such as single cell genomics and metagenome assembled genomes will also help to expand our understanding of polar and alpine cyanobacteria that cannot readily be cultured.
Collapse
Affiliation(s)
- Nathan A M Chrismas
- Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, University Road, Bristol, BS8 1SS, UK
- Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK
| | - Alexandre M Anesio
- Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, University Road, Bristol, BS8 1SS, UK
| | - Patricia Sánchez-Baracaldo
- Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, University Road, Bristol, BS8 1SS, UK
| |
Collapse
|
43
|
Pessi IS, Lara Y, Durieu B, Maalouf PDC, Verleyen E, Wilmotte A. Community structure and distribution of benthic cyanobacteria in Antarctic lacustrine microbial mats. FEMS Microbiol Ecol 2018; 94:4935156. [DOI: 10.1093/femsec/fiy042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 03/13/2018] [Indexed: 12/22/2022] Open
Affiliation(s)
- Igor S Pessi
- InBioS—Centre for Protein Engineering, University of Liège, Allée du Six Août 13, B6a, Quartier Agora, Sart-Tilman, 4000 Liège, Belgium
| | - Yannick Lara
- InBioS—Centre for Protein Engineering, University of Liège, Allée du Six Août 13, B6a, Quartier Agora, Sart-Tilman, 4000 Liège, Belgium
| | - Benoit Durieu
- InBioS—Centre for Protein Engineering, University of Liège, Allée du Six Août 13, B6a, Quartier Agora, Sart-Tilman, 4000 Liège, Belgium
| | - Pedro de C Maalouf
- InBioS—Centre for Protein Engineering, University of Liège, Allée du Six Août 13, B6a, Quartier Agora, Sart-Tilman, 4000 Liège, Belgium
| | - Elie Verleyen
- Research Group Protistology and Aquatic Ecology, Department of Biology, Ghent University, Campus Sterre, Krijgslaan 281-S8, 9000 Gent, Belgium
| | - Annick Wilmotte
- InBioS—Centre for Protein Engineering, University of Liège, Allée du Six Août 13, B6a, Quartier Agora, Sart-Tilman, 4000 Liège, Belgium
| |
Collapse
|
44
|
Rippin M, Borchhardt N, Williams L, Colesie C, Jung P, Büdel B, Karsten U, Becker B. Genus richness of microalgae and Cyanobacteria in biological soil crusts from Svalbard and Livingston Island: morphological versus molecular approaches. Polar Biol 2018. [DOI: 10.1007/s00300-018-2252-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Elster J, Margesin R, Wagner D, Häggblom M. Editorial: Polar and Alpine Microbiology—Earth's cryobiosphere. FEMS Microbiol Ecol 2016; 93:fiw221. [DOI: 10.1093/femsec/fiw221] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2016] [Indexed: 11/12/2022] Open
|
46
|
Using Ordinary Digital Cameras in Place of Near-Infrared Sensors to Derive Vegetation Indices for Phenology Studies of High Arctic Vegetation. REMOTE SENSING 2016. [DOI: 10.3390/rs8100847] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
47
|
Williams L, Loewen-Schneider K, Maier S, Büdel B. Cyanobacterial diversity of western European biological soil crusts along a latitudinal gradient. FEMS Microbiol Ecol 2016; 92:fiw157. [PMID: 27411981 PMCID: PMC4970567 DOI: 10.1093/femsec/fiw157] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2016] [Indexed: 01/26/2023] Open
Abstract
Cyanobacteria associated with biological soil crusts (BSCs) have important attributes, such as nitrogen fixation and soil stabilisation. However, research on these organisms has been minimal, and their diversity and distribution throughout temperate Europe is currently unknown. The SCIN (Soil Crust International) project is a multidisciplinary research initiative that aims to achieve improved understanding of the BSCs of Europe, one facet being an investigation into the cyanobacterial communities of BSCs across a latitudinal gradient. Cyanobacteria assemblages were analysed by both morphological and molecular analysis. Two treatments were applied prior to DNA extraction, continued sample wetting and a dry sample process, and 16S ribosomal RNA (rRNA) amplicons were processed by Illumina MiSeq sequencing. The results reveal high and variable cyanobacterial diversity with each site showing a unique assemblage. Many common cyanobacterial genera, for example Nostoc and Microcoleus, were found in all sites but the abundances of different genera varied considerably. The polyphasic approach was found to be essential in recording the presence of important cyanobacteria that a single method itself did not highlight. The wet and dry treatments showed some differences in diversity, but mainly in abundance, this may suggest how cyanobacterial composition of BSCs changes with seasonal variability. Investigating the diversity and community composition of cyanobacteria associated with biological soil crusts in climatically different regions of Europe.
Collapse
Affiliation(s)
- Laura Williams
- Plant Ecology and Systematics, Biology Institute, University of Kaiserslautern, PO Box 3049, 67653 Kaiserslautern, Germany
| | - Katharina Loewen-Schneider
- Plant Ecology and Systematics, Biology Institute, University of Kaiserslautern, PO Box 3049, 67653 Kaiserslautern, Germany
| | - Stefanie Maier
- Institute of Plant Sciences, University of Graz, 8010 Graz, Austria
| | - Burkhard Büdel
- Plant Ecology and Systematics, Biology Institute, University of Kaiserslautern, PO Box 3049, 67653 Kaiserslautern, Germany
| |
Collapse
|
48
|
Pushkareva E, Johansen JR, Elster J. A review of the ecology, ecophysiology and biodiversity of microalgae in Arctic soil crusts. Polar Biol 2016. [DOI: 10.1007/s00300-016-1902-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|