1
|
Abebew D, Sayedain FS, Bode E, Bode HB. Uncovering Nematicidal Natural Products from Xenorhabdus Bacteria. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:498-506. [PMID: 34981939 PMCID: PMC8778618 DOI: 10.1021/acs.jafc.1c05454] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Parasitic nematodes infect different species of animals and plants. Root-knot nematodes are members of the genus Meloidogyne, which is distributed worldwide and parasitizes numerous plants, including vegetables, fruits, and crops. To reduce the global burden of nematode infections, only a few chemical therapeutic classes are currently available. The majority of nematicides are prohibited due to their harmful effects on the environment and public health. This study was intended to identify new nematicidal natural products (NPs) from the bacterial genus Xenorhabdus, which exists in symbiosis with Steinernema nematodes. Cell-free culture supernatants of Xenorhabdus bacteria were used for nematicidal bioassay, and high mortality rates for Caenorhabditis elegans and Meloidogyne javanica were observed. Promoter exchange mutants of biosynthetic gene clusters encoding nonribosomal peptide synthetases (NRPS) or NRPS-polyketide synthase hybrids in Xenorhabdus bacteria carrying additionally a hfq deletion produce a single NP class, which have been tested for their bioactivity. Among the NPs tested, fabclavines, rhabdopeptides, and xenocoumacins were highly toxic to nematodes and resulted in mortalities of 95.3, 74.6, and 72.6% to C. elegans and 82.0, 90.0, and 85.3% to M. javanica, respectively. The findings of such nematicidal NPs can provide templates for uncovering effective and environmentally safe alternatives to commercially available nematicides.
Collapse
Affiliation(s)
- Desalegne Abebew
- Molekulare
Biotechnologie, Goethe Universität
Frankfurt, Max-von-Laue-Str. 9, Frankfurt am Main 60438, Germany
| | - Fatemeh S. Sayedain
- Department
of Natural Products in Organismic Interactions, Max-Planck-Institute for Terrestrial Microbiology, Marburg 35043, Germany
| | - Edna Bode
- Department
of Natural Products in Organismic Interactions, Max-Planck-Institute for Terrestrial Microbiology, Marburg 35043, Germany
| | - Helge B. Bode
- Molekulare
Biotechnologie, Goethe Universität
Frankfurt, Max-von-Laue-Str. 9, Frankfurt am Main 60438, Germany
- Department
of Natural Products in Organismic Interactions, Max-Planck-Institute for Terrestrial Microbiology, Marburg 35043, Germany
- Senckenberg
Gesellschaft für Naturforschung, Frankfurt am Main 60325, Germany
| |
Collapse
|
2
|
Hourdez S, Boidin-Wichlacz C, Jollivet D, Massol F, Rayol MC, Bruno R, Zeppilli D, Thomas F, Lesven L, Billon G, Duperron S, Tasiemski A. Investigation of Capitella spp. symbionts in the context of varying anthropic pressures: First occurrence of a transient advantageous epibiosis with the giant bacteria Thiomargarita sp. to survive seasonal increases of sulfides in sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149149. [PMID: 34375231 DOI: 10.1016/j.scitotenv.2021.149149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Capitella spp. is considered as an important ecological indicator of eutrophication due to its high densities in organic-rich, reduced, and sometimes polluted coastal ecosystems. We investigated whether such ability to cope with adverse ecological contexts might be a response to the microorganisms these worms are associated with. In populations from the French Atlantic coast (Roscoff, Brittany), we observed an epibiotic association covering the tegument of 20-30% specimens from an anthropized site while individuals from a reference, non-anthropized site were devoid of any visible epibionts. Using RNAseq, molecular and microscopic analyses, we described and compared the microbial communities associated with the epibiotic versus the non-epibiotic specimens at both locations. Interestingly, data showed that the epibiosis is characterized by sulfur-oxidizing bacteria among which the giant bacterium Thiomargarita sp., to date only described in deep sea habitats. Survey of Capitella combined with the geochemical analysis of their sediment revealed that epibiotic specimens are always found in muds with the highest concentration of sulfides, mostly during the summer. Concomitantly, tolerance tests demonstrated that the acquisition of epibionts increased survival against toxic level of sulfides. Overall, the present data highlight for the first time a peculiar plastic adaptation to seasonal variations of the habitat based on a transcient epibiosis allowing a coastal species to survive temporary harsher conditions.
Collapse
Affiliation(s)
- Stéphane Hourdez
- Observatoire Océanologique de Banyuls-sur-Mer, UMR 8222 CNRS-SU, avenue Pierre Fabre, 66650 Banyuls-sur-Mer, France
| | - Céline Boidin-Wichlacz
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France; Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| | - Didier Jollivet
- Sorbonne Université, CNRS UMR 7144 'Adaptation et Diversité en Milieux Marins' (AD2M), Team 'Dynamique de la Diversité Marine' (DyDiv), Station biologique de Roscoff, Place G. Teissier, 29680 Roscoff, France
| | - François Massol
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France; Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| | - Maria Claudia Rayol
- Centro Interdisciplinar em Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, 40170-115 Salvador, BA, Brazil
| | - Renato Bruno
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France; Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| | - Daniela Zeppilli
- IFREMER, Centre Brest, REM/EEP/LEP, ZI de la Pointe du Diable, CS10070, 29280 Plouzané, France
| | - Frédéric Thomas
- CREEC/CREES, UMR IRD-Université de Montpellier, Montpellier, France
| | - Ludovic Lesven
- Univ. Lille, CNRS, UMR 8516 - LASIRE, Laboratoire Avancé de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, F-59000 Lille, France
| | - Gabriel Billon
- Univ. Lille, CNRS, UMR 8516 - LASIRE, Laboratoire Avancé de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, F-59000 Lille, France
| | - Sébastien Duperron
- Muséum National d'Histoire Naturelle, CNRS UMR7245 Mécanismes de Communication et Adaptation des Micro-organismes, 12 rue Buffon, 75005 Paris, France
| | - Aurélie Tasiemski
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France; Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France.
| |
Collapse
|
3
|
Murakami T, Onouchi S, Igai K, Ohkuma M, Hongoh Y. Ectosymbiotic bacterial microbiota densely colonize the surface of thelastomatid nematodes in the gut of the wood-feeding cockroach Panesthia angustipennis. FEMS Microbiol Ecol 2019; 95:5250881. [PMID: 30561598 DOI: 10.1093/femsec/fiy238] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/14/2018] [Indexed: 12/30/2022] Open
Abstract
Cockroaches generally harbor thelastomatid nematodes (pinworms) in their gut. In this study, we discovered that the surfaces of two undescribed thelastomatid species in the hindgut of the wood-feeding cockroach Panesthia angustipennis were consistently and densely colonized by bacteria. Epifluorescence microscopy using 4',6-diamidino-2-phenylindole and transmission electron microscopy revealed that several distinct morphotypes of bacteria covered almost the entire body surface of the nematodes in single or multiple layers. Sequencing analysis of 16S rRNA amplicons of either entire nematodes or sections of nematode body surfaces indicated that the associated bacterial microbiota consisted of several dominant phylotypes belonging to either Dysgonomonadaceae (Bacteroidales termite cluster V), Rikennellaceae or Ruminococcaceae. These phylotypes formed clades with sequences previously obtained from cockroach and/or termite guts. Comparisons of the bacterial community structure of the entire cockroach hindgut microbiota vs the nematode-associated microbiota suggested that these dominant bacterial phylotypes preferentially colonized the nematode surface. The two nematode species shared most of the dominant bacterial phylotypes, but the bacterial community structures differed significantly. Colonization by five predominant phylotypes was confirmed by fluorescence in situ hybridization analysis using phylotype-specific probes. Our study provides fundamental information on this previously unknown ectosymbiosis between gut bacteria and thelastomatid pinworms.
Collapse
Affiliation(s)
- Takumi Murakami
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1-W3-48 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.,Center for Information Biology, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Shu Onouchi
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1-W3-48 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Katsura Igai
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1-W3-48 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Moriya Ohkuma
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, 3-1-1 Koyada, Tsukuba, Ibaraki 305-0074, Japan
| | - Yuichi Hongoh
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1-W3-48 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.,Japan Collection of Microorganisms, RIKEN BioResource Research Center, 3-1-1 Koyada, Tsukuba, Ibaraki 305-0074, Japan
| |
Collapse
|
4
|
Bruno R, Maresca M, Canaan S, Cavalier JF, Mabrouk K, Boidin-Wichlacz C, Olleik H, Zeppilli D, Brodin P, Massol F, Jollivet D, Jung S, Tasiemski A. Worms' Antimicrobial Peptides. Mar Drugs 2019; 17:md17090512. [PMID: 31470685 PMCID: PMC6780910 DOI: 10.3390/md17090512] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/22/2019] [Accepted: 08/27/2019] [Indexed: 12/20/2022] Open
Abstract
Antimicrobial peptides (AMPs) are natural antibiotics produced by all living organisms. In metazoans, they act as host defense factors by eliminating microbial pathogens. But they also help to select the colonizing bacterial symbionts while coping with specific environmental challenges. Although many AMPs share common structural characteristics, for example having an overall size between 10-100 amino acids, a net positive charge, a γ-core motif, or a high content of cysteines, they greatly differ in coding sequences as a consequence of multiple parallel evolution in the face of pathogens. The majority of AMPs is specific of certain taxa or even typifying species. This is especially the case of annelids (ringed worms). Even in regions with extreme environmental conditions (polar, hydrothermal, abyssal, polluted, etc.), worms have colonized all habitats on Earth and dominated in biomass most of them while co-occurring with a large number and variety of bacteria. This review surveys the different structures and functions of AMPs that have been so far encountered in annelids and nematodes. It highlights the wide diversity of AMP primary structures and their originality that presumably mimics the highly diverse life styles and ecology of worms. From the unique system that represents marine annelids, we have studied the effect of abiotic pressures on the selection of AMPs and demonstrated the promising sources of antibiotics that they could constitute.
Collapse
Affiliation(s)
- Renato Bruno
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France.
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France.
| | - Marc Maresca
- Aix-Marseille Univ, CNRS, Centrale Marseille, iSm2, F-13013 Marseille, France
| | - Stéphane Canaan
- Aix-Marseille Univ, CNRS, LISM, IMM FR3479, F-13009 Marseille, France
| | | | - Kamel Mabrouk
- Aix-Marseille Univ, CNRS, UMR7273, ICR, F-13013Marseille, France
| | - Céline Boidin-Wichlacz
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| | - Hamza Olleik
- Aix-Marseille Univ, CNRS, Centrale Marseille, iSm2, F-13013 Marseille, France
| | - Daniela Zeppilli
- IFREMER Centre Brest REM/EEP/LEP, ZI de la Pointe du Diable, CS10070, F-29280Plouzané, France
| | - Priscille Brodin
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - François Massol
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| | - Didier Jollivet
- Sorbonne Université, CNRS, UMR 7144 AD2M, Station Biologique de Roscoff, Place Georges Teissier CS90074, F-29688 Roscoff, France
| | - Sascha Jung
- Department of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| | - Aurélie Tasiemski
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France.
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France.
| |
Collapse
|
5
|
Shi YM, Bode HB. Chemical language and warfare of bacterial natural products in bacteria-nematode-insect interactions. Nat Prod Rep 2019; 35:309-335. [PMID: 29359226 DOI: 10.1039/c7np00054e] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Covering: up to November 2017 Organismic interaction is one of the fundamental principles for survival in any ecosystem. Today, numerous examples show the interaction between microorganisms like bacteria and higher eukaryotes that can be anything between mutualistic to parasitic/pathogenic symbioses. There is also increasing evidence that microorganisms are used by higher eukaryotes not only for the supply of essential factors like vitamins but also as biological weapons to protect themselves or to kill other organisms. Excellent examples for such systems are entomopathogenic nematodes of the genera Heterorhabditis and Steinernema that live in mutualistic symbiosis with bacteria of the genera Photorhabdus and Xenorhabdus, respectively. Although these systems have been used successfully in organic farming on an industrial scale, it was only shown during the last 15 years that several different natural products (NPs) produced by the bacteria play key roles in the complex life cycle of the bacterial symbionts, the nematode host and the insect prey that is killed by and provides nutrients for the nematode-bacteria pair. Since the bacteria can switch from mutualistic to pathogenic lifestyle, interacting with two different types of higher eukaryotes, and since the full system with all players can be established in the lab, they are promising model systems to elucidate the natural function of microbial NPs. This review summarizes the current knowledge as well as open questions for NPs from Photorhabdus and Xenorhabdus and tries to assign their roles in the tritrophic relationship.
Collapse
Affiliation(s)
- Yi-Ming Shi
- Merck-Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, Frankfurt am Main 60438, Germany
| | | |
Collapse
|
6
|
Hoinville ME, Wollenberg AC. Changes in Caenorhabditis elegans gene expression following exposure to Photorhabdus luminescens strain TT01. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 82:165-176. [PMID: 29203330 DOI: 10.1016/j.dci.2017.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/05/2017] [Accepted: 09/08/2017] [Indexed: 06/07/2023]
Abstract
Photorhabdus bacteria enter into a mutualistic symbiosis with Heterorhabditis nematodes to infect insect larvae. However, they rapidly kill the model nematode Caenorhabditis elegans. One hypothesis for these divergent outcomes is that the nematode defense responses differ. To begin testing this hypothesis, we have systematically analyzed available data on the transcriptional response of C. elegans to P. luminescens strain Hb. From a starting pool of over 7000 differentially expressed genes, we carefully chose 21 Heterorhabditis-conserved genes to develop as comparative markers. Using newly designed and validated qRT-PCR primers, we measured expression of these genes in C. elegans exposed to the sequenced TT01 strain of P. luminescens, on two different media types. Almost all (18/21) of the genes showed a significant response to P. luminescens strain TT01. One response is dependent on media type, and a subset of genes may respond differentially to distinct strains. Overall, we have established useful resources and generated new hypotheses regarding how C. elegans responds to P. luminescens infection.
Collapse
Affiliation(s)
- Megan E Hoinville
- Biology Department, Kalamazoo College, 1200 Academy St., Kalamazoo, MI 49006, USA
| | - Amanda C Wollenberg
- Biology Department, Kalamazoo College, 1200 Academy St., Kalamazoo, MI 49006, USA.
| |
Collapse
|
7
|
Sinnathamby G, Henderson G, Umair S, Janssen P, Bland R, Simpson H. The bacterial community associated with the sheep gastrointestinal nematode parasite Haemonchus contortus. PLoS One 2018; 13:e0192164. [PMID: 29420571 PMCID: PMC5805237 DOI: 10.1371/journal.pone.0192164] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 01/17/2018] [Indexed: 11/23/2022] Open
Abstract
Culture-independent methods were used to study the microbiota of adult worms, third-stage larvae and eggs, both in faeces and laid in vitro, of Haemonchus contortus, a nematode parasite of the abomasa of ruminants which is a major cause of production losses and ill-health. Bacteria were identified in eggs, the female reproductive tract and the gut of adult and third-stage larvae (L3). PCR amplification of 16S rRNA sequences, denaturing gradient gel electrophoresis (DGGE) and clone libraries were used to compare the composition of the microbial communities of the different life-cycle stages of the parasites, as well as parasites and their natural environments. The microbiomes of adult worms and L3 were different from those in the abomasum or faeces respectively. The H. contortus microbiota was mainly comprised of members of the phyla Proteobacteria, Firmicutes and Bacteroidetes. Bacteria were localised in the gut, inside eggs and within the uterus of adult female worms using the universal FISH Eub338 probe, which targets most bacteria, and were also seen in these tissues by light and transmission electron microscopy. Streptococcus/Lactococcus sp. were identified within the distal uterus with the probe Strc493. Sequences from the genera Weissella and Leuconostoc were found in all life-cycle stages, except eggs collected from faeces, in which most sequences belonged to Clostridium sp. Bacteria affiliated with Weissella/Leuconostoc were identified in both PCR-DGGE short sequences and clone libraries of nearly full length 16S rRNA bacterial sequences in all life-cycle stages and subsequently visualised in eggs by fluorescent in situ hybridisation (FISH) with group-specific probes. This strongly suggests they are vertically transmitted endosymbionts. As this study was carried out on a parasite strain which has been maintained in the laboratory, other field isolates will need to be examined to establish whether these bacteria are more widely dispersed and have potential as targets to control H. contortus infections.
Collapse
Affiliation(s)
- Gajenathirin Sinnathamby
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand
| | | | - Saleh Umair
- AgResearch Ltd, Palmerston North, New Zealand
| | | | - Ross Bland
- AgResearch Ltd, Palmerston North, New Zealand
| | - Heather Simpson
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
8
|
Stilwell MD, Cao M, Goodrich-Blair H, Weibel DB. Studying the Symbiotic Bacterium Xenorhabdus nematophila in Individual, Living Steinernema carpocapsae Nematodes Using Microfluidic Systems. mSphere 2018; 3:e00530-17. [PMID: 29299529 PMCID: PMC5750387 DOI: 10.1128/msphere.00530-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 11/29/2017] [Indexed: 01/01/2023] Open
Abstract
Animal-microbe symbioses are ubiquitous in nature and scientifically important in diverse areas, including ecology, medicine, and agriculture. Steinernema nematodes and Xenorhabdus bacteria compose an established, successful model system for investigating microbial pathogenesis and mutualism. The bacterium Xenorhabdus nematophila is a species-specific mutualist of insect-infecting Steinernema carpocapsae nematodes. The bacterium colonizes a specialized intestinal pocket within the infective stage of the nematode, which transports the bacteria between insects that are killed and consumed by the pair for reproduction. Current understanding of the interaction between the infective-stage nematode and its bacterial colonizers is based largely on population-level, snapshot time point studies on these organisms. This limitation arises because investigating temporal dynamics of the bacterium within the nematode is impeded by the difficulty of isolating and maintaining individual living nematodes and tracking colonizing bacterial cells over time. To overcome this challenge, we developed a microfluidic system that enables us to spatially isolate and microscopically observe individual, living Steinernema nematodes and monitor the growth and development of the associated X. nematophila bacterial communities-starting from a single cell or a few cells-over weeks. Our data demonstrate, to our knowledge, the first direct, temporal, in vivo visual analysis of a symbiosis system and the application of this system to reveal continuous dynamics of the symbiont population in the living host animal. IMPORTANCE This paper describes an experimental system for directly investigating population dynamics of a symbiotic bacterium, Xenorhabdus nematophila, in its host-the infective stage of the entomopathogenic nematode Steinernema carpocapsae. Tracking individual and groups of bacteria in individual host nematodes over days and weeks yielded insight into dynamic growth and topology changes of symbiotic bacterial populations within infective juvenile nematodes. Our approach for studying symbioses between bacteria and nematodes provides a system to investigate long-term host-microbe interactions in individual nematodes and extrapolate the lessons learned to other bacterium-animal interactions.
Collapse
Affiliation(s)
- Matthew D. Stilwell
- Department of Biochemistry, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Mengyi Cao
- Department of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Heidi Goodrich-Blair
- Department of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Department of Microbiology, University of Tennessee—Knoxville, Knoxville, Tennessee, USA
| | - Douglas B. Weibel
- Department of Biochemistry, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Department of Biomedical Engineering, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin, USA
| |
Collapse
|