1
|
Lech KL, Sundaravadivelu D, Grosser RJ, Trutschel LR, Brinkman NE, Conmy RN. Oil spill surface washing agents and chemical herders drive microbial community structure impacting biodegradation. Appl Environ Microbiol 2025; 91:e0233424. [PMID: 40261044 DOI: 10.1128/aem.02334-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 03/25/2025] [Indexed: 04/24/2025] Open
Abstract
Spill treating agents (STAs) may be authorized for use during an oil spill response; however, the impact of certain classes of agents on oil biodegradation is poorly understood. Microcosms comprising an oil-degrading microbial consortium were amended with weathered crude oil and treated with two STAs: a surface washing agent or chemical herder, alongside single-agent treatments. The microbial community readily degraded the STAs, evidenced by microbial growth and respiration. Carbon dioxide production was higher than expected in treatments containing oil and STA together, suggesting synergistic co-metabolism of otherwise recalcitrant compounds or dead-end metabolites. Within 14 days, n-alkanes and polycyclic aromatic hydrocarbons were biodegraded in oil-containing treatments by 90% and 57%, respectively. However, over the 40-day study, a fraction of higher molecular weight n-alkanes persisted in the oil treatment amended with the surface washing agent. The chemical herder initially confined the oil, limiting its bioavailability, but within 72 hours, the chemical herder was degraded, releasing oil hydrocarbons for subsequent biodegradation. Pronounced shifts in the microbial community were observed in all treatments with distinct differences between the total and active populations. Known contaminant-degrading families Sphingomonadaceae and Rhodobacteraceae were well represented in crude oil treatments, while groups such as Gordonia, Rhodococcus, and Methylophaga flourished in treatments containing STA. These findings demonstrate the outsized impact STAs have in shaping the activity and structure of the oil-degrading microbial community under laboratory conditions. However, uncertainty remains regarding the influence of these agents on oil biodegradation in real-world applications. IMPORTANCE Spill treating agents offer oil spill responders alternative measures to reduce the overall impact of oil in the environment. Although the environmental implications of chemical dispersant use have been exhaustively studied under various conditions, this study aims to close knowledge gaps regarding lesser-known spill treating agents that may inhibit oil biodegradation. Results of this study demonstrated an impact on hydrocarbon degradation, highlighting significant differences in microbial community structure among the treatments. However, these agents were also readily biodegraded, potentially yielding limited influence on oil biodegradation in the environment. These findings broaden current understanding of how oil-degrading microbial communities may be affected by the use of spill treating agents, beyond chemical dispersants, ultimately aiding personnel tasked with operational decision-making during the critical stages of an oil spill response.
Collapse
Affiliation(s)
- Kiara L Lech
- Office of Research and Development, Environmental Protection Agency, Cincinnati, Ohio, USA
| | | | | | | | - Nichole E Brinkman
- Office of Research and Development, Environmental Protection Agency, Cincinnati, Ohio, USA
| | - Robyn N Conmy
- Office of Research and Development, Environmental Protection Agency, Cincinnati, Ohio, USA
| |
Collapse
|
2
|
Laso-Pérez R, Rivas-Santisteban J, Fernandez-Gonzalez N, Mundy CJ, Tamames J, Pedrós-Alió C. Nitrogen cycling during an Arctic bloom: from chemolithotrophy to nitrogen assimilation. mBio 2025:e0074925. [PMID: 40353658 DOI: 10.1128/mbio.00749-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Accepted: 04/08/2025] [Indexed: 05/14/2025] Open
Abstract
In the Arctic, phytoplankton blooms are recurring phenomena occurring during the spring-summer seasons and influenced by the strong polar seasonality. Bloom dynamics are affected by nutrient availability, especially nitrogen, which is the main limiting nutrient in the Arctic. This study aimed to investigate the changes in an Arctic microbial community using omics approaches during a phytoplankton bloom focusing on the nitrogen cycle. Using metagenomic and metatranscriptomic samples from the Dease Strait (Canada) from March to July (2014), we reconstructed 176 metagenome-assembled genomes. Bacteria dominated the microbial community, although archaea reached up to 25% of metagenomic abundance in early spring, when Nitrososphaeria archaea actively expressed genes associated with ammonia oxidation to nitrite (amt, amo, nirK). The resulting nitrite was presumably further oxidized to nitrate by a Nitrospinota bacterium that highly expressed a nitrite oxidoreductase gene (nxr). Since May, the constant increase in chlorophyll a indicated the occurrence of a phytoplankton bloom, promoting the successive proliferation of different groups of chemoorganotrophic bacteria (Bacteroidota, Alphaproteobacteria, Gammaproteobacteria). These bacteria showed different strategies to obtain nitrogen, whether it be from organic or inorganic sources, according to the expression patterns of genes encoding transporters for nitrogen compounds. In contrast, during summer, the chemolithotrophic organisms thriving during winter reduced their relative abundance and the expression of their catabolic genes. Based on our functional analysis, we see a transition from a community where nitrogen-based chemolitotrophy plays a relevant role to a chemoorganotrophic community based on the carbohydrates released during the phytoplankton bloom, where different groups seem to specialize in different nitrogen sources.IMPORTANCEThe Arctic is one of the environments most affected by anthropogenic climate change. It is expected that the rise in temperature and change in ice cover will impact the marine microbial communities and the associated biogeochemical cycles. In this regard, nitrogen is the main nutrient limiting Arctic phytoplankton blooms. In this study, we combine genetic and expression data to study the nitrogen cycle at the community level over a time series covering from March to July. Our results indicate the importance of different taxa (from archaea to bacteria) and processes (from chemolithoautotrophy to incorporation of different nitrogen sources) in the cycling of nitrogen during this period. This study provides a baseline for future research that should include additional methodologies like biogeochemical analysis to fully understand the changes occurring on these communities due to global change.
Collapse
Affiliation(s)
- Rafael Laso-Pérez
- Biogeochemistry and Microbial Ecology Department, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
- Department of Systems Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Juan Rivas-Santisteban
- Department of Systems Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Nuria Fernandez-Gonzalez
- Department of Systems Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Spain
| | - Christopher J Mundy
- Centre for Earth Observation Science, Clayton H. Riddell Faculty of Environment, Earth, and Resources, University of Manitoba, Winnipeg, Canada
| | - Javier Tamames
- Department of Systems Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Carlos Pedrós-Alió
- Department of Systems Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| |
Collapse
|
3
|
Saltymakova D, Desmond DS, Smith AF, Bautista MA, Collins E, Polcwiartek K, Snyder N, Wolfe T, Hubert C, Isleifson D, Stern G. Enhanced crude oil degradation observed in sea ice following bioaugmentation with arctic bacteria. MARINE ENVIRONMENTAL RESEARCH 2025; 204:106942. [PMID: 39793297 DOI: 10.1016/j.marenvres.2024.106942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/12/2024] [Accepted: 12/29/2024] [Indexed: 01/13/2025]
Abstract
Petroleum-derived contamination is a growing hazard for the Arctic Ocean and northern marine transportation corridors. In northern settings where the accessibility to oil spills can be limited, natural attenuation is the most promising remediation process. The goal of the presented research is to evaluate the impact of biodegradation on crude oil inside sea ice. To this end, a bioremediation experiment was conducted at the Sea-ice Environmental Research Facility, University of Manitoba. The experiment utilized two mesocosm tanks (Augmented and Native) filled with nutrient-enriched artificial seawater (i.e., biostimulation). The water in the Augmented tank also contained oil-acclimated bacteria enriched from Arctic surface seawater from Cambridge Bay, Canada (i.e., bioaugmentation). The Native tank was not inoculated, but both tanks contained a bacterial community originating with the artificial seawater preparation. Crude oil was added under the naturally formed ice cover within each tank, creating areas that contained different oil concentrations. The Augmented tank contained 22 distinct bacterial genera compared to the Native tank, presumably due to the inoculation. The abundance of distinct bacterial genera was maximal in the water column and in low-contaminated ice core samples (<0.21 g oil/L). In these ice cores, bioaugmentation affected the concentration of low-molecular-weight aliphatic compounds (
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Gary Stern
- University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
4
|
Sanz-Sáez I, Berrojalbiz N, Dachs J, Vila-Costa M. A framework for assessing microbial degradation of organophosphate ester plasticizers in seawater. CHEMOSPHERE 2025; 371:144025. [PMID: 39724981 DOI: 10.1016/j.chemosphere.2024.144025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/16/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
The assessment of persistence of organic pollutants in seawater is limited by the lack of user-friendly, quick protocols for assessing one of their main sinks, degradation by marine bacteria. Here we present an experimental workflow to identify organic pollutants degradation, taking organophosphate esters flame retardants and plasticizers (OPEs-FR-PL), as a model family of synthetic chemicals released into the marine environment that are particularly widespread due to their persistence and semi-volatile nature. The proposed novel workflow combines culture-dependent techniques, solvent demulsification-dispersive liquid-liquid microextraction, with quantitative liquid chromatography coupled with mass spectrometry analyses in order to identify marine bacterial isolates with the potential to degrade OPEs-FR-PL in the marine environment. This methodology evaluates growth rates, degradation capacities of different OPEs-FR-PL, and the ability of bacteria to utilize these pollutants as a sole source of carbon, phosphorus and energy. The proposed framework is more cost-effective than previous approaches as it is less time-consuming, reduces the use of solvents making it environmentally friendly, and can be used as a high throughput screening methodology. Although optimized here for OPEs-FR-PL degradation, this methodology can be adapted to a wide variety of contaminants of emerging concern. Using this developed workflow, we could detect that coastal Antarctic seawater harbors several bacterial taxa with the potential to degrade OPEs-FR-PL.
Collapse
Affiliation(s)
- Isabel Sanz-Sáez
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, 08034, Barcelona, Spain.
| | - Naiara Berrojalbiz
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, 08034, Barcelona, Spain
| | - Jordi Dachs
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, 08034, Barcelona, Spain
| | - Maria Vila-Costa
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, 08034, Barcelona, Spain.
| |
Collapse
|
5
|
Bi H, Wang Z, Yue R, Sui J, Mulligan CN, Lee K, Pegau S, Chen Z, An C. Oil spills in coastal regions of the Arctic and Subarctic: Environmental impacts, response tactics, and preparedness. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178025. [PMID: 39689468 DOI: 10.1016/j.scitotenv.2024.178025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/04/2024] [Accepted: 12/07/2024] [Indexed: 12/19/2024]
Abstract
Coastal areas of the Arctic and Subarctic are vulnerable to accidental oil spills, impacting the ecosystem, society, and economy. This article provides a comprehensive overview of oil spill pollution issues in cold regions, focusing on environmental impacts, oil transport and fate, coastal/shoreline response measures, and the state of current international policies and regulations. Numerous studies have described the potential effects of oil pollution (crude oil and refined products) on wildlife (invertebrates, fish, birds, and marine mammals) and coastal communities within the Arctic and Subarctic regions. The observed detrimental effects are influenced by the oil fate and transport processes, including physiochemical attenuation and biodegradation, natural dissolution/dispersion following point-source release (surface and subsurface), entrainment by sea ice, and stranding onto shorelines (in which the residual oil may be translocated). Measures such as natural attenuation, bioremediation, manual removal, in situ burning, and washing/flooding are available for spill response in coastal regions. Case studies in cold regions are illustrated for a better analysis of practical response methods, implying that shoreline cleanup operations in the Arctic and Subarctic are more challenging than those in more temperate and populated regions because of environmental and logistical challenges. Regarding preparedness, a number of national and international policies, regulations, and guidelines have been established to advance oil spill prevention and response measures within the Arctic and Subarctic regions. Based on the state of knowledge presented in this review, recommendations are made for future research on oil spill pollution in coastal regions of the Arctic and Subarctic.
Collapse
Affiliation(s)
- Huifang Bi
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal H3G 1M8, Canada
| | - Zheng Wang
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal H3G 1M8, Canada
| | - Rengyu Yue
- Department of Civil and Resource Engineering, Faculty of Engineering, Dalhousie University, Halifax B3H 4R2, Canada
| | - Jiyao Sui
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal H3G 1M8, Canada
| | - Catherine N Mulligan
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal H3G 1M8, Canada
| | - Kenneth Lee
- Fisheries and Oceans Canada, Ecosystem Science, Ottawa K1A 0E6, Canada
| | - Scott Pegau
- Oil Spill Recovery Institute, Cordova 99574, United States
| | - Zhi Chen
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal H3G 1M8, Canada
| | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal H3G 1M8, Canada.
| |
Collapse
|
6
|
Heshka NE, Ridenour C, Saborimanesh N, Xin Q, Farooqi H, Brydie J. A review of oil spill research in Canadian Arctic marine environments. MARINE POLLUTION BULLETIN 2024; 209:117275. [PMID: 39566148 DOI: 10.1016/j.marpolbul.2024.117275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 11/22/2024]
Abstract
The Canadian Arctic is a large and diverse geographic area that encompasses a wide variety of environmental conditions and ecosystems. Over recent decades, marine transportation has increased across the Arctic and, as a result, so has the likelihood of an oil spill. The study of oil spills in the Arctic presents unique challenges compared to temperate marine environments, due to remoteness, cold temperatures and the presence of snow and ice throughout much of the year. This review summarizes and discusses the fate of oil in the Canadian Arctic. A brief introduction to the Canadian Arctic and sources of potential petroleum spills is provided, followed by discussions of the behaviour of oil in ice and freezing temperatures, oil-sediment interactions, and the weathering and natural remediation of oil under Arctic conditions. A summary of perspectives concludes the review, with emphasis on possible areas of future work to address research gaps.
Collapse
Affiliation(s)
- Nicole E Heshka
- Natural Resources Canada, CanmetENERGY, 1 Oil Patch Drive, Devon, Alberta T9G 1A8, Canada.
| | - Christine Ridenour
- Natural Resources Canada, CanmetENERGY, 1 Oil Patch Drive, Devon, Alberta T9G 1A8, Canada
| | - Nayereh Saborimanesh
- Natural Resources Canada, CanmetENERGY, 1 Oil Patch Drive, Devon, Alberta T9G 1A8, Canada
| | - Qin Xin
- Natural Resources Canada, CanmetENERGY, 1 Oil Patch Drive, Devon, Alberta T9G 1A8, Canada
| | - Hena Farooqi
- Natural Resources Canada, CanmetENERGY, 1 Oil Patch Drive, Devon, Alberta T9G 1A8, Canada
| | - James Brydie
- Natural Resources Canada, CanmetENERGY, 1 Oil Patch Drive, Devon, Alberta T9G 1A8, Canada
| |
Collapse
|
7
|
Chen YJ, Altshuler I, Freyria NJ, Lirette A, Góngora E, Greer CW, Whyte LG. Arctic's hidden hydrocarbon degradation microbes: investigating the effects of hydrocarbon contamination, biostimulation, and a surface washing agent on microbial communities and hydrocarbon biodegradation pathways in high-Arctic beaches. ENVIRONMENTAL MICROBIOME 2024; 19:81. [PMID: 39478600 PMCID: PMC11526595 DOI: 10.1186/s40793-024-00626-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024]
Abstract
BACKGROUND Canadian Arctic summer sea ice has dramatically declined due to global warming, resulting in the rapid opening of the Northwest Passage (NWP), slated to be a major shipping route connecting the Atlantic and Pacific Oceans by 2040. This development elevates the risk of oil spills in Arctic regions, prompting growing concerns over the remediation and minimizing the impact on affected shorelines. RESULTS This research aims to assess the viability of nutrient and a surface washing agent addition as potential bioremediation methods for Arctic beaches. To achieve this goal, we conducted two semi-automated mesocosm experiments simulating hydrocarbon contamination in high-Arctic beach tidal sediments: a 32-day experiment at 8 °C and a 92-day experiment at 4 °C. We analyzed the effects of hydrocarbon contamination, biostimulation, and a surface washing agent on the microbial community and its functional capacity using 16S rRNA gene sequencing and metagenomics. Hydrocarbon removal rates were determined through total petroleum hydrocarbon analysis. Biostimulation is commonly considered the most effective strategy for enhancing the bioremediation process in response to oil contamination. However, our findings suggest that nutrient addition has limited effectiveness in facilitating the biodegradation process in Arctic beaches, despite its initial promotion of aliphatic hydrocarbons within a constrained timeframe. Alternatively, our study highlights the promise of a surface washing agent as a potential bioremediation approach. By implementing advanced -omics approaches, we unveiled highly proficient, unconventional hydrocarbon-degrading microorganisms such as Halioglobus and Acidimicrobiales genera. CONCLUSIONS Given the receding Arctic sea ice and the rising traffic in the NWP, heightened awareness and preparedness for potential oil spills are imperative. While continuously exploring optimal remediation strategies through the integration of microbial and chemical studies, a paramount consideration involves limiting traffic in the NWP and Arctic regions to prevent beach oil contamination, as cleanup in these remote areas proves exceedingly challenging and costly.
Collapse
Affiliation(s)
- Ya-Jou Chen
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, Canada.
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China.
| | - Ianina Altshuler
- The Alpine and Polar Environmental Research Centre (ALPOLE), Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
| | - Nastasia J Freyria
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, Canada
| | - Antoine Lirette
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, Canada
| | - Esteban Góngora
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, Canada
| | - Charles W Greer
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, Canada
- Energy, Mining and Environment Research Centre, National Research Council Canada, Montreal, QC, Canada
| | - Lyle G Whyte
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, Canada
| |
Collapse
|
8
|
Góngora E, Lirette AO, Freyria NJ, Greer CW, Whyte LG. Metagenomic survey reveals hydrocarbon biodegradation potential of Canadian high Arctic beaches. ENVIRONMENTAL MICROBIOME 2024; 19:72. [PMID: 39294752 PMCID: PMC11411865 DOI: 10.1186/s40793-024-00616-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 09/03/2024] [Indexed: 09/21/2024]
Abstract
BACKGROUND Decreasing sea ice coverage across the Arctic Ocean due to climate change is expected to increase shipping activity through previously inaccessible shipping routes, including the Northwest Passage (NWP). Changing weather conditions typically encountered in the Arctic will still pose a risk for ships which could lead to an accident and the uncontrolled release of hydrocarbons onto NWP shorelines. We performed a metagenomic survey to characterize the microbial communities of various NWP shorelines and to determine whether there is a metabolic potential for hydrocarbon degradation in these microbiomes. RESULTS We observed taxonomic and functional gene evidence supporting the potential of NWP beach microbes to degrade various types of hydrocarbons. The metagenomic and metagenome-assembled genome (MAG) taxonomy showed that known hydrocarbon-degrading taxa are present in these beaches. Additionally, we detected the presence of biomarker genes of aerobic and anaerobic degradation pathways of alkane and aromatic hydrocarbons along with complete degradation pathways for aerobic alkane degradation. Alkane degradation genes were present in all samples and were also more abundant (33.8 ± 34.5 hits per million genes, HPM) than their aromatic hydrocarbon counterparts (11.7 ± 12.3 HPM). Due to the ubiquity of MAGs from the genus Rhodococcus (23.8% of the MAGs), we compared our MAGs with Rhodococcus genomes from NWP isolates obtained using hydrocarbons as the carbon source to corroborate our results and to develop a pangenome of Arctic Rhodococcus. Our analysis revealed that the biodegradation of alkanes is part of the core pangenome of this genus. We also detected nitrogen and sulfur pathways as additional energy sources and electron donors as well as carbon pathways providing alternative carbon sources. These pathways occur in the absence of hydrocarbons allowing microbes to survive in these nutrient-poor beaches. CONCLUSIONS Our metagenomic analyses detected the genetic potential for hydrocarbon biodegradation in these NWP shoreline microbiomes. Alkane metabolism was the most prevalent type of hydrocarbon degradation observed in these tidal beach ecosystems. Our results indicate that bioremediation could be used as a cleanup strategy, but the addition of adequate amounts of N and P fertilizers, should be considered to help bacteria overcome the oligotrophic nature of NWP shorelines.
Collapse
Affiliation(s)
- Esteban Góngora
- Natural Resource Sciences, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, Canada.
| | - Antoine-O Lirette
- Natural Resource Sciences, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, Canada
| | - Nastasia J Freyria
- Natural Resource Sciences, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, Canada
| | - Charles W Greer
- Natural Resource Sciences, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, Canada
- Energy, Mining and Environment Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, Canada
| | - Lyle G Whyte
- Natural Resource Sciences, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, Canada
| |
Collapse
|
9
|
Lirette AO, Chen YJ, Freyria NJ, Góngora E, Greer CW, Whyte LG. Characterization of hydrocarbon degraders from Northwest Passage beach sediments and assessment of their ability for bioremediation. Can J Microbiol 2024; 70:163-177. [PMID: 38350082 DOI: 10.1139/cjm-2023-0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Global warming-induced sea ice loss in the Canadian Northwest Passage (NWP) will result in more shipping traffic, increasing the risk of oil spills. Microorganisms inhabiting NWP beach sediments may degrade hydrocarbons, offering a potential bioremediation strategy. In this study, the characterization and genomic analyses of 22 hydrocarbon-biodegradative bacterial isolates revealed that they contained a diverse range of key alkane and aromatic hydrocarbon-degradative genes, as well as cold and salt tolerance genes indicating they are highly adapted to the extreme Arctic environment. Some isolates successfully degraded Ultra Low Sulfur Fuel Oil (ULSFO) at temperatures as low as -5 °C and high salinities (3%-10%). Three isolates were grown in liquid medium containing ULSFO as sole carbon source over 3 months and variation of hydrocarbon concentration was measured at three time points to determine their rate of hydrocarbon biodegradation. Our results demonstrate that two isolates (Rhodococcus sp. R1B_2T and Pseudarthrobacter sp. R2D_1T) possess complete degradation pathways and can grow on alkane and aromatic components of ULSFO under Arctic conditions. Overall, these results demonstrate that diverse hydrocarbon-degrading microorganisms exist in the NWP beach sediments, offering a potential bioremediation strategy in the events of a marine fuel spill reaching the shores of the NWP.
Collapse
Affiliation(s)
- Antoine-O Lirette
- Department of Natural Resource Sciences, McGill University, QC, Canada
| | - Ya-Jou Chen
- Department of Natural Resource Sciences, McGill University, QC, Canada
| | | | - Esteban Góngora
- Department of Natural Resource Sciences, McGill University, QC, Canada
| | - Charles W Greer
- Department of Natural Resource Sciences, McGill University, QC, Canada
| | - Lyle G Whyte
- Department of Natural Resource Sciences, McGill University, QC, Canada
| |
Collapse
|
10
|
Wietz M, Engel A, Ramondenc S, Niwano M, von Appen WJ, Priest T, von Jackowski A, Metfies K, Bienhold C, Boetius A. The Arctic summer microbiome across Fram Strait: Depth, longitude, and substrate concentrations structure microbial diversity in the euphotic zone. Environ Microbiol 2024; 26:e16568. [PMID: 38268397 DOI: 10.1111/1462-2920.16568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/12/2023] [Indexed: 01/26/2024]
Abstract
The long-term dynamics of microbial communities across geographic, hydrographic, and biogeochemical gradients in the Arctic Ocean are largely unknown. To address this, we annually sampled polar, mixed, and Atlantic water masses of the Fram Strait (2015-2019; 5-100 m depth) to assess microbiome composition, substrate concentrations, and oceanographic parameters. Longitude and water depth were the major determinants (~30%) of microbial community variability. Bacterial alpha diversity was highest in lower-photic polar waters. Community composition shifted from west to east, with the prevalence of, for example, Dadabacteriales and Thiotrichales in Arctic- and Atlantic-influenced waters, respectively. Concentrations of dissolved organic carbon peaked in the western, compared to carbohydrates in the chlorophyll-maximum of eastern Fram Strait. Interannual differences due to the time of sampling, which varied between early (June 2016/2018) and late (September 2019) phytoplankton bloom stages, illustrated that phytoplankton composition and resulting availability of labile substrates influence bacterial dynamics. We identified 10 species clusters with stable environmental correlations, representing signature populations of distinct ecosystem states. In context with published metagenomic evidence, our microbial-biogeochemical inventory of a key Arctic region establishes a benchmark to assess ecosystem dynamics and the imprint of climate change.
Collapse
Affiliation(s)
- Matthias Wietz
- Deep-Sea Ecology and Technology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Anja Engel
- Biological Oceanography, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | - Simon Ramondenc
- Deep-Sea Ecology and Technology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Matomo Niwano
- Deep-Sea Ecology and Technology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Wilken-Jon von Appen
- Physical Oceanography of the Polar Seas, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Taylor Priest
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Anabel von Jackowski
- Biological Oceanography, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | - Katja Metfies
- Polar Biological Oceanography, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg, Oldenburg, Germany
| | - Christina Bienhold
- Deep-Sea Ecology and Technology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Antje Boetius
- Deep-Sea Ecology and Technology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| |
Collapse
|
11
|
Langeloh H, Greer CW, Vergeynst L, Hakvåg S, Øverjordet IB, Bakke I, Sørensen L, Brakstad OG. Comparison of two field systems for determination of crude oil biodegradation in cold seawater. MARINE POLLUTION BULLETIN 2024; 199:115919. [PMID: 38134872 DOI: 10.1016/j.marpolbul.2023.115919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023]
Abstract
Marine oil spills have devastating environmental impacts and extrapolation of experimental fate and impact data from the lab to the field remains challenging due to the lack of comparable field data. In this work we compared two field systems used to study in situ oil depletion with emphasis on biodegradation and associated microbial communities. The systems were based on (i) oil impregnated clay beads and (ii) hydrophobic Fluortex adsorbents coated with thin oil films. The bacterial communities associated with the two systems displayed similar compositions of dominant bacterial taxa. Initial abundances of Oceanospirillales were observed in both systems with later emergences of Flavobacteriales, Alteromonadales and Rhodobacterales. Depletion of oil compounds was significantly faster in the Fluortex system and most likely related to the greater bioavailability of oil compounds as compared to the clay bead system.
Collapse
Affiliation(s)
- Hendrik Langeloh
- The Norwegian University of Science and Technology (NTNU), Dept. of Biotechnology and Food Science, Sem Sælandsvei 6/8, 7491 Trondheim, Norway.
| | - Charles W Greer
- National Research Council Canada, Energy, Mining and Environment Research Centre, 75 Bd de Mortagne, Boucherville, QC J4B 6Y4, Montreal, Canada; McGill University, Natural Resource Sciences, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, H9X 3V9 Montreal, Quebec, Canada.
| | - Leendert Vergeynst
- Arctic Research Centre, Department of Biology, Aarhus University, Ny Munkegade 114, 8000 Aarhus, Denmark; Aarhus University Centre for Water Technology, Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds vej 10 D, 8000 Aarhus, Denmark.
| | - Sigrid Hakvåg
- SINTEF Ocean, Department of Climate and Environment, Brattørkaia 17b, 7010 Trondheim, Norway.
| | - Ida B Øverjordet
- SINTEF Ocean, Department of Climate and Environment, Brattørkaia 17b, 7010 Trondheim, Norway.
| | - Ingrid Bakke
- SINTEF Ocean, Department of Climate and Environment, Brattørkaia 17b, 7010 Trondheim, Norway.
| | - Lisbet Sørensen
- SINTEF Ocean, Department of Climate and Environment, Brattørkaia 17b, 7010 Trondheim, Norway.
| | - Odd G Brakstad
- SINTEF Ocean, Department of Climate and Environment, Brattørkaia 17b, 7010 Trondheim, Norway.
| |
Collapse
|
12
|
Freyria NJ, Góngora E, Greer CW, Whyte LG. High Arctic seawater and coastal soil microbiome co-occurrence and composition structure and their potential hydrocarbon biodegradation. ISME COMMUNICATIONS 2024; 4:ycae100. [PMID: 39101031 PMCID: PMC11296632 DOI: 10.1093/ismeco/ycae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/18/2024] [Accepted: 07/15/2024] [Indexed: 08/06/2024]
Abstract
The accelerated decline in Arctic sea-ice cover and duration is enabling the opening of Arctic marine passages and improving access to natural resources. The increasing accessibility to navigation and resource exploration and production brings risks of accidental hydrocarbon releases into Arctic waters, posing a major threat to Arctic marine ecosystems where oil may persist for many years, especially in beach sediment. The composition and response of the microbial community to oil contamination on Arctic beaches remain poorly understood. To address this, we analyzed microbial community structure and identified hydrocarbon degradation genes among the Northwest Passage intertidal beach sediments and shoreline seawater from five high Arctic beaches. Our results from 16S/18S rRNA genes, long-read metagenomes, and metagenome-assembled genomes reveal the composition and metabolic capabilities of the hydrocarbon microbial degrader community, as well as tight cross-habitat and cross-kingdom interactions dominated by lineages that are common and often dominant in the polar coastal habitat, but distinct from petroleum hydrocarbon-contaminated sites. In the polar beach sediment habitats, Granulosicoccus sp. and Cyclocasticus sp. were major potential hydrocarbon-degraders, and our metagenomes revealed a small proportion of microalgae and algal viruses possessing key hydrocarbon biodegradative genes. This research demonstrates that Arctic beach sediment and marine microbial communities possess the ability for hydrocarbon natural attenuation. The findings provide new insights into the viral and microalgal communities possessing hydrocarbon degradation genes and might represent an important contribution to the removal of hydrocarbons under harsh environmental conditions in a pristine, cold, and oil-free environment that is threatened by oil spills.
Collapse
Affiliation(s)
- Nastasia J Freyria
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, 21111 Lakeshore Road, Macdonald Stewart Building, Room MS3-053, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Esteban Góngora
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, 21111 Lakeshore Road, Macdonald Stewart Building, Room MS3-053, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Charles W Greer
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, 21111 Lakeshore Road, Macdonald Stewart Building, Room MS3-053, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
- Energy, Mining and Environment, Research Centre, National Research Council Canada, 6100 Royalmount Ave., Montreal, QC, H4P 2R2, Canada
| | - Lyle G Whyte
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, 21111 Lakeshore Road, Macdonald Stewart Building, Room MS3-053, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| |
Collapse
|
13
|
Martinez-Varela A, Casas G, Berrojalbiz N, Lundin D, Piña B, Dachs J, Vila-Costa M. Metatranscriptomic responses and microbial degradation of background polycyclic aromatic hydrocarbons in the coastal Mediterranean and Antarctica. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:119988-119999. [PMID: 37934408 DOI: 10.1007/s11356-023-30650-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/20/2023] [Indexed: 11/08/2023]
Abstract
Although microbial degradation is a key sink of polycyclic aromatic hydrocarbons (PAH) in surface seawaters, there is a dearth of field-based evidences of regional divergences in biodegradation and the effects of PAHs on site-specific microbial communities. We compared the magnitude of PAH degradation and its impacts in short-term incubations of coastal Mediterranean and the Maritime Antarctica microbiomes with environmentally relevant concentrations of PAHs. Mediterranean bacteria readily degraded the less hydrophobic PAHs, with rates averaging 4.72 ± 0.5 ng L h-1. Metatranscriptomic responses showed significant enrichments of genes associated to horizontal gene transfer, stress response, and PAH degradation, mainly harbored by Alphaproteobacteria. Community composition changed and increased relative abundances of Bacteroidota and Flavobacteriales. In Antarctic waters, there was no degradation of PAH, and minimal metatranscriptome responses were observed. These results provide evidence for factors such as geographic region, community composition, and pre-exposure history to predict PAH biodegradation in seawater.
Collapse
Affiliation(s)
- Alicia Martinez-Varela
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, c/ Jordi Girona 18-26, 08034, Barcelona, Catalunya, Spain
| | - Gemma Casas
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, c/ Jordi Girona 18-26, 08034, Barcelona, Catalunya, Spain
| | - Naiara Berrojalbiz
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, c/ Jordi Girona 18-26, 08034, Barcelona, Catalunya, Spain
| | - Daniel Lundin
- Centre for Ecology and Evolution in Microbial Model Systems, EEMiS, Linnaeus University, 35195, Kalmar, Sweden
| | - Benjamin Piña
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, c/ Jordi Girona 18-26, 08034, Barcelona, Catalunya, Spain
| | - Jordi Dachs
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, c/ Jordi Girona 18-26, 08034, Barcelona, Catalunya, Spain
| | - Maria Vila-Costa
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, c/ Jordi Girona 18-26, 08034, Barcelona, Catalunya, Spain.
| |
Collapse
|
14
|
Ji M, Smith AF, Rattray JE, England WE, Hubert CRJ. Potential for natural attenuation of crude oil hydrocarbons in benthic microbiomes near coastal communities in Kivalliq, Nunavut, Canada. MARINE POLLUTION BULLETIN 2023; 196:115557. [PMID: 37776739 DOI: 10.1016/j.marpolbul.2023.115557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/04/2023] [Accepted: 09/16/2023] [Indexed: 10/02/2023]
Abstract
Oil spilled in marine environments can settle to the seafloor through aggregation and sedimentation processes. This has been predicted to be especially relevant in the Arctic due to plankton blooms initiated by melting sea ice. These conditions exist in the Kivalliq region in Nunavut, Canada, where elevated shipping traffic has increased the risk of accidental spills. Experimental microcosms combining surface sediment and crude oil were incubated at 4 °C over 21 weeks to evaluate the biodegradation potential of seabed microbiomes. Sediments sampled near the communities of Arviat and Chesterfield Inlet were assessed for biodegradation capabilities by combining hydrocarbon geochemistry with 16S rRNA gene and metagenomic sequencing, revealing decreased microbial diversity but enrichment of oil-degrading taxa. Alkane and aromatic hydrocarbon losses corresponded to detection of genes and genomes that encode enzymes for aerobic biodegradation of these compounds, pointing to the utility of marine microbiome surveys for predicting the fate of oil released into Arctic marine environments.
Collapse
Affiliation(s)
- Meng Ji
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada.
| | - Alastair F Smith
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Jayne E Rattray
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Whitney E England
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Casey R J Hubert
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
15
|
Ortmann AC, Cobanli SE, Wohlgeschaffen G, Poon HY, Ryther C, Greer CW, Wasserscheid J, Elias M, Robinson B, King TL. Factors that affect water column hydrocarbon concentrations have minor impacts on microbial responses following simulated diesel fuel spills. MARINE POLLUTION BULLETIN 2023; 194:115358. [PMID: 37567129 DOI: 10.1016/j.marpolbul.2023.115358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 07/24/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023]
Abstract
Effects of season and mixing on hydrocarbon concentrations and the microbial community response was explored in a series of mesocosm experiments simulating surface spills of diesel into coastal waters. Mixing of any amount contributed to hydrocarbons entering the water column, but diesel fuel composition had a significant effect on hydrocarbon concentrations. Higher initial concentrations of aromatic hydrocarbons resulted in higher water column concentrations, with minimal differences among seasons due to high variability. Regardless of the concentrations of hydrocarbons, prokaryotes increased and there were higher relative abundances of hydrocarbon affiliated bacteria with indications of biodegradation within 4 d of exposure. As concentrations decreased over time, the eukaryote community shifted from the initial community to one which appeared to be composed of organisms with some resilience to hydrocarbons. This series of experiments demonstrates the wide range of conditions under which natural attenuation of diesel fuel is an effective response.
Collapse
Affiliation(s)
- Alice C Ortmann
- Centre for Offshore Oil, Gas and Energy Research, Fisheries and Oceans Canada, Bedford Institute of Oceanography, 1 Challenger Drive, Dartmouth, NS B2Y 4A2, Canada.
| | - Susan E Cobanli
- Centre for Offshore Oil, Gas and Energy Research, Fisheries and Oceans Canada, Bedford Institute of Oceanography, 1 Challenger Drive, Dartmouth, NS B2Y 4A2, Canada
| | - Gary Wohlgeschaffen
- Centre for Offshore Oil, Gas and Energy Research, Fisheries and Oceans Canada, Bedford Institute of Oceanography, 1 Challenger Drive, Dartmouth, NS B2Y 4A2, Canada
| | - Ho Yin Poon
- Centre for Offshore Oil, Gas and Energy Research, Fisheries and Oceans Canada, Bedford Institute of Oceanography, 1 Challenger Drive, Dartmouth, NS B2Y 4A2, Canada
| | - Camilla Ryther
- Dalhousie University, 6299 South Street, Halifax, NS B3H 4R2, Canada
| | - Charles W Greer
- National Research Council of Canada, Energy, Mining and Environment Research Centre, 6100 Royalmount Ave, Montreal, PQ H4P 2R2, Canada
| | - Jessica Wasserscheid
- National Research Council of Canada, Energy, Mining and Environment Research Centre, 6100 Royalmount Ave, Montreal, PQ H4P 2R2, Canada
| | - Miria Elias
- National Research Council of Canada, Energy, Mining and Environment Research Centre, 6100 Royalmount Ave, Montreal, PQ H4P 2R2, Canada
| | - Brian Robinson
- Centre for Offshore Oil, Gas and Energy Research, Fisheries and Oceans Canada, Bedford Institute of Oceanography, 1 Challenger Drive, Dartmouth, NS B2Y 4A2, Canada
| | - Thomas L King
- Centre for Offshore Oil, Gas and Energy Research, Fisheries and Oceans Canada, Bedford Institute of Oceanography, 1 Challenger Drive, Dartmouth, NS B2Y 4A2, Canada
| |
Collapse
|
16
|
Saborimanesh N, Xin Q, Ridenour C, Farooqi H. Response of microbial communities in North Saskatchewan River to diluted bitumen and conventional crude under freeze-thaw-refreeze cycle. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121256. [PMID: 36787815 DOI: 10.1016/j.envpol.2023.121256] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Microorganisms are the first responder to oil spills and their response provides insight into the ecological effects of oils on aquatic ecosystems. Limited information is available about the impact of oil spills on freshwater ecosystems under seasonal river-ice regimes. This study aimed to investigate the microbial response of North Saskatchewan River water to diluted bitumen (DB) and conventional crude (CC) during the freeze-thaw-refreeze cycle. In two separate experiments, equivalent to 2 L of fresh DB and CC were spilled on the ice-covered river water within a mesoscale spill tank. The microbial response (changes in abundance and diversity) to oils under the freeze, thaw, and refreeze cycles were assessed for 10 days using 16S rRNA gene sequencing. The results showed that microbial communities exhibited different responses to the DB and CC oils. The effect of oils was more pronounced than that of the freeze or thaw cycles. The river microbial community rapidly responded to both spills, which coincided with a steady increase in the organic content of water throughout the freeze-thaw-refreeze cycle. Microbial diversity increased after the DB spill, but remain unchanged after the CC spill, regardless of the cycles. A higher number of new taxa emerged during the ice-covered period, while more microbial enrichment (increase in abundance) was observed during the thaw cycle. Flavobacterium (37 ± 5%) and Pseudomonas (36 ± 4%) remained the most predominant genera post-DB and CC spill, respectively. The results of this study suggest that ice coverage of 5 cm did not prevent the microbial communities from the effects of oils. Thus, a quick clean-up response to an oil spill on ice-covered water is equally critical to avoid the effects of oils on the underlying freshwater ecosystems.
Collapse
Affiliation(s)
- Nayereh Saborimanesh
- Natural Resources Canada, CanmetENERGY Devon, 1 Oil Patch Drive, Devon, AB T9G 1A8, Canada.
| | - Qin Xin
- Natural Resources Canada, CanmetENERGY Devon, 1 Oil Patch Drive, Devon, AB T9G 1A8, Canada
| | - Christine Ridenour
- Natural Resources Canada, CanmetENERGY Devon, 1 Oil Patch Drive, Devon, AB T9G 1A8, Canada
| | - Hena Farooqi
- Natural Resources Canada, CanmetENERGY Devon, 1 Oil Patch Drive, Devon, AB T9G 1A8, Canada
| |
Collapse
|
17
|
Hafez T, Ortiz-Zarragoitia M, Cagnon C, Cravo-Laureau C, Duran R. Cold sediment microbial community shifts in response to crude oil water-accommodated fraction with or without dispersant: a microcosm study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:44640-44656. [PMID: 36694068 DOI: 10.1007/s11356-023-25264-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
In cold environments, the low temperature slows down microbial metabolisms, such as the biodegradation processes of hydrocarbons, which are often stimulated by the addition of dispersants in oil spill disasters. In this study, we investigated the effects of hydrocarbon water-accommodated fraction (WAF) prepared with and without dispersant on benthic microbial communities in a microcosm experiment in which hydrocarbon removal was observed. Both WAFs contained similar polycyclic aromatic hydrocarbon (PAH) content. The microcosm experiment, set up with either pristine or contaminated sediments, was conducted for 21 days at 4 °C under WAF and WAF + dispersant conditions. The behavior of bacterial communities in response to WAF and WAF + dispersant was examined at both DNA and RNA levels, revealing the effect of WAF and WAF + dispersant on the resident and active communities respectively. The contaminated sediment showed less taxa responsive to the addition of both WAF and WAF + dispersant than the pristine sediment, indicating the legacy effect by the presence hydrocarbon-degrading and dispersant-resistant taxa inhabiting the contaminated sediment.
Collapse
Affiliation(s)
- Tamer Hafez
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS IPREM, Pau, France
- CBET Research Group, Department of Zoology and Cell Biology, Faculty of Science and Technology and Research Center for Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country, Areatza Z/G, 48620, Plentzia (Bizkaia), Basque Country, Spain
| | - Maren Ortiz-Zarragoitia
- CBET Research Group, Department of Zoology and Cell Biology, Faculty of Science and Technology and Research Center for Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country, Areatza Z/G, 48620, Plentzia (Bizkaia), Basque Country, Spain
| | - Christine Cagnon
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS IPREM, Pau, France
| | | | - Robert Duran
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS IPREM, Pau, France.
| |
Collapse
|
18
|
Iriarte J, Dachs J, Casas G, Martínez-Varela A, Berrojalbiz N, Vila-Costa M. Snow-Dependent Biogeochemical Cycling of Polycyclic Aromatic Hydrocarbons at Coastal Antarctica. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1625-1636. [PMID: 36655903 PMCID: PMC9893724 DOI: 10.1021/acs.est.2c05583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 05/28/2023]
Abstract
The temporal trend of polycyclic aromatic hydrocarbons (PAHs) in coastal waters with highly dynamic sources and sinks is largely unknown, especially for polar regions. Here, we show the concurrent measurements of 73 individual PAHs and environmental data, including the composition of the bacterial community, during three austral summers at coastal Livingston (2015 and 2018) and Deception (2017) islands (Antarctica). The Livingston 2015 campaign was characterized by a larger snow melting input of PAHs and nutrients. The assessment of PAH diagnostic ratios, such as parent to alkyl-PAHs or LMW to HMW PAHs, showed that there was a larger biodegradation during the Livingston 2015 campaign than in the Deception 2017 and Livingston 2018 campaigns. The biogeochemical cycling, including microbial degradation, was thus yearly dependent on snow-derived inputs of matter, including PAHs, consistent with the microbial community significantly different between the different campaigns. The bivariate correlations between bacterial taxa and PAH concentrations showed that a decrease in PAH concentrations was concurrent with the higher abundance of some bacterial taxa, specifically the order Pseudomonadales in the class Gammaproteobacteria, known facultative hydrocarbonoclastic bacteria previously reported in degradation studies of oil spills. The work shows the potential for elucidation of biogeochemical processes by intensive field-derived time series, even in the harsh and highly variable Antarctic environment.
Collapse
|
19
|
Ryther CM, Ortmann AC, Wohlgeschaffen G, Robinson BJ. Temperate Coastal Microbial Communities Rapidly Respond to Low Concentrations of Partially Weathered Diesel. MICROBIAL ECOLOGY 2022; 84:1122-1132. [PMID: 34888738 PMCID: PMC9747835 DOI: 10.1007/s00248-021-01939-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 12/05/2021] [Indexed: 05/23/2023]
Abstract
Diesel is frequently encountered in coastal ecosystems due to land run-off from road surfaces. The current study investigates how partially weathered diesel at environmentally relevant concentrations, as may be seen during a run-off event, affect coastal microbial communities. A mesocosm experiment using seawater from the Bedford Basin, Nova Scotia, was followed for 72 h after the addition of partially weathered diesel. Sequencing data suggests partially weathered diesel acts quickly to alter the prokaryotic community, as both opportunistic (Vibrio and Lentibacter) and oil-degrading (Colwellia, Sulfitobacter, and Pseudoalteromonas) bacteria proliferated after 24 h in comparison to the control. In addition, total prokaryotes seemed to recover in abundance after 24 h, where eukaryotes only ceased to decrease slightly at 72 h, likely because of an inability to adapt to the oil-laden conditions, unlike the prokaryotes. Considering there were no highly volatile components (benzene, toluene, ethylbenzene, and xylene) present in the diesel when the communities were exposed, the results indicate that even a relatively small concentration of diesel run-off can cause a drastic change to the microbial community under low energy conditions. Higher energy conditions due to wave action may mitigate the response of the microbial communities by dilution and additional weathering of the diesel.
Collapse
Affiliation(s)
- Camilla M Ryther
- Biology Department, Dalhousie University, 6299 South Street, Halifax, NS, B3H 4R2, Canada
| | - Alice C Ortmann
- Centre for Offshore Oil, Gas and Energy Research Laboratory, Bedford Institute of Oceanography, 1 Challenger Drive, Dartmouth, NS, B2Y 4A2, Canada.
| | - Gary Wohlgeschaffen
- Centre for Offshore Oil, Gas and Energy Research Laboratory, Bedford Institute of Oceanography, 1 Challenger Drive, Dartmouth, NS, B2Y 4A2, Canada
| | - Brian J Robinson
- Centre for Offshore Oil, Gas and Energy Research Laboratory, Bedford Institute of Oceanography, 1 Challenger Drive, Dartmouth, NS, B2Y 4A2, Canada
| |
Collapse
|
20
|
Hafez T, Ortiz-Zarragoitia M, Cagnon C, Cravo-Laureau C, Duran R. Legacy and dispersant influence microbial community dynamics in cold seawater contaminated by crude oil water accommodated fractions. ENVIRONMENTAL RESEARCH 2022; 212:113467. [PMID: 35588780 DOI: 10.1016/j.envres.2022.113467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/26/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Dispersants, used for combating oil spills, increase hydrocarbon bioavailability promoting their biodegradation. Oil weathering process introduces harmful soluble hydrocarbons, such as polycyclic aromatic hydrocarbons (PAHs), into the water column, resulting in water-accommodated fraction (WAF). The presence of dispersants can influence the weathering process by increasing PAHs solubility, toxicity and biodegradability. However, little is known on how dispersants affect microbial communities and their degradation capacities, especially in cold environment where low temperature decreases microbial activity and thus hydrocarbon degradation. Here, we investigated the microbial community dynamics in cold water contaminated by WAF prepared from crude oil with or without a commercial dispersant (Finasol OSR52). The WAFs, prepared with Naphthenic North Atlantic crude oil, were used to contaminate seawater from Norwegian cold sites, one oil-contaminated and the other pristine. The WAF-contaminated seawaters were maintained in microcosms at 4 °C for 21 days. The content of PAHs and microbial compositions (16S rRNA gene sequencing) were determined at days 0, 7, 14 and 21. In addition, the 96 h toxicity assay with adult Acartia tonsa revealed WAFs toxicity at days 0 and 21. The toxicity of WAF mixtures, with and without dispersant, against Acartia tonsa was reduced during the experiment, but PAHs removal was not increased. The water from the oil-contaminated site showed the highest PAHs removal revealing legacy effect (presence of microorganisms adapted to PAHs). Additionally, our results reveal: i) microbial community plasticity allowing the adaptation to the presence of PAHs and dispersant, ii) specific bacteria taxa probably involved in PAHs degradation, and iii) dispersants shape the microbial communities dynamics by stimulating potential dispersant-degrading taxa, such as Fusibacter. Thus, our results provide valuable insights on the role of microbial community in determining the fate of water-solubilized hydrocarbon in cold environment while questioning the role of dispersant used for fighting oil spill.
Collapse
Affiliation(s)
- Tamer Hafez
- CBET Research Group, Department of Zoology and Cell Biology, Faculty of Science and Technology and Research Center for Marine Biology and Biotechnology (PiE-UPV/EHU) University of the Basque Country, Areatza z/g, 48620, Plentzia, Bizkaia, Basque Country, Spain; Universite de Pau et des Pays de l'Adour, E2S/UPPA, IPREM5254, 64000, Pau, France
| | - Maren Ortiz-Zarragoitia
- CBET Research Group, Department of Zoology and Cell Biology, Faculty of Science and Technology and Research Center for Marine Biology and Biotechnology (PiE-UPV/EHU) University of the Basque Country, Areatza z/g, 48620, Plentzia, Bizkaia, Basque Country, Spain
| | - Christine Cagnon
- Universite de Pau et des Pays de l'Adour, E2S/UPPA, IPREM5254, 64000, Pau, France
| | | | - Robert Duran
- Universite de Pau et des Pays de l'Adour, E2S/UPPA, IPREM5254, 64000, Pau, France.
| |
Collapse
|
21
|
Góngora E, Chen YJ, Ellis M, Okshevsky M, Whyte L. Hydrocarbon bioremediation on Arctic shorelines: Historic perspective and roadway to the future. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119247. [PMID: 35390417 DOI: 10.1016/j.envpol.2022.119247] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/26/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Climate change has become one of the greatest concerns of the past few decades. In particular, global warming is a growing threat to the Canadian high Arctic and other polar regions. By the middle of this century, an increase in the annual mean temperature of 1.8 °C-2.7 °C for the Canadian North is predicted. Rising temperatures lead to a significant decrease of the sea ice area covered in the Northwest Passage. As a consequence, a surge of maritime activity in that region increases the risk of hydrocarbon pollution due to accidental fuel spills. In this review, we focus on bioremediation approaches on Arctic shorelines. We summarize historical experimental spill studies conducted at Svalbard, Baffin Island, and the Kerguelen Archipelago, and review contemporary studies that used modern omics techniques in various environments. We discuss how omics approaches can facilitate our understanding of Arctic shoreline bioremediation and identify promising research areas that should be further explored. We conclude that specific environmental conditions strongly alter bioremediation outcomes in Arctic environments and future studies must therefore focus on correlating these diverse parameters with the efficacy of hydrocarbon biodegradation.
Collapse
Affiliation(s)
- Esteban Góngora
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, H9X 3V9, Canada.
| | - Ya-Jou Chen
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Madison Ellis
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Mira Okshevsky
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Lyle Whyte
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| |
Collapse
|
22
|
Martinez-Varela A, Casas G, Berrojalbiz N, Piña B, Dachs J, Vila-Costa M. Polycyclic Aromatic Hydrocarbon Degradation in the Sea-Surface Microlayer at Coastal Antarctica. Front Microbiol 2022; 13:907265. [PMID: 35910648 PMCID: PMC9329070 DOI: 10.3389/fmicb.2022.907265] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
As much as 400 Tg of carbon from airborne semivolatile aromatic hydrocarbons is deposited to the oceans every year, the largest identified source of anthropogenic organic carbon to the ocean. Microbial degradation is a key sink of these pollutants in surface waters, but has received little attention in polar environments. We have challenged Antarctic microbial communities from the sea-surface microlayer (SML) and the subsurface layer (SSL) with polycyclic aromatic hydrocarbons (PAHs) at environmentally relevant concentrations. PAH degradation rates and the microbial responses at both taxonomical and functional levels were assessed. Evidence for faster removal rates was observed in the SML, with rates 2.6-fold higher than in the SSL. In the SML, the highest removal rates were observed for the more hydrophobic and particle-bound PAHs. After 24 h of PAHs exposure, particle-associated bacteria in the SML showed the highest number of significant changes in their composition. These included significant enrichments of several hydrocarbonoclastic bacteria, especially the fast-growing genera Pseudoalteromonas, which increased their relative abundances by eightfold. Simultaneous metatranscriptomic analysis showed that the free-living fraction of SML was the most active fraction, especially for members of the order Alteromonadales, which includes Pseudoalteromonas. Their key role in PAHs biodegradation in polar environments should be elucidated in further studies. This study highlights the relevant role of bacterial populations inhabiting the sea-surface microlayer, especially the particle-associated habitat, as relevant bioreactors for the removal of aromatic hydrocarbons in the oceans.
Collapse
Affiliation(s)
| | | | | | | | | | - Maria Vila-Costa
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Spain
| |
Collapse
|
23
|
Abou-Khalil C, Prince RC, Greer CW, Lee K, Boufadel MC. Bioremediation of Petroleum Hydrocarbons in the Upper Parts of Sandy Beaches. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8124-8131. [PMID: 35580303 DOI: 10.1021/acs.est.2c01338] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The biodegradation of dispersed crude oil in the ocean is relatively rapid (a half-life of a few weeks). However, it is often much slower on shorelines, usually attributed to low moisture content, nutrient limitation, and higher oil concentrations in beaches than in dispersed plumes. Another factor may be the increased salinity of the upper intertidal and supratidal zones because these parts of the beach are potentially subject to prolonged evaporation and only intermittent inundation. We have investigated whether such an increase in salinity has inhibitory effects on oil biodegradation in seashores. Lightly weathered Hibernia crude oil was added to beach sand at 1 or 10 mL/kg, and fresh seawater, at salinities of 30, 90, and 160 g/L, was added to 20% saturation. The biodegradation of oil was slower at higher salinities, where the half-life increased from 40 days at 30 g/L salts to 58 and 76 days at 90 and 160 g/L salts, respectively, and adding fertilizers somewhat enhanced oil biodegradation. Increased oil concentration in the sand, from 1 to 10 mL/kg, slowed the half-life by about 10-fold. Consequently, occasional irrigation with fertilization could be a suitable bioremediation strategy for the upper parts of contaminated beaches. However, dispersing oil at sea is probably the most suitable option for the optimal removal of spilled crude oil from the marine environment.
Collapse
Affiliation(s)
- Charbel Abou-Khalil
- Center for Natural Resources, Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Roger C Prince
- Stonybrook Apiary, Pittstown, New Jersey 08867, United States
| | - Charles W Greer
- Energy, Mining and Environment Research Centre, National Research Council Canada, Montreal, Quebec H4P 2R2, Canada
- Department of Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Kenneth Lee
- Ecosystem Science, Fisheries and Oceans Canada, Ottawa, Ontario K1A 0E6, Canada
| | - Michel C Boufadel
- Center for Natural Resources, Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| |
Collapse
|
24
|
Péquin B, Cai Q, Lee K, Greer CW. Natural attenuation of oil in marine environments: A review. MARINE POLLUTION BULLETIN 2022; 176:113464. [PMID: 35231783 DOI: 10.1016/j.marpolbul.2022.113464] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/31/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Natural attenuation is an important process for oil spill management in marine environments. Natural attenuation affects the fate of oil by physical, chemical, and biological processes, which include evaporation, dispersion, dissolution, photo-oxidation, emulsification, oil particle aggregation, and biodegradation. This review examines the cumulative knowledge regarding these natural attenuation processes as well as their simulation and prediction using modelling approaches. An in-depth discussion is provided on how oil type, microbial community and environmental factors contribute to the biodegradation process. It describes how our understanding of the structure and function of indigenous oil degrading microbial communities in the marine environment has been advanced by the application of next generation sequencing tools. The synergetic and/or antagonist effects of oil spill countermeasures such as the application of chemical dispersants, in-situ burning and nutrient enrichment on natural attenuation were explored. Several knowledge gaps were identified regarding the synergetic and/or antagonistic effects of active response countermeasures on the natural attenuation/biodegradation process. This review highlighted the need for field data on both the effectiveness and potential detrimental effects of oil spill response options to support modelling and decision-making on their selection and application.
Collapse
Affiliation(s)
- Bérangère Péquin
- McGill University, Department of Natural Resource Sciences, Ste-Anne-de-Bellevue, Quebec, Canada.
| | - Qinhong Cai
- McGill University, Department of Natural Resource Sciences, Ste-Anne-de-Bellevue, Quebec, Canada
| | - Kenneth Lee
- Ecosystem Science, Fisheries and Oceans Canada, Ottawa, Ontario, Canada
| | - Charles W Greer
- McGill University, Department of Natural Resource Sciences, Ste-Anne-de-Bellevue, Quebec, Canada; Energy, Mining and Environment Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| |
Collapse
|
25
|
Gomes A, Christensen JH, Gründger F, Kjeldsen KU, Rysgaard S, Vergeynst L. Biodegradation of water-accommodated aromatic oil compounds in Arctic seawater at 0 °C. CHEMOSPHERE 2022; 286:131751. [PMID: 34399257 DOI: 10.1016/j.chemosphere.2021.131751] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 06/28/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Oil spills in Arctic marine environments are expected to increase concurrently with the expansion of shipping routes and petroleum exploitation into previously inaccessible ice-dominated regions. Most research on oil biodegradation focusses on the bulk oil, but the fate of the water-accommodated fraction (WAF), mainly composed of toxic aromatic compounds, is largely underexplored. To evaluate the bacterial degradation capacity of such dissolved aromatics in Greenlandic seawater, microcosms consisting of 0 °C seawater polluted with WAF were investigated over a 3-month period. With a half-life (t1/2) of 26 days, m-xylene was the fastest degraded compound, as measured by gas chromatography - mass spectrometry. Substantial slower degradation was observed for ethylbenzene, naphthalenes, phenanthrene, acenaphthylene, acenaphthene and fluorenes with t1/2 of 40-105 days. Colwellia, identified by 16S rRNA gene sequencing, was the main potential degrader of m-xylene. This genus occupied up to 47 % of the bacterial community until day 10 in the microcosms. Cycloclasticus and Zhongshania aliphaticivorans, potentially utilizing one-to three-ringed aromatics, replaced Colwellia between day 10 and 96 and occupied up to 6 % and 23 % of the community, respectively. Although most of the WAF can ultimately be eliminated in microcosms, our results suggest that the restoration of an oil-impacted Arctic environment may be slow as most analysed compounds had t1/2 of over 2-3 months and the detrimental effects of a spill towards the marine ecosystem likely persist during this time.
Collapse
Affiliation(s)
- Ana Gomes
- Arctic Research Centre, Department of Biology, Aarhus University, Aarhus, Denmark; Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Jan H Christensen
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Friederike Gründger
- Arctic Research Centre, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Kasper Urup Kjeldsen
- Section for Microbiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Søren Rysgaard
- Arctic Research Centre, Department of Biology, Aarhus University, Aarhus, Denmark; Centre for Earth Observation Science, CHR Faculty of Environment Earth and Resources, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Leendert Vergeynst
- Arctic Research Centre, Department of Biology, Aarhus University, Aarhus, Denmark; Aarhus University Centre for Water Technology (WATEC), Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
26
|
Ellis M, Altshuler I, Schreiber L, Chen YJ, Okshevsky M, Lee K, Greer CW, Whyte LG. Hydrocarbon biodegradation potential of microbial communities from high Arctic beaches in Canada's Northwest Passage. MARINE POLLUTION BULLETIN 2022; 174:113288. [PMID: 35090274 DOI: 10.1016/j.marpolbul.2021.113288] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/12/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Sea ice loss is opening shipping routes in Canada's Northwest Passage, increasing the risk of an oil spill. Harnessing the capabilities of endemic microorganisms to degrade oil may be an effective remediation strategy for contaminated shorelines; however, limited data exists along Canada's Northwest Passage. In this study, hydrocarbon biodegradation potential of microbial communities from eight high Arctic beaches was assessed. Across high Arctic beaches, community composition was distinct, potential hydrocarbon-degrading genera were detected and microbial communities were able to degrade hydrocarbons (hexadecane, naphthalene, and alkanes) at low temperature (4 °C). Hexadecane and naphthalene biodegradation were stimulated by nutrients, but nutrients had little effect on Ultra Low Sulfur Fuel Oil biodegradation. Oiled microcosms showed a significant enrichment of Pseudomonas and Rhodococcus. Nutrient-amended microcosms showed increased abundances of key hydrocarbon biodegradation genes (alkB and CYP153). Ultimately, this work provides insight into hydrocarbon biodegradation on Arctic shorelines and oil-spill remediation in Canada's Northwest Passage.
Collapse
Affiliation(s)
- Madison Ellis
- Department of Natural Resource Sciences, McGill University, Quebec, Canada.
| | - Ianina Altshuler
- Department of Natural Resource Sciences, McGill University, Quebec, Canada; Faculty of Biosciences, Norwegian University of Life Sciences NMBU, Ås, Norway
| | - Lars Schreiber
- Energy, Mining and Environment Research Centre, National Research Council of Canada, Quebec, Canada
| | - Ya-Jou Chen
- Department of Natural Resource Sciences, McGill University, Quebec, Canada
| | - Mira Okshevsky
- Department of Natural Resource Sciences, McGill University, Quebec, Canada; Department of Human Health Therapeutics Research Centre, National Research Council of Canada, Quebec, Canada
| | - Kenneth Lee
- Ecosystem Science, Fisheries and Oceans Canada, Ottawa, Canada
| | - Charles W Greer
- Department of Natural Resource Sciences, McGill University, Quebec, Canada; Energy, Mining and Environment Research Centre, National Research Council of Canada, Quebec, Canada
| | - Lyle G Whyte
- Department of Natural Resource Sciences, McGill University, Quebec, Canada
| |
Collapse
|
27
|
Maggiori C, Raymond-Bouchard I, Brennan L, Touchette D, Whyte L. MinION sequencing from sea ice cryoconites leads to de novo genome reconstruction from metagenomes. Sci Rep 2021; 11:21041. [PMID: 34702846 PMCID: PMC8548342 DOI: 10.1038/s41598-021-00026-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/30/2021] [Indexed: 01/04/2023] Open
Abstract
Genome reconstruction from metagenomes enables detailed study of individual community members, their metabolisms, and their survival strategies. Obtaining high quality metagenome-assembled genomes (MAGs) is particularly valuable in extreme environments like sea ice cryoconites, where the native consortia are recalcitrant to culture and strong astrobiology analogues. We evaluated three separate approaches for MAG generation from Allen Bay, Nunavut sea ice cryoconites-HiSeq-only, MinION-only, and hybrid (HiSeq + MinION)-where field MinION sequencing yielded a reliable metagenome. The hybrid assembly produced longer contigs, more coding sequences, and more total MAGs, revealing a microbial community dominated by Bacteroidetes. The hybrid MAGs also had the highest completeness, lowest contamination, and highest N50. A putatively novel species of Octadecabacter is among the hybrid MAGs produced, containing the genus's only known instances of genomic potential for nitrate reduction, denitrification, sulfate reduction, and fermentation. This study shows that the inclusion of MinION reads in traditional short read datasets leads to higher quality metagenomes and MAGs for more accurate descriptions of novel microorganisms in this extreme, transient habitat and has produced the first hybrid MAGs from an extreme environment.
Collapse
Affiliation(s)
- Catherine Maggiori
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, 21 111 Lakeshore Road, Macdonald Stewart Building, Room MS3-053, Ste. Anne-de-Bellevue, Quebec, H9X 3V9, Canada.
| | - Isabelle Raymond-Bouchard
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, 21 111 Lakeshore Road, Macdonald Stewart Building, Room MS3-053, Ste. Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Laura Brennan
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, 21 111 Lakeshore Road, Macdonald Stewart Building, Room MS3-053, Ste. Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - David Touchette
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, 21 111 Lakeshore Road, Macdonald Stewart Building, Room MS3-053, Ste. Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Lyle Whyte
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, 21 111 Lakeshore Road, Macdonald Stewart Building, Room MS3-053, Ste. Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| |
Collapse
|
28
|
Abou Khalil C, Fortin N, Prince RC, Greer CW, Lee K, Boufadel MC. Crude oil biodegradation in upper and supratidal seashores. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125919. [PMID: 34492851 DOI: 10.1016/j.jhazmat.2021.125919] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 06/13/2023]
Abstract
The salinity of the upper parts of seashores can become higher than seawater due to evaporation between tidal inundations. Such hypersaline ecosystems, where the salinity can reach up to eight-fold higher than that of seawater (30-35 g/L), can be contaminated by oil spills. Here we investigate whether such an increase has inhibitory effects on oil biodegradation. Seawater was evaporated to a concentrated brine and added to fresh seawater to generate high salinity microcosms. Artificially weathered Hibernia crude oil was added, and biodegradation was followed for 76 days. First-order rate constants (k) for the biodegradation of GC-detectable hydrocarbons showed that the hydrocarbonoclastic activity was substantially inhibited at high salt - k decreased by ~75% at 90 g/L salts and ~90% at 160 g/L salts. This inhibition was greatest for the alkanes, although it extended to all classes of compounds measured, with the smallest effect on four-ring aromatics (e.g., chrysenes). Genera of well-known aerobic hydrocarbonoclastic bacteria were only identified at 30 g/L salts in the presence of oil, and only a few halophilic Archaea showed a slight enrichment at higher salt concentrations. These results indicate that biodegradation of spilled oil will likely be slowed in supratidal ecosystems and suggest that occasional irrigation of oiled supratidal zones could be a useful supporting strategy to remediation processes.
Collapse
Affiliation(s)
- Charbel Abou Khalil
- Center for Natural Resources, Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Nathalie Fortin
- National Research Council Canada, Energy, Mining and Environment Research Centre, Montreal, QC H4P 2R2 Canada
| | | | - Charles W Greer
- National Research Council Canada, Energy, Mining and Environment Research Centre, Montreal, QC H4P 2R2 Canada; Department of Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Kenneth Lee
- Fisheries and Oceans Canada, Ecosystem Science, Ottawa, ON K1A 0E6, Canada
| | - Michel C Boufadel
- Center for Natural Resources, Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| |
Collapse
|
29
|
Dang NP, Petrich C, O'Sadnick M, Toske L. Biotransformation of chemically dispersed diesel at sub-zero temperatures using artificial brines. ENVIRONMENTAL TECHNOLOGY 2021; 42:2624-2630. [PMID: 31893964 DOI: 10.1080/09593330.2019.1708976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
The biotransformation of hydrocarbon compounds in seawater at sub-zero temperature has gained research interest in recent years with the most focus placed on temperatures around 0°C. In this study, biotransformation of dispersed diesel at sub-zero temperatures (-2°C to -6°C) in artificial brines, prepared by adding Instant Ocean salt to natural seawater to increase salinity, is examined. The oil was pre-mixed with dispersant Finasol 51 to prepare the dispersed oil at 2 mg l-1. The native microorganisms in sub-arctic seawater were able to adapt to high salinity and lower temperature in the sea ice brine at tested temperatures and were capable of biotransforming hydrocarbon compounds. Complete depletion of low and middle-range molecular weight n-alkanes, 2/3 ring PAHs and their alkylated compounds was observed after 123 days at -2°C. The depletion extents of hydrocarbon compounds were reduced at -6°C in comparison with -2°C, especially for PAHs and alkylated hydrocarbons. This study suggests that: there is a potential for biodegradation of dispersed oil in sea ice brine at temperatures between -2°C and -6°C. However, for oil with high pour point, the biodegradation process will be more affected by low temperature. Therefore, to predict the fate of dispersed oil at low temperature, the biodegradation rate should be established for each individual oil type and at a specific temperature.
Collapse
Affiliation(s)
- Nga Phuong Dang
- Department of Cold Climate Technology, SINTEF Narvik AS, Narvik, Norway
| | - Chris Petrich
- Department of Cold Climate Technology, SINTEF Narvik AS, Narvik, Norway
| | - Megan O'Sadnick
- Department of Cold Climate Technology, SINTEF Narvik AS, Narvik, Norway
| | | |
Collapse
|
30
|
Martinez-Varela A, Cerro-Gálvez E, Auladell A, Sharma S, Moran MA, Kiene RP, Piña B, Dachs J, Vila-Costa M. Bacterial responses to background organic pollutants in the northeast subarctic Pacific Ocean. Environ Microbiol 2021; 23:4532-4546. [PMID: 34169620 DOI: 10.1111/1462-2920.15646] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 06/16/2021] [Indexed: 12/13/2022]
Abstract
Thousands of man-made synthetic chemicals are released to oceans and compose the anthropogenic dissolved organic carbon (ADOC). Little is known about the effects of this chronic pollution on marine microbiome activities. In this study, we measured the pollution level at three sites in the Northeast Subarctic Pacific Ocean (NESAP) and investigated how mixtures of three model families of ADOC at different environmentally relevant concentrations affected naturally occurring marine bacterioplankton communities' structure and metabolic functioning. The offshore northernmost site (North) had the lowest concentrations of hydrocarbons, as well as organophosphate ester plasticizers, contrasting with the two other continental shelf sites, the southern coastal site (South) being the most contaminated. At North, ADOC stimulated bacterial growth and promoted an increase in the contribution of some Gammaproteobacteria groups (e.g. Alteromonadales) to the 16 rRNA pool. These groups are described as fast responders after oil spills. In contrast, minor changes in South microbiome activities were observed. Gene expression profiles at Central showed the coexistence of ADOC degradation and stress-response strategies to cope with ADOC toxicities. These results show that marine microbial communities at three distinct domains in NESAP are influenced by background concentrations of ADOC, expanding previous assessments for polar and temperate waters.
Collapse
Affiliation(s)
- Alícia Martinez-Varela
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, Spain
| | - Elena Cerro-Gálvez
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, Spain
| | - Adrià Auladell
- Department of Marine Biology and Oceanography, Marine Science Institute, ICM-CSIC, Barcelona, Catalunya, Spain
| | - Shalabh Sharma
- Department of Marine Sciences, University of Georgia, Marine Sciences Building, Athens, GA, USA
| | - Mary Ann Moran
- Department of Marine Sciences, University of Georgia, Marine Sciences Building, Athens, GA, USA
| | - Ronald P Kiene
- Department of Marine Sciences, University of South Alabama, Mobile, AL, USA
| | - Benjamí Piña
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, Spain
| | - Jordi Dachs
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, Spain
| | - Maria Vila-Costa
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, Spain
| |
Collapse
|
31
|
Thomas GE, Brant JL, Campo P, Clark DR, Coulon F, Gregson BH, McGenity TJ, McKew BA. Effects of Dispersants and Biosurfactants on Crude-Oil Biodegradation and Bacterial Community Succession. Microorganisms 2021; 9:microorganisms9061200. [PMID: 34206054 PMCID: PMC8229435 DOI: 10.3390/microorganisms9061200] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023] Open
Abstract
This study evaluated the effects of three commercial dispersants (Finasol OSR 52, Slickgone NS, Superdispersant 25) and three biosurfactants (rhamnolipid, trehalolipid, sophorolipid) in crude-oil seawater microcosms. We analysed the crucial early bacterial response (1 and 3 days). In contrast, most analyses miss this key period and instead focus on later time points after oil and dispersant addition. By focusing on the early stage, we show that dispersants and biosurfactants, which reduce the interfacial surface tension of oil and water, significantly increase the abundance of hydrocarbon-degrading bacteria, and the rate of hydrocarbon biodegradation, within 24 h. A succession of obligate hydrocarbonoclastic bacteria (OHCB), driven by metabolite niche partitioning, is demonstrated. Importantly, this succession has revealed how the OHCB Oleispira, hitherto considered to be a psychrophile, can dominate in the early stages of oil-spill response (1 and 3 days), outcompeting all other OHCB, at the relatively high temperature of 16 °C. Additionally, we demonstrate how some dispersants or biosurfactants can select for specific bacterial genera, especially the biosurfactant rhamnolipid, which appears to provide an advantageous compatibility with Pseudomonas, a genus in which some species synthesize rhamnolipid in the presence of hydrocarbons.
Collapse
Affiliation(s)
- Gareth E. Thomas
- School of Life Sciences, University of Essex, Wivenhoe Park, Essex CO4 3SQ, UK; (D.R.C.); (B.H.G.); (T.J.M.); (B.A.M.)
- Correspondence: ; Tel.: +44-1206-873333 (ext. 2918)
| | - Jan L. Brant
- Centre for Environment, Fisheries and Aquaculture Science, Pakefield Road, Lowestoft, Suffolk NR33 0HT, UK;
| | - Pablo Campo
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK; (P.C.); (F.C.)
| | - Dave R. Clark
- School of Life Sciences, University of Essex, Wivenhoe Park, Essex CO4 3SQ, UK; (D.R.C.); (B.H.G.); (T.J.M.); (B.A.M.)
- Institute for Analytics and Data Science, University of Essex, Wivenhoe Park, Essex CO4 3SQ, UK
| | - Frederic Coulon
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK; (P.C.); (F.C.)
| | - Benjamin H. Gregson
- School of Life Sciences, University of Essex, Wivenhoe Park, Essex CO4 3SQ, UK; (D.R.C.); (B.H.G.); (T.J.M.); (B.A.M.)
| | - Terry J. McGenity
- School of Life Sciences, University of Essex, Wivenhoe Park, Essex CO4 3SQ, UK; (D.R.C.); (B.H.G.); (T.J.M.); (B.A.M.)
| | - Boyd A. McKew
- School of Life Sciences, University of Essex, Wivenhoe Park, Essex CO4 3SQ, UK; (D.R.C.); (B.H.G.); (T.J.M.); (B.A.M.)
| |
Collapse
|
32
|
Yap HS, Zakaria NN, Zulkharnain A, Sabri S, Gomez-Fuentes C, Ahmad SA. Bibliometric Analysis of Hydrocarbon Bioremediation in Cold Regions and a Review on Enhanced Soil Bioremediation. BIOLOGY 2021; 10:biology10050354. [PMID: 33922046 PMCID: PMC8143585 DOI: 10.3390/biology10050354] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Anthropogenic activities in cold regions require petroleum oils to support various purposes. With the increased demand of petroleum, accidental oil spills are generated during transportation or refuelling processes. Soil is one of the major victims in petroleum pollution, hence studies have been devoted to find solutions to remove these petroleum hydrocarbons. However, the remote and low-temperature conditions in cold regions hindered the implementation of physical and chemical removal treatments. On the other hand, biological treatments in general have been proposed as an innovative approach to attenuate these hydrocarbon pollutants in soils. To understand the relevancy of biological treatments for cold regions specifically, bibliometric analysis has been applied to systematically analyse studies focused on hydrocarbon removal treatment in a biological way. To expedite the understanding of this analysis, we have summarised these biological treatments and suggested other biological applications in the context of cold conditions. Abstract The increased usage of petroleum oils in cold regions has led to widespread oil pollutants in soils. The harsh environmental conditions in cold environments allow the persistence of these oil pollutants in soils for more than 20 years, raising adverse threats to the ecosystem. Microbial bioremediation was proposed and employed as a cost-effective tool to remediate petroleum hydrocarbons present in soils without significantly posing harmful side effects. However, the conventional hydrocarbon bioremediation requires a longer time to achieve the clean-up standard due to various environmental factors in cold regions. Recent biotechnological improvements using biostimulation and/or bioaugmentation strategies are reported and implemented to enhance the hydrocarbon removal efficiency under cold conditions. Thus, this review focuses on the enhanced bioremediation for hydrocarbon-polluted soils in cold regions, highlighting in situ and ex situ approaches and few potential enhancements via the exploitation of molecular and microbial technology in response to the cold condition. The bibliometric analysis of the hydrocarbon bioremediation research in cold regions is also presented.
Collapse
Affiliation(s)
- How Swen Yap
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (H.S.Y.); (N.N.Z.)
| | - Nur Nadhirah Zakaria
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (H.S.Y.); (N.N.Z.)
| | - Azham Zulkharnain
- Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan;
| | - Suriana Sabri
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Claudio Gomez-Fuentes
- Department of Chemical Engineering, Universidad de Magallanes, Avda, Bulnes, Punta Arenas 01855, Chile;
- Center for Research and Antarctic Environmental Monitoring (CIMAA), Universidad de Magallanes, Avda, Bulnes, Punta Arenas 01855, Chile
| | - Siti Aqlima Ahmad
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (H.S.Y.); (N.N.Z.)
- Center for Research and Antarctic Environmental Monitoring (CIMAA), Universidad de Magallanes, Avda, Bulnes, Punta Arenas 01855, Chile
- National Antarctic Research Centre, B303 Level 3, Block B, IPS Building, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence:
| |
Collapse
|
33
|
Desmond DS, Saltymakova D, Smith A, Wolfe T, Snyder N, Polcwiartek K, Bautista M, Lemes M, Hubert CRJ, Barber DG, Isleifson D, Stern GA. Photooxidation and biodegradation potential of a light crude oil in first-year sea ice. MARINE POLLUTION BULLETIN 2021; 165:112154. [PMID: 33735684 DOI: 10.1016/j.marpolbul.2021.112154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Disappearing sea ice in the Arctic region results in a pressing need to develop oil spill mitigation techniques suitable for ice-covered waters. The uncertainty around the nature of an oil spill in the Arctic arises from the ice-covered waters and sub-zero temperatures, and how they may influence natural attenuation efficiency. The Sea-ice Environmental Research Facility was used to create a simulated Arctic marine setting. This paper focuses on the potential for biodegradation of the bulk crude oil content (encapsulated in the upper regions of the ice), to provide insight regarding the possible fate of crude oil in an Arctic marine setting. Cheaper and faster methods of chemical composition analysis were applied to the samples to assess for weathering and transformation effects. Results suggest that brine volume in ice may not be sufficient at low temperatures to encompass biodegradation and that seawater is more suitable for biodegradation.
Collapse
|
34
|
Abou Khalil C, Prince VL, Prince RC, Greer CW, Lee K, Zhang B, Boufadel MC. Occurrence and biodegradation of hydrocarbons at high salinities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:143165. [PMID: 33131842 DOI: 10.1016/j.scitotenv.2020.143165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
Hypersaline environments are found around the world, above and below ground, and many are exposed to hydrocarbons on a continuous or a frequent basis. Some surface hypersaline environments are exposed to hydrocarbons because they have active petroleum seeps while others are exposed because of oil exploration and production, or nearby human activities. Many oil reservoirs overlie highly saline connate water, and some national oil reserves are stored in salt caverns. Surface hypersaline ecosystems contain consortia of halophilic and halotolerant microorganisms that decompose organic compounds including hydrocarbons, and subterranean ones are likely to contain the same. However, the rates and extents of hydrocarbon biodegradation are poorly understood in such ecosystems. Here we describe hypersaline environments potentially or likely to become contaminated with hydrocarbons, including perennial and transient environments above and below ground, and discuss what is known about the microbes degrading hydrocarbons and the extent of their activities. We also discuss what limits the microbial hydrocarbon degradation in hypersaline environments and whether there are opportunities for inhibiting (oil storage) or stimulating (oil spills) such biodegradation as the situation requires.
Collapse
Affiliation(s)
- Charbel Abou Khalil
- Center for Natural Resources, Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | | | | | - Charles W Greer
- National Research Council Canada, Energy, Mining and Environment Research Centre, Montreal, QC H4P 2R2, Canada
| | - Kenneth Lee
- Fisheries and Oceans Canada, Ecosystem Science, Ottawa, ON K1A 0E6, Canada
| | - Baiyu Zhang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada
| | - Michel C Boufadel
- Center for Natural Resources, Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| |
Collapse
|
35
|
Angelova AG, Berx B, Bresnan E, Joye SB, Free A, Gutierrez T. Inter- and Intra-Annual Bacterioplankton Community Patterns in a Deepwater Sub-Arctic Region: Persistent High Background Abundance of Putative Oil Degraders. mBio 2021; 12:e03701-20. [PMID: 33727364 PMCID: PMC8092327 DOI: 10.1128/mbio.03701-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 02/04/2021] [Indexed: 12/01/2022] Open
Abstract
Hydrocarbon-degrading bacteria naturally degrade and remove petroleum pollutants, yet baselines do not currently exist for these critical microorganisms in many regions where the oil and gas industry is active. Furthermore, understanding how a baseline community changes across the seasons and its potential to respond to an oil spill event are prerequisites for predicting their response to elevated hydrocarbon exposures. In this study, 16S rRNA gene-based profiling was used to assess the spatiotemporal variability of baseline bacterioplankton community composition in the Faroe-Shetland Channel (FSC), a deepwater sub-Arctic region where the oil and gas industry has been active for the last 40 years. Over a period of 2 years, we captured the diversity of the bacterioplankton community within distinct water masses (defined by their temperature and salinity) that have a distinct geographic origin (Atlantic or Nordic), depth, and direction of flow. We demonstrate that bacterioplankton communities were significantly different across water samples of contrasting origin and depth. Taxa of known hydrocarbon-degrading bacteria were observed at higher-than-anticipated abundances in water masses originating in the Nordic Seas, suggesting these organisms are sustained by an unconfirmed source of oil input in that region. In the event of an oil spill, our results suggest that the response of these organisms is severely hindered by the low temperatures and nutrient levels that are typical for the FSC.IMPORTANCE Oil spills at sea are one of the most disastrous anthropogenic pollution events, with the Deepwater Horizon spill providing a testament to how profoundly the health of marine ecosystems and the livelihood of its coastal inhabitants can be severely impacted by spilled oil. The fate of oil in the environment is largely dictated by the presence and activities of natural communities of oil-degrading bacteria. While a significant effort was made to monitor and track the microbial response and degradation of the oil in the water column in the wake of the Deepwater Horizon spill, the lack of baseline data on the microbiology of the Gulf of Mexico confounded scientists' abilities to provide an accurate assessment of how the system responded relative to prespill conditions. This data gap highlights the need for long-term microbial ocean observatories in regions at high risk of oil spills. Here, we provide the first microbiological baseline established for a subarctic region experiencing high oil and gas industry activity, the northeast Atlantic, but with no apparent oil seepage or spillage. We also explore the presence, relative abundances, and seasonal dynamics of indigenous hydrocarbon-degrading communities. These data will advance the development of models to predict the behavior of such organisms in the event of a major oil spill in this region and potentially impact bioremediation strategies by enhancing the activities of these organisms in breaking down the oil.
Collapse
Affiliation(s)
- Angelina G Angelova
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom
| | - Barbara Berx
- Marine Scotland Science, Aberdeen, United Kingdom
| | | | - Samantha B Joye
- Department of Marine Sciences, University of Georgia, Athens, Georgia, USA
| | - Andrew Free
- School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Tony Gutierrez
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom
| |
Collapse
|
36
|
Verasoundarapandian G, Wong CY, Shaharuddin NA, Gomez-Fuentes C, Zulkharnain A, Ahmad SA. A Review and Bibliometric Analysis on Applications of Microbial Degradation of Hydrocarbon Contaminants in Arctic Marine Environment at Metagenomic and Enzymatic Levels. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:1671. [PMID: 33572432 PMCID: PMC7916232 DOI: 10.3390/ijerph18041671] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 12/20/2022]
Abstract
The globe is presently reliant on natural resources, fossil fuels, and crude oil to support the world's energy requirements. Human exploration for oil resources is always associated with irreversible effects. Primary sources of hydrocarbon pollution are instigated through oil exploration, extraction, and transportation in the Arctic region. To address the state of pollution, it is necessary to understand the mechanisms and processes of the bioremediation of hydrocarbons. The application of various microbial communities originated from the Arctic can provide a better interpretation on the mechanisms of specific microbes in the biodegradation process. The composition of oil and consequences of hydrocarbon pollutants to the various marine environments are also discussed in this paper. An overview of emerging trends on literature or research publications published in the last decade was compiled via bibliometric analysis in relation to the topic of interest, which is the microbial community present in the Arctic and Antarctic marine environments. This review also presents the hydrocarbon-degrading microbial community present in the Arctic, biodegradation metabolic pathways (enzymatic level), and capacity of microbial degradation from the perspective of metagenomics. The limitations are stated and recommendations are proposed for future research prospects on biodegradation of oil contaminants by microbial community at the low temperature regions of the Arctic.
Collapse
Affiliation(s)
| | - Chiew-Yen Wong
- School of Health Sciences, International Medical University, Kuala Lumpur 57000, Malaysia;
- National Antarctic Research Center, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Noor Azmi Shaharuddin
- Department of Biochemistry, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (G.V.); (N.A.S.)
| | - Claudio Gomez-Fuentes
- Department of Chemical Engineering, Universidad de Magallanes, Avda. Bulnes 01855, Punta Arenas, Chile;
- Center for Research and Antarctic Environmental Monitoring (CIMAA), Universidad de Magallanes, Avda. Bulnes 01855, Punta Arenas, Chile
| | - Azham Zulkharnain
- Department of Bioscience and Engineering, Shibaura Institute of Technology, Saitama-shi 337-8570, Saitama, Japan;
| | - Siti Aqlima Ahmad
- Department of Biochemistry, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (G.V.); (N.A.S.)
- National Antarctic Research Center, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Center for Research and Antarctic Environmental Monitoring (CIMAA), Universidad de Magallanes, Avda. Bulnes 01855, Punta Arenas, Chile
| |
Collapse
|
37
|
Barbato M, Scoma A. Mild hydrostatic-pressure (15 MPa) affects the assembly, but not the growth, of oil-degrading coastal microbial communities tested under limiting conditions (5°C, no added nutrients). FEMS Microbiol Ecol 2020; 96:5894919. [PMID: 32816016 DOI: 10.1093/femsec/fiaa160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/11/2020] [Indexed: 02/06/2023] Open
Abstract
Hydrostatic pressures (HP) <30-40 MPa are often considered mild, and their impact on petroleum biodegradation seldom considered. However, the frequent use of nutrient-rich media in lab-scale high-pressure reactors may exaggerate HP importance by resulting in a strong growth stimulation as compared to oligotrophic marine environments. Here, we tested coastal seawater microbial communities, presumably enriched in pressure-sensitive microorganisms. Limiting environmental conditions for growth were applied (i.e. low temperature [5°C], no added nutrients) and HP tested at 0.1 and 15 MPa, using crude oils from three different reservoirs. The cell number was not affected by HP contrary to the microbial community composition (based on 16S rRNA gene and 16S rRNA sequences). The most predominant genera were Zhongshania, Pseudomonas and Colwellia. The enrichment of Zhongshania was crude-oil dependent and comparable at 0.1 and 15 MPa, thus showing a piezotolerant phenotype under the present conditions; Pseudomonas' was crude-oil dependent at 0.1 MPa but unclear at 15 MPa. Colwellia was selectively enriched in the absence of crude oil and suppressed at 15 MPa. HP shaped the assemblage of oil-degrading communities even at mild levels (i.e. 15 MPa), and should thus be considered as a fundamental factor to assess oil bioremediation along the water column.
Collapse
Affiliation(s)
- Marta Barbato
- Department of Biology, Aarhus University, Ny munkegade 116, 8000, Aarhus C, Denmark.,Biological and Chemical Engineering Section (BCE), Department of Engineering, Aarhus University, Hangøvej 2, 8200, Aarhus N, Denmark
| | - Alberto Scoma
- Department of Biology, Aarhus University, Ny munkegade 116, 8000, Aarhus C, Denmark.,Biological and Chemical Engineering Section (BCE), Department of Engineering, Aarhus University, Hangøvej 2, 8200, Aarhus N, Denmark
| |
Collapse
|
38
|
The Interactive Effects of Crude Oil and Corexit 9500 on Their Biodegradation in Arctic Seawater. Appl Environ Microbiol 2020; 86:AEM.01194-20. [PMID: 32826215 PMCID: PMC7580538 DOI: 10.1128/aem.01194-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/10/2020] [Indexed: 11/20/2022] Open
Abstract
Chemical dispersants such as Corexit 9500 are commonly used in oil spill response and are currently under consideration for use in the Arctic, where their fate and effects have not been well studied. This research was performed to determine the interactive effects of the copresence of crude oil and Corexit 9500 on the degradation of components from each mixture and the associated microbial community structure over time in Arctic seawater. These findings will help yield a better understanding of the biodegradability of dispersant components applied to an oil spill, the temporal microbial community response to dispersed oil, and the fundamental microbial ecology of organic contaminant biodegradation processes in the Arctic marine environment. The risk of petroleum spills coupled with the potential application of chemical dispersants as a spill response strategy necessitates further understanding of the fate of oil and dispersants and their interactive effects during biodegradation. Using Arctic seawater mesocosms amended with either crude oil, Corexit 9500, or both together, we quantified the chemical losses of crude oil and Corexit 9500 and identified microbial taxa implicated in their biodegradation based on shifts in the microbial community structure over a 30-day time course. Chemical analyses included total petroleum hydrocarbons (TPH), n-alkanes, branched alkanes, and polycyclic aromatic hydrocarbons (PAHs) for oil loss and the surfactant components dioctyl sodium sulfosuccinate (DOSS), Span 80, Tween 80, Tween 85, and the DOSS metabolite ethylhexyl sulfosuccinate (EHSS) for Corexit loss. Changes to the microbial communities and identification of key taxa were determined by 16S rRNA gene amplicon sequencing. The nonionic surfactants of Corexit 9500 (Span 80 and Tweens 80 and 85) biodegraded rapidly, dropping to below the limits of detection within 5 days and prior to any detectable initiation of oil biodegradation. This resulted in no observable suppression of petroleum biodegradation in the presence of Corexit compared to that of oil alone. In contrast, biodegradation of DOSS was delayed in the presence of oil, based on the prolonged presence of DOSS and accumulation of the degradation intermediate EHSS that did not occur in the absence of oil. Microbial analyses revealed that oil and Corexit enriched different overall microbial communities, with the presence of both resulting in a community composition that shifted from one more similar to that of Corexit only to one reflecting the oil-only community over time, in parallel with the degradation of predominantly Corexit and then oil components. Some microbial taxa (Oleispira, Pseudofulvibacter, and Roseobacter) responded to either oil or Corexit, suggesting that some organisms may be capable of utilizing both substrates. Together, these findings reveal interactive effects of crude oil and Corexit 9500 on chemical losses and microbial communities as they biodegrade, providing further insight into their fate when copresent in the environment. IMPORTANCE Chemical dispersants such as Corexit 9500 are commonly used in oil spill response and are currently under consideration for use in the Arctic, where their fate and effects have not been well studied. This research was performed to determine the interactive effects of the copresence of crude oil and Corexit 9500 on the degradation of components from each mixture and the associated microbial community structure over time in Arctic seawater. These findings will help yield a better understanding of the biodegradability of dispersant components applied to an oil spill, the temporal microbial community response to dispersed oil, and the fundamental microbial ecology of organic contaminant biodegradation processes in the Arctic marine environment.
Collapse
|
39
|
Lofthus S, Bakke I, Tremblay J, Greer CW, Brakstad OG. Biodegradation of weathered crude oil in seawater with frazil ice. MARINE POLLUTION BULLETIN 2020; 154:111090. [PMID: 32319919 DOI: 10.1016/j.marpolbul.2020.111090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 06/11/2023]
Abstract
As ice extent in the Arctic is declining, oil and gas activities will increase, with higher risk of oil spills to the marine environment. To determine biotransformation of dispersed weathered oil in newly formed ice, oil dispersions (2-3 ppm) were incubated in a mixture of natural seawater and frazil ice for 125 days at -2 °C. Dispersed oil in seawater without frazil ice were included in the experimental setup. Presence or absence of frazil ice was a strong driver for microbial community structures and affected the rate of oil degradation. n-alkanes were degraded faster in the presence of frazil ice, the opposite was the case for naphthalenes and 2-3 ring PAHs. No degradation of 4-6 ring PAHs was observed in any of the treatments. The total petroleum oil was not degraded to any significant degree, suggesting that oil will freeze into the ice matrix and persist throughout the icy season.
Collapse
Affiliation(s)
- Synnøve Lofthus
- Norwegian University of Science and Technology, Department of Biotechnology and Food Science, Trondheim, Norway; SINTEF Ocean AS, Environment and New Resources, Trondheim, Norway.
| | - Ingrid Bakke
- Norwegian University of Science and Technology, Department of Biotechnology and Food Science, Trondheim, Norway
| | - Julien Tremblay
- National Research Council Canada, Energy, Mining and Environment Research Centre, Montreal, Quebec, Canada
| | - Charles W Greer
- National Research Council Canada, Energy, Mining and Environment Research Centre, Montreal, Quebec, Canada
| | | |
Collapse
|
40
|
Krolicka A, Boccadoro C, Nilsen MM, Demir-Hilton E, Birch J, Preston C, Scholin C, Baussant T. Identification of microbial key-indicators of oil contamination at sea through tracking of oil biotransformation: An Arctic field and laboratory study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 696:133715. [PMID: 31470316 DOI: 10.1016/j.scitotenv.2019.133715] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/26/2019] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
In this paper, a molecular analytical approach for detecting hydrocarbonoclastic bacteria in water is suggested as a proxy measurement for tracking petroleum discharges in industrialized or pristine aquatic environments. This approach is tested for general application in cold marine regions (freezing to 5 °C). We used amplicon sequencing and qPCR to quantify 16S rRNA and GyrB genes from oleophilic bacteria in seawater samples from two different crude oil enrichments. The first experiment was conducted in a controlled environment using laboratory conditions and natural North Sea fjord seawater (NSC) at a constant temperature of 5 °C. The second was performed in the field with natural Arctic seawater (ARC) and outdoor temperature conditions from -7 °C to around 4 °C. Although the experimental conditions for NSC and ARC differed, the temporal changes in bacterial communities were comparable and reflected oil biotransformation processes. The common bacterial OTUs for NSC and ARC had the highest identity to Colwellia rossensis and Oleispira antarctica rRNA sequences and were enriched within a few days in both conditions. Other typical oil degrading bacteria such as Alcanivorax (n-alkane degrader) and Cycloclasticus (polycyclic aromatic hydrocarbons degrader) were rapidly enriched only in NSC conditions. Both the strong correlation between Oleispira SSU gene copies and oil concentration, and the specificity of the Oleispira assay suggest that this organism is a robust bioindicator for seawater contaminated by petroleum in cold water environments. Further optimization for automation of the Oleispira assay for in situ analysis with a genosensing device is underway. The assay for Colwellia quantification requires more specificity to fewer Colwellia OTUs and a well-established dose-response relationship before those taxa are used for oil tracking purposes.
Collapse
Affiliation(s)
- Adriana Krolicka
- NORCE - Norwegian Research Centre - Environment, Mekjarvik 12, 4070 Randaberg, Norway.
| | - Catherine Boccadoro
- NORCE - Norwegian Research Centre - Environment, Mekjarvik 12, 4070 Randaberg, Norway
| | - Mari Mæland Nilsen
- NORCE - Norwegian Research Centre - Environment, Mekjarvik 12, 4070 Randaberg, Norway
| | - Elif Demir-Hilton
- Monterey Bay Aquarium Research Institute, Sandholdt Road, Moss Landing, CA, USA
| | - Jim Birch
- Monterey Bay Aquarium Research Institute, Sandholdt Road, Moss Landing, CA, USA
| | - Christina Preston
- Monterey Bay Aquarium Research Institute, Sandholdt Road, Moss Landing, CA, USA
| | - Chris Scholin
- Monterey Bay Aquarium Research Institute, Sandholdt Road, Moss Landing, CA, USA
| | - Thierry Baussant
- NORCE - Norwegian Research Centre - Environment, Mekjarvik 12, 4070 Randaberg, Norway
| |
Collapse
|
41
|
Rizzo C, Malavenda R, Gerçe B, Papale M, Syldatk C, Hausmann R, Bruni V, Michaud L, Lo Giudice A, Amalfitano S. Effects of a Simulated Acute Oil Spillage on Bacterial Communities from Arctic and Antarctic Marine Sediments. Microorganisms 2019; 7:microorganisms7120632. [PMID: 31801240 PMCID: PMC6956123 DOI: 10.3390/microorganisms7120632] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/26/2019] [Accepted: 11/28/2019] [Indexed: 11/16/2022] Open
Abstract
Background: The bacterial community responses to oil spill events are key elements to predict the fate of hydrocarbon pollution in receiving aquatic environments. In polar systems, cold temperatures and low irradiance levels can limit the effectiveness of contamination removal processes. In this study, the effects of a simulated acute oil spillage on bacterial communities from polar sediments were investigated, by assessing the role of hydrocarbon mixture, incubation time and source bacterial community in selecting oil-degrading bacterial phylotypes. Methods: The bacterial hydrocarbon degradation was evaluated by gas chromatography. Flow cytometric and fingerprinting profiles were used to assess the bacterial community dynamics over the experimental incubation time. Results: Direct responses to the simulated oil spill event were found from both Arctic and Antarctic settings, with recurrent bacterial community traits and diversity profiles, especially in crude oil enrichment. Along with the dominance of Pseudomonas spp., members of the well-known hydrocarbon degraders Granulosicoccus spp. and Cycloclasticus spp. were retrieved from both sediments. Conclusions: Our findings indicated that polar bacterial populations are able to respond to the detrimental effects of simulated hydrocarbon pollution, by developing into a more specialized active oil degrading community.
Collapse
Affiliation(s)
- Carmen Rizzo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (C.R.); (R.M.)
| | - Roberta Malavenda
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (C.R.); (R.M.)
| | - Berna Gerçe
- Institute of Process Engineering in Life Sciences, Section II: Technical Biology, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany; (B.G.)
| | - Maria Papale
- Institute of Polar Sciences, National Research Council (CNR-ISP), 98122 Messina, Italy;
| | - Christoph Syldatk
- Institute of Process Engineering in Life Sciences, Section II: Technical Biology, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany; (B.G.)
| | - Rudolf Hausmann
- Department of Bioprocess Engineering, Institute of Food Science and Biotechnology, University of Hohenheim, 70599 Stuttgart, Germany;
| | - Vivia Bruni
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (C.R.); (R.M.)
| | - Luigi Michaud
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (C.R.); (R.M.)
| | - Angelina Lo Giudice
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (C.R.); (R.M.)
- Institute of Polar Sciences, National Research Council (CNR-ISP), 98122 Messina, Italy;
- Correspondence: ; Tel.: +00-3909-0601-5415
| | - Stefano Amalfitano
- Water Research Institute, National Research Council (CNR-IRSA), 00015 Rome, Italy;
| |
Collapse
|
42
|
Vergeynst L, Greer CW, Mosbech A, Gustavson K, Meire L, Poulsen KG, Christensen JH. Biodegradation, Photo-oxidation, and Dissolution of Petroleum Compounds in an Arctic Fjord during Summer. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:12197-12206. [PMID: 31566367 DOI: 10.1021/acs.est.9b03336] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Increased economic activity in the Arctic may increase the risk of oil spills. Yet, little is known about the degradation of oil spills by solar radiation and the impact of nutrient limitation on oil biodegradation under Arctic conditions. We deployed adsorbents coated with thin oil films for up to 4 months in a fjord in SW Greenland to simulate and investigate in situ biodegradation and photo-oxidation of dispersed oil droplets. Oil compound depletion by dissolution, biodegradation, and photo-oxidation was untangled by gas chromatography-mass spectrometry-based oil fingerprinting. Biodegradation was limited by low nutrient concentrations, reaching 97% removal of nC13-26-alkanes only after 112 days. Sequencing of bacterial DNA showed the slow development of a bacterial biofilm on the oil films predominated by the known oil degrading bacteria Oleispira, Alkanindiges and Cycloclasticus. These taxa could be related to biodegradation of shorter-chain (≤C26) alkanes, longer-chain (≥C16) and branched alkanes, and polycyclic aromatic compounds (PACs), respectively. The combination of biodegradation, dissolution, and photo-oxidation depleted most PACs at substantially faster rates than the biodegradation of alkanes. In Arctic fjords during summer, nutrient limitation may severely delay oil biodegradation, but in the photic zone, photolytic transformation of PACs may play an important role.
Collapse
Affiliation(s)
| | - Charles W Greer
- National Research Council Canada , Montreal H4P 2R2 , Quebec , Canada
| | | | | | - Lorenz Meire
- Greenland Climate Research Centre , Greenland Institute of Natural Resources , Nuuk 3900 , Greenland
- Department of Estuarine and Delta Systems, Royal Netherlands Institute of Sea Research , Utrecht University , Yerseke 4401 NT , The Netherlands
| | - Kristoffer G Poulsen
- Department of Plant and Environmental Sciences, Faculty of Science , University of Copenhagen , Copenhagen 1871 , Denmark
| | - Jan H Christensen
- Department of Plant and Environmental Sciences, Faculty of Science , University of Copenhagen , Copenhagen 1871 , Denmark
| |
Collapse
|
43
|
Hydrocarbon-Degrading Microbial Communities Are Site Specific, and Their Activity Is Limited by Synergies in Temperature and Nutrient Availability in Surface Ocean Waters. Appl Environ Microbiol 2019; 85:AEM.00443-19. [PMID: 31126938 DOI: 10.1128/aem.00443-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/16/2019] [Indexed: 11/20/2022] Open
Abstract
The objective of this study was to quantify the potential for hydrocarbon biodegradation in surface waters of three sites, representing geographic regions of major oil exploration (Beaufort Sea in the Arctic, northern Gulf of Mexico [GOM], and southern GOM), in a systematic experimental design that incorporated gradients in temperature and the availability of major nutrients. Surface seawater was amended in microcosms with Macondo surrogate oil to simulate an oil slick, and microcosms were incubated, with or without nutrient amendment, at temperatures ranging from 4 to 38ºC. Using respiration rate as a proxy, distinct temperature responses were observed in surface seawater microcosms based on geographic origin; biodegradation was nearly always more rapid in the Arctic site samples than in the GOM samples. Nutrient amendment enhanced respiration rates by a factor of approximately 6, stimulated microbial growth, and generally elevated the taxonomic diversity of microbial communities within the optimal temperature range for activity at each site, while diversity remained the same or was lower at temperatures deviating from optimal conditions. Taken together, our results advance the understanding of how bacterioplankton communities from different geographic regions respond to oil perturbation. A pulsed disturbance of oil is proposed to favor copiotrophic r-strategists that are adapted to pointed seasonal inputs of phytoplankton carbon, displaying carbon and nutrient limitations, rather than oil exposure history. Further understanding of the ecological mechanisms underpinning the complex environmental controls of hydrocarbon degradation is required for improvement of predictive models of the fate and transport of spilled oil in marine environments.IMPORTANCE The risk of an oil spill accident in pristine regions of the world's oceans is increasing due to the development and transport of crude oil resources, especially in the Arctic region, as a result of the opening of ice-free transportation routes, and there is currently no consensus regarding the complex interplay among the environmental controls of petroleum hydrocarbon biodegradation for predictive modeling. We examined the hydrocarbon biodegradation potential of bacterioplankton from three representative geographic regions of oil exploration. Our results showed that rates of aerobic respiration coupled to hydrocarbon degradation in surface ocean waters are controlled to a large extent by effects of temperature and nutrient limitation; hydrocarbon exposure history did not appear to have a major impact. Further, the relationship between temperature and biodegradation rates is linked to microbial community structure, which is specific to the geographic origin.
Collapse
|
44
|
Tremblay J, Fortin N, Elias M, Wasserscheid J, King TL, Lee K, Greer CW. Metagenomic and metatranscriptomic responses of natural oil degrading bacteria in the presence of dispersants. Environ Microbiol 2019; 21:2307-2319. [PMID: 30927379 DOI: 10.1111/1462-2920.14609] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 03/21/2019] [Accepted: 03/24/2019] [Indexed: 01/02/2023]
Abstract
Oil biodegradation has been extensively studied in the wake of the deepwater horizon spill, but the application of dispersant to oil spills in marine environments remains controversial. Here, we report metagenomic (MG) and metatranscriptomic (MT) data mining from microcosm experiments investigating the oil degrading potential of Canadian west and east coasts to estimate the gene abundance and activity of oil degrading bacteria in the presence of dispersant. We found that the addition of dispersant to crude oil mainly favours the abundance of Thalassolituus in the summer and Oleispira in the winter, two key natural oil degrading bacteria. We found a high abundance of genes related not only to n-alkane and aromatics degradation but also associated with transporters, two-component systems, bacterial motility, secretion systems and bacterial chemotaxis.
Collapse
Affiliation(s)
- Julien Tremblay
- Energy, Mining and Environment, National Research Council Canada, 6100 Royalmount Avenue, Montreal, Quebec, H4P2R2, Canada
| | - Nathalie Fortin
- Energy, Mining and Environment, National Research Council Canada, 6100 Royalmount Avenue, Montreal, Quebec, H4P2R2, Canada
| | - Miria Elias
- Energy, Mining and Environment, National Research Council Canada, 6100 Royalmount Avenue, Montreal, Quebec, H4P2R2, Canada
| | - Jessica Wasserscheid
- Energy, Mining and Environment, National Research Council Canada, 6100 Royalmount Avenue, Montreal, Quebec, H4P2R2, Canada
| | - Thomas L King
- Centre for Offshore Oil, Gas and Energy Research (COOGER), Fisheries and Oceans Canada, Dartmouth, Nova Scotia, B2Y4A2, Canada
| | - Kenneth Lee
- Fisheries and Oceans Canada, Bedford Institute of Oceanography, PO Box 1006, Dartmouth, Nova Scotia, B2Y4A2, Canada
| | - Charles W Greer
- Energy, Mining and Environment, National Research Council Canada, 6100 Royalmount Avenue, Montreal, Quebec, H4P2R2, Canada
| |
Collapse
|
45
|
Cerro-Gálvez E, Casal P, Lundin D, Piña B, Pinhassi J, Dachs J, Vila-Costa M. Microbial responses to anthropogenic dissolved organic carbon in the Arctic and Antarctic coastal seawaters. Environ Microbiol 2019; 21:1466-1481. [PMID: 30838733 DOI: 10.1111/1462-2920.14580] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/21/2019] [Accepted: 03/03/2019] [Indexed: 11/29/2022]
Abstract
Thousands of semi-volatile hydrophobic organic pollutants (OPs) reach open oceans through atmospheric deposition, causing a chronic and ubiquitous pollution by anthropogenic dissolved organic carbon (ADOC). Hydrophobic ADOC accumulates in cellular lipids, inducing harmful effects on marine biota, and can be partially prone to microbial degradation. Unfortunately, their possible effects on microorganisms, key drivers of global biogeochemical cycles, remain unknown. We challenged coastal microbial communities from Ny-Ålesund (Arctic) and Livingston Island (Antarctica) with ADOC concentrations within the range of oceanic concentrations in 24 h. ADOC addition elicited clear transcriptional responses in multiple microbial heterotrophic metabolisms in ubiquitous groups such as Flavobacteriia, Gammaproteobacteria and SAR11. Importantly, a suite of cellular adaptations and detoxifying mechanisms, including remodelling of membrane lipids and transporters, was detected. ADOC exposure also changed the composition of microbial communities, through stimulation of rare biosphere taxa. Many of these taxa belong to recognized OPs degraders. This work shows that ADOC at environmentally relevant concentrations substantially influences marine microbial communities. Given that emissions of organic pollutants are growing during the Anthropocene, the results shown here suggest an increasing influence of ADOC on the structure of microbial communities and the biogeochemical cycles regulated by marine microbes.
Collapse
Affiliation(s)
- Elena Cerro-Gálvez
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, Barcelona, 08034, Catalunya, Spain
| | - Paulo Casal
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, Barcelona, 08034, Catalunya, Spain
| | - Daniel Lundin
- Centre for Ecology and Evolution in Microbial Model Systems, EEMiS, Linnaeus University, Barlastgatan 11, 39182, Kalmar, Sweden
| | - Benjamin Piña
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, Barcelona, 08034, Catalunya, Spain
| | - Jarone Pinhassi
- Centre for Ecology and Evolution in Microbial Model Systems, EEMiS, Linnaeus University, Barlastgatan 11, 39182, Kalmar, Sweden
| | - Jordi Dachs
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, Barcelona, 08034, Catalunya, Spain
| | - Maria Vila-Costa
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, Barcelona, 08034, Catalunya, Spain
| |
Collapse
|
46
|
Vergeynst L, Christensen JH, Kjeldsen KU, Meire L, Boone W, Malmquist LMV, Rysgaard S. In situ biodegradation, photooxidation and dissolution of petroleum compounds in Arctic seawater and sea ice. WATER RESEARCH 2019; 148:459-468. [PMID: 30408732 DOI: 10.1016/j.watres.2018.10.066] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 06/08/2023]
Abstract
In pristine sea ice-covered Arctic waters the potential of natural attenuation of oil spills has yet to be uncovered, but increasing shipping and oil exploitation may bring along unprecedented risks of oil spills. We deployed adsorbents coated with thin oil films for up to 2.5 month in ice-covered seawater and sea ice in Godthaab Fjord, SW Greenland, to simulate and investigate in situ biodegradation and photooxidation of dispersed oil. GC-MS-based chemometric methods for oil fingerprinting were used to identify characteristic signatures for dissolution, biodegradation and photooxidation. In sub-zero temperature seawater, fast degradation of n-alkanes was observed with estimated half-life times of ∼7 days. PCR amplicon sequencing and qPCR quantification of bacterial genes showed that a biofilm with a diverse microbial community colonised the oil films, yet a population related to the psychrophilic hydrocarbonoclastic gammaproteobacterium Oleispira antarctica seemed to play a key role in n-alkane degradation. Although Oleispira populations were also present in sea ice, we found that biofilms in sea ice had 25 to 100 times lower bacterial densities than in seawater, which explained the non-detectable n-alkane degradation in sea ice. Fingerprinting revealed that photooxidation, but not biodegradation, transformed polycyclic aromatic compounds through 50 cm-thick sea ice and in the upper water column with removal rates up to ∼1% per day. Overall, our results showed a fast biodegradation of n-alkanes in sea ice-covered seawater, but suggested that oils spills will expose the Arctic ecosystem to bio-recalcitrant PACs over prolonged periods of time.
Collapse
Affiliation(s)
- Leendert Vergeynst
- Arctic Research Centre, Aarhus University, Aarhus, Denmark; Section for Microbiology and Center for Geomicrobiology, Department of Bioscience, Aarhus University, Aarhus, Denmark.
| | - Jan H Christensen
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Kasper Urup Kjeldsen
- Section for Microbiology and Center for Geomicrobiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Lorenz Meire
- Greenland Climate Research Centre, Greenland Institute of Natural Resources, Nuuk, Greenland; Department of Estuarine and Delta Systems, Royal Netherlands Institute of Sea Research, Utrecht University, Yerseke, Netherlands
| | - Wieter Boone
- Centre for Earth Observation Science, University of Manitoba, Winnipeg, Canada
| | - Linus M V Malmquist
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Søren Rysgaard
- Arctic Research Centre, Aarhus University, Aarhus, Denmark; Centre for Earth Observation Science, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
47
|
Casal P, Cabrerizo A, Vila-Costa M, Pizarro M, Jiménez B, Dachs J. Pivotal Role of Snow Deposition and Melting Driving Fluxes of Polycyclic Aromatic Hydrocarbons at Coastal Livingston Island (Antarctica). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:12327-12337. [PMID: 30277758 DOI: 10.1021/acs.est.8b03640] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The atmosphere-land-ocean dynamics of semivolatile organic compounds in polar regions is poorly understood, also for the abundant and ubiquitous polycyclic aromatic hydrocarbons (PAHs). We report the concentrations and fluxes of PAHs in a polar coastal ecosystem (Livingston Island, Antarctica). From late spring (December 2014) to late summer (February 2015), we sampled air, snow, coastal seawater, plankton, and the fugacity in soils and snow. The concentrations of PAHs in seawater were low but increased during the austral summer. The PAH concentrations in snow were significantly higher than in coastal seawater. Soil-air fugacity ratios showed a net volatilization of PAH when soils were covered with lichens, and close to air-soil equilibrium for bare soils. Concentrations in surface snow were also close to equilibrium with atmospheric PAHs. Conversely, there was a net diffusive deposition of PAHs to coastal seawater during late spring, but a net volatilization from seawater during late summer. Volatilization fluxes were correlated with seawater temperature and salinity, consistent with a key role of snowmelt to the fluxes and dissolved phase concentrations during the austral summer. The comprehensive assessment provided here shows that the fugacity amplification in snow is transferred to soils and coastal seawater supporting PAH concentrations and fluxes.
Collapse
Affiliation(s)
- Paulo Casal
- Institute of Environmental Assessment and Water Research , Spanish National Research Council (IDAEA-CSIC) , Jordi Girona 18-26 , Barcelona , Catalonia 08034 , Spain
| | - Ana Cabrerizo
- Institute of Environmental Assessment and Water Research , Spanish National Research Council (IDAEA-CSIC) , Jordi Girona 18-26 , Barcelona , Catalonia 08034 , Spain
| | - Maria Vila-Costa
- Institute of Environmental Assessment and Water Research , Spanish National Research Council (IDAEA-CSIC) , Jordi Girona 18-26 , Barcelona , Catalonia 08034 , Spain
| | - Mariana Pizarro
- Institute of Environmental Assessment and Water Research , Spanish National Research Council (IDAEA-CSIC) , Jordi Girona 18-26 , Barcelona , Catalonia 08034 , Spain
| | - Begoña Jiménez
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry , Spanish National Research Council (IQOG-CSIC) , Madrid 28006 , Spain
| | - Jordi Dachs
- Institute of Environmental Assessment and Water Research , Spanish National Research Council (IDAEA-CSIC) , Jordi Girona 18-26 , Barcelona , Catalonia 08034 , Spain
| |
Collapse
|
48
|
Boccadoro C, Krolicka A, Receveur J, Aeppli C, Le Floch S. Microbial community response and migration of petroleum compounds during a sea-ice oil spill experiment in Svalbard. MARINE ENVIRONMENTAL RESEARCH 2018; 142:214-233. [PMID: 30466605 DOI: 10.1016/j.marenvres.2018.09.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 08/02/2018] [Accepted: 09/04/2018] [Indexed: 06/09/2023]
Abstract
This paper concerns the migration of oil through sea-ice and the biodegradation of different hydrocarbons in sea-ice and seawater following in situ oil spills in megacosms exposed to winter and spring conditions in Svalbard (80°N). Hydrocarbon-degrading microbes were detected in ice cores and the analysis of metabolically active bacterial populations in the different layers of sea-ice indicate significant population shifts following oil exposure, whether dispersant addition or oil burning was carried out or not. The presence of dispersant in the system was associated with the most pronounced and fastest population shifts out of all exposures, as well as lower bacterial diversity as measured by the Shannon index. Microorganisms were metabolically most active in the bottom layer of the sea ice and our data confirmed the predominance of Oleispira and Colwellia aestuarii in sea-ice. Migration of polycyclic aromatics through the sea-ice layer was observed when dispersant was added to the oil, and the presence of oil degrading organisms below the ice-layer was consistent with biodegradation taking place. Given the thickness and concentration of the oil-layer frozen into the ice, the bioavailability of the hydrocarbons was nevertheless limited. Consequently, much of the bulk of the oil remained intact.
Collapse
Affiliation(s)
- Catherine Boccadoro
- International Research Institute of Stavanger (IRIS), Prof. Olav Hanssensvei 15, 4021, Stavanger, Norway.
| | - Adriana Krolicka
- International Research Institute of Stavanger (IRIS), Prof. Olav Hanssensvei 15, 4021, Stavanger, Norway
| | | | | | | |
Collapse
|
49
|
Gontikaki E, Potts L, Anderson J, Witte U. Hydrocarbon-degrading bacteria in deep-water subarctic sediments (Faroe-Shetland Channel). J Appl Microbiol 2018; 125:1040-1053. [PMID: 29928773 PMCID: PMC6849767 DOI: 10.1111/jam.14030] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 05/16/2018] [Accepted: 06/18/2018] [Indexed: 02/04/2023]
Abstract
AIMS The aim of this study was the baseline description of oil-degrading sediment bacteria along a depth transect in the Faroe-Shetland Channel (FSC) and the identification of biomarker taxa for the detection of oil contamination in FSC sediments. METHODS AND RESULTS Oil-degrading sediment bacteria from 135, 500 and 1000 m were enriched in cultures with crude oil as the sole carbon source (at 12, 5 and 0°C respectively). The enriched communities were studied using culture-dependent and culture-independent (clone libraries) techniques. Isolated bacterial strains were tested for hydrocarbon degradation capability. Bacterial isolates included well-known oil-degrading taxa and several that are reported in that capacity for the first time (Sulfitobacter, Ahrensia, Belliella, Chryseobacterium). The orders Oceanospirillales and Alteromonadales dominated clone libraries in all stations but significant differences occurred at genus level particularly between the shallow and the deep, cold-water stations. Alcanivorax constituted 64% of clones at FSC135 but was absent at deeper stations. Pseudoalteromonas and Oleispira dominated the bacterial community at 500 and 1000 m. CONCLUSIONS The genus Oleispira emerged as a major player in the early stages of crude oil degradation in deep-sea sediments of the FSC particularly at subzero temperatures. This finding is offering a direction for future research into biomonitoring tools for the detection of low levels of crude oil contamination in the deep FSC, and possibly high latitude cold waters in general. SIGNIFICANCE AND IMPACT OF THE STUDY Oil and gas exploration in the FSC occurs at depths >1000 m but baseline environmental data necessary for the assessment of ecosystem recovery to prespill conditions in the event of an oil spill are lacking. This study will contribute to our ability to assess the impact of oil release in the FSC and guide the direction of bioremediation strategies tailored to the area.
Collapse
Affiliation(s)
- E. Gontikaki
- School of Biological SciencesUniversity of AberdeenAberdeenUK
| | - L.D. Potts
- School of Biological SciencesUniversity of AberdeenAberdeenUK
| | - J.A. Anderson
- Surface Chemistry and Catalysis Group, Materials and Chemical Engineering, School of EngineeringUniversity of AberdeenAberdeenUK
| | - U. Witte
- School of Biological SciencesUniversity of AberdeenAberdeenUK
| |
Collapse
|
50
|
McFarlin KM, Perkins MJ, Field JA, Leigh MB. Biodegradation of Crude Oil and Corexit 9500 in Arctic Seawater. Front Microbiol 2018; 9:1788. [PMID: 30147678 PMCID: PMC6096335 DOI: 10.3389/fmicb.2018.01788] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/17/2018] [Indexed: 12/22/2022] Open
Abstract
The need to understand the biodegradation of oil and chemical dispersants in Arctic marine environments is increasing alongside growth in oil exploration and transport in the region. We chemically quantified biodegradation and abiotic losses of crude oil and Corexit 9500, when present separately, in incubations of Arctic seawater and identified microorganisms potentially involved in biodegradation of these substrates based on shifts in bacterial community structure (16S rRNA genes) and abundance of biodegradation genes (GeoChip 5.0 microarray). Incubations were performed over 28-day time courses using surface seawater collected from near-shore and offshore locations in the Chukchi Sea. Within 28 days, the indigenous microbial community biodegraded 36% (k = 0.010 day-1) and 41% (k = 0.014 day-1) of oil and biodegraded 77% and 33% (k = 0.015 day-1) of the Corexit 9500 component dioctyl sodium sulfosuccinate (DOSS) in respective near-shore and offshore incubations. Non-ionic surfactants (Span 80, Tween 80, and Tween 85) present in Corexit 9500 were non-detectable by 28 days due to a combination of abiotic losses and biodegradation. Microorganisms utilized oil and Corexit 9500 as growth substrates during the incubation, with the Corexit 9500 stimulating more extensive growth than oil within 28 days. Taxa known to include oil-degrading bacteria (e.g., Oleispira, Polaribacter, and Colwellia) and some oil biodegradation genes (e.g., alkB, nagG, and pchCF) increased in relative abundance in response to both oil and Corexit 9500. These results increase our understanding of oil and dispersant biodegradation in the Arctic and suggest that some bacteria may be capable of biodegrading both oil and Corexit 9500.
Collapse
Affiliation(s)
- Kelly M McFarlin
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Matt J Perkins
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States
| | - Jennifer A Field
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States
| | - Mary B Leigh
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, United States
| |
Collapse
|