1
|
Hou M, Zhu J, Leng C, Huang X, Yang M, Yin Y, Xing Y, Chen J. Composition and Biodiversity of Culturable Endophytic Fungi in the Roots of Alpine Medicinal Plants in Xinjiang, China. J Fungi (Basel) 2025; 11:113. [PMID: 39997407 PMCID: PMC11856231 DOI: 10.3390/jof11020113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/19/2025] [Accepted: 02/01/2025] [Indexed: 02/26/2025] Open
Abstract
(1) Background: Endophytic fungi play an important role in plant growth and stress resistance. The presence of a special fungal taxon such as the dark septate endophytic (DSE) fungi in alpine environments is particularly important for plant resistance to environmental stresses. However, the composition of root endophytic fungi in different environments and between different host plants has not been well studied. (2) Results: A total of 408 culturable endophytic fungi were isolated from the roots of Saussurea involucrata and Rhodiola crenulata which were collected in 5 plots from the Tianshan and Karakoram Mountains of the Xinjiang region, belonging to 91 species, 54 genera, 31 families, and 3 phyla based on the morphological characteristics and molecular sequence. Among them, DSE fungi were the dominant group, accounting for 52.94%, and Leptodontidium orchidicola was the dominant species. In addition, we also compared the composition and diversity of root endophytic fungi from different plants and different sites, with emphasis on special fungal taxa such as DSE. (3) Conclusions: The composition and diversity of cultural endophytic fungi are significantly different in the two alpine medicinal plant species and across various locations. Some fungi showed the preferences of the host or environment. The endophytic fungal resources, especially DSE, were very rich in the two alpine medicinal plants, indicating that these fungi may play a crucial role in the ecological adaptation of host plants in harsh environments.
Collapse
Affiliation(s)
- Mengyan Hou
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, China; (M.H.); (C.L.); (X.H.); (M.Y.); (Y.Y.)
| | - Jun Zhu
- Xinjiang Institute of Chinese and Ethnic Medicine, Urumqi 830002, China;
| | - Chunyan Leng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, China; (M.H.); (C.L.); (X.H.); (M.Y.); (Y.Y.)
| | - Xinjie Huang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, China; (M.H.); (C.L.); (X.H.); (M.Y.); (Y.Y.)
| | - Mingshu Yang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, China; (M.H.); (C.L.); (X.H.); (M.Y.); (Y.Y.)
| | - Yifei Yin
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, China; (M.H.); (C.L.); (X.H.); (M.Y.); (Y.Y.)
| | - Yongmei Xing
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, China; (M.H.); (C.L.); (X.H.); (M.Y.); (Y.Y.)
| | - Juan Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, China; (M.H.); (C.L.); (X.H.); (M.Y.); (Y.Y.)
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, China
| |
Collapse
|
2
|
Netherway T, Bahram M. Melanized root-associated fungi: key players in plant-soil systems. Trends Microbiol 2024; 32:1190-1199. [PMID: 38987052 DOI: 10.1016/j.tim.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/03/2024] [Accepted: 06/21/2024] [Indexed: 07/12/2024]
Abstract
Melanized root-associated fungi are a group of fungi that produce melanized structures and form root associations, including different mycorrhizal and endophytic symbioses with plants. They are pervasive across terrestrial ecosystems and play an important role in the prevailing soil carbon (C) and nutrient cycling syndromes through direct and indirect mechanisms, where they may strongly modulate plant-microbe interactions and structure root and soil microbiomes. Furthermore, melanized root-associated fungi can confer on plants an enhanced ability to tolerate abiotic and biotic stressors such as drought, extreme temperatures, heavy metals, and pathogen attacks. We propose that melanized root-associated fungi are a cohesive and ecologically relevant grouping that can be an indicator of plant-soil system functioning, and considering them will advance research on plant-soil interactions.
Collapse
Affiliation(s)
- Tarquin Netherway
- Department of Ecology, Swedish University of Agricultural Sciences, Ulls väg 16, 756 51 Uppsala, Sweden.
| | - Mohammad Bahram
- Department of Ecology, Swedish University of Agricultural Sciences, Ulls väg 16, 756 51 Uppsala, Sweden; Department of Agroecology, Aarhus University, Slagelse, Denmark; Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| |
Collapse
|
3
|
Gajdošová Z, Caboň M, Kolaříková Z, Sudová R, Rydlová J, Turisová I, Turis P, Kučera J, Slovák M. Environmental heterogeneity structures root-associated fungal communities in Daphne arbuscula (Thymelaeaceae), a shrub adapted to extreme rocky habitats. Mol Ecol 2024; 33:e17441. [PMID: 38923648 DOI: 10.1111/mec.17441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/04/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
Rocky habitats, globally distributed ecosystems, harbour diverse biota, including numerous endemic and endangered species. Vascular plants thriving in these environments face challenging abiotic conditions, requiring diverse morphological and physiological adaptations. Their engagement with the surrounding microbiomes is, however, equally vital for their adaptation, fitness, and long-term survival. Nevertheless, there remains a lack of understanding surrounding this complex interplay within this fascinating biotic ecosystem. Using microscopic observations and metabarcoding analyses, we examined the fungal abundance and diversity in the root system of the rock-dwelling West Carpathian endemic shrub, Daphne arbuscula (Thymelaeaceae). We explored the diversification of root-associated fungal communities in relation to microclimatic variations across the studied sites. We revealed extensive colonization of the Daphne roots by diverse taxonomic fungal groups attributed to different ecological guilds, predominantly plant pathogens, dark septate endophytes (DSE), and arbuscular mycorrhizal fungi (AMF). Notably, differences in taxonomic composition and ecological guilds emerged between colder and warmer microenvironments. Apart from omnipresent AMF, warmer sites exhibited a prevalence of plant pathogens, while colder sites were characterized by a dominance of DSE. This mycobiome diversification, most likely triggered by the environment, suggests that D. arbuscula populations in warmer areas may be more vulnerable to fungal diseases, particularly in the context of global climate change.
Collapse
Affiliation(s)
- Zuzana Gajdošová
- Plant Sciences and Biodiversity Centre, Institute of Botany, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Miroslav Caboň
- Plant Sciences and Biodiversity Centre, Institute of Botany, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Zuzana Kolaříková
- Institute of Botany of the Czech Academy of Sciences, Průhonice, Czech Republic
| | - Radka Sudová
- Institute of Botany of the Czech Academy of Sciences, Průhonice, Czech Republic
| | - Jana Rydlová
- Institute of Botany of the Czech Academy of Sciences, Průhonice, Czech Republic
| | - Ingrid Turisová
- Department of Biology, Ecology and Environment, Faculty of Natural Sciences, Matej Bel University in Banská Bystrica, Banská Bystrica, Slovakia
| | - Peter Turis
- Department of Biology, Ecology and Environment, Faculty of Natural Sciences, Matej Bel University in Banská Bystrica, Banská Bystrica, Slovakia
| | - Jaromír Kučera
- Plant Sciences and Biodiversity Centre, Institute of Botany, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Marek Slovák
- Plant Sciences and Biodiversity Centre, Institute of Botany, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Botany, Faculty of Science, Charles University, Praha, Czech Republic
| |
Collapse
|
4
|
Netherway T, Bengtsson J, Buegger F, Fritscher J, Oja J, Pritsch K, Hildebrand F, Krab EJ, Bahram M. Pervasive associations between dark septate endophytic fungi with tree root and soil microbiomes across Europe. Nat Commun 2024; 15:159. [PMID: 38167673 PMCID: PMC10761831 DOI: 10.1038/s41467-023-44172-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
Trees interact with a multitude of microbes through their roots and root symbionts such as mycorrhizal fungi and root endophytes. Here, we explore the role of fungal root symbionts as predictors of the soil and root-associated microbiomes of widespread broad-leaved trees across a European latitudinal gradient. Our results suggest that, alongside factors such as climate, soil, and vegetation properties, root colonization by ectomycorrhizal, arbuscular mycorrhizal, and dark septate endophytic fungi also shapes tree-associated microbiomes. Notably, the structure of root and soil microbiomes across our sites is more strongly and consistently associated with dark septate endophyte colonization than with mycorrhizal colonization and many abiotic factors. Root colonization by dark septate endophytes also has a consistent negative association with the relative abundance and diversity of nutrient cycling genes. Our study not only indicates that root-symbiotic interactions are an important factor structuring soil communities and functions in forest ecosystems, but also that the hitherto less studied dark septate endophytes are likely to be central players in these interactions.
Collapse
Affiliation(s)
- Tarquin Netherway
- Department of Ecology, Swedish University of Agricultural Sciences, Ulls väg 16, 756 51, Uppsala, Sweden.
| | - Jan Bengtsson
- Department of Ecology, Swedish University of Agricultural Sciences, Ulls väg 16, 756 51, Uppsala, Sweden
| | - Franz Buegger
- Research Unit for Environmental Simulation (EUS), German Research Center for Environmental Health, Helmholtz Zentrum München, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| | - Joachim Fritscher
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, NR4 7UQ, UK
- Digital Biology, Earlham Institute, Norwich Research Park, Norwich, Norfolk, NR4 7UQ, UK
| | - Jane Oja
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai St, Tartu, Estonia
| | - Karin Pritsch
- Research Unit for Environmental Simulation (EUS), German Research Center for Environmental Health, Helmholtz Zentrum München, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| | - Falk Hildebrand
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, NR4 7UQ, UK
- Digital Biology, Earlham Institute, Norwich Research Park, Norwich, Norfolk, NR4 7UQ, UK
| | - Eveline J Krab
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Lennart Hjelms väg 9, 750 07, Uppsala, Sweden
| | - Mohammad Bahram
- Department of Ecology, Swedish University of Agricultural Sciences, Ulls väg 16, 756 51, Uppsala, Sweden
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai St, Tartu, Estonia
| |
Collapse
|
5
|
Kalwasińska A, Hulisz P, Szabó A, Binod Kumar S, Michalski A, Solarczyk A, Wojciechowska A, Piernik A. Technogenic soil salinisation, vegetation, and management shape microbial abundance, diversity, and activity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167380. [PMID: 37774878 DOI: 10.1016/j.scitotenv.2023.167380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/01/2023]
Abstract
The importance of the microbiome in the functioning of degraded lands in industrialised zones is significant. However, little is known about how environmental parameters affect microbial abundance, structure, diversity, and especially specific guilds involved in the nitrogen cycle in saline soils influenced by the soda industry. To address this knowledge gap, our research focused on assessing the microbiota in relation to soil properties and plant species composition across two transects representing different types of land use: saline wasteland and arable fields. Our findings show that the microbial communities were the most affected not only by soil salinity but also by pH and the composition of plant species. Taxonomic variability was the most shaped by salinity together with management type and CaCO3 content. The impact of salinity on the soil microbiome was manifested in a reduced abundance of bacteria and fungi, a lower number of observed phylotypes, reduced modularity, and a lower abundance of the nitrifying guild. Denitrification and nitrogen fixation were less affected by salinity. The last process was correlated with calcium carbonate. CaCO3 was also associated with microbial taxonomic variability and the overall microbial activity caused by hydrolases, which could aid organic matter turnover in saline but carbonate-rich sites. Bacterial genera such as Bacillus, Peanibacillus, and Rhodomicrobium, in addition to fungal taxa such as Cadophora, Mortierella globalpina, Preussia flanaganii, and Chrysosporium pseudomerdarium, show potential as favourable candidates for possible bioremediation initiatives. These results can be applied to future land reclamation projects. FUNDING INFORMATION: This research received no specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
Collapse
Affiliation(s)
- Agnieszka Kalwasińska
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland.
| | - Piotr Hulisz
- Department of Soil Science and Landscape Management, Faculty of Earth Sciences and Spatial Management, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland
| | - Attila Szabó
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden; Institute of Aquatic Ecology, Centre for Ecological Research, Karolina út 29, 1113 Budapest, Hungary
| | - Sweta Binod Kumar
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland
| | - Adam Michalski
- Laboratory for Environmental Analysis, Faculty of Earth Sciences and Spatial Management, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland
| | - Adam Solarczyk
- Laboratory for Environmental Analysis, Faculty of Earth Sciences and Spatial Management, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland
| | - Anna Wojciechowska
- Department of Geobotany and Landscape Planning, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland
| | - Agnieszka Piernik
- Department of Geobotany and Landscape Planning, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland.
| |
Collapse
|
6
|
Sun X, Zhao Y, Ding G. Morphogenesis and metabolomics reveal the compatible relationship among Suillus bovinus, Phialocephala fortinii, and their co-host, Pinus massoniana. Microbiol Spectr 2023; 11:e0145323. [PMID: 37676026 PMCID: PMC10580909 DOI: 10.1128/spectrum.01453-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/11/2023] [Indexed: 09/08/2023] Open
Abstract
Ectomycorrhizal (ECM) fungi and dark septate endophytes (DSEs) can both form a symbiotic relationship with the same host plant. However, the interactions that occur among these two types of fungi and their co-hosts are largely unknown. Here, we investigated interactions that occur among the ECM fungus Suillus bovinus, the DSE Phialocephala fortinii, and their co-host Pinus massoniana. We used both scanning electron microscopy and optical microscopy to characterize the morphogenesis of the two symbionts and employed the ultra-high-performance liquid chromatography-tandem mass spectrometry technique to assess the effects of fungal inoculation on the root metabolome. Under pure culture conditions, no synergistic or antagonistic effects were observed between Phi. fortinii and S. bovinus. Generally, S. bovinus and Phi. fortinii can simultaneously colonize P. massoniana roots without affecting each other's symbiotic processes. S. bovinus can colonize the root locus where Phi. fortinii has already invaded but not vice versa, which may be due to the physical barrier effect of the mantle. Both fungi can significantly promote the growth of P. massoniana, and they have a synergistic effect on host N and K uptake. Metabolite accumulation patterns in roots inoculated with Phi. fortinii and/or S. bovinus were greatly altered, especially with respect to organic acids, flavonoids, lipids, and phenolic acids. S. bovinus inoculation significantly enhanced root flavonoid biosynthesis, whereas Phi. fortinii and dual-inoculation treatments mainly induced phenylpropanoid biosynthesis. These findings reveal compatible relationships among P. massoniana, S. bovinus, and Phi. fortinii, and suggest a theoretical basis for ECM fungi and DSE co-application when cultivating seedlings. IMPORTANCE The prevalence of both ectomycorrhizal fungi and dark septate endophytes in the roots of a wide spectrum of tree species is well recognized. In this study, we investigated the interactions that occur among the ECM fungus S. bovinus, the DSE Phi. fortinii, and their co-host, P. massoniana. The two fungi can simultaneously colonize P. massoniana roots without affecting each other's symbiotic processes. S. bovinus appears to be superior to Phi. fortinii in microniche competition, which may be due to the physical barrier effect of the mantle. The two fungi have different effects on root metabolite accumulation patterns. S. bovinus inoculation significantly enhanced root flavonoid biosynthesis, whereas Phi. fortinii and dual-inoculation treatments mainly induced phenylpropanoid biosynthesis. This is the first study revealing the morphological and metabolic mechanisms that contribute to the compatible relationship among ECM fungi, DSEs, and their co-host.
Collapse
Affiliation(s)
- Xueguang Sun
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang, China
- Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, Guizhou University, Guiyang, Guizhou, China
- College of Forestry, Guizhou University, Guiyang, China
| | - Yanzhen Zhao
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang, China
- Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, Guizhou University, Guiyang, Guizhou, China
- College of Forestry, Guizhou University, Guiyang, China
| | - Guijie Ding
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang, China
- Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, Guizhou University, Guiyang, Guizhou, China
- College of Forestry, Guizhou University, Guiyang, China
| |
Collapse
|
7
|
De Rocchis V, Jammer A, Camehl I, Franken P, Roitsch T. Tomato growth promotion by the fungal endophytes Serendipita indica and Serendipita herbamans is associated with sucrose de-novo synthesis in roots and differential local and systemic effects on carbohydrate metabolisms and gene expression. JOURNAL OF PLANT PHYSIOLOGY 2022; 276:153755. [PMID: 35961165 DOI: 10.1016/j.jplph.2022.153755] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/24/2022] [Accepted: 06/08/2022] [Indexed: 05/28/2023]
Abstract
Plant growth-promoting and stress resilience-inducing root endophytic fungi represent an additional carbohydrate sink. This study aims to test if such root endophytes affect the sugar metabolism of the host plant to divert the flow of resources for their purposes. Fresh and dry weights of roots and shoots of tomato (Solanum lycopersicum) colonised by the closely related Serendipita indica and Serendipita herbamans were recorded. Plant carbohydrate metabolism was analysed by measuring sugar levels, by determining activity signatures of key enzymes of carbohydrate metabolism, and by quantifying mRNA levels of genes involved in sugar transport and turnover. During the interaction with the tomato plants, both fungi promoted root growth and shifted shoot biomass from stem to leaf tissues, resulting in increased leaf size. A common effect induced by both fungi was the inhibition of phosphofructokinase (PFK) in roots and leaves. This glycolytic-pacing enzyme shows how the glycolysis rate is reduced in plants and, eventually, how sugars are allocated to different tissues. Sucrose phosphate synthase (SPS) activity was strongly induced in colonised roots. This was accompanied by increased SPS-A1 gene expression in S. herbamans-colonised roots and by increased sucrose amounts in roots colonised by S. indica. Other enzyme activities were barely affected by S. indica, but mainly induced in leaves of S. herbamans-colonised plants and decreased in roots. This study suggests that two closely related root endophytic fungi differentially influence plant carbohydrate metabolism locally and systemically, but both induce a similar increase in plant biomass. Notably, both fungal endophytes induce an increase in SPS activity and, in the case of S. indica, sucrose resynthesis in roots. In leaves of S. indica-colonised plants, SWEET11b expression was enhanced, thus we assume that excess sucrose was exported by this transporter to the roots. .
Collapse
Affiliation(s)
- Vincenzo De Rocchis
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany
| | - Alexandra Jammer
- Institute of Biology, University of Graz, NAWI Graz, Schubertstraße 51, 8010, Graz, Austria
| | - Iris Camehl
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany
| | - Philipp Franken
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany
| | - Thomas Roitsch
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Adaptive Biotechnologies, Global Change Research Institute, Czech Academy of Sciences, Brno, Czech Republic.
| |
Collapse
|
8
|
Insights into the beneficial roles of dark septate endophytes in plants under challenging environment: resilience to biotic and abiotic stresses. World J Microbiol Biotechnol 2022; 38:79. [PMID: 35332399 DOI: 10.1007/s11274-022-03264-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 03/09/2022] [Indexed: 12/22/2022]
Abstract
Dark septate endophytes (DSE) exert a plethora of effects in regulating plant growth, signalling and stress tolerance. The advent of metagenomics has led to the identification of various species of DSE to be associated with plant organs. They are known to modulate growth, nutrient uptake, phytohormone biosynthesis and production of active bioconstituents in several plants. The interactions between the DSE and host plants are mostly mutualistic but they can also be neutral or exhibit negative interactions. The DSE has beneficial role in removal/sequestration of toxic heavy metals from various environmental sites. Here, we discuss the beneficial role of DSE in enhancing plant tolerance to heavy metal stress, drought conditions, high salinity and protection from various plant pathogens. Furthermore, the underlying mechanism of stress resilience facilitated by DSE-plant interaction has also been discussed. The article also provides insights to some important future perspectives associated with DSE-mediated phytoremediation and reclamation of polluted land worldwide thus facilitating sustainable agriculture.
Collapse
|
9
|
Advances in the Role of Dark Septate Endophytes in the Plant Resistance to Abiotic and Biotic Stresses. J Fungi (Basel) 2021; 7:jof7110939. [PMID: 34829226 PMCID: PMC8622582 DOI: 10.3390/jof7110939] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 02/06/2023] Open
Abstract
Endophytic fungi have been studied in recent decades to understand how they interact with their hosts, the types of relationships they establish, and the potential effects of this interaction. Dark septate endophytes (DSE) are isolated from healthy plants and form melanised structures in the roots, including inter- and intracellular hyphae and microsclerotia, causing low host specificity and covering a wide geographic range. Many studies have revealed beneficial relationships between DSE and their hosts, such as enhanced plant growth, nutrient uptake, and resistance to biotic and abiotic stress. Furthermore, in recent decades, studies have revealed the ability of DSE to mitigate the negative effects of crop diseases, thereby highlighting DSE as potential biocontrol agents of plant diseases (BCAs). Given the importance of these fungi in nature, this article is a review of the role of DSE as BCAs. The findings of increasing numbers of studies on these fungi and their relationships with their plant hosts are also discussed to enable their use as a tool for the integrated management of crop diseases and pests.
Collapse
|
10
|
Antagonism to Plant Pathogens by Epichloë Fungal Endophytes-A Review. PLANTS 2021; 10:plants10101997. [PMID: 34685806 PMCID: PMC8539511 DOI: 10.3390/plants10101997] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/18/2021] [Accepted: 09/23/2021] [Indexed: 11/16/2022]
Abstract
Epichloë is a genus of filamentous fungal endophytes that has co-evolved with cool-season grasses with which they form long-term, symbiotic associations. The most agriculturally important associations for pasture persistence for grazing livestock are those between asexual vertically transmitted Epichloë strains and the pasture species, perennial ryegrass, and tall fescue. The fungus confers additional traits to their host grasses including invertebrate pest deterrence and drought tolerance. Selected strains of these mutualistic endophytes have been developed into highly efficacious biocontrol products and are widely utilized within the Americas, Australia, and New Zealand for pasture persistence. Less publicized is the antagonism Epichloë endophytes display towards multiple species of saprophytic and pathogenic microbes. This opinion piece will review the current literature on antimicrobial properties exhibited by this genus of endophyte and discuss the reasons why this trait has historically remained a research curiosity rather than a trait of commercial significance.
Collapse
|
11
|
Keeler E, Burgaud G, Teske A, Beaudoin D, Mehiri M, Dayras M, Cassand J, Edgcomb V. Deep-sea hydrothermal vent sediments reveal diverse fungi with antibacterial activities. FEMS Microbiol Ecol 2021; 97:6318858. [PMID: 34245561 DOI: 10.1093/femsec/fiab103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/08/2021] [Indexed: 12/18/2022] Open
Abstract
Relatively little is known about the diversity of fungi in deep-sea, hydrothermal sediments. Less thoroughly explored environments are likely untapped reservoirs of unique biodiversity with the potential to augment our current arsenal of microbial compounds with biomedical and/or industrial applications. In this study, we applied traditional culture-based methods to examine a subset of the morphological and phylogenetic diversity of filamentous fungi and yeasts present in 11 hydrothermally influenced sediment samples collected from eight sites on the seafloor of Guaymas Basin, Mexico. A total of 12 unique isolates affiliating with Ascomycota and Basidiomycota were obtained and taxonomically identified on the basis of morphological features and analyses of marker genes including actin, β-tubulin, small subunit ribosomal DNA (18S rRNA), internal transcribed spacer (ITS) and large subunit ribosomal DNA (26S rRNA) D1/D2 domain sequences (depending on taxon). A total of 11 isolates possess congeners previously detected in, or recovered from, deep-sea environments. A total of seven isolates exhibited antibacterial activity against human bacterial pathogens Staphylococcus aureus ATCC-35556 and/or Escherichia coli ATCC-25922. This first investigation suggests that hydrothermal environments may serve as promising reservoirs of much greater fungal diversity, some of which may produce biomedically useful metabolites.
Collapse
Affiliation(s)
- Emma Keeler
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, 220 McLean, Mail Stop 08, Woods Hole, MA 02543, USA
| | - Gaëtan Burgaud
- Laboratoire Universitaire de Biodiversité et Écologie Microbienne, ESIAB, Université de Brest, EA 3882, Technopôle Brest-Iroise, Plouzané, France
| | - Andreas Teske
- Department of Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill, Murray Hall 3117B, Chapel Hill, NC 27599, USA
| | - David Beaudoin
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, 220 McLean, Mail Stop 08, Woods Hole, MA 02543, USA
| | - Mohamed Mehiri
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, UMR 7272, Marine Natural Products Team, 06108 Nice, France
| | - Marie Dayras
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, UMR 7272, Marine Natural Products Team, 06108 Nice, France
| | - Jacquelin Cassand
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, UMR 7272, Marine Natural Products Team, 06108 Nice, France
| | - Virginia Edgcomb
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, 220 McLean, Mail Stop 08, Woods Hole, MA 02543, USA
| |
Collapse
|
12
|
Wahdan SFM, Tanunchai B, Wu Y, Sansupa C, Schädler M, Dawoud TM, Buscot F, Purahong W. Deciphering Trifolium pratense L. holobiont reveals a microbiome resilient to future climate changes. Microbiologyopen 2021; 10:e1217. [PMID: 34459547 PMCID: PMC8302017 DOI: 10.1002/mbo3.1217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/14/2021] [Accepted: 06/23/2021] [Indexed: 12/24/2022] Open
Abstract
The plant microbiome supports plant growth, fitness, and resistance against climate change. Trifolium pratense (red clover), an important forage legume crop, positively contributes to ecosystem sustainability. However, T. pratense is known to have limited adaptive ability toward climate change. Here, the T. pratense microbiomes (including both bacteria and fungi) of the rhizosphere and the root, shoot, and flower endospheres were comparatively examined using metabarcoding in a field located in Central Germany that mimics the climate conditions projected for the next 50-70 years in comparison with the current climate conditions. Additionally, the ecological functions and metabolic genes of the microbial communities colonizing each plant compartment were predicted using FUNGuild, FAPROTAX, and Tax4Fun annotation tools. Our results showed that the individual plant compartments were colonized by specific microbes. The bacterial and fungal community compositions of the belowground plant compartments did not vary under future climate conditions. However, future climate conditions slightly altered the relative abundances of specific fungal classes of the aboveground compartments. We predicted several microbial functional genes of the T. pratense microbiome involved in plant growth processes, such as biofertilization (nitrogen fixation, phosphorus solubilization, and siderophore biosynthesis) and biostimulation (phytohormone and auxin production). Our findings indicated that T. pratense microbiomes show a degree of resilience to future climate changes. Additionally, microbes inhabiting T. pratense may not only contribute to plant growth promotion but also to ecosystem sustainability.
Collapse
Affiliation(s)
- Sara Fareed Mohamed Wahdan
- Department of Soil EcologyUFZ‐Helmholtz Centre for Environmental ResearchHalle (Saale)Germany
- Department of BiologyLeipzig UniversityLeipzigGermany
- Botany DepartmentFaculty of ScienceSuez Canal UniversityIsmailiaEgypt
| | - Benjawan Tanunchai
- Department of Soil EcologyUFZ‐Helmholtz Centre for Environmental ResearchHalle (Saale)Germany
| | - Yu‐Ting Wu
- Department of ForestryNational Pingtung University of Science and TechnologyPingtungTaiwan
| | - Chakriya Sansupa
- Department of Soil EcologyUFZ‐Helmholtz Centre for Environmental ResearchHalle (Saale)Germany
| | - Martin Schädler
- Department of Community EcologyUFZ‐Helmholtz Centre for Environmental ResearchHalle (Saale)Germany
- German Centre for Integrative Biodiversity Research (iDiv)Halle‐Jena‐LeipzigLeipzigGermany
| | - Turki M. Dawoud
- Botany and Microbiology DepartmentCollege of ScienceKing Saud UniversityRiyadhSaudi Arabia
| | - François Buscot
- Department of Soil EcologyUFZ‐Helmholtz Centre for Environmental ResearchHalle (Saale)Germany
- German Centre for Integrative Biodiversity Research (iDiv)Halle‐Jena‐LeipzigLeipzigGermany
- Botany and Microbiology DepartmentCollege of ScienceKing Saud UniversityRiyadhSaudi Arabia
| | - Witoon Purahong
- Department of Soil EcologyUFZ‐Helmholtz Centre for Environmental ResearchHalle (Saale)Germany
| |
Collapse
|
13
|
Peng Y, Li SJ, Yan J, Tang Y, Cheng JP, Gao AJ, Yao X, Ruan JJ, Xu BL. Research Progress on Phytopathogenic Fungi and Their Role as Biocontrol Agents. Front Microbiol 2021; 12:670135. [PMID: 34122383 PMCID: PMC8192705 DOI: 10.3389/fmicb.2021.670135] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/23/2021] [Indexed: 02/01/2023] Open
Abstract
Phytopathogenic fungi decrease crop yield and quality and cause huge losses in agricultural production. To prevent the occurrence of crop diseases and insect pests, farmers have to use many synthetic chemical pesticides. The extensive use of these pesticides has resulted in a series of environmental and ecological problems, such as the increase in resistant weed populations, soil compaction, and water pollution, which seriously affect the sustainable development of agriculture. This review discusses the main advances in research on plant-pathogenic fungi in terms of their pathogenic factors such as cell wall-degrading enzymes, toxins, growth regulators, effector proteins, and fungal viruses, as well as their application as biocontrol agents for plant pests, diseases, and weeds. Finally, further studies on plant-pathogenic fungal resources with better biocontrol effects can help find new beneficial microbial resources that can control diseases.
Collapse
Affiliation(s)
- Yan Peng
- College of Agriculture, Guizhou University, Guiyang, China
| | - Shi J Li
- College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| | - Jun Yan
- Key Laboratory of Coarse Cereal Processing in Ministry of Agriculture and Rural Affairs, Schools of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yong Tang
- College of Agriculture, Guizhou University, Guiyang, China
| | - Jian P Cheng
- College of Agriculture, Guizhou University, Guiyang, China
| | - An J Gao
- College of Agriculture, Guizhou University, Guiyang, China
| | - Xin Yao
- College of Agriculture, Guizhou University, Guiyang, China
| | - Jing J Ruan
- College of Agriculture, Guizhou University, Guiyang, China
| | - Bing L Xu
- College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
14
|
Gaber DA, Berthelot C, Camehl I, Kovács GM, Blaudez D, Franken P. Salt Stress Tolerance of Dark Septate Endophytes Is Independent of Melanin Accumulation. Front Microbiol 2020; 11:562931. [PMID: 33362727 PMCID: PMC7758464 DOI: 10.3389/fmicb.2020.562931] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022] Open
Abstract
Dark septate endophytes (DSEs) represent a diverse group of root-endophytic fungi that have been isolated from plant roots in many different natural and anthropogenic ecosystems. Melanin is widespread in eukaryotic organisms and possesses various functions such as protecting human skin from UV radiation, affecting the virulence of pathogens, and playing a role in development and physiology of insects. Melanin is a distinctive feature of the cell walls of DSEs and has been thought to protect these fungi from abiotic stress. Melanin in DSEs is assumed to be synthesized via the 1,8-dihydroxynaphthalene (DHN) pathway. Its function in alleviation of salt stress is not yet known. The aims of this study were: (i) investigating the growth responses of three DSEs (Periconia macrospinosa, Cadophora sp., and Leptodontidium sp.) to salt stress, (ii) analyzing melanin production under salt stress and, (iii) testing the role of melanin in salt stress tolerance of DSEs. The study shows that the three DSE species can tolerate high salt concentrations. Melanin content increased in the hyphae of all DSEs at 100 mM salt, but decreased at 500 mM. This was not reflected in the RNA accumulation of the gene encoding scytalone dehydratase which is involved in melanin biosynthesis. The application of tricyclazole, a DHN-melanin biosynthesis inhibitor, did not affect either salt stress tolerance or the accumulation of sodium in the hyphae. In addition, melanin biosynthesis mutants of Leptodontidium sp. did not show decreased growth performance compared to the wild-type, especially not at high salt concentrations. This indicates that DSEs can live under salt stress and withstand these conditions regardless of melanin accumulation.
Collapse
Affiliation(s)
- Dalia A. Gaber
- Leibniz-Institute of Vegetable and Ornamental Crops, Grossbeeren, Germany
- Institute of Biology, Humboldt University, Berlin, Germany
| | | | - Iris Camehl
- Leibniz-Institute of Vegetable and Ornamental Crops, Grossbeeren, Germany
| | - Gábor M. Kovács
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
- Plant Protection Institute, Centre for Agricultural Research, Budapest, Hungary
| | | | - Philipp Franken
- Leibniz-Institute of Vegetable and Ornamental Crops, Grossbeeren, Germany
- Institute of Biology, Humboldt University, Berlin, Germany
| |
Collapse
|