1
|
Zhang J, Liu C, Ling J, Zhou W, Wang Y, Cheng H, Huang X, Yang Q, Zhang W, Liang T, Zhang Y, Dong J. Revealing the potential of biochar for heavy metal polluted seagrass remediation from microbial perspective. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 292:117991. [PMID: 40037084 DOI: 10.1016/j.ecoenv.2025.117991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 02/24/2025] [Accepted: 02/27/2025] [Indexed: 03/06/2025]
Abstract
Seagrass meadows are under threat due to climate change and human activities, including heavy metal contamination, which can accumulate in seagrass tissues and harm their health and productivity. Despite extensive research, effective remediation strategies are lacking. This study investigated biochar's potential as a remediation agent for seagrass meadows affected by heavy metal pollution. Heavy metal pollution was simulated by adding copper (Cu) and chromium (Cd) to seagrass Thalassia hemprichii, and the remediation effects of biochar were evaluated by monitoring seagrass physiology, root-associated microbial communities, and heavy metal concentrations. Seagrasses can accumulate heavy metals, which adversely affect their health and alter microbial communities. Seagrasses may resist heavy metal stress by releasing dissolved organic carbon (DOC) and recruiting beneficial bacteria. Biochar reduced heavy metal bioavailability and restored seagrass ecosystem health, as evidenced by restored microbial community dynamics. This study highlights biochar's promising role in seagrass meadow restoration impacted by heavy metal pollution.
Collapse
Affiliation(s)
- Jian Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Cong Liu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Juan Ling
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Sanya Institute of Ocean Eco-Environmental Engineering, Sanya 572000, China.
| | - Weiguo Zhou
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Youshao Wang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Hao Cheng
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Xiaofang Huang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Sanya Institute of Ocean Eco-Environmental Engineering, Sanya 572000, China
| | - Qingsong Yang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Sanya Institute of Ocean Eco-Environmental Engineering, Sanya 572000, China
| | - Wenqian Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Tongyin Liang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Ying Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Junde Dong
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Sanya Institute of Ocean Eco-Environmental Engineering, Sanya 572000, China.
| |
Collapse
|
2
|
Zhou W, Shen X, Xu Z, Yang Q, Jiao M, Li H, Zhang L, Ling J, Liu H, Dong J, Suo A. Specialists regulate microbial network and community assembly in subtropical seagrass sediments under differing land use conditions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122486. [PMID: 39278015 DOI: 10.1016/j.jenvman.2024.122486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/03/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
Microorganisms in the sediment play a pivotal role in the functioning and stability of seagrass ecosystems and their dynamics are influenced by the nutrient acquisition strategies of host plants. While the distinct impacts of microbial generalists and specialists on community dynamics are recognized, their distribution patterns and ecological roles within seagrass ecosystems remain largely unexplored. To address this issue, we conducted an analysis of community assembly processes and co-occurrence relationships of both microbial generalists and specialists within sediment profiles (0-100 cm) from seagrass habitats subjected to differing land use conditions. The results revealed that seagrasses in Yifeng Estuary experienced the large proportion of cultivated land and exhibited higher organic carbon content in the 0-20 cm surface sediment layer. Nitrogen-cycling bacteria were predominantly associated with seagrasses from Yifeng Estuary, whereas Vibrio spp. was more prevalent in seagrasses from Liusha Bay. Notably, seagrass Halophia beccarii (YHB) in Yifeng Estuary harbored higher niche breadths for both microbial generalist and specialist compared to Halodule uninervis (LHU) and Halophia ovalis (LHO) from Liusha Bay. Stochastic processes were pivotal in shaping seagrass sediment microbial communities, with a higher immigration rate observed in YHB, suggesting greater microbial turnover in this area. Additionally, YHB sediment presented lower drift and higher dispersal limitation among generalists compared to LHU and LHO, whereas the pattern was reversed among specialists. Specialists were found to play a crucial role in shaping microbial interactions within YHB sediment, with genera Halioglobus identified as keystone species in the network. The specialists were further found to significantly influence microbial β-diversity in seagrass sediment directly. Overall, our findings illustrated how microbial generalists and specialists were distributed in seagrass sediments in response to land use changes and provided new insights into the potential roles of microbial regulation in degraded seagrass ecosystems.
Collapse
Affiliation(s)
- Weiguo Zhou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Xiaomei Shen
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Zhimeng Xu
- Haide college, Ocean University of China, Qingdao, 266003, China
| | - Qingsong Yang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Mengyu Jiao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Hanying Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Li Zhang
- Marine Environmental Engineering Center, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Juan Ling
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
| | - Hongbin Liu
- The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Junde Dong
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Anning Suo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Marine Environmental Engineering Center, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
| |
Collapse
|
3
|
Deng W, Chen S, Chen S, Xing B, Chan Z, Zhang Y, Chen B, Chen G. Impacts of eutrophication on microbial community structure in sediment, seawater, and phyllosphere of seagrass ecosystems. Front Microbiol 2024; 15:1449545. [PMID: 39206368 PMCID: PMC11350616 DOI: 10.3389/fmicb.2024.1449545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction Seagrass-associated microbial communities play a crucial role in the growth and health of seagrasses. However, like seagrass meadows, seagrass-associated microbial communities are often affected by eutrophication. It remains unclear how eutrophication influences the composition and function of microbial communities associated with different parts of seagrass. Methods We employed prokaryotic 16S rRNA gene high-throughput sequencing combining microbial community structure analysis and co-occurrence network analysis to investigate variances in microbial community compositions, potential functions and complexities across sediment, seagrass leaves, and seawater within different eutrophic areas of two adjacent seagrass meadows on Hainan Island, China. Results Our results indicated that microbial diversity on seagrass leaves was significantly lower than in sediment but significantly higher than in seawater. Both sediment and phyllosphere microbial diversity showed no significant difference between the highly eutrophic and less eutrophic sites in each lagoon. However, sediment microbial diversity was higher in the more eutrophic lagoon, while phyllosphere microbial diversity was higher in the less eutrophic lagoon. Heavy eutrophication increased the relative abundance of phyllosphere microorganisms potentially involved in anaerobic metabolic processes, while reducing those responsible for beneficial functions like denitrification. The main factor affecting microbial diversity was organic carbon in seawater and sediment, with high organic carbon levels leading to decreased microbial diversity. The co-occurrence network analysis revealed that heavy eutrophication notably reduced the complexity and internal connections of the phyllosphere microbial community in comparison to the sediment and seawater microbial communities. Furthermore, ternary analysis demonstrated that heavy eutrophication diminished the external connections of the phyllosphere microbial community with the sediment and seawater microbial communities. Conclusion The pronounced decrease in biodiversity and complexity of the phyllosphere microbial community under eutrophic conditions can lead to greater microbial functional loss, exacerbating seagrass decline. This study emphasizes the significance of phyllosphere microbial communities compared to sediment microbial communities in the conservation and restoration of seagrass meadows under eutrophic conditions.
Collapse
Affiliation(s)
- Wenchao Deng
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- Observation and Research Station of Coastal Wetland Ecosystem in Beibu Gulf, Ministry of Natural Resources, Beihai, China
| | - Shunyang Chen
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- Observation and Research Station of Coastal Wetland Ecosystem in Beibu Gulf, Ministry of Natural Resources, Beihai, China
- Key Laboratory of Marine Ecological Conservation and Restoration, Ministry of Natural Resources, Xiamen, China
| | - Shiquan Chen
- Hainan Academy of Ocean and Fisheries Sciences, Haikou, China
| | - Bingpeng Xing
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- Observation and Research Station of Coastal Wetland Ecosystem in Beibu Gulf, Ministry of Natural Resources, Beihai, China
| | - Zhuhua Chan
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Yao Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Bin Chen
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- Observation and Research Station of Coastal Wetland Ecosystem in Beibu Gulf, Ministry of Natural Resources, Beihai, China
- Key Laboratory of Marine Ecological Conservation and Restoration, Ministry of Natural Resources, Xiamen, China
| | - Guangcheng Chen
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- Observation and Research Station of Coastal Wetland Ecosystem in Beibu Gulf, Ministry of Natural Resources, Beihai, China
- Key Laboratory of Marine Ecological Conservation and Restoration, Ministry of Natural Resources, Xiamen, China
| |
Collapse
|
4
|
Hamamoto K, Mizuyama M, Nishijima M, Maeda A, Gibu K, Poliseno A, Iguchi A, Reimer JD. Diversity, composition and potential roles of sedimentary microbial communities in different coastal substrates around subtropical Okinawa Island, Japan. ENVIRONMENTAL MICROBIOME 2024; 19:54. [PMID: 39080706 PMCID: PMC11290285 DOI: 10.1186/s40793-024-00594-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Marine benthic prokaryotic communities play crucial roles in material recycling within coastal environments, including coral reefs. Coastal sedimentary microbiomes are particularly important as potential reservoirs of symbiotic, beneficial, and pathogenic bacteria in coral reef environments, and therefore presumably play a core role in local ecosystem functioning. However, there is a lack of studies comparing different environments with multiple sites on the island scale, particularly studies focusing on prokaryotic communities, as previous investigations have focused mainly on a single site or on specific environmental conditions. In our study, we collected coastal sediments from seven sites around Okinawa Island, Japan, including three different benthic types; sandy bottoms, seagrass meadows, and hard substratum with living scleractinian corals. We then used metabarcoding to identify prokaryotic compositions and estimate enzymes encoded by genes to infer their functions. RESULTS The results showed that the three substrata had significantly different prokaryotic compositions. Seagrass meadow sites exhibited significantly higher prokaryotic alpha-diversity compared to sandy bottom sites. ANCOM analysis revealed that multiple bacterial orders were differentially abundant within each substratum. At coral reef sites, putative disease- and thermal stress-related opportunistic bacteria such as Rhodobacterales, Verrucomicrobiales, and Cytophagales were comparatively abundant, while seagrass meadow sites abundantly harbored Desulfobacterales, Steroidobacterales and Chromatiales, which are common bacterial orders in seagrass meadows. According to our gene-coded enzyme analyses the numbers of differentially abundant enzymes were highest in coral reef sites. Notably, superoxide dismutase, an important enzyme for anti-oxidative stress in coral tissue, was abundant at coral sites. Our results provide a list of prokaryotes to look into in each substrate, and further emphasize the importance of considering the microbiome, especially when focusing on environmental conservation. CONCLUSION Our findings prove that prokaryotic metabarcoding is capable of capturing compositional differences and the diversity of microbial communities in three different environments. Furthermore, several taxa were suggested to be differentially more abundant in specific environments, and gene-coded enzymic compositions also showed possible differences in ecological functions. Further study, in combination with field observations and temporal sampling, is key to achieving a better understanding of the interactions between the local microbiome and the surrounding benthic community.
Collapse
Affiliation(s)
- Kohei Hamamoto
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8567, Japan.
- Molecular Invertebrate Systematics and Ecology (MISE) Laboratory, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, 903-0213, Japan.
| | - Masaru Mizuyama
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8567, Japan
- Department of Health Informatics, Faculty of Human Health Sciences, Meio University, Nago, Okinawa, 905-8585, Japan
| | - Miyuki Nishijima
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8567, Japan
| | - Ayumi Maeda
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, 277-8564, Japan
| | - Kodai Gibu
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8567, Japan
| | - Angelo Poliseno
- Molecular Invertebrate Systematics and Ecology (MISE) Laboratory, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, 903-0213, Japan
| | - Akira Iguchi
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8567, Japan.
- Research Laboratory on Environmentally-Conscious Developments and Technologies [E-code], National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8567, Japan.
| | - James Davis Reimer
- Molecular Invertebrate Systematics and Ecology (MISE) Laboratory, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, 903-0213, Japan
- Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, 903-0213, Japan
| |
Collapse
|
5
|
Aires T, Cúcio C, Brakel J, Weinberger F, Wahl M, Teles A, Muyzer G, Engelen AH. Impact of persistently high sea surface temperatures on the rhizobiomes of Zostera marina in a Baltic Sea benthocosms. GLOBAL CHANGE BIOLOGY 2024; 30:e17337. [PMID: 38771026 DOI: 10.1111/gcb.17337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/18/2024] [Accepted: 04/28/2024] [Indexed: 05/22/2024]
Abstract
Persistently high marine temperatures are escalating and threating marine biodiversity. The Baltic Sea, warming faster than other seas, is a good model to study the impact of increasing sea surface temperatures. Zostera marina, a key player in the Baltic ecosystem, faces susceptibility to disturbances, especially under chronic high temperatures. Despite the increasing number of studies on the impact of global warming on seagrasses, little attention has been paid to the role of the holobiont. Using an outdoor benthocosm to replicate near-natural conditions, this study explores the repercussions of persistent warming on the microbiome of Z. marina and its implications for holobiont function. Results show that both seasonal warming and chronic warming, impact Z. marina roots and sediment microbiome. Compared with roots, sediments demonstrate higher diversity and stability throughout the study, but temperature effects manifest earlier in both compartments, possibly linked to premature Z. marina die-offs under chronic warming. Shifts in microbial composition, such as an increase in organic matter-degrading and sulfur-related bacteria, accompany chronic warming. A higher ratio of sulfate-reducing bacteria compared to sulfide oxidizers was found in the warming treatment which may result in the collapse of the seagrasses, due to toxic levels of sulfide. Differentiating predicted pathways for warmest temperatures were related to sulfur and nitrogen cycles, suggest an increase of the microbial metabolism, and possible seagrass protection strategies through the production of isoprene. These structural and compositional variations in the associated microbiome offer early insights into the ecological status of seagrasses. Certain taxa/genes/pathways may serve as markers for specific stresses. Monitoring programs should integrate this aspect to identify early indicators of seagrass health. Understanding microbiome changes under stress is crucial for the use of potential probiotic taxa to mitigate climate change effects. Broader-scale examination of seagrass-microorganism interactions is needed to leverage knowledge on host-microbe interactions in seagrasses.
Collapse
Affiliation(s)
- Tânia Aires
- Centro de Ciências Do Mar (CCMAR), Centro de Investigação Marinha e Ambiental (CIMAR), Universidade Do Algarve, Faro, Portugal
| | - Catarina Cúcio
- Microbial Systems Ecology, Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Janina Brakel
- GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | | | - Martin Wahl
- GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | - Ana Teles
- Max Planck Institute for Evolutionary Biology, Ploen, Germany
| | - Gerard Muyzer
- Microbial Systems Ecology, Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Aschwin H Engelen
- Centro de Ciências Do Mar (CCMAR), Centro de Investigação Marinha e Ambiental (CIMAR), Universidade Do Algarve, Faro, Portugal
| |
Collapse
|
6
|
Rolando JL, Kolton M, Song T, Liu Y, Pinamang P, Conrad R, Morris JT, Konstantinidis KT, Kostka JE. Sulfur oxidation and reduction are coupled to nitrogen fixation in the roots of the salt marsh foundation plant Spartina alterniflora. Nat Commun 2024; 15:3607. [PMID: 38684658 PMCID: PMC11059160 DOI: 10.1038/s41467-024-47646-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 04/09/2024] [Indexed: 05/02/2024] Open
Abstract
Heterotrophic activity, primarily driven by sulfate-reducing prokaryotes, has traditionally been linked to nitrogen fixation in the root zone of coastal marine plants, leaving the role of chemolithoautotrophy in this process unexplored. Here, we show that sulfur oxidation coupled to nitrogen fixation is a previously overlooked process providing nitrogen to coastal marine macrophytes. In this study, we recovered 239 metagenome-assembled genomes from a salt marsh dominated by the foundation plant Spartina alterniflora, including diazotrophic sulfate-reducing and sulfur-oxidizing bacteria. Abundant sulfur-oxidizing bacteria encode and highly express genes for carbon fixation (RuBisCO), nitrogen fixation (nifHDK) and sulfur oxidation (oxidative-dsrAB), especially in roots stressed by sulfidic and reduced sediment conditions. Stressed roots exhibited the highest rates of nitrogen fixation and expression level of sulfur oxidation and sulfate reduction genes. Close relatives of marine symbionts from the Candidatus Thiodiazotropha genus contributed ~30% and ~20% of all sulfur-oxidizing dsrA and nitrogen-fixing nifK transcripts in stressed roots, respectively. Based on these findings, we propose that the symbiosis between S. alterniflora and sulfur-oxidizing bacteria is key to ecosystem functioning of coastal salt marshes.
Collapse
Affiliation(s)
- J L Rolando
- Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA, 30332, USA
| | - M Kolton
- Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA, 30332, USA
- French Associates Institute for Agriculture and Biotechnology of Drylands, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - T Song
- Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA, 30332, USA
| | - Y Liu
- Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA, 30332, USA
- The Pennsylvania State University, Department of Civil & Environmental Engineering, University Park, PA, 16802, USA
| | - P Pinamang
- Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA, 30332, USA
| | - R Conrad
- Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA, 30332, USA
| | - J T Morris
- Belle Baruch Institute for Marine & Coastal Sciences, University of South Carolina, Columbia, SC, 29201, USA
| | - K T Konstantinidis
- Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA, 30332, USA
- Georgia Institute of Technology, School of Civil and Environmental Engineering, Atlanta, GA, 30332, USA
| | - J E Kostka
- Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA, 30332, USA.
- Georgia Institute of Technology, School of Earth and Atmospheric Sciences, Atlanta, GA, 30332, USA.
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
7
|
Wainwright BJ, Leon J, Vilela E, Hickman KJE, Caldwell J, Aimone B, Bischoff P, Ohran M, Morelli MW, Arlyza IS, Marwayana ON, Zahn G. Wallace's line structures seagrass microbiota and is a potential barrier to the dispersal of marine bacteria. ENVIRONMENTAL MICROBIOME 2024; 19:23. [PMID: 38637894 PMCID: PMC11027274 DOI: 10.1186/s40793-024-00568-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/08/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND The processes that shape microbial biogeography are not well understood, and concepts that apply to macroorganisms, like dispersal barriers, may not affect microorganisms in the same predictable ways. To better understand how known macro-scale biogeographic processes can be applied at micro-scales, we examined seagrass associated microbiota on either side of Wallace's line to determine the influence of this cryptic dispersal boundary on the community structure of microorganisms. Communities were examined from twelve locations throughout Indonesia on either side of this theoretical line. RESULTS We found significant differences in microbial community structure on either side of this boundary (R2 = 0.09; P = 0.001), and identified seven microbial genera as differentially abundant on either side of the line, six of these were more abundant in the West, with the other more strongly associated with the East. Genera found to be differentially abundant had significantly smaller minimum cell dimensions (GLM: t923 = 59.50, P < 0.001) than the overall community. CONCLUSION Despite the assumed excellent dispersal ability of microbes, we were able to detect significant differences in community structure on either side of this cryptic biogeographic boundary. Samples from the two closest islands on opposite sides of the line, Bali and Komodo, were more different from each other than either was to its most distant island on the same side. We suggest that limited dispersal across this barrier coupled with habitat differences are primarily responsible for the patterns observed. The cryptic processes that drive macroorganism community divergence across this region may also play a role in the bigeographic patterns of microbiota.
Collapse
Affiliation(s)
- Benjamin J Wainwright
- Yale-NUS College, National University of Singapore, 16 College Avenue West, Singapore, 138527, Singapore.
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
| | - Josh Leon
- Biology Department, Utah Valley University, 800 W University Parkway, Orem, UT, 84058, USA
| | - Ernie Vilela
- Biology Department, Utah Valley University, 800 W University Parkway, Orem, UT, 84058, USA
| | - K J E Hickman
- Biology Department, Utah Valley University, 800 W University Parkway, Orem, UT, 84058, USA
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Jensen Caldwell
- Biology Department, Utah Valley University, 800 W University Parkway, Orem, UT, 84058, USA
| | - Behlee Aimone
- Biology Department, Utah Valley University, 800 W University Parkway, Orem, UT, 84058, USA
| | - Porter Bischoff
- Biology Department, Utah Valley University, 800 W University Parkway, Orem, UT, 84058, USA
| | - Marissa Ohran
- Biology Department, Utah Valley University, 800 W University Parkway, Orem, UT, 84058, USA
| | - Magnolia W Morelli
- Biology Department, Utah Valley University, 800 W University Parkway, Orem, UT, 84058, USA
| | - Irma S Arlyza
- Research Center for Oceanography, National Research and Innovation Agency (BRIN), Jl. Pasir Putih I, Ancol Timur, Jakarta, 14430, Indonesia
| | - Onny N Marwayana
- Research Center for Ecology and Ethnobiology, National Research and Innovation Agency (BRIN), Jl. Raya Jakarta-Bogor KM 46, Cibinong, Bogor, 16911, Indonesia
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles (UCLA), 610 Charles E. Young Drive South, Los Angeles, CA, 90095, USA
| | - Geoffrey Zahn
- Biology Department, Utah Valley University, 800 W University Parkway, Orem, UT, 84058, USA
| |
Collapse
|
8
|
Ugarelli K, Campbell JE, Rhoades OK, Munson CJ, Altieri AH, Douglass JG, Heck KL, Paul VJ, Barry SC, Christ L, Fourqurean JW, Frazer TK, Linhardt ST, Martin CW, McDonald AM, Main VA, Manuel SA, Marco-Méndez C, Reynolds LK, Rodriguez A, Rodriguez Bravo LM, Sawall Y, Smith K, Wied WL, Choi CJ, Stingl U. Microbiomes of Thalassia testudinum throughout the Atlantic Ocean, Caribbean Sea, and Gulf of Mexico are influenced by site and region while maintaining a core microbiome. Front Microbiol 2024; 15:1357797. [PMID: 38463486 PMCID: PMC10920284 DOI: 10.3389/fmicb.2024.1357797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/29/2024] [Indexed: 03/12/2024] Open
Abstract
Plant microbiomes are known to serve several important functions for their host, and it is therefore important to understand their composition as well as the factors that may influence these microbial communities. The microbiome of Thalassia testudinum has only recently been explored, and studies to-date have primarily focused on characterizing the microbiome of plants in a single region. Here, we present the first characterization of the composition of the microbial communities of T. testudinum across a wide geographical range spanning three distinct regions with varying physicochemical conditions. We collected samples of leaves, roots, sediment, and water from six sites throughout the Atlantic Ocean, Caribbean Sea, and the Gulf of Mexico. We then analyzed these samples using 16S rRNA amplicon sequencing. We found that site and region can influence the microbial communities of T. testudinum, while maintaining a plant-associated core microbiome. A comprehensive comparison of available microbial community data from T. testudinum studies determined a core microbiome composed of 14 ASVs that consisted mostly of the family Rhodobacteraceae. The most abundant genera in the microbial communities included organisms with possible plant-beneficial functions, like plant-growth promoting taxa, disease suppressing taxa, and nitrogen fixers.
Collapse
Affiliation(s)
- Kelly Ugarelli
- Department of Microbiology and Cell Science, Ft. Lauderdale Research and Education Center, University of Florida, Davie, FL, United States
| | - Justin E Campbell
- Department of Biological Sciences, Institute of Environment, Coastlines and Oceans Division, Florida International University, Miami, FL, United States
- Smithsonian Marine Station, Fort Pierce, FL, United States
| | - O Kennedy Rhoades
- Department of Biological Sciences, Institute of Environment, Coastlines and Oceans Division, Florida International University, Miami, FL, United States
- Smithsonian Marine Station, Fort Pierce, FL, United States
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada
| | - Calvin J Munson
- Department of Biological Sciences, Institute of Environment, Coastlines and Oceans Division, Florida International University, Miami, FL, United States
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Andrew H Altieri
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, United States
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - James G Douglass
- The Water School, Florida Gulf Coast University, Fort Myers, FL, United States
| | - Kenneth L Heck
- Dauphin Island Sea Lab, University of South Alabama, Dauphin Island, AL, United States
| | - Valerie J Paul
- Smithsonian Marine Station, Fort Pierce, FL, United States
| | - Savanna C Barry
- University of Florida, Institute of Food and Agricultural Sciences Nature Coast Biological Station, University of Florida, Cedar Key, FL, United States
| | | | - James W Fourqurean
- Department of Biological Sciences, Institute of Environment, Coastlines and Oceans Division, Florida International University, Miami, FL, United States
| | - Thomas K Frazer
- College of Marine Science, University of South Florida, St. Petersburg, FL, United States
| | - Samantha T Linhardt
- Dauphin Island Sea Lab, University of South Alabama, Dauphin Island, AL, United States
| | - Charles W Martin
- Dauphin Island Sea Lab, University of South Alabama, Dauphin Island, AL, United States
- University of Florida, Institute of Food and Agricultural Sciences Nature Coast Biological Station, University of Florida, Cedar Key, FL, United States
| | - Ashley M McDonald
- Smithsonian Marine Station, Fort Pierce, FL, United States
- University of Florida, Institute of Food and Agricultural Sciences Nature Coast Biological Station, University of Florida, Cedar Key, FL, United States
- Soil and Water Sciences Department, University of Florida, Gainesville, FL, United States
| | - Vivienne A Main
- Smithsonian Marine Station, Fort Pierce, FL, United States
- International Field Studies, Inc., Andros, Bahamas
| | - Sarah A Manuel
- Department of Environment and Natural Resources, Government of Bermuda, Hamilton Parish, Bermuda
| | - Candela Marco-Méndez
- Dauphin Island Sea Lab, University of South Alabama, Dauphin Island, AL, United States
- Center for Advanced Studies of Blanes (Spanish National Research Council), Girona, Spain
| | - Laura K Reynolds
- Soil, Water and Ecosystem Sciences Department, University of Florida, Gainesville, FL, United States
| | - Alex Rodriguez
- Dauphin Island Sea Lab, University of South Alabama, Dauphin Island, AL, United States
| | | | - Yvonne Sawall
- Bermuda Institute of Ocean Sciences (BIOS), St. George's, Bermuda
| | - Khalil Smith
- Smithsonian Marine Station, Fort Pierce, FL, United States
- Department of Environment and Natural Resources, Government of Bermuda, Hamilton Parish, Bermuda
| | - William L Wied
- Department of Biological Sciences, Institute of Environment, Coastlines and Oceans Division, Florida International University, Miami, FL, United States
- Smithsonian Marine Station, Fort Pierce, FL, United States
| | - Chang Jae Choi
- Department of Microbiology and Cell Science, Ft. Lauderdale Research and Education Center, University of Florida, Davie, FL, United States
| | - Ulrich Stingl
- Department of Microbiology and Cell Science, Ft. Lauderdale Research and Education Center, University of Florida, Davie, FL, United States
| |
Collapse
|
9
|
Crump BC, Bowen JL. The Microbial Ecology of Estuarine Ecosystems. ANNUAL REVIEW OF MARINE SCIENCE 2024; 16:335-360. [PMID: 37418833 DOI: 10.1146/annurev-marine-022123-101845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
Human civilization relies on estuaries, and many estuarine ecosystem services are provided by microbial communities. These services include high rates of primary production that nourish harvests of commercially valuable species through fisheries and aquaculture, the transformation of terrestrial and anthropogenic materials to help ensure the water quality necessary to support recreation and tourism, and mutualisms that maintain blue carbon accumulation and storage. Research on the ecology that underlies microbial ecosystem services in estuaries has expanded greatly across a range of estuarine environments, including water, sediment, biofilms, biological reefs, and stands of seagrasses, marshes, and mangroves. Moreover, the application of new molecular tools has improved our understanding of the diversity and genomic functions of estuarine microbes. This review synthesizes recent research on microbial habitats in estuaries and the contributions of microbes to estuarine food webs, elemental cycling, and interactions with plants and animals, and highlights novel insights provided by recent advances in genomics.
Collapse
Affiliation(s)
- Byron C Crump
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, USA;
| | - Jennifer L Bowen
- Marine Science Center, Department of Marine and Environmental Sciences, Northeastern University, Nahant, Massachusetts, USA;
| |
Collapse
|
10
|
Zhou W, Ling J, Shen X, Xu Z, Yang Q, Yue W, Liu H, Suo A, Dong J. Inoculation with plant growth-promoting rhizobacteria improves seagrass Thalassia hemprichii photosynthesis performance and shifts rhizosphere microbiome. MARINE ENVIRONMENTAL RESEARCH 2024; 193:106260. [PMID: 38061311 DOI: 10.1016/j.marenvres.2023.106260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/31/2023] [Accepted: 11/09/2023] [Indexed: 01/02/2024]
Abstract
Plant growth-promoting rhizobacteria (PGPR) inoculation is a crucial strategy for maintaining the sustainability of agriculture and presents a promising solution for seagrass ecological restoration in the face of disturbances. However, the possible roles and functions of PGPRs in the seagrass rhizosphere remain unclear. Here, we isolated rhizosphere bacterial strains from both reef and coastal regions and screened two PGPR isolates regarding their in vivo functional traits. Subsequently, we conducted microcosm experiments to elucidate how PGPR inoculation affected seagrass photosynthesis and shape within each rhizosphere microbiome. Both screened PGPR strains, Raoultella terrigena NXT28 and Bacillus aryabhattai XT37, excelled at expressing a specific subset of plant-beneficial functions and increased the photosynthetic rates of the seagrass host. PGPR inoculation not only decreased the abundance of sulfur-cycling bacteria, it also improved the abundance of putative iron-cycling bacteria in the seagrass rhizosphere. Strain XT37 successfully colonized the seagrass rhizosphere and displayed a leading role in microbial network structure. As a nitrogen-fixing bacteria, NXT28 showed potential to change the microbial nitrogen cycle with denitrification in the rhizosphere and alter dissimilatory and assimilatory nitrate reduction in bulk sediment. These findings have implications for the development of eco-friendly strategies aimed at exploiting microbial communities to confer sulfide tolerance in coastal seagrass ecosystem.
Collapse
Affiliation(s)
- Weiguo Zhou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, China
| | - Juan Ling
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, China; Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Shantou, 515041, China
| | - Xiaomei Shen
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhimeng Xu
- Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Qingsong Yang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, China; Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Shantou, 515041, China
| | - Weizhong Yue
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, China
| | - Hongbin Liu
- Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Anning Suo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, China.
| | - Junde Dong
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, China; Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Shantou, 515041, China.
| |
Collapse
|
11
|
Zhang J, Yang Q, Yue W, Yang B, Zhou W, Chen L, Huang X, Zhang W, Dong J, Ling J. Seagrass Thalassia hemprichii and associated bacteria co-response to the synergistic stress of ocean warming and ocean acidification. ENVIRONMENTAL RESEARCH 2023; 236:116658. [PMID: 37454799 DOI: 10.1016/j.envres.2023.116658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/07/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Seagrass meadows play vital ecological roles in the marine ecosystem. Global climate change poses considerable threats to seagrass survival. However, it is unclear how seagrass and its associated bacteria will respond under future complex climate change scenarios. This study explored the effects of ocean warming (+2 °C) and ocean acidification (-0.4 units) on seagrass physiological indexes and bacterial communities (sediment and rhizosphere bacteria) of the seagrass Thalassia hemprichii during an experimental exposure of 30 days. Results demonstrated that the synergistic effect of ocean warming and ocean acidification differed from that of one single factor on seagrass and the associated bacterial community. The seagrass showed a weak resistance to ocean warming and ocean acidification, which manifested through the increase in the activity of typical oxidoreductase enzymes. Moreover, the synergistic effect of ocean warming and ocean acidification caused a significant decrease in seagrass's chlorophyll content. Although the bacterial community diversity exhibited higher resistance to ocean warming and ocean acidification, further bacterial functional analysis revealed the synergistic effect of ocean warming and ocean acidification led to significant increases in SOX-related genes abundance which potentially supported the seagrass in resisting climate stress by producing sulfates and oxidizing hydrogen sulfide. More stable bacterial communities were detected in the seagrass rhizosphere under combined ocean warming and ocean acidification. While for one single environmental stress, simpler networks were detected in the rhizosphere. In addition, the observed significant correlations between several modules of the bacterial community and the physiological indexes of the seagrass indicate the possible intimate interaction between seagrass and bacteria under ocean warming and ocean acidification. This study extends our understanding regarding the role of seagrass associated bacterial communities and sheds light on both the prediction and preservation of the seagrass meadow ecosystems in response to global climate change.
Collapse
Affiliation(s)
- Jian Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China; Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, Sanya, 572000, PR China; Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Shantou, 515041, PR China; Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, PR China
| | - Qingsong Yang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China; Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, Sanya, 572000, PR China; Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Shantou, 515041, PR China; Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, PR China
| | - Weizhong Yue
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China; Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, PR China
| | - Bing Yang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Weiguo Zhou
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China; Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, Sanya, 572000, PR China; Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Shantou, 515041, PR China; Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, PR China
| | - Luxiang Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China
| | - Xiaofang Huang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China; Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, Sanya, 572000, PR China; Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Shantou, 515041, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Wenqian Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China; Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, Sanya, 572000, PR China; Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, PR China
| | - Junde Dong
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China; Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, Sanya, 572000, PR China; Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Shantou, 515041, PR China; Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, PR China.
| | - Juan Ling
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China; Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, Sanya, 572000, PR China; Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Shantou, 515041, PR China; Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, PR China.
| |
Collapse
|
12
|
Rotini A, Conte C, Winters G, Vasquez MI, Migliore L. Undisturbed Posidonia oceanica meadows maintain the epiphytic bacterial community in different environments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:95464-95474. [PMID: 37548791 PMCID: PMC10482771 DOI: 10.1007/s11356-023-28968-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/20/2023] [Indexed: 08/08/2023]
Abstract
Seagrasses harbour different and rich epiphytic bacterial communities. These microbes may establish intimate and symbiotic relationships with the seagrass plants and change according to host species, environmental conditions, and/or ecophysiological status of their seagrass host. Although Posidonia oceanica is one of the most studied seagrasses in the world, and bacteria associated with seagrasses have been studied for over a decade, P. oceanica's microbiome remains hitherto little explored. Here, we applied 16S rRNA amplicon sequencing to explore the microbiome associated with the leaves of P. oceanica growing in two geomorphologically different meadows (e.g. depth, substrate, and turbidity) within the Limassol Bay (Cyprus). The morphometric (leaf area, meadow density) and biochemical (pigments, total phenols) descriptors highlighted the healthy conditions of both meadows. The leaf-associated bacterial communities showed similar structure and composition in the two sites; core microbiota members were dominated by bacteria belonging to the Thalassospiraceae, Microtrichaceae, Enterobacteriaceae, Saprospiraceae, and Hyphomonadaceae families. This analogy, even under different geomorphological conditions, suggest that in the absence of disturbances, P. oceanica maintains characteristic-associated bacterial communities. This study provides a baseline for the knowledge of the P. oceanica microbiome and further supports its use as a putative seagrass descriptor.
Collapse
Affiliation(s)
- Alice Rotini
- ISPRA Istituto Superiore per la Protezione e la Ricerca Ambientale, Via Vitaliano Brancati, 48, 00144, Rome, Italy
| | - Chiara Conte
- Department of Biology, Laboratory of Ecology and Ecotoxicology, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Gidon Winters
- Dead Sea and Arava Science Center (DSASC), Masada National Park, 86910, Masada, Israel
- Eilat Campus, Ben-Gurion University of the Negev, Hatmarim Blv., 8855630, Eilat, Israel
| | - Marlen I Vasquez
- Department of Chemical Engineering, Cyprus University of Technology, 30 Archbishop Kyprianos Str.t, 3036, Limassol, Cyprus
- European University of Technology, 30 Archbishop Kyprianos Str.t, 3036, Limassol, Cyprus
| | - Luciana Migliore
- Department of Biology, Laboratory of Ecology and Ecotoxicology, University of Rome Tor Vergata, 00133, Rome, Italy.
- eCampus University, Via Isimbardi 10, 22060, Novedrate, CO, Italy.
| |
Collapse
|
13
|
Zhou X, Cheng T, Yu J, Sheng M, Ma X, Cao Y. Responses of sediment nitrogen forms and bacterial communities to different aquatic nitrogen conditions in three submerged macrophyte-type ecological treatment systems. ENVIRONMENTAL RESEARCH 2023:116322. [PMID: 37321338 DOI: 10.1016/j.envres.2023.116322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/17/2023]
Abstract
Ecological treatment system (ETS) is a promising technology for mitigating agricultural non-point pollution. However, the responses of sediment nitrogen (N) forms and bacterial communities to different aquatic N conditions during the treatment procedure are currently unknown. Therefore, a four-month microcosm experiment was conducted to investigate the effects of three aquatic N conditions (2 mg/L NH4+-N, 2 mg/L NO3--N and 1 mg/L NH4+-N + 1 mg/L NO3--N) on sediment N forms and bacterial communities in three ETSs vegetated by Potamogeton malaianus, Vallisneria natans and artificial aquatic plant, respectively. Four transferable N fractions were monitored, and the valence state of N in ion-exchange and weak acid extractable fractions were mainly determined by aquatic N conditions, while significant N accumulation was observed only in strong oxidant extractable and strong alkali extractable fractions. Sediment N profiles were primarily influenced by time and plant type, with N condition having secondary effect. Moreover, sediment bacterial community structures experienced a significant shift over time and were slightly influenced by plant type. Functional genes related to N fixation, nitrification, assimilable nitrate reduction, dissimilatory nitrite reduction (DNRA) and denitrification were substantially enriched in month 4. Additionally, the sediment bacterial co-occurrence network exhibited less complexity but more stability under NO3- condition compared to others. Furthermore, certain sediment N fractions were found to have strong relationships with specific sediment bacteria, such as nitrifiers, denitrifiers and DNRA bacteria. Our findings highlight the significant influence of aquatic N condition in submerged macrophyte-type ETSs on sediment N forms and bacterial communities.
Collapse
Affiliation(s)
- Xinyan Zhou
- College of Environment and Resources, College of Carbon Neutral, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
| | - Tiehan Cheng
- College of Environment and Resources, College of Carbon Neutral, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
| | - Jiaming Yu
- College of Environment and Resources, College of Carbon Neutral, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
| | - Mengting Sheng
- College of Environment and Resources, College of Carbon Neutral, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
| | - Xuelian Ma
- College of Environment and Resources, College of Carbon Neutral, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
| | - Yucheng Cao
- College of Environment and Resources, College of Carbon Neutral, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China.
| |
Collapse
|
14
|
Fraser MW, Martin BC, Wong HL, Burns BP, Kendrick GA. Sulfide intrusion in a habitat forming seagrass can be predicted from relative abundance of sulfur cycling genes in sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161144. [PMID: 36584949 DOI: 10.1016/j.scitotenv.2022.161144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 11/22/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Sulfide intrusion from sediments is an increasingly recognized contributor to seagrass declines globally, yet the relationship between sediment microorganisms and sulfide intrusion has received little attention. Here, we use metagenomic sequencing and stable isotope (34S) analysis to examine this relationship in Cockburn Sound, Australia, a seagrass-dominated embayment with a gradient of sulfide stress and seagrass declines. There was a significant positive relationship between sulfide intrusion into seagrasses and sulfate reduction genes in sediment microbial communities, which was greatest at sites with long term seagrass declines. This is the first demonstration of a significant link between sulfur cycling genes present in seagrass sediments and sulfide intrusion in a habitat-forming seagrass that is experiencing long-term shoot density decline. Given that microorganisms respond rapidly to environmental change, the quantitative links established in this study can be used as a potential management tool to enable the prediction of sulfide stress on large habitat forming seagrasses; a global issue expected to worsen with climate change.
Collapse
Affiliation(s)
- Matthew W Fraser
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; The UWA Oceans Institute, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
| | - Belinda C Martin
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; The UWA Oceans Institute, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; Ooid Scientific, White Gum Valley, WA 6162, Australia
| | - Hon Lun Wong
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2052, Australia; Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice, Czech Republic
| | - Brendan P Burns
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2052, Australia; Australian Centre for Astrobiology, The University of New South Wales, Sydney 2052, Australia
| | - Gary A Kendrick
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; The UWA Oceans Institute, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| |
Collapse
|
15
|
Beatty DS, Aoki LR, Rappazzo B, Bergman C, Domke LK, Duffy JE, Dubois K, Eckert GL, Gomes C, Graham OJ, Harper L, Harvell CD, Hawthorne TL, Hessing-Lewis M, Hovel K, Monteith ZL, Mueller RS, Olson AM, Prentice C, Tomas F, Yang B, Stachowicz JJ. Predictable Changes in Eelgrass Microbiomes with Increasing Wasting Disease Prevalence across 23° Latitude in the Northeastern Pacific. mSystems 2022; 7:e0022422. [PMID: 35856664 PMCID: PMC9426469 DOI: 10.1128/msystems.00224-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/22/2022] [Indexed: 12/04/2022] Open
Abstract
Predicting outcomes of marine disease outbreaks presents a challenge in the face of both global and local stressors. Host-associated microbiomes may play important roles in disease dynamics but remain understudied in marine ecosystems. Host-pathogen-microbiome interactions can vary across host ranges, gradients of disease, and temperature; studying these relationships may aid our ability to forecast disease dynamics. Eelgrass, Zostera marina, is impacted by outbreaks of wasting disease caused by the opportunistic pathogen Labyrinthula zosterae. We investigated how Z. marina phyllosphere microbial communities vary with rising wasting disease lesion prevalence and severity relative to plant and meadow characteristics like shoot density, longest leaf length, and temperature across 23° latitude in the Northeastern Pacific. We detected effects of geography (11%) and smaller, but distinct, effects of temperature (30-day max sea surface temperature, 4%) and disease (lesion prevalence, 3%) on microbiome composition. Declines in alpha diversity on asymptomatic tissue occurred with rising wasting disease prevalence within meadows. However, no change in microbiome variability (dispersion) was detected between asymptomatic and symptomatic tissues. Further, we identified members of Cellvibrionaceae, Colwelliaceae, and Granulosicoccaceae on asymptomatic tissue that are predictive of wasting disease prevalence across the geographic range (3,100 kilometers). Functional roles of Colwelliaceae and Granulosicoccaceae are not known. Cellvibrionaceae, degraders of plant cellulose, were also enriched in lesions and adjacent green tissue relative to nonlesioned leaves. Cellvibrionaceae may play important roles in disease progression by degrading host tissues or overwhelming plant immune responses. Thus, inclusion of microbiomes in wasting disease studies may improve our ability to understand variable rates of infection, disease progression, and plant survival. IMPORTANCE The roles of marine microbiomes in disease remain poorly understood due, in part, to the challenging nature of sampling at appropriate spatiotemporal scales and across natural gradients of disease throughout host ranges. This is especially true for marine vascular plants like eelgrass (Zostera marina) that are vital for ecosystem function and biodiversity but are susceptible to rapid decline and die-off from pathogens like eukaryotic slime-mold Labyrinthula zosterae (wasting disease). We link bacterial members of phyllosphere tissues to the prevalence of wasting disease across the broadest geographic range to date for a marine plant microbiome-disease study (3,100 km). We identify Cellvibrionaceae, plant cell wall degraders, enriched (up to 61% relative abundance) within lesion tissue, which suggests this group may be playing important roles in disease progression. These findings suggest inclusion of microbiomes in marine disease studies will improve our ability to predict ecological outcomes of infection across variable landscapes spanning thousands of kilometers.
Collapse
Affiliation(s)
- Deanna S. Beatty
- Department of Evolution and Ecology, University of California, Davis, California, USA
| | - Lillian R. Aoki
- Data Science Initiative, University of Oregon, Eugene, Oregon, USA
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Brendan Rappazzo
- Department of Computer Science, Cornell University, Ithaca, New York, USA
| | - Chelsea Bergman
- Department of Biology and Coastal & Marine Institute, San Diego State University, San Diego, California, USA
| | - Lia K. Domke
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Juneau, Alaska, USA
| | - J. Emmett Duffy
- MarineGEO Program and Smithsonian Environmental Research Center, Edgewater, Maryland, USA
| | - Katie Dubois
- Department of Evolution and Ecology, University of California, Davis, California, USA
- Biology Department, Bowdoin College, Brunswick, Maine, USA
| | - Ginny L. Eckert
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Juneau, Alaska, USA
| | - Carla Gomes
- Department of Computer Science, Cornell University, Ithaca, New York, USA
| | - Olivia J. Graham
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Leah Harper
- MarineGEO Program and Smithsonian Environmental Research Center, Edgewater, Maryland, USA
| | - C. Drew Harvell
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Timothy L. Hawthorne
- Department of Sociology and College of Sciences GIS Cluster, University of Central Florida, Orlando, Florida, USA
| | - Margot Hessing-Lewis
- Nearshore Marine Ecology, Hakai Institute, Heriot Bay, British Columbia, Canada
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kevin Hovel
- Department of Biology and Coastal & Marine Institute, San Diego State University, San Diego, California, USA
| | - Zachary L. Monteith
- Nearshore Marine Ecology, Hakai Institute, Heriot Bay, British Columbia, Canada
| | - Ryan S. Mueller
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| | - Angeleen M. Olson
- Nearshore Marine Ecology, Hakai Institute, Heriot Bay, British Columbia, Canada
| | - Carolyn Prentice
- Nearshore Marine Ecology, Hakai Institute, Heriot Bay, British Columbia, Canada
| | - Fiona Tomas
- Instituto Mediterráneo de Estudios Avanzados (UIB-CSIC), Esporles, Spain
| | - Bo Yang
- Department of Sociology and College of Sciences GIS Cluster, University of Central Florida, Orlando, Florida, USA
- Department of Urban and Regional Planning, San Jose State University, San Jose, California, USA
| | - John J. Stachowicz
- Department of Evolution and Ecology, University of California, Davis, California, USA
| |
Collapse
|
16
|
Adamczyk EM, O’Connor MI, Wegener Parfrey L. Seagrass (
Zostera marina
) transplant experiment reveals core microbiome and resistance to environmental change. Mol Ecol 2022; 31:5107-5123. [DOI: 10.1111/mec.16641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 07/20/2022] [Accepted: 07/28/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Emily M. Adamczyk
- Department of Zoology and Biodiversity Research Centre University of British Columbia, Unceded xʷməθkʷəy̓əm (Musqueam) Territory, 4200 ‐ 600 University Blvd Vancouver British Columbia Canada
| | - Mary I. O’Connor
- Department of Zoology and Biodiversity Research Centre University of British Columbia, Unceded xʷməθkʷəy̓əm (Musqueam) Territory, 4200 ‐ 600 University Blvd Vancouver British Columbia Canada
| | - Laura Wegener Parfrey
- Department of Zoology and Biodiversity Research Centre University of British Columbia, Unceded xʷməθkʷəy̓əm (Musqueam) Territory, 4200 ‐ 600 University Blvd Vancouver British Columbia Canada
- Department of Botany and Biodiversity Research Centre University of British Columbia, Unceded xʷməθkʷəy̓əm (Musqueam) Territory, 3156 ‐ 6270 University Blvd Vancouver British Columbia Canada
- Hakai Institute, PO Box 25039 Campbell River British Columbia
| |
Collapse
|
17
|
Mathur V, Ulanova D. Microbial Metabolites Beneficial to Plant Hosts Across Ecosystems. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02073-x. [PMID: 35867138 DOI: 10.1007/s00248-022-02073-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Plants are intimately connected with their associated microorganisms. Chemical interactions via natural products between plants and their microbial symbionts form an important aspect in host health and development, both in aquatic and terrestrial ecosystems. These interactions range from negative to beneficial for microbial symbionts as well as their hosts. Symbiotic microbes synchronize their metabolism with their hosts, thus suggesting a possible coevolution among them. Metabolites, synthesized from plants and microbes due to their association and coaction, supplement the already present metabolites, thus promoting plant growth, maintaining physiological status, and countering various biotic and abiotic stress factors. However, environmental changes, such as pollution and temperature variations, as well as anthropogenic-induced monoculture settings, have a significant influence on plant-associated microbial community and its interaction with the host. In this review, we put the prominent microbial metabolites participating in plant-microbe interactions in the natural terrestrial and aquatic ecosystems in a single perspective and have discussed commonalities and differences in these interactions for adaptation to surrounding environment and how environmental changes can alter the same. We also present the status and further possibilities of employing chemical interactions for environment remediation. Our review thus underlines the importance of ecosystem-driven functional adaptations of plant-microbe interactions in natural and anthropogenically influenced ecosystems and their possible applications.
Collapse
Affiliation(s)
- Vartika Mathur
- Animal Plant Interactions Lab, Department of Zoology, Sri Venkateswara College, Benito Juarez Marg, Dhaula Kuan, New Delhi-110021, India.
| | - Dana Ulanova
- Department of Marine Resource Sciences, Faculty of Agriculture and Marine Science, Kochi University, Monobe, Nankoku city, Kochi, 783-8502, Japan.
- Center for Advanced Marine Core Research, Kochi University, Monobe, Nankoku city, Kochi, 783-8502, Japan.
| |
Collapse
|
18
|
Mohapatra M, Manu S, Dash SP, Rastogi G. Seagrasses and local environment control the bacterial community structure and carbon substrate utilization in brackish sediments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 314:115013. [PMID: 35447445 DOI: 10.1016/j.jenvman.2022.115013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/16/2022] [Accepted: 04/02/2022] [Indexed: 06/14/2023]
Abstract
Seagrasses are complex benthic coastal ecosystems that play a crucial role in organic matter cycling and carbon sequestration. However, little is known about how seagrasses influence the structure and carbon utilization potential of benthic bacterial communities. This study examined the bacterial communities in monospecific and mixed meadows of seagrasses and compared with bulk (unvegetated) sediments from Chilika, a brackish water coastal lagoon of India. High-throughput sequencing of 16S rRNA genes revealed a vegetation effect in terms of differences in benthic bacterial community diversity, composition, and abundances in comparison with bulk sediments. Desulfobacterales, Chromatiales, Enterobacteriales, Clostridiales, Vibrionales, and Acidimicrobiales were major taxa that contributed to differences between seagrass and bulk sediments. Seagrasses supported ∼5.94 fold higher bacterial abundances than the bulk due to rich organic carbon stock in their sediments. Co-occurrence network demonstrated much stronger potential interactions and connectedness in seagrass bacterial communities compared to bulk. Chromatiales and Acidimicrobiales were identified as the top two keystone taxa in seagrass bacterial communities, whereas, Dehalococcoidales and Rhizobiales were in bulk communities. Seagrasses and local environmental factors, namely, water depth, water pH, sediment salinity, redox potential, total organic carbon, available nitrogen, sediment texture, sediment pH, and sediment core depth were the major drivers of benthic bacterial community composition. Carbon metabolic profiling revealed that heterotrophic bacteria in seagrass sediments were much more metabolically diverse and active than bulk. The utilization of carbon substrate guilds, namely, amino acids, amines, carboxylic acids, carbohydrates, polymers, and phenolic compounds was enhanced in seagrass sediments. Metabolic mapping predicted higher prevalence of sulfate-reducer and N2 fixation metabolic functions in seagrass sediments. Overall, this study showed that seagrasses control benthic bacterial community composition and diversity, enhance heterotrophic carbon substrate utilization, and play crucial roles in organic matter cycling including degradation of hydrocarbon and xenobiotics in coastal sediments.
Collapse
Affiliation(s)
- Madhusmita Mohapatra
- Wetland Research and Training Centre, Chilika Development Authority, Balugaon, 752030, Odisha, India
| | - Shivakumara Manu
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500048, India
| | - Stiti Prangya Dash
- Wetland Research and Training Centre, Chilika Development Authority, Balugaon, 752030, Odisha, India
| | - Gurdeep Rastogi
- Wetland Research and Training Centre, Chilika Development Authority, Balugaon, 752030, Odisha, India.
| |
Collapse
|
19
|
Zheng F, Mou X, Zhang J, Zhang T, Xia L, Yin S, Wu L, Leng X, An S, Zhao D. Gradual Enhancement of the Assemblage Stability of the Reed Rhizosphere Microbiome with Recovery Time. Microorganisms 2022; 10:microorganisms10050937. [PMID: 35630381 PMCID: PMC9146439 DOI: 10.3390/microorganisms10050937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/21/2022] [Accepted: 04/27/2022] [Indexed: 12/04/2022] Open
Abstract
Rhizoplane microbes are considered proxies for evaluating the assemblage stability of the rhizosphere in wetland ecosystems due to their roles in plant growth and ecosystem health. However, our knowledge of how microbial assemblage stability is promoted in the reed rhizosphere of wetlands undergoing recovery is limited. We investigated the assemblage stability, diversity, abundance, co-occurrence patterns, and functional characteristics of reed rhizosphere microbes in restored wetlands. The results indicated that assemblage stability significantly increased with recovery time and that the microbial assemblages were capable of resisting seasonal fluctuations after more than 20 years of restoration. The number of bacterial indicators was greater in the restoration groups with longer restoration periods. Most bacterial indicators appeared in the 30-year restoration group. However, the core taxa and keystone species of module 2 exhibited greater abundance within longer recovery periods and were well organized, with rich and diverse functions that enhanced microbial assemblage stability. Our study provides insight into the connection between the rhizosphere microbiome and recovery period and presents a useful theoretical basis for the empirical management of wetland ecosystems.
Collapse
Affiliation(s)
- Fuchao Zheng
- Institute of Wetland Ecology, School of Life Science, Nanjing University, Nanjing 210023, China; (F.Z.); (X.M.); (J.Z.); (T.Z.); (L.X.); (X.L.)
| | - Xiaoming Mou
- Institute of Wetland Ecology, School of Life Science, Nanjing University, Nanjing 210023, China; (F.Z.); (X.M.); (J.Z.); (T.Z.); (L.X.); (X.L.)
| | - Jinghua Zhang
- Institute of Wetland Ecology, School of Life Science, Nanjing University, Nanjing 210023, China; (F.Z.); (X.M.); (J.Z.); (T.Z.); (L.X.); (X.L.)
| | - Tiange Zhang
- Institute of Wetland Ecology, School of Life Science, Nanjing University, Nanjing 210023, China; (F.Z.); (X.M.); (J.Z.); (T.Z.); (L.X.); (X.L.)
| | - Lu Xia
- Institute of Wetland Ecology, School of Life Science, Nanjing University, Nanjing 210023, China; (F.Z.); (X.M.); (J.Z.); (T.Z.); (L.X.); (X.L.)
| | - Shenglai Yin
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China;
| | - Lingye Wu
- Changshu Wetland Conservation and Management Station, Changshu 215500, China;
| | - Xin Leng
- Institute of Wetland Ecology, School of Life Science, Nanjing University, Nanjing 210023, China; (F.Z.); (X.M.); (J.Z.); (T.Z.); (L.X.); (X.L.)
| | - Shuqing An
- Institute of Wetland Ecology, School of Life Science, Nanjing University, Nanjing 210023, China; (F.Z.); (X.M.); (J.Z.); (T.Z.); (L.X.); (X.L.)
- Nanjing University Ecology Research Institute of Changshu, Changshu 215500, China
- Correspondence: (S.A.); (D.Z.)
| | - Dehua Zhao
- Institute of Wetland Ecology, School of Life Science, Nanjing University, Nanjing 210023, China; (F.Z.); (X.M.); (J.Z.); (T.Z.); (L.X.); (X.L.)
- Correspondence: (S.A.); (D.Z.)
| |
Collapse
|
20
|
Rolando JL, Kolton M, Song T, Kostka JE. The core root microbiome of Spartina alterniflora is predominated by sulfur-oxidizing and sulfate-reducing bacteria in Georgia salt marshes, USA. MICROBIOME 2022; 10:37. [PMID: 35227326 PMCID: PMC8886783 DOI: 10.1186/s40168-021-01187-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/25/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND Salt marshes are dominated by the smooth cordgrass Spartina alterniflora on the US Atlantic and Gulf of Mexico coastlines. Although soil microorganisms are well known to mediate important biogeochemical cycles in salt marshes, little is known about the role of root microbiomes in supporting the health and productivity of marsh plant hosts. Leveraging in situ gradients in aboveground plant biomass as a natural laboratory, we investigated the relationships between S. alterniflora primary productivity, sediment redox potential, and the physiological ecology of bulk sediment, rhizosphere, and root microbial communities at two Georgia barrier islands over two growing seasons. RESULTS A marked decrease in prokaryotic alpha diversity with high abundance and increased phylogenetic dispersion was found in the S. alterniflora root microbiome. Significantly higher rates of enzymatic organic matter decomposition, as well as the relative abundances of putative sulfur (S)-oxidizing, sulfate-reducing, and nitrifying prokaryotes correlated with plant productivity. Moreover, these functional guilds were overrepresented in the S. alterniflora rhizosphere and root core microbiomes. Core microbiome bacteria from the Candidatus Thiodiazotropha genus, with the metabolic potential to couple S oxidation with C and N fixation, were shown to be highly abundant in the root and rhizosphere of S. alterniflora. CONCLUSIONS The S. alterniflora root microbiome is dominated by highly active and competitive species taking advantage of available carbon substrates in the oxidized root zone. Two microbially mediated mechanisms are proposed to stimulate S. alterniflora primary productivity: (i) enhanced microbial activity replenishes nutrients and terminal electron acceptors in higher biomass stands, and (ii) coupling of chemolithotrophic S oxidation with carbon (C) and nitrogen (N) fixation by root- and rhizosphere-associated prokaryotes detoxifies sulfide in the root zone while potentially transferring fixed C and N to the host plant. Video Abstract.
Collapse
Affiliation(s)
- Jose L Rolando
- Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA, 30332, USA
| | - Max Kolton
- Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA, 30332, USA
- French Associates Institute for Agriculture and Biotechnology of Drylands, Ben-Gurion, University of the Negev, Beer Sheva, Israel
| | - Tianze Song
- Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA, 30332, USA
| | - Joel E Kostka
- Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA, 30332, USA.
- Georgia Institute of Technology, School of Earth and Atmospheric Sciences, Atlanta, GA, 30332, USA.
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
21
|
Zhang J, Ling J, Zhou W, Zhang W, Yang F, Wei Z, Yang Q, Zhang Y, Dong J. Biochar Addition Altered Bacterial Community and Improved Photosynthetic Rate of Seagrass: A Mesocosm Study of Seagrass Thalassia hemprichii. Front Microbiol 2021; 12:783334. [PMID: 34925287 PMCID: PMC8678274 DOI: 10.3389/fmicb.2021.783334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Seagrass meadows, as typical “blue carbon” ecosystems, play critical ecological roles in the marine ecosystem and decline every year. The application of biochar in soil has been proposed as a potential soil amendment to improve soil quality and mitigate global climate change. The effects of biochar on soil bacterial activities are integrally linked to the potential of biochar in achieving these benefits. However, biochar has been rarely applied in marine ecosystems. Whether the application of biochar could work on the seagrass ecosystem remained unknown. In this study, we investigated the responses of sediment and rhizosphere bacterial communities of seagrass Thalassia hemprichii to the biochar addition derived from maize at ratios of 5% by dry weight in the soil during a one-month incubation. Results indicated that the biochar addition significantly changed the sedimental environment with increasing pH, total phosphorus, and total kalium while total nitrogen decreased. Biochar addition significantly altered both the rhizosphere and sediment bacterial community compositions. The significant changes in rhizosphere bacterial community composition occurred after 30days of incubation, while the significant variations in sediment bacterial community composition distinctly delayed than in sediment occurred on the 14th day. Biochar application improved nitrification and denitrification, which may accelerate nitrogen cycling. As a stabilizer to communities, biochar addition decreased the importance of deterministic selection in sediment and changed the bacterial co-occurrence pattern. The biochar addition may promote seagrass photosynthesis and growth by altering the bacterial community compositions and improving nutrient circulation in the seagrass ecosystem, contributing to the seagrass health improvement. This study provided a theoretical basis for applying biochar to the seagrass ecosystem and shed light on the feasible application of biochar in the marine ecosystem. ![]()
Collapse
Affiliation(s)
- Jian Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Sanya, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China.,College of Marine Science, University of Chinese Academy of Sciences, Beijing, China
| | - Juan Ling
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Sanya, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China.,Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, China
| | - Weiguo Zhou
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Sanya, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Wenqian Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Sanya, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China.,College of Marine Science, University of Chinese Academy of Sciences, Beijing, China
| | - Fangfang Yang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Sanya, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Zhangliang Wei
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Sanya, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Qingsong Yang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Sanya, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China.,Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, China
| | - Ying Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Sanya, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Junde Dong
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Sanya, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China.,Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, China
| |
Collapse
|
22
|
Scholz VV, Martin BC, Meyer R, Schramm A, Fraser MW, Nielsen LP, Kendrick GA, Risgaard‐Petersen N, Burdorf LDW, Marshall IPG. Cable bacteria at oxygen-releasing roots of aquatic plants: a widespread and diverse plant-microbe association. THE NEW PHYTOLOGIST 2021; 232:2138-2151. [PMID: 33891715 PMCID: PMC8596878 DOI: 10.1111/nph.17415] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 05/09/2023]
Abstract
Cable bacteria are sulfide-oxidising, filamentous bacteria that reduce toxic sulfide levels, suppress methane emissions and drive nutrient and carbon cycling in sediments. Recently, cable bacteria have been found associated with roots of aquatic plants and rice (Oryza sativa). However, the extent to which cable bacteria are associated with aquatic plants in nature remains unexplored. Using newly generated and public 16S rRNA gene sequence datasets combined with fluorescence in situ hybridisation, we investigated the distribution of cable bacteria around the roots of aquatic plants, encompassing seagrass (including seagrass seedlings), rice, freshwater and saltmarsh plants. Diverse cable bacteria were found associated with roots of 16 out of 28 plant species and at 36 out of 55 investigated sites, across four continents. Plant-associated cable bacteria were confirmed across a variety of ecosystems, including marine coastal environments, estuaries, freshwater streams, isolated pristine lakes and intensive agricultural systems. This pattern indicates that this plant-microbe relationship is globally widespread and neither obligate nor species specific. The occurrence of cable bacteria in plant rhizospheres may be of general importance to vegetation vitality, primary productivity, coastal restoration practices and greenhouse gas balance of rice fields and wetlands.
Collapse
Affiliation(s)
- Vincent V. Scholz
- Section for MicrobiologyDepartment of BiologyCenter for ElectromicrobiologyAarhus UniversityNy Munkegade 116Aarhus CDK‐8000Denmark
| | - Belinda C. Martin
- School of Biological SciencesThe University of Western Australia35 Stirling HighwayCrawleyWA6009Australia
- The UWA Oceans InstituteThe University of Western Australia35 Stirling HighwayCrawleyWA6009Australia
- Ooid ScientificWhite Gum ValleyWA6162Australia
| | - Raïssa Meyer
- Section for MicrobiologyDepartment of BiologyCenter for ElectromicrobiologyAarhus UniversityNy Munkegade 116Aarhus CDK‐8000Denmark
- Max Planck Institute for Marine MicrobiologyCelsiusstraße 1BremenD‐28359Germany
| | - Andreas Schramm
- Section for MicrobiologyDepartment of BiologyCenter for ElectromicrobiologyAarhus UniversityNy Munkegade 116Aarhus CDK‐8000Denmark
| | - Matthew W. Fraser
- School of Biological SciencesThe University of Western Australia35 Stirling HighwayCrawleyWA6009Australia
- The UWA Oceans InstituteThe University of Western Australia35 Stirling HighwayCrawleyWA6009Australia
| | - Lars Peter Nielsen
- Section for MicrobiologyDepartment of BiologyCenter for ElectromicrobiologyAarhus UniversityNy Munkegade 116Aarhus CDK‐8000Denmark
| | - Gary A. Kendrick
- School of Biological SciencesThe University of Western Australia35 Stirling HighwayCrawleyWA6009Australia
- The UWA Oceans InstituteThe University of Western Australia35 Stirling HighwayCrawleyWA6009Australia
| | - Nils Risgaard‐Petersen
- Section for MicrobiologyDepartment of BiologyCenter for ElectromicrobiologyAarhus UniversityNy Munkegade 116Aarhus CDK‐8000Denmark
| | - Laurine D. W. Burdorf
- Section for MicrobiologyDepartment of BiologyCenter for ElectromicrobiologyAarhus UniversityNy Munkegade 116Aarhus CDK‐8000Denmark
| | - Ian P. G. Marshall
- Section for MicrobiologyDepartment of BiologyCenter for ElectromicrobiologyAarhus UniversityNy Munkegade 116Aarhus CDK‐8000Denmark
| |
Collapse
|
23
|
The Future Is Big-and Small: Remote Sensing Enables Cross-Scale Comparisons of Microbiome Dynamics and Ecological Consequences. mSystems 2021; 6:e0110621. [PMID: 34726484 PMCID: PMC8562476 DOI: 10.1128/msystems.01106-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Coupling remote sensing with microbial omics-based approaches provides a promising new frontier for scientists to scale microbial interactions across space and time. These data-rich, interdisciplinary methods allow us to better understand interactions between microbial communities and their environments and, in turn, their impact on ecosystem structure and function. Here, we highlight current and novel examples of applying remote sensing, machine learning, spatial statistics, and omics data approaches to marine, aquatic, and terrestrial systems. We emphasize the importance of integrating biochemical and spatiotemporal environmental data to move toward a predictive framework of microbiome interactions and their ecosystem-level effects. Finally, we emphasize lessons learned from our collaborative research with recommendations to foster productive and interdisciplinary teamwork.
Collapse
|
24
|
Tarquinio F, Attlan O, Vanderklift MA, Berry O, Bissett A. Distinct Endophytic Bacterial Communities Inhabiting Seagrass Seeds. Front Microbiol 2021; 12:703014. [PMID: 34621247 PMCID: PMC8491609 DOI: 10.3389/fmicb.2021.703014] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
Seagrasses are marine angiosperms that can live completely or partially submerged in water and perform a variety of significant ecosystem services. Like terrestrial angiosperms, seagrasses can reproduce sexually and, the pollinated female flower develop into fruits and seeds, which represent a critical stage in the life of plants. Seed microbiomes include endophytic microorganisms that in terrestrial plants can affect seed germination and seedling health through phytohormone production, enhanced nutrient availability and defence against pathogens. However, the characteristics and origins of the seagrass seed microbiomes is unknown. Here, we examined the endophytic bacterial community of six microenvironments (flowers, fruits, and seeds, together with leaves, roots, and rhizospheric sediment) of the seagrass Halophila ovalis collected from the Swan Estuary, in southwestern Australia. An amplicon sequencing approach (16S rRNA) was used to characterize the diversity and composition of H. ovalis bacterial microbiomes and identify core microbiome bacteria that were conserved across microenvironments. Distinct communities of bacteria were observed within specific seagrass microenvironments, including the reproductive tissues (flowers, fruits, and seeds). In particular, bacteria previously associated with plant growth promoting characteristics were mainly found within reproductive tissues. Seagrass seed-borne bacteria that exhibit growth promoting traits, the ability to fix nitrogen and anti-pathogenic potential activity, may play a pivotal role in seed survival, as is common for terrestrial plants. We present the endophytic community of the seagrass seeds as foundation for the identification of potential beneficial bacteria and their selection in order to improve seagrass restoration.
Collapse
Affiliation(s)
- Flavia Tarquinio
- Oceans and Atmosphere, Indian Ocean Marine Research Centre, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Crawley, WA, Australia.,Environomics Future Science Platform, Indian Ocean Marine Research Centre, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Crawley, WA, Australia
| | - Océane Attlan
- Oceans and Atmosphere, Indian Ocean Marine Research Centre, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Crawley, WA, Australia.,Sciences et Technologies, Université de la Réunion, Saint-Denis, France
| | - Mathew A Vanderklift
- Oceans and Atmosphere, Indian Ocean Marine Research Centre, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Crawley, WA, Australia
| | - Oliver Berry
- Environomics Future Science Platform, Indian Ocean Marine Research Centre, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Crawley, WA, Australia
| | - Andrew Bissett
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Hobart, TAS, Australia
| |
Collapse
|
25
|
Diversity and abundance of diazotrophic communities of seagrass Halophila ovalis based on genomic and transcript level in Daya Bay, South China Sea. Arch Microbiol 2021; 203:5577-5589. [PMID: 34436633 DOI: 10.1007/s00203-021-02544-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 10/20/2022]
Abstract
Seagrass ecosystems are among the most productive marine ecosystems, and diazotrophic communities play a crucial role in sustaining the productivity and stability of such ecosystems by introducing fixed nitrogen. However, information concerning both total and active diazotrophic groups existing in different compartments of seagrass is lacking. This study comprehensively investigated the diversity, structure, and abundance of diazotrophic communities in different parts of the seagrass Halophila ovalis at the DNA and RNA level from clone libraries and real-time quantitative PCR. Our results indicated that nearly one-third of existing nitrogen-fixing bacteria were active, and their abundance might be controlled by nitrogen to phosphorus ratio (N:P). Deltaproteobacteria and Gammaproteobacteria were dominant groups among the total and active diazotrophic communities in all samples. These two groups accounted for 82.21% and 70.96% at the DNA and RNA levels, respectively. The genus Pseudomonas and sulfate-reducing bacteria (genera: Desulfosarcina, Desulfobulbus, Desulfocapsa, and Desulfopila) constituted the significant fraction of nitrogen-fixing bacteria in the seagrass ecosystem, playing an additional role in denitrification and sulfate reduction, respectively. Moreover, the abundance of the nitrogenase gene, nifH, was highest in seawater and lowest in rhizosphere sediments from all samples. This study highlighted the role of diazotropic communities in the subtropical seagrass ecosystem.
Collapse
|
26
|
Ling J, Zhou W, Yang Q, Yin J, Zhang J, Peng Q, Huang X, Zhang Y, Dong J. Spatial and Species Variations of Bacterial Community Structure and Putative Function in Seagrass Rhizosphere Sediment. Life (Basel) 2021; 11:life11080852. [PMID: 34440596 PMCID: PMC8401270 DOI: 10.3390/life11080852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 12/21/2022] Open
Abstract
Seagrasses are an important part of the coral reef ecosystem, and their rhizosphere microbes are of great ecological importance. However, variations in diversity, composition, and potential functions of bacterial communities in the seagrass rhizosphere of coral reef ecosystems remain unclear. This study employed the high-throughput sequencing based on 16S rDNA gene sequences and functional annotation of prokaryotic taxa (FAPROTAX) analysis to investigate these variations based on seagrass species and sampling locations, respectively. Results demonstrated that the seagrass rhizosphere microbial community was mainly dominated by phylum Proteobacteria (33.47%), Bacteroidetes (23.33%), and Planctomycetes (12.47%), while functional groups were mainly composed of sulfate respiration (14.09%), respiration of sulfur compounds (14.24%), aerobic chemoheterotrophy (20.87%), and chemoheterotrophy (26.85%). Significant differences were evident in alpha diversity, taxonomical composition and putative functional groups based on seagrass species and sampling locations. Moreover, the core microbial community of all investigated samples was identified, accounting for 63.22% of all obtained sequences. Network analysis indicated that most microbes had a positive correlation (82.41%), and two module hubs (phylum Proteobacteria) were investigated. Furthermore, a significant positive correlation was found between the OTUs numbers obtained and the functional groups assigned for seagrass rhizosphere microbial communities (p < 0.01). Our result would facilitate future investigation of the function of seagrass rhizosphere microbes.
Collapse
Affiliation(s)
- Juan Ling
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (J.L.); (W.Z.); (Q.Y.); (J.Y.); (J.Z.); (Q.P.); (X.H.); (Y.Z.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya National Marine Ecosystem Research Station, Chinese Academy of Sciences, Sanya 572000, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 511458, China
| | - Weiguo Zhou
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (J.L.); (W.Z.); (Q.Y.); (J.Y.); (J.Z.); (Q.P.); (X.H.); (Y.Z.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya National Marine Ecosystem Research Station, Chinese Academy of Sciences, Sanya 572000, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 511458, China
| | - Qingsong Yang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (J.L.); (W.Z.); (Q.Y.); (J.Y.); (J.Z.); (Q.P.); (X.H.); (Y.Z.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya National Marine Ecosystem Research Station, Chinese Academy of Sciences, Sanya 572000, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 511458, China
| | - Jianping Yin
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (J.L.); (W.Z.); (Q.Y.); (J.Y.); (J.Z.); (Q.P.); (X.H.); (Y.Z.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Jian Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (J.L.); (W.Z.); (Q.Y.); (J.Y.); (J.Z.); (Q.P.); (X.H.); (Y.Z.)
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiuying Peng
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (J.L.); (W.Z.); (Q.Y.); (J.Y.); (J.Z.); (Q.P.); (X.H.); (Y.Z.)
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaofang Huang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (J.L.); (W.Z.); (Q.Y.); (J.Y.); (J.Z.); (Q.P.); (X.H.); (Y.Z.)
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhang Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (J.L.); (W.Z.); (Q.Y.); (J.Y.); (J.Z.); (Q.P.); (X.H.); (Y.Z.)
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junde Dong
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (J.L.); (W.Z.); (Q.Y.); (J.Y.); (J.Z.); (Q.P.); (X.H.); (Y.Z.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya National Marine Ecosystem Research Station, Chinese Academy of Sciences, Sanya 572000, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 511458, China
- Correspondence: ; Tel.: +86-20-8910-7830
| |
Collapse
|
27
|
Trevathan-Tackett SM, Kepfer-Rojas S, Engelen AH, York PH, Ola A, Li J, Kelleway JJ, Jinks KI, Jackson EL, Adame MF, Pendall E, Lovelock CE, Connolly RM, Watson A, Visby I, Trethowan A, Taylor B, Roberts TNB, Petch J, Farrington L, Djukic I, Macreadie PI. Ecosystem type drives tea litter decomposition and associated prokaryotic microbiome communities in freshwater and coastal wetlands at a continental scale. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 782:146819. [PMID: 33838377 DOI: 10.1016/j.scitotenv.2021.146819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
Wetland ecosystems are critical to the regulation of the global carbon cycle, and there is a high demand for data to improve carbon sequestration and emission models and predictions. Decomposition of plant litter is an important component of ecosystem carbon cycling, yet a lack of knowledge on decay rates in wetlands is an impediment to predicting carbon preservation. Here, we aim to fill this knowledge gap by quantifying the decomposition of standardised green and rooibos tea litter over one year within freshwater and coastal wetland soils across four climates in Australia. We also captured changes in the prokaryotic members of the tea-associated microbiome during this process. Ecosystem type drove differences in tea decay rates and prokaryotic microbiome community composition. Decomposition rates were up to 2-fold higher in mangrove and seagrass soils compared to freshwater wetlands and tidal marshes, in part due to greater leaching-related mass loss. For tidal marshes and freshwater wetlands, the warmer climates had 7-16% less mass remaining compared to temperate climates after a year of decomposition. The prokaryotic microbiome community composition was significantly different between substrate types and sampling times within and across ecosystem types. Microbial indicator analyses suggested putative metabolic pathways common across ecosystems were used to breakdown the tea litter, including increased presence of putative methylotrophs and sulphur oxidisers linked to the introduction of oxygen by root in-growth over the incubation period. Structural equation modelling analyses further highlighted the importance of incubation time on tea decomposition and prokaryotic microbiome community succession, particularly for rooibos tea that experienced a greater proportion of mass loss between three and twelve months compared to green tea. These results provide insights into ecosystem-level attributes that affect both the abiotic and biotic controls of belowground wetland carbon turnover at a continental scale, while also highlighting new decay dynamics for tea litter decomposing under longer incubations.
Collapse
Affiliation(s)
- Stacey M Trevathan-Tackett
- Deakin University, Centre for Integrative Ecology, School of Life and Environmental Sciences, 221 Burwood Hwy, Burwood, VIC 3125, Australia.
| | - Sebastian Kepfer-Rojas
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Rolighedsvej 23, 1958 Frederiksberg, Denmark
| | - Aschwin H Engelen
- Centre for Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Paul H York
- James Cook University, Centre for Tropical Water and Aquatic Ecosystem Research (TropWATER), Cairns, Queensland 4870, Australia
| | - Anne Ola
- The University of Queensland, School of Biological Sciences, St. Lucia, Queensland 4072, Australia
| | - Jinquan Li
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia; National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jeffrey J Kelleway
- School of Earth, Atmospheric and Life Sciences, GeoQuEST Research Centre, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Kristin I Jinks
- Coastal and Marine Research Centre, Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Emma L Jackson
- Coastal Marine Ecosystems Research Centre, CQUniversity, Gladstone, QLD 4680, Australia
| | | | - Elise Pendall
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Catherine E Lovelock
- The University of Queensland, School of Biological Sciences, St. Lucia, Queensland 4072, Australia
| | - Rod M Connolly
- Coastal and Marine Research Centre, Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Anne Watson
- School of Natural Sciences, University of Tasmania, Sandy Bay, TAS 7005, Australia
| | - Inger Visby
- Derwent Estuary Program, 24 Davey St Hobart, TAS 7001, Australia
| | - Allison Trethowan
- RiverConnect - Greater Shepparton City Council, Shepparton, VIC 3630, Australia
| | - Ben Taylor
- Nature Glenelg Trust, PO Box 2177, Mt Gambier, SA 5290, Australia
| | | | - Jane Petch
- Melbourne Water, South East Regional Office, Worsley Road, Bangholme, VIC 3175, Australia
| | | | - Ika Djukic
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Peter I Macreadie
- Deakin University, Centre for Integrative Ecology, School of Life and Environmental Sciences, 221 Burwood Hwy, Burwood, VIC 3125, Australia
| |
Collapse
|
28
|
Ling J, Zhou W, Yang Q, Lin X, Zhang Y, Ahmad M, Peng Q, Dong J. Effect of PAHs on nitrogen-fixing and sulfate-reducing microbial communities in seagrass Enhalus acoroides sediment. Arch Microbiol 2021; 203:3443-3456. [PMID: 33893827 DOI: 10.1007/s00203-021-02321-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 10/21/2022]
Abstract
Seagrass meadows are vital ecosystems with high productivity and biodiversity and often in the oligotrophic area. Nitrogen usually limits productivity in this ecosystem as the main nutrient factor. Biological nitrogen fixation by diazotrophs in the rhizosphere sediment can introduce "new" nitrogen into the ecosystem. Previous studies revealed that most sulfate-reducing bacteria (SRB) can also fix nitrogen like the nitrogen-fixing bacteria (NFB). Moreover, both sulfate reduction and nitrogen fixation were affected by the organic pollutant. However, rare information is available regarding the NFB and SRB community composition and their temporal response to the pollutant. The quantitative real-time polymerase chain reaction and polymerase chain reaction denaturing gradient gel electrophoresis have been used to analyze NFB and SRB communities' shifts under different PAHs concentrations. They both experienced a dramatic shift under PAHs stress but exhibited different patterns. SRB could use the low and high concentration PAHs at the early stage of the incubation, while only the low concentration of PAHs could stimulate the growth of NFB through the whole incubation period. The predominant species of NFB communities were Alphaproteobacteria, Gammaproteobacteria, and Deltaproteobacteria; while for SRB communities were class Epsilonproteobacteria. Redundancy analysis indicated the significant environmental factors for the two communities were both ammonium and pH (P < 0.05). There existed nifH sequences related to known nitrogen fixing SRB Desulfatibacillum alkenivorans, which confirmed that microbial N2 fixation and sulfate reduction were coupled in the seagrass ecosystem by molecular technique. Our investigation provides new insight into the NFB and SRB community in the seagrass meadow.
Collapse
Affiliation(s)
- Juan Ling
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 5114583, China.,Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya, 572000, China.,Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 5114583, China
| | - Weiguo Zhou
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 5114583, China.,Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 5114583, China
| | - Qingsong Yang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 5114583, China.,Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 5114583, China
| | - Xiancheng Lin
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Manzoor Ahmad
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qinying Peng
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junde Dong
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China. .,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 5114583, China. .,Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya, 572000, China. .,Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, China. .,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 5114583, China.
| |
Collapse
|
29
|
Zhou W, Dong J, Ding D, Long L, Suo A, Lin X, Yang Q, Lin L, Zhang Y, Ling J. Rhizosphere microbiome dynamics in tropical seagrass under short-term inorganic nitrogen fertilization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:19021-19033. [PMID: 33394400 DOI: 10.1007/s11356-020-12048-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Rhizosphere microbes are crucial to seagrass meadows because they promote plant growth and heath. However, information concerning the response of rhizosphere microorganisms in seagrass sediment in the presence of different nitrogen sources is lacking. Here, by means of high-throughput sequencing, we investigated how addition of inorganic nitrogen affects the rhizosphere microbiome of the tropical seagrass Thalassia hemperichii. A seagrass culture system was set up to conduct a nitrogen addition (ammonium and nitrate) simulation experiment. We found that the relative abundance of Proteobacteria and Bacteroidetes was increased in inorganic nitrogen-enriched samples, whereas that of Acidobacteria decreased under ammonium enrichment, especially after 35 days. High levels of inorganic nitrogen addition caused a significant decrease in the relative abundance of Desulfobacteraceae, Sulfurovaceae, and Spirochaetes, which are primarily involved in sulfur cycling. Additionally, the abundance of microbes in the seagrass rhizosphere reached the highest after the ammonium-enrichment treatment. Among the analyzed seagrass photosynthetic characteristics, seagrass leaves presented the highest light utility in treatments receiving nitrate, followed by the control groups and ammonium-enrichment groups. Moreover, 16S rRNA gene-predicted functional analysis suggested that some functions related to metabolism of amino acids and signal transduction were enriched in samples receiving high ammonium, whereas nitrate addition enriched predicted functions related to diseases. These findings provide new insights into the response of microbial communities to different types of nitrogen additions in seagrass ecosystems.
Collapse
Affiliation(s)
- Weiguo Zhou
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, Guangdong Province, China
| | - Junde Dong
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, Guangdong Province, China
- Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, China
| | - Dewen Ding
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, Guangdong Province, China
| | - Lijuan Long
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, Guangdong Province, China
| | - Anning Suo
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, Guangdong Province, China
| | - Xiancheng Lin
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Qingsong Yang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, Guangdong Province, China
| | - Liyun Lin
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Yanying Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, China
| | - Juan Ling
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, Guangdong Province, China.
| |
Collapse
|
30
|
Schnaars V, Wöhlbrand L, Scheve S, Hinrichs C, Reinhardt R, Rabus R. Proteogenomic Insights into the Physiology of Marine, Sulfate-Reducing, Filamentous Desulfonema limicola and Desulfonema magnum. Microb Physiol 2021; 31:1-20. [PMID: 33611323 PMCID: PMC8315694 DOI: 10.1159/000513383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/19/2020] [Indexed: 11/19/2022]
Abstract
The genus Desulfonema belongs to the deltaproteobacterial family Desulfobacteraceae and comprises marine, sulfate-reducing bacteria that form filaments and move by gliding. This study reports on the complete, manually annotated genomes of Dn. limicola 5ac10T (6.91 Mbp; 6,207 CDS) and Dn. magnum 4be13T (8.03 Mbp; 9,970 CDS), integrated with substrate-specific proteome profiles (8 vs. 11). The richness in mobile genetic elements is shared with other Desulfobacteraceae members, corroborating horizontal gene transfer as major driver in shaping the genomes of this family. The catabolic networks of Dn. limicola and Dn. magnum have the following general characteristics: 98 versus 145 genes assigned (having genomic shares of 1.7 vs. 2.2%), 92.5 versus 89.7% proteomic coverage, and scattered gene clusters for substrate degradation and energy metabolism. The Dn. magnum typifying capacity for aromatic compound degradation (e.g., p-cresol, 3-phenylpropionate) requires 48 genes organized in operon-like structures (87.7% proteomic coverage; no homologs in Dn. limicola). The protein complements for aliphatic compound degradation, central pathways, and energy metabolism are highly similar between both genomes and were identified to a large extent (69-96%). The differential protein profiles revealed a high degree of substrate-specificity for peripheral reaction sequences (forming central intermediates), agreeing with the high number of sensory/regulatory proteins predicted for both strains. By contrast, central pathways and modules of the energy metabolism were constitutively formed under the tested substrate conditions. In accord with their natural habitats that are subject to fluctuating changes of physicochemical parameters, both Desulfonema strains are well equipped to cope with various stress conditions. Next to superoxide dismutase and catalase also desulfoferredoxin and rubredoxin oxidoreductase are formed to counter exposure to molecular oxygen. A variety of proteases and chaperones were detected that function in maintaining cellular homeostasis upon heat or cold shock. Furthermore, glycine betaine/proline betaine transport systems can respond to hyperosmotic stress. Gliding movement probably relies on twitching motility via type-IV pili or adventurous motility. Taken together, this proteogenomic study demonstrates the adaptability of Dn. limicola and Dn. magnum to its dynamic habitats by means of flexible catabolism and extensive stress response capacities.
Collapse
Affiliation(s)
- Vanessa Schnaars
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Lars Wöhlbrand
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Sabine Scheve
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Christina Hinrichs
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Richard Reinhardt
- Max-Planck-Genome-Centre Cologne, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Ralf Rabus
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany,
| |
Collapse
|
31
|
The Seagrass Holobiont: What We Know and What We Still Need to Disclose for Its Possible Use as an Ecological Indicator. WATER 2021. [DOI: 10.3390/w13040406] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Microbes and seagrass establish symbiotic relationships constituting a functional unit called the holobiont that reacts as a whole to environmental changes. Recent studies have shown that the seagrass microbial associated community varies according to host species, environmental conditions and the host’s health status, suggesting that the microbial communities respond rapidly to environmental disturbances and changes. These changes, dynamics of which are still far from being clear, could represent a sensitive monitoring tool and ecological indicator to detect early stages of seagrass stress. In this review, the state of art on seagrass holobiont is discussed in this perspective, with the aim of disentangling the influence of different factors in shaping it. As an example, we expand on the widely studied Halophila stipulacea’s associated microbial community, highlighting the changing and the constant components of the associated microbes, in different environmental conditions. These studies represent a pivotal contribution to understanding the holobiont’s dynamics and variability pattern, and to the potential development of ecological/ecotoxicological indices. The influences of the host’s physiological and environmental status in changing the seagrass holobiont, alongside the bioinformatic tools for data analysis, are key topics that need to be deepened, in order to use the seagrass-microbial interactions as a source of ecological information.
Collapse
|