1
|
Sayın B, Kaban G. Biotechnological Innovations Unleashing the Potential of Olive Mill Wastewater in Added-Value Bioproducts. Foods 2024; 13:2245. [PMID: 39063329 PMCID: PMC11276412 DOI: 10.3390/foods13142245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/07/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Byproducts and wastes from the food processing industry represent an important group of wastes generated annually in large quantities. It is important to note that the amount of this waste will increase with industrialization, and effective solutions must be found urgently. Many wastes that cause environmental pollution are evaluated by their low-tech conversion into products with little economic value, such as animal feed and fertilizer. Therefore, the evaluation of food processing waste using effective recycling techniques has become an interesting subject with increasing population, ongoing biotechnological studies, and advances in technology. The conversion of food waste into biotechnological products via fermentation is a sustainable, environmentally friendly, and economical method in line with the principles of green chemistry. This approach promotes the reuse of food waste by supporting the principles of a circular economy and offers sustainable alternatives to fossil fuels and synthetic chemicals. This contributes to reducing the carbon footprint, preserving soil and water quality, and providing economic sustainability through the production of high-value products. In this study, the properties of olive mill wastewater, an important and valuable waste in the olive oil industry, its environmental aspects, and its use in biotechnological applications that integrate green chemistry are evaluated.
Collapse
Affiliation(s)
- Bilge Sayın
- Department of Gastronomy and Culinary Arts, School of Tourism and Hotel Management, Ardahan University, 75002 Ardahan, Türkiye
| | - Güzin Kaban
- Department of Food Engineering, Faculty of Agriculture, Atatürk University, 25240 Erzurum, Türkiye
| |
Collapse
|
2
|
Ponmozhi J, Dhinakaran S, Kocsis D, Iván K, Erdő F. Models for barrier understanding in health and disease in lab-on-a-chips. Tissue Barriers 2024; 12:2221632. [PMID: 37294075 PMCID: PMC11042069 DOI: 10.1080/21688370.2023.2221632] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023] Open
Abstract
The maintenance of body homeostasis relies heavily on physiological barriers. Dysfunction of these barriers can lead to various pathological processes, including increased exposure to toxic materials and microorganisms. Various methods exist to investigate barrier function in vivo and in vitro. To investigate barrier function in a highly reproducible manner, ethically, and high throughput, researchers have turned to non-animal techniques and micro-scale technologies. In this comprehensive review, the authors summarize the current applications of organ-on-a-chip microfluidic devices in the study of physiological barriers. The review covers the blood-brain barrier, ocular barriers, dermal barrier, respiratory barriers, intestinal, hepatobiliary, and renal/bladder barriers under both healthy and pathological conditions. The article then briefly presents placental/vaginal, and tumour/multi-organ barriers in organ-on-a-chip devices. Finally, the review discusses Computational Fluid Dynamics in microfluidic systems that integrate biological barriers. This article provides a concise yet informative overview of the current state-of-the-art in barrier studies using microfluidic devices.
Collapse
Affiliation(s)
- J. Ponmozhi
- Microfluidics Laboratory, Department of Mechanical Engineering, IPS Academy-Institute of Engineering Science, Indore, India
| | - S. Dhinakaran
- The Centre for Fluid Dynamics, Department of Mechanical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Dorottya Kocsis
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Kristóf Iván
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Franciska Erdő
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| |
Collapse
|
3
|
Enders A, Grünberger A, Bahnemann J. Towards Small Scale: Overview and Applications of Microfluidics in Biotechnology. Mol Biotechnol 2024; 66:365-377. [PMID: 36515858 PMCID: PMC10881759 DOI: 10.1007/s12033-022-00626-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/26/2022] [Indexed: 12/15/2022]
Abstract
Thanks to recent and continuing technological innovations, modern microfluidic systems are increasingly offering researchers working across all fields of biotechnology exciting new possibilities (especially with respect to facilitating high throughput analysis, portability, and parallelization). The advantages offered by microfluidic devices-namely, the substantially lowered chemical and sample consumption they require, the increased energy and mass transfer they offer, and their comparatively small size-can potentially be leveraged in every sub-field of biotechnology. However, to date, most of the reported devices have been deployed in furtherance of healthcare, pharmaceutical, and/or industrial applications. In this review, we consider examples of microfluidic and miniaturized systems across biotechnology sub-fields. In this context, we point out the advantages of microfluidics for various applications and highlight the common features of devices and the potential for transferability to other application areas. This will provide incentives for increased collaboration between researchers from different disciplines in the field of biotechnology.
Collapse
Affiliation(s)
- Anton Enders
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße 5, 30167, Hannover, Germany
| | - Alexander Grünberger
- Institute of Process Engineering in Life Sciences: Microsystems in Bioprocess Engineering, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, 76131, Karlsruhe, Germany
| | - Janina Bahnemann
- Institute of Physics, University of Augsburg, Universitätsstraße 1, 86159, Augsburg, Germany.
| |
Collapse
|
4
|
Ramesh C, Dufossé L. Blue Microbiology-Aquatic Microbial Resources for Sustainable Life on Earth. Microorganisms 2023; 11:microorganisms11030808. [PMID: 36985381 PMCID: PMC10053302 DOI: 10.3390/microorganisms11030808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
The exploration of the microbial world in research continues to be fascinating and unending in several aspects of taxonomy, genomics, evolution, and industrial applications [...].
Collapse
Affiliation(s)
- Chatragadda Ramesh
- Biological Oceanography Division, National Institute of Oceanography (CSIR-NIO), Dona Paula 403004, Goa, India
| | - Laurent Dufossé
- Chemistry and Biotechnology of Natural Products, CHEMBIOPRO, Université de La Réunion, ESIROI Agroalimentaire, 15 Avenue René Cassin, CEDEX 9, F-97744 Saint-Denis, France
| |
Collapse
|
5
|
Prasertsilp P, Pattaragulwanit K, Kim BS, Napathorn SC. Microwave-assisted cassava pulp hydrolysis as food waste biorefinery for biodegradable polyhydroxybutyrate production. Front Bioeng Biotechnol 2023; 11:1131053. [PMID: 36949884 PMCID: PMC10025311 DOI: 10.3389/fbioe.2023.1131053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
Cassava pulp is one of the most abundant agricultural residues that can cause serious disposal problems. This study aimed to apply a biorefinery approach by examining the feasibility of microwave-assisted cassava pulp hydrolysis to attain sustainable management and efficient use of natural resources. Four factors, namely, the liquid-to-solid ratio (20 mL/g, 10 mL/g, 7.5 mL/g, and 5 mL/g), types of acids (H2SO4 and H3PO4), watt power (600 W, 700 W, and 800 W) and time (3, 5 and 8 min), were carefully investigated. The highest fermentable sugar content of 88.1 g/L ± 0.7 g/L (0.88 g fermentable sugars/g dry cassava pulp) was achieved when 20 mL/g cassava pulp was hydrolyzed with 2.5% (v/v) H2SO4 under microwave irradiation at 800 W for 8 min. Glucose was a major product (82.0 g/L ± 5.2 g/L). The inhibitor concentration was 5.17 g/L ± 0.01 g/L, and the levulinic acid concentration was 5.15 g/L ± 0.01 g/L. The results indicated that the liquid-to-solid ratio, diluted acid concentration, irradiation watt power and time were important factors in producing fermentable sugars from acid hydrolysis under microwave irradiation. The crude hydrolysate was used for PHB production by Cupriavidus necator strain A-04. The hydrolysate to nutrients ratio of 30:70 (v/v) yielded a cell dry weight of 7.5 g/L ± 0.1 g/L containing PHB content of 66.8% ± 0.3% (w/w), resulting in a yieldY P / S (g-PHB/g-S P H B ) of 0.35 g/g. This study demonstrated that the microwave-assisted cassava pulp hydrolysate developed in this study provided a high amount of glucose (88.1% conversion) and resulted in a low concentration of inhibitors without xylose; this was successfully achieved without pregelatinization, alkaline pretreatment or detoxification.
Collapse
Affiliation(s)
- Patiya Prasertsilp
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | | | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Suchada Chanprateep Napathorn
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- International Center for Biotechnology, Osaka University, Osaka, Japan
| |
Collapse
|
6
|
Smaluch K, Wollenhaupt B, Steinhoff H, Kohlheyer D, Grünberger A, Dusny C. Assessing the growth kinetics and stoichiometry of Escherichia coli at the single-cell level. Eng Life Sci 2023; 23:e2100157. [PMID: 36619887 PMCID: PMC9815083 DOI: 10.1002/elsc.202100157] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/17/2022] [Accepted: 04/16/2022] [Indexed: 01/11/2023] Open
Abstract
Microfluidic cultivation and single-cell analysis are inherent parts of modern microbial biotechnology and microbiology. However, implementing biochemical engineering principles based on the kinetics and stoichiometry of growth in microscopic spaces remained unattained. We here present a novel integrated framework that utilizes distinct microfluidic cultivation technologies and single-cell analytics to make the fundamental math of process-oriented biochemical engineering applicable at the single-cell level. A combination of non-invasive optical cell mass determination with sub-pg sensitivity, microfluidic perfusion cultivations for establishing physiological steady-states, and picoliter batch reactors, enabled the quantification of all physiological parameters relevant to approximate a material balance in microfluidic reaction environments. We determined state variables (biomass concentration based on single-cell dry weight and mass density), biomass synthesis rates, and substrate affinities of cells grown in microfluidic environments. Based on this data, we mathematically derived the specific kinetics of substrate uptake and growth stoichiometry in glucose-grown Escherichia coli with single-cell resolution. This framework may initiate microscale material balancing beyond the averaged values obtained from populations as a basis for integrating heterogeneous kinetic and stoichiometric single-cell data into generalized bioprocess models and descriptions.
Collapse
Affiliation(s)
- Katharina Smaluch
- Department of Solar Materials – Microscale Analysis and EngineeringHelmholtz‐Centre for Environmental Research – UFZ LeipzigLeizpigGermany
| | - Bastian Wollenhaupt
- Microscale BioengineeringIBG‐1: BiotechnologyForschungszentrum Jülich GmbHJülichGermany
| | - Heiko Steinhoff
- Multiscale BioengineeringFaculty of TechnologyBielefeld UniversityBielefeldGermany
| | - Dietrich Kohlheyer
- Microscale BioengineeringIBG‐1: BiotechnologyForschungszentrum Jülich GmbHJülichGermany
| | - Alexander Grünberger
- Multiscale BioengineeringFaculty of TechnologyBielefeld UniversityBielefeldGermany
| | - Christian Dusny
- Department of Solar Materials – Microscale Analysis and EngineeringHelmholtz‐Centre for Environmental Research – UFZ LeipzigLeizpigGermany
| |
Collapse
|
7
|
Biundo A, Stamm A, Gorgoglione R, Syrén PO, Curia S, Hauer B, Capriati V, Vitale P, Perna F, Agrimi G, Pisano I. REGIO- AND STEREOSELECTIVE BIOCATALYTIC HYDRATION OF FATTY ACIDS FROM WASTE COOKING OILS EN ROUTE TO HYDROXY FATTY ACIDS AND BIO-BASED POLYESTERS. Enzyme Microb Technol 2022; 163:110164. [DOI: 10.1016/j.enzmictec.2022.110164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 11/27/2022]
|
8
|
Guerrero DS, Romero CM, Polti MA, Dávila Costa JS. Genome sequencing and genomic analysis of Amycolatopsis tucumanensis DSM 45259 applicable in gray, red, and nano-biotechnology. J Basic Microbiol 2022; 62:779-787. [PMID: 35551685 DOI: 10.1002/jobm.202200157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/07/2022] [Accepted: 04/23/2022] [Indexed: 11/10/2022]
Abstract
Through the years, the genus Amycolatopsis has demonstrated its biotechnological potential. The need to clean up the environment and produce new antimicrobial molecules led to exploit promising bacterial genera such as Amycolatopsis. In this present work, we analyze the genome of the strain Amycolatopsis tucumanensis AB0 previously isolated from copper-polluted sediments. Phylogenomic and comparative analysis with the closest phylogenetic neighbor was performed. Our analysis showed the genetic potential of the strain to deal with heavy metals such as copper and mitigate oxidative stress. In addition, the ability to produce copper oxide nanoparticles and the presence of genes potentially involved in the synthesis of secondary metabolites suggest that A. tucumanensis may find utility in gray, red, and nano-biotechnology. To our knowledge, this is the first genomic analysis of an Amycolatopsis strain with potential for different biotechnological fields.
Collapse
Affiliation(s)
- Daiana S Guerrero
- Planta Piloto de Procesos Industriales Microbiológicos- (PROIMI-CONICET), Tucumán, Argentina
| | - Cintia M Romero
- Planta Piloto de Procesos Industriales Microbiológicos- (PROIMI-CONICET), Tucumán, Argentina.,Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán (UNT), Tucumán, Argentina
| | - Marta A Polti
- Planta Piloto de Procesos Industriales Microbiológicos- (PROIMI-CONICET), Tucumán, Argentina
| | - José S Dávila Costa
- Planta Piloto de Procesos Industriales Microbiológicos- (PROIMI-CONICET), Tucumán, Argentina
| |
Collapse
|
9
|
Kawaguchi H, Takada K, Elkasaby T, Pangestu R, Toyoshima M, Kahar P, Ogino C, Kaneko T, Kondo A. Recent advances in lignocellulosic biomass white biotechnology for bioplastics. BIORESOURCE TECHNOLOGY 2022; 344:126165. [PMID: 34695585 DOI: 10.1016/j.biortech.2021.126165] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
Lignocellulosic biomass has great potential as an inedible feedstock for bioplastic synthesis, although its use is still limited compared to current edible feedstocks of glucose and starch. This review focuses on recent advances in the production of biopolymers and biomonomers from lignocellulosic feedstocks with downstream processing and chemical polymer syntheses. In microbial production, four routes composed of existing poly (lactic acid) and polyhydroxyalkanoates (PHAs) and the emerging biomonomers of itaconic acid and aromatic compounds were presented to review present challenges and future perspectives, focusing on the use of lignocellulosic feedstocks. Recently, advances in purification technologies decreased the number of processes and their environmental burden. Additionally, the unique structures and high-performance of emerging lignocellulose-based bioplastics have expanded the possibilities for the use of bioplastics. The sequence of processes provides insight into the emerging technologies that are needed for the practical use of bioplastics made from lignocellulosic biomass.
Collapse
Affiliation(s)
- Hideo Kawaguchi
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Kenji Takada
- Energy and Environmental Area, Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Taghreed Elkasaby
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Botany Department, Faculty of Science, Mansoura University, 60 Elgomhoria st, Mansoura 35516, Egypt
| | - Radityo Pangestu
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Research Center for Biotechnology, Indonesian Institute of Sciences, Cibinong, West Java 16911, Indonesia
| | - Masakazu Toyoshima
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Prihardi Kahar
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Chiaki Ogino
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Tatsuo Kaneko
- Energy and Environmental Area, Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Biomass Engineering Research Division, RIKEN, 1-7-22 Suehiro, Turumi, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
10
|
Cavalcanti RMF, Maestrello CC, Guimarães LHS. Immobilization of the Tannase From Aspergillus fumigatus CAS21: Screening the Best Derivative for the Treatment of Tannery Effluent Using a Packed Bed Reactor. Front Bioeng Biotechnol 2021; 9:754061. [PMID: 34805112 PMCID: PMC8595215 DOI: 10.3389/fbioe.2021.754061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/12/2021] [Indexed: 11/13/2022] Open
Abstract
Enzyme immobilization is an important alternative to stabilize enzyme properties favoring the efficiency of derivatives (enzyme + support/matrix) for different purposes. According to this, the current study aimed to immobilize the Aspergillus fumigatus CAS21 tannase and the use of the derivatives in the treatment of the effluent produced by the tannery industry. The tannase was immobilized on sodium alginate, DEAE-Sephadex, amberlite, and glass pearls as supports. Calcium alginate was the most adequate support for tannase immobilization with 100% yield and 94.3% for both efficiency and activity. The best tannase activity for the calcium alginate derivative was obtained at 50°C–60°C and pH 5.0. Thermal and pH stabilities evaluated for 24 h at 30°C–60°C and pH 4–7, respectively, were improved if compared to the stability of the free enzyme. Considering the reuse of the calcium alginate derivative, 78% of the initial activity was preserved after 10 catalytic cycles, and after the 9-month storage at 4°C, the activity was maintained in 70%. This derivative was applied in a packed bed reactor (PBR) for the treatment of tannin-rich effluents from the tannery industry. The reduction of the tannin content was effective reaching degradation of 74–78% after 48 h of PBR operation. The concentration of total phenolic compounds was also reduced, and the color and clarity of the effluent improved. In conclusion, the calcium alginate derivative is an attractive alternative as biocatalyst for large-scale treatment of the effluents from the tannery industry.
Collapse
|
11
|
Dynamic Modeling of the Impact of Temperature Changes on CO 2 Production during Milk Fermentation in Batch Bioreactors. Foods 2021; 10:foods10081809. [PMID: 34441586 PMCID: PMC8392827 DOI: 10.3390/foods10081809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/01/2021] [Accepted: 08/02/2021] [Indexed: 11/17/2022] Open
Abstract
Knowledge of the mathematical models of the fermentation processes is indispensable for their simulation and optimization and for the design and synthesis of the applicable control systems. The paper focuses on determining a dynamic mathematical model of the milk fermentation process taking place in a batch bioreactor. Models in the literature describe milk fermentation in batch bioreactors as an autonomous system. They do not enable the analysis of the effect of temperature changes on the metabolism during fermentation. In the presented extensive multidisciplinary study, we have developed a new mathematical model that considers the impact of temperature changes on the dynamics of the CO2 produced during fermentation in the batch bioreactor. Based on laboratory tests and theoretical analysis, the appropriate structure of the temperature-considered dynamic model was first determined. Next, the model parameters of the fermentation process in the laboratory bioreactor were identified by means of particle swarm optimization. Finally, the experiments with the laboratory batch bioreactor were compared with the simulations to verify the derived mathematical model. The developed model proved to be very suitable for simulations, and, above all, it enables the design and synthesis of a control system for batch bioreactors.
Collapse
|
12
|
Teodor AH, Thal LB, Vijayakumar S, Chan M, Little G, Bruce BD. Photosystem I integrated into mesoporous microspheres has enhanced stability and photoactivity in biohybrid solar cells. Mater Today Bio 2021; 11:100122. [PMID: 34401709 PMCID: PMC8350420 DOI: 10.1016/j.mtbio.2021.100122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/01/2021] [Accepted: 07/03/2021] [Indexed: 11/24/2022] Open
Abstract
Isolated proteins, especially membrane proteins, are susceptible to aggregation and activity loss after purification. For therapeutics and biosensors usage, protein stability and longevity are especially important. It has been demonstrated that photosystem I (PSI) can be successfully integrated into biohybrid electronic devices to take advantage of its strong light-driven reducing potential (-1.2V vs. the Standard Hydrogen Electrode). Most devices utilize PSI isolated in a nanosize detergent micelle, which is difficult to visualize, quantitate, and manipulate. Isolated PSI is also susceptible to aggregation and/or loss of activity, especially after freeze/thaw cycles. CaCO3 microspheres (CCMs) have been shown to be a robust method of protein encapsulation for industrial and pharmaceutical applications, increasing the stability and activity of the encapsulated protein. However, CCMs have not been utilized with any membrane protein(s) to date. Herein, we examine the encapsulation of detergent-solubilized PSI in CCMs yielding uniform, monodisperse, mesoporous microspheres. This study reports both the first encapsulation of a membrane protein and also the largest protein to date stabilized by CCMs. These microspheres retain their spectral properties and lumenal surface exposure and are active when integrated into hybrid biophotovoltaic devices. CCMs may be a robust yet simple solution for long-term storage of large membrane proteins, showing success for very large, multisubunit complexes like PSI.
Collapse
Affiliation(s)
- Alexandra H. Teodor
- Program in Genome Sciences and Technology, Oak Ridge National Laboratory and University of Tennessee, Knoxville, USA
| | - Lucas B. Thal
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, USA
| | - Shinduri Vijayakumar
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, USA
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, USA
| | - Madison Chan
- Department of Engineering Management, University of Tennessee, Chattanooga, USA
| | - Gabriela Little
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, USA
| | - Barry D. Bruce
- Program in Genome Sciences and Technology, Oak Ridge National Laboratory and University of Tennessee, Knoxville, USA
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, USA
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, USA
| |
Collapse
|
13
|
Gallo G, Puopolo R, Carbonaro M, Maresca E, Fiorentino G. Extremophiles, a Nifty Tool to Face Environmental Pollution: From Exploitation of Metabolism to Genome Engineering. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:5228. [PMID: 34069056 PMCID: PMC8157027 DOI: 10.3390/ijerph18105228] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/06/2021] [Accepted: 05/09/2021] [Indexed: 12/13/2022]
Abstract
Extremophiles are microorganisms that populate habitats considered inhospitable from an anthropocentric point of view and are able to tolerate harsh conditions such as high temperatures, extreme pHs, high concentrations of salts, toxic organic substances, and/or heavy metals. These microorganisms have been broadly studied in the last 30 years and represent precious sources of biomolecules and bioprocesses for many biotechnological applications; in this context, scientific efforts have been focused on the employment of extremophilic microbes and their metabolic pathways to develop biomonitoring and bioremediation strategies to face environmental pollution, as well as to improve biorefineries for the conversion of biomasses into various chemical compounds. This review gives an overview on the peculiar metabolic features of certain extremophilic microorganisms, with a main focus on thermophiles, which make them attractive for biotechnological applications in the field of environmental remediation; moreover, it sheds light on updated genetic systems (also those based on the CRISPR-Cas tool), which expand the potentialities of these microorganisms to be genetically manipulated for various biotechnological purposes.
Collapse
Affiliation(s)
- Giovanni Gallo
- Department of Biology, University of Naples Federico II, Via Cinthia 21, 80126 Napoli, Italy; (G.G.); (R.P.); (M.C.); (E.M.)
- Consiglio Nazionale delle Ricerche CNR, Institute of Polymers, Composites and Biomaterials (IPCB), Via Campi Flegrei, 34, 80078 Pozzuoli, Italy
| | - Rosanna Puopolo
- Department of Biology, University of Naples Federico II, Via Cinthia 21, 80126 Napoli, Italy; (G.G.); (R.P.); (M.C.); (E.M.)
| | - Miriam Carbonaro
- Department of Biology, University of Naples Federico II, Via Cinthia 21, 80126 Napoli, Italy; (G.G.); (R.P.); (M.C.); (E.M.)
| | - Emanuela Maresca
- Department of Biology, University of Naples Federico II, Via Cinthia 21, 80126 Napoli, Italy; (G.G.); (R.P.); (M.C.); (E.M.)
| | - Gabriella Fiorentino
- Department of Biology, University of Naples Federico II, Via Cinthia 21, 80126 Napoli, Italy; (G.G.); (R.P.); (M.C.); (E.M.)
- Consiglio Nazionale delle Ricerche CNR, Institute of Polymers, Composites and Biomaterials (IPCB), Via Campi Flegrei, 34, 80078 Pozzuoli, Italy
| |
Collapse
|
14
|
Lalanne L, Nyanhongo GS, Guebitz GM, Pellis A. Biotechnological production and high potential of furan-based renewable monomers and polymers. Biotechnol Adv 2021; 48:107707. [PMID: 33631186 DOI: 10.1016/j.biotechadv.2021.107707] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/08/2021] [Accepted: 01/30/2021] [Indexed: 11/28/2022]
Abstract
Of the 25 million tons of plastic waste produced every year in Europe, 40% of these are not reused or recycled, thus contributing to environmental pollution, one of the major challenges of the 21st century. Most of these plastics are made of petrochemical-derived polymers which are very difficult to degrade and as a result, a lot of research efforts have been made on more environmentally friendly alternatives. Bio-based monomers, derived from renewable raw materials, constitute a possible solution for the replacement of oil-derived monomers, with furan derivatives that emerged as platform molecules having a great potential for the synthesis of biobased polyesters, polyamides and their copolymers. This review article summarizes the latest developments in biotechnological production of furan compounds that can be used in polymer chemistry as well as in their conversion into polymers. Moreover, the biodegradability of the resulting materials is discussed.
Collapse
Affiliation(s)
- Lucie Lalanne
- Polytech Clermont-Ferrand, Department of Biological Engineering, Cézeaux University Campus, 2 Avenue Blaise Pascal, 63178 Aubière cedex, France; University of Natural Resources and Life Sciences, Vienna, Department of Agrobiotechnology, Institute of Environmental Biotechnology, Konrad Lorenz Strasse 20, 3430 Tulln an der Donau, Austria
| | - Gibson S Nyanhongo
- University of Natural Resources and Life Sciences, Vienna, Department of Agrobiotechnology, Institute of Environmental Biotechnology, Konrad Lorenz Strasse 20, 3430 Tulln an der Donau, Austria
| | - Georg M Guebitz
- University of Natural Resources and Life Sciences, Vienna, Department of Agrobiotechnology, Institute of Environmental Biotechnology, Konrad Lorenz Strasse 20, 3430 Tulln an der Donau, Austria; Austrian Centre of Industrial Biotechnology, Division Enzymes & Polymers, Konrad Lorenz Strasse 20, 3430 Tulln an der Donau, Austria
| | - Alessandro Pellis
- University of Natural Resources and Life Sciences, Vienna, Department of Agrobiotechnology, Institute of Environmental Biotechnology, Konrad Lorenz Strasse 20, 3430 Tulln an der Donau, Austria.
| |
Collapse
|
15
|
Meshalkin VP, Chetyrbotskii VA, Chetyrbotskii AN, Pelii AF. Computer Modeling of Chemical-Microbiological Processes in Rhizomicrobiophytospheric System. DOKLADY PHYSICAL CHEMISTRY 2021. [DOI: 10.1134/s0012501620110044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Daniotti S, Re I. Marine Biotechnology: Challenges and Development Market Trends for the Enhancement of Biotic Resources in Industrial Pharmaceutical and Food Applications. A Statistical Analysis of Scientific Literature and Business Models. Mar Drugs 2021; 19:61. [PMID: 33530360 PMCID: PMC7912129 DOI: 10.3390/md19020061] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/15/2021] [Accepted: 01/21/2021] [Indexed: 12/19/2022] Open
Abstract
Biotechnology is an essential tool for the sustainable exploitation of marine resources, although the full development of their potential is complicated by a series of cognitive and technological limitations. Thanks to an innovative systematic approach that combines the meta-analysis of 620 articles produced worldwide with 29 high TRL (Technology Readiness Level) European funded projects, the study provides an assessment of the growth prospects of blue biotechnologies, with a focus on pharmaceutical and food applications, and the most promising technologies to overcome the main challenges in the commercialization of marine products. The results show a positive development trend, with publications more than doubled from 2010 (36) to 2019 (70). Biochemical and molecular characterization, with 150 studies, is the most widely used technology. However, the emerging technologies in basic research are omics technologies, pharmacological analysis and bioinformatics, which have doubled the number of publications in the last five years. On the other hand, technologies for optimizing the conditions of cultivation, harvesting and extraction are central to most business models with immediate commercial exploitation (65% of high-TRL selected projects), especially in food and nutraceutical applications. This research offers a starting point for future research to overcome all those obstacles that restrict the marketing of products derived from organisms.
Collapse
|
17
|
Dimitrova T, Yosifov T. Innovation performance of biotechnology firms in Bulgaria: opportunities for enhancing. MARKETING AND MANAGEMENT OF INNOVATIONS 2021. [DOI: 10.21272/mmi.2021.2-09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
This paper deals with the investigation of the possibilities to improve the innovation performance in Bulgarian biotechnology firms. The main research purpose is to analyze Bulgaria's position concerning the innovative development of bio-based production. Methodological tools of the research methods were processing quantitative data, content analysis, and comparative situational analysis in combination with dynamic graphic analysis. The results of the research showed that there is a significant deficit in Bulgaria in the innovative development of biotechnology firms. The enhancement of the innovative biotechnological state of Bulgarian firms is a matter of great importance to their successful production and market performance on both the local and international markets. A small number of firms manage to find an adequate solution to creating stable market advantages and face insurmountable difficulties in trying to make it on the global market. Furthermore, Bulgaria's membership in the EU creates additional formal demands for providing a high quality of the production process, putting the local biotechnology firms in an even more challenging position. It suggests that companies need to focus their attention on producing goods with high added value (which is the basis of innovation) and applying and perfecting successful market-oriented approaches. In that relation, the arguments were summarized for the practical benefits of designing a complete model focused on biotechnology firms' market orientation, which is of crucial importance for their long-term innovative development. The study presents an author's conceptual model for measuring innovation performance of biotechnology firms which contains three constructs: market orientation, knowledge integration orientation, R&D effectiveness. The results from the conducted research could be helpful to research and practice R&D developers of firms with an established presence and long market history and upstart enterprises that cannot rely on income from their market activity, market or production experience.
Collapse
|
18
|
Salvi HM, Yadav GD. Process intensification using immobilized enzymes for the development of white biotechnology. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00020a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Process intensification of biocatalysed reactions using different techniques such as microwaves, ultrasound, hydrodynamic cavitation, ionic liquids, microreactors and flow chemistry in various industries is critically analysed and future directions provided.
Collapse
Affiliation(s)
- Harshada M. Salvi
- Department of Chemical Engineering
- Institute of Chemical Technology
- Mumbai-400019
- India
| | - Ganapati D. Yadav
- Department of Chemical Engineering
- Institute of Chemical Technology
- Mumbai-400019
- India
| |
Collapse
|
19
|
de Oliveira BFR, Carr CM, Dobson ADW, Laport MS. Harnessing the sponge microbiome for industrial biocatalysts. Appl Microbiol Biotechnol 2020; 104:8131-8154. [PMID: 32827049 DOI: 10.1007/s00253-020-10817-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/29/2020] [Accepted: 08/05/2020] [Indexed: 12/31/2022]
Abstract
Within the marine sphere, host-associated microbiomes are receiving growing attention as prolific sources of novel biocatalysts. Given the known biocatalytic potential of poriferan microbial inhabitants, this review focuses on enzymes from the sponge microbiome, with special attention on their relevant properties and the wide range of their potential biotechnological applications within various industries. Cultivable bacterial and filamentous fungal isolates account for the majority of the enzymatic sources. Hydrolases, mainly glycoside hydrolases and carboxylesterases, are the predominant reported group of enzymes, with varying degrees of tolerance to alkaline pH and growing salt concentrations being common. Prospective areas for the application of these microbial enzymes include biorefinery, detergent, food and effluent treatment industries. Finally, alternative strategies to identify novel biocatalysts from the sponge microbiome are addressed, with an emphasis on modern -omics-based approaches that are currently available in the enzyme research arena. By providing this current overview of the field, we hope to not only increase the appetite of researchers to instigate forthcoming studies but also to stress how basic and applied research can pave the way for new biocatalysts from these symbiotic microbial communities in a productive fashion. KEY POINTS: • The sponge microbiome is a burgeoning source of industrial biocatalysts. • Sponge microbial enzymes have useful habitat-related traits for several industries. • Strategies are provided for the future discovery of microbial enzymes from sponges.
Collapse
Affiliation(s)
- Bruno Francesco Rodrigues de Oliveira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil. .,School of Microbiology, University College Cork, Cork, Ireland.
| | - Clodagh M Carr
- School of Microbiology, University College Cork, Cork, Ireland
| | - Alan D W Dobson
- School of Microbiology, University College Cork, Cork, Ireland.,Environmental Research Institute, University College Cork, Cork, Ireland
| | - Marinella Silva Laport
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
20
|
Brown biotechnology: a powerful toolbox for resolving current and future challenges in the development of arid lands. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2980-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
21
|
Cortesão M, Schütze T, Marx R, Moeller R, Meyer V. Fungal Biotechnology in Space: Why and How? GRAND CHALLENGES IN FUNGAL BIOTECHNOLOGY 2020. [DOI: 10.1007/978-3-030-29541-7_18] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
22
|
Yeung AWK, Tzvetkov NT, Gupta VK, Gupta SC, Orive G, Bonn GK, Fiebich B, Bishayee A, Efferth T, Xiao J, Silva AS, Russo GL, Daglia M, Battino M, Orhan IE, Nicoletti F, Heinrich M, Aggarwal BB, Diederich M, Banach M, Weckwerth W, Bauer R, Perry G, Bayer EA, Huber LA, Wolfender JL, Verpoorte R, Macias FA, Wink M, Stadler M, Gibbons S, Cifuentes A, Ibanez E, Lizard G, Müller R, Ristow M, Atanasov AG. Current research in biotechnology: Exploring the biotech forefront. CURRENT RESEARCH IN BIOTECHNOLOGY 2019; 1:34-40. [DOI: 10.1016/j.crbiot.2019.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
23
|
Yılmaz R. Modern biotechnology breakthroughs to food and agricultural research in developing countries. GM CROPS & FOOD 2019; 10:12-16. [PMID: 31055997 DOI: 10.1080/21645698.2019.1600969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Aesop's famous fable "Tortoise and Hare" taught us tortoise wins by taking slow, steady approach against its fast, overconfident competitor, hare. I propose tortoise strategy is more beneficial, when comes to public perception and zero tolerance, toward modern biotechnology research and development for sustainable food and agriculture in developing countries.
Collapse
Affiliation(s)
- Remziye Yılmaz
- a Faculty of Engineering, Food Engineering Department , Hacettepe University , Ankara , Turkey
| |
Collapse
|
24
|
Harwood CR, Park SH, Sauer M. Editorial for the thematic issue on “Industrial Microbiology”. FEMS Microbiol Lett 2018; 365:5230855. [DOI: 10.1093/femsle/fny275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 11/23/2018] [Indexed: 12/18/2022] Open
Affiliation(s)
- C R Harwood
- Centre for Bacterial Cell Biology, Newcastle University, Newcastle Upon Tyne, NE2 AX, UK
| | - S H Park
- Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan, Republic of Korea, 44919
| | - M Sauer
- Department of Biotechnology BOKU, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Wien, Austria
| |
Collapse
|