1
|
Mugni SL, Ambrosis N, O´Toole GA, Sisti F, Fernández J. Interplay of virulence factors and signaling molecules: albumin and calcium-mediated biofilm regulation in Bordetella bronchiseptica. J Bacteriol 2025; 207:e0044524. [PMID: 40135913 PMCID: PMC12004968 DOI: 10.1128/jb.00445-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 02/21/2025] [Indexed: 03/27/2025] Open
Abstract
Bordetella bronchiseptica, a respiratory pathogen capable of infecting various mammals, including humans, is associated with chronic infections. B. bronchiseptica can form biofilm-like structures in vivo, providing tolerance against environmental stresses. Recent studies have highlighted the role of cyclic diguanylate monophosphate (c-di-GMP) in this process in vitro: elevated c-di-GMP levels stimulate biofilm formation, whereas phosphodiesterase (PDE) activation reduces biofilms. Respiratory secretions, which contain albumin and calcium at higher concentrations than standard growth media, promote an increase in the amount and extracellular localization of the adenylate cyclase toxin (ACT), an important virulence factor of Bordetella spp. Secreted ACT, present in the extracellular medium or attached to the outer membrane, inhibits biofilm formation. Based on these observations, we hypothesized that serum albumin and calcium together inhibit biofilm formation and explored the potential role of c-di-GMP in this process. Our findings suggest that serum albumin and calcium inhibit B. bronchiseptica biofilm formation through two potentially independent mechanisms: one involving ACT secretion and another promoting c-di-GMP degradation. In the presence of albumin and calcium, intracellular levels of c-di-GMP were reduced, and specific PDEs appear to be involved in this process. In addition, albumin and calcium stimulated the secretion of the adhesin BrtA. This study contributes to the understanding of the mechanisms governing B. bronchiseptica biofilm formation and its modulation by host factors.IMPORTANCEBordetella bronchiseptica, a respiratory pathogen capable of infecting various mammals, forms biofilms that enhance its ability to withstand environmental stresses. This study reveals that host-derived factors, specifically serum albumin and calcium, inhibit biofilm formation through two independent mechanisms: increasing adenylate cyclase toxin secretion and promoting the degradation of cyclic diguanylate monophosphate (c-di-GMP), a key biofilm regulator. These findings provide insights into how host conditions influence B. bronchiseptica biofilm dynamics, shedding light on the complex interactions between pathogen and host that contribute to infection persistence. Understanding these mechanisms may inform strategies to mitigate chronic infections caused by B. bronchiseptica.
Collapse
Affiliation(s)
- Sabrina Laura Mugni
- CCT La Plata. CONICET. Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, UNLP, Instituto de Biotecnología y Biología Molecular, La Plata, Buenos Aires Province, Argentina
| | - Nicolás Ambrosis
- CCT La Plata. CONICET. Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, UNLP, Instituto de Biotecnología y Biología Molecular, La Plata, Buenos Aires Province, Argentina
| | - George A. O´Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Federico Sisti
- CCT La Plata. CONICET. Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, UNLP, Instituto de Biotecnología y Biología Molecular, La Plata, Buenos Aires Province, Argentina
| | - Julieta Fernández
- CCT La Plata. CONICET. Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, UNLP, Instituto de Biotecnología y Biología Molecular, La Plata, Buenos Aires Province, Argentina
| |
Collapse
|
2
|
Kardos P, Correia de Sousa J, Heininger U, Konstantopoulos A, MacIntyre CR, Middleton D, Nolan T, Papi A, Rendon A, Rizzo A, Sampson K, Sette A, Sobczyk E, Tan T, Weil-Olivier C, Weinberger B, Wilkinson T, Wirsing von König CH. Understanding the impact of adult pertussis and current approaches to vaccination: A narrative review and expert panel recommendations. Hum Vaccin Immunother 2024; 20:2324547. [PMID: 38564339 PMCID: PMC10989709 DOI: 10.1080/21645515.2024.2324547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/25/2024] [Indexed: 04/04/2024] Open
Abstract
Pertussis has several notable consequences, causing economic burden, increased strain on healthcare facilities, and reductions in quality of life. Recent years have seen a trend toward an increase in pertussis cases affecting older children and adults. To boost immunity, and protect vulnerable populations, an enduring approach to vaccination has been proposed, but gaps remain in the evidence surrounding adult vaccination that are needed to inform such a policy. Gaps include: the true incidence of pertussis and its complications in adults; regional variations in disease recognition and reporting; and incidence of severe disease, hospitalizations, and deaths in older adults. Better data on the efficacy/effectiveness of pertussis vaccination in adults, duration of protection, and factors leading to poor vaccine uptake are needed. Addressing the critical evidence gaps will help highlight important areas of unmet need and justify the importance of adult pertussis vaccination to healthcare professionals, policymakers, and payers.
Collapse
Affiliation(s)
- Peter Kardos
- Group Practice & Center, Allergy, Respiratory and Sleep Medicine, Maingau Hospital of the Red Cross, Frankfurt am Main, Germany
| | - Jaime Correia de Sousa
- Life and Health Sciences Research Institute, School of Medicine, University of Minho School of Medicine, Braga, Portugal
| | - Ulrich Heininger
- Pediatric Infectious Diseases and Vaccinology, University of Basel Children’s Hospital, BaselSwitzerland
| | | | - C. Raina MacIntyre
- Kirby Institute, UNSW Medicine, University of New South Wales, Sydney, Australia
| | - Donald Middleton
- Department of Pediatrics, University of Pittsburgh Medical Center, Pittsburgh, USA
| | - Terry Nolan
- Department of Infectious Diseases, University of Melbourne, Melbourne, Australia
| | - Alberto Papi
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Adrian Rendon
- Pulmonary/Critical Care Division, Autonomous University of Nuevo León, San Nicolás de los Garza, Mexico
| | | | - Kim Sampson
- Immunisation Coalition, Melbourne, Australia
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, San Diego, USA
| | - Elizabeth Sobczyk
- AMDA – The Society for Post-Acute and Long-Term Care Medicine, Denver, USA
| | - Tina Tan
- Feinberg School of Medicine, Northwestern University, Chicago, USA
| | | | - Birgit Weinberger
- Institute for Biomedical Aging Research, Universität Innsbruck, Innsbruck, Austria
| | - Tom Wilkinson
- Faculty of Medicine, University of Southampton, Southampton, UK
| | | |
Collapse
|
3
|
Carrica MDC, Gorgojo JP, Alvarez-Hayes J, Valdez HA, Lamberti YA, Rodriguez ME. BPP0974 is a Bordetella parapertussis adhesin expressed in the avirulent phase, implicated in biofilm formation and intracellular survival. Microb Pathog 2024; 193:106754. [PMID: 38897361 DOI: 10.1016/j.micpath.2024.106754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/28/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
B. parapertussis is a bacterium that causes whooping cough, a severe respiratory infection disease, that has shown an increased incidence in the population. Upon transmission through aerosol droplets, the initial steps of host colonization critically depend on the bacterial adhesins. We here described BPP0974, a B. parapertussis protein that exhibits the typical domain architecture of the large repetitive RTX adhesin family. BPP0974 was found to be retained in the bacterial membrane and secreted into the culture medium. This protein was found overexpressed in the avirulent phase of B. parapertussis, the phenotype proposed for initial host colonization. Interestingly, BPP0974 was found relevant for the biofilm formation as well as involved in the bacterial attachment to and survival within the respiratory epithelial cells. Taken together, our results suggest a role for BPP0974 in the early host colonization and pathogenesis of B. parapertussis.
Collapse
Affiliation(s)
- Mariela Del Carmen Carrica
- CINDEFI (UNLP, CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina.
| | - Juan Pablo Gorgojo
- CINDEFI (UNLP, CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Jimena Alvarez-Hayes
- CINDEFI (UNLP, CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Hugo Alberto Valdez
- CINDEFI (UNLP, CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Yanina Andrea Lamberti
- CINDEFI (UNLP, CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Maria Eugenia Rodriguez
- CINDEFI (UNLP, CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina.
| |
Collapse
|
4
|
Zaytsev EM, Britsina MV, Ozeretskovskaya MN, Zaitsev AE. Protective Activity and Safety of Experimental Acellular Pertussis Vaccines Based on Antigenic Complexes Isolated from Biofilm and Planktonic Cultures of Bordetella pertussis. Bull Exp Biol Med 2024; 177:349-352. [PMID: 39126548 DOI: 10.1007/s10517-024-06187-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Indexed: 08/12/2024]
Abstract
Continued circulation of the whooping cough pathogen, even in countries with high vaccine coverage, can be related to persistence of Bordetella pertussis biofilms in the respiratory tract. The films differ from planktonic cells by increased resistance to the host immune system and antibacterial drugs. The available acellular pertussis vaccines (aPV) containing antigens isolated from planktonic cultures of B. pertussis protect from severe forms of whooping cough, but do not effectively influence circulation of virulent strains in the subclinical forms of the disease and asymptomatic carriage. It is promising to create new generation aPV based on antigens isolated from biofilm cultures of B. pertussis capable of more effectively controlling the entire infectious cycle of whooping cough, including colonization, persistence, and transmission of the pathogen. From antigenic complexes isolated from the culture medium of biofilm and planktonic cultures of the strain B. pertussis No. 317 (serotype 1.2.3), experimental aPV were made: aPV-B and aPV-P, respectively. In intracerebral infection of mice with a virulent strain of B. pertussis, aPV-B demonstrated 2.5-fold higher protective activity than aPV-P and also more effectively reduced colonization of the lungs by B. pertussis cells in mice after intranasal infection with a virulent strain. Both vaccine preparations were safe and did not cause death in mice after administration of histamine.
Collapse
Affiliation(s)
- E M Zaytsev
- I. Mechnikov Research Institute of Vaccines and Sera, Moscow, Russia.
| | - M V Britsina
- I. Mechnikov Research Institute of Vaccines and Sera, Moscow, Russia
| | | | - A E Zaitsev
- I. Mechnikov Research Institute of Vaccines and Sera, Moscow, Russia
| |
Collapse
|
5
|
Miguelena Chamorro B, De Luca K, Swaminathan G, Longet S, Mundt E, Paul S. Bordetella bronchiseptica and Bordetella pertussis: Similarities and Differences in Infection, Immuno-Modulation, and Vaccine Considerations. Clin Microbiol Rev 2023; 36:e0016422. [PMID: 37306571 PMCID: PMC10512794 DOI: 10.1128/cmr.00164-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023] Open
Abstract
Bordetella pertussis and Bordetella bronchiseptica belong to the genus Bordetella, which comprises 14 other species. B. pertussis is responsible for whooping cough in humans, a severe infection in children and less severe or chronic in adults. These infections are restricted to humans and currently increasing worldwide. B. bronchiseptica is involved in diverse respiratory infections in a wide range of mammals. For instance, the canine infectious respiratory disease complex (CIRDC), characterized by a chronic cough in dogs. At the same time, it is increasingly implicated in human infections, while remaining an important pathogen in the veterinary field. Both Bordetella can evade and modulate host immune responses to support their persistence, although it is more pronounced in B. bronchiseptica infection. The protective immune responses elicited by both pathogens are comparable, while there are important characteristics in the mechanisms that differ. However, B. pertussis pathogenesis is more difficult to decipher in animal models than those of B. bronchiseptica because of its restriction to humans. Nevertheless, the licensed vaccines for each Bordetella are different in terms of formulation, route of administration and immune responses induced, with no known cross-reaction between them. Moreover, the target of the mucosal tissues and the induction of long-lasting cellular and humoral responses are required to control and eliminate Bordetella. In addition, the interaction between both veterinary and human fields are essential for the control of this genus, by preventing the infections in animals and the subsequent zoonotic transmission to humans.
Collapse
Affiliation(s)
- Beatriz Miguelena Chamorro
- CIRI – Centre International de Recherche en Infectiologie, Team GIMAP (Saint-Etienne), Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, UJM, Lyon, France
- Boehringer Ingelheim, Global Innovation, Saint-Priest, France
| | - Karelle De Luca
- Boehringer Ingelheim, Global Innovation, Saint-Priest, France
| | | | - Stéphanie Longet
- CIRI – Centre International de Recherche en Infectiologie, Team GIMAP (Saint-Etienne), Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, UJM, Lyon, France
- CIC Inserm 1408 Vaccinology, Saint-Etienne, France
| | - Egbert Mundt
- Boehringer Ingelheim, Global Innovation, Saint-Priest, France
| | - Stéphane Paul
- CIRI – Centre International de Recherche en Infectiologie, Team GIMAP (Saint-Etienne), Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, UJM, Lyon, France
- CIC Inserm 1408 Vaccinology, Saint-Etienne, France
| |
Collapse
|
6
|
Matczak S, Bouchez V, Leroux P, Douché T, Collinet N, Landier A, Gianetto QG, Guillot S, Chamot-Rooke J, Hasan M, Matondo M, Brisse S, Toubiana J. Biological differences between FIM2 and FIM3 fimbriae of Bordetella pertussis: not just the serotype. Microbes Infect 2023; 25:105152. [PMID: 37245862 DOI: 10.1016/j.micinf.2023.105152] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 05/30/2023]
Abstract
INTRODUCTION Bordetella pertussis still circulates worldwide despite vaccination. Fimbriae are components of some acellular pertussis vaccines. Population fluctuations of B. pertussis fimbrial serotypes (FIM2 and FIM3) are observed, and fim3 alleles (fim3-1 [clade 1] and fim3-2 [clade 2]) mark a major phylogenetic subdivision of B. pertussis. OBJECTIVES To compare microbiological characteristics and expressed protein profiles between fimbrial serotypes FIM2 and FIM3 and genomic clades. METHODS A total of 19 isolates were selected. Absolute protein abundance of the main virulence factors, autoagglutination and biofilm formation, bacterial survival in whole blood, induced blood cell cytokine secretion, and global proteome profiles were assessed. RESULTS Compared to FIM3, FIM2 isolates produced more fimbriae, less cellular pertussis toxin subunit 1 and more biofilm, but auto-agglutinated less. FIM2 isolates had a lower survival rate in cord blood, but induced higher levels of IL-4, IL-8 and IL-1β secretion. Global proteome comparisons uncovered 15 differentially produced proteins between FIM2 and FIM3 isolates, involved in adhesion and metabolism of metals. FIM3 isolates of clade 2 produced more FIM3 and more biofilm compared to clade 1. CONCLUSION FIM serotype and fim3 clades are associated with proteomic and other biological differences, which may have implications on pathogenesis and epidemiological emergence.
Collapse
Affiliation(s)
- Soraya Matczak
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, 28, Rue Du Docteur Roux, 75015, Paris, France
| | - Valérie Bouchez
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, 28, Rue Du Docteur Roux, 75015, Paris, France; National Reference Center for Whooping Cough and Other Bordetella Infections, Institut Pasteur, 28, Rue Du Docteur Roux, 75015, Paris, France
| | - Pauline Leroux
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, 28, Rue Du Docteur Roux, 75015, Paris, France
| | - Thibaut Douché
- Institut Pasteur, Université Paris Cité, CNRS UAR2024, Proteomics Platform, Mass Spectrometry for Biology Unit, 28, Rue Du Docteur Roux, 75015, Paris, France
| | - Nils Collinet
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, 28, Rue Du Docteur Roux, 75015, Paris, France
| | - Annie Landier
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, 28, Rue Du Docteur Roux, 75015, Paris, France; National Reference Center for Whooping Cough and Other Bordetella Infections, Institut Pasteur, 28, Rue Du Docteur Roux, 75015, Paris, France
| | - Quentin Giai Gianetto
- Institut Pasteur, Université Paris Cité, CNRS UAR2024, Proteomics Platform, Mass Spectrometry for Biology Unit, 28, Rue Du Docteur Roux, 75015, Paris, France; Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, 28, Rue Du Docteur Roux, 75015, Paris, France
| | - Sophie Guillot
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, 28, Rue Du Docteur Roux, 75015, Paris, France; National Reference Center for Whooping Cough and Other Bordetella Infections, Institut Pasteur, 28, Rue Du Docteur Roux, 75015, Paris, France
| | - Julia Chamot-Rooke
- Institut Pasteur, Université Paris Cité, CNRS UAR2024, Proteomics Platform, Mass Spectrometry for Biology Unit, 28, Rue Du Docteur Roux, 75015, Paris, France
| | - Milena Hasan
- Institut Pasteur, Université Paris Cité, Cytometry and Biomarkers Unit of Technology and Service (CB UTechS), 28, Rue Du Docteur Roux, 75015, Paris, France
| | - Mariette Matondo
- Institut Pasteur, Université Paris Cité, CNRS UAR2024, Proteomics Platform, Mass Spectrometry for Biology Unit, 28, Rue Du Docteur Roux, 75015, Paris, France
| | - Sylvain Brisse
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, 28, Rue Du Docteur Roux, 75015, Paris, France; National Reference Center for Whooping Cough and Other Bordetella Infections, Institut Pasteur, 28, Rue Du Docteur Roux, 75015, Paris, France
| | - Julie Toubiana
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, 28, Rue Du Docteur Roux, 75015, Paris, France; National Reference Center for Whooping Cough and Other Bordetella Infections, Institut Pasteur, 28, Rue Du Docteur Roux, 75015, Paris, France; Department of General Pediatrics and Pediatric Infectious Diseases, Hôpital Necker-Enfants Malades, APHP, Université Paris Cité, 149, Rue de Sèvres, 75015, Paris, France.
| |
Collapse
|
7
|
Otsuka N, Koide K, Goto M, Kamachi K, Kenri T. Fim3-dependent autoagglutination of Bordetella pertussis. Sci Rep 2023; 13:7629. [PMID: 37165008 PMCID: PMC10172299 DOI: 10.1038/s41598-023-34672-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023] Open
Abstract
Autoagglutination (Agg) of Bordetella pertussis is often observed in clinical laboratory. However, its causal factors and frequency in circulating strains are unknown. Repeated single colony isolation enabled us to detect an Agg- mutant in the supernatant of an Agg+ strain of B. pertussis. Whole-genome sequencing and immunoblot analysis disclosed that the Agg- mutant had a single C-deletion in its fim3 promoter region (Pfim3) which abolished Fim3 fimbriae production. A B. pertussis fim3-knock out mutant also lacked the Agg+ phenotype. Agg+ clinical isolates were detected a higher production of Fim3 than Fim3-producing Agg- isolates. B. pertussis is known to harbor multiple Pfim3 poly(C) lengths within a single strain culture and our newly developed PCR/LDR assay revealed that Agg+ isolates harbor the highest Pfim3 poly-14C abundance. We evaluated the frequency of autoagglutination in clinical B. pertussis isolates collected in Japan between 1994 and 2018 (n = 203). Fim3 production was confirmed for 190 isolates and 74.7% of them displayed the Agg+ phenotype. The Agg+ phenotype was strongly associated with Pfim3 poly-14C abundance. Taken together, our findings demonstrated that B. pertussis autoagglutination occurs in response to high Fim3 levels and the Agg+ strain has predominated in Japan over the past two decades.
Collapse
Affiliation(s)
- Nao Otsuka
- Department of Bacteriology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo, 208-0011, Japan.
| | - Kentaro Koide
- Department of Bacteriology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo, 208-0011, Japan
| | - Masataka Goto
- Department of Bacteriology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo, 208-0011, Japan
| | - Kazunari Kamachi
- Department of Bacteriology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo, 208-0011, Japan
| | - Tsuyoshi Kenri
- Department of Bacteriology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo, 208-0011, Japan
| |
Collapse
|
8
|
Nesse LL, Osland AM, Vestby LK. The Role of Biofilms in the Pathogenesis of Animal Bacterial Infections. Microorganisms 2023; 11:608. [PMID: 36985183 PMCID: PMC10059901 DOI: 10.3390/microorganisms11030608] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023] Open
Abstract
Biofilms are bacterial aggregates embedded in a self-produced, protective matrix. The biofilm lifestyle offers resilience to external threats such as the immune system, antimicrobials, and other treatments. It is therefore not surprising that biofilms have been observed to be present in a number of bacterial infections. This review describes biofilm-associated bacterial infections in most body systems of husbandry animals, including fish, as well as in sport and companion animals. The biofilms have been observed in the auditory, cardiovascular, central nervous, digestive, integumentary, reproductive, respiratory, urinary, and visual system. A number of potential roles that biofilms can play in disease pathogenesis are also described. Biofilms can induce or regulate local inflammation. For some bacterial species, biofilms appear to facilitate intracellular invasion. Biofilms can also obstruct the healing process by acting as a physical barrier. The long-term protection of bacteria in biofilms can contribute to chronic subclinical infections, Furthermore, a biofilm already present may be used by other pathogens to avoid elimination by the immune system. This review shows the importance of acknowledging the role of biofilms in animal bacterial infections, as this influences both diagnostic procedures and treatment.
Collapse
Affiliation(s)
- Live L. Nesse
- Department of Animal Health, Welfare and Food Safety, Norwegian Veterinary Institute, 1433 Ås, Norway
| | - Ane Mohr Osland
- Department of Analysis and Diagnostics, Norwegian Veterinary Institute, 1433 Ås, Norway
| | - Lene K. Vestby
- Department of Analysis and Diagnostics, Norwegian Veterinary Institute, 1433 Ås, Norway
| |
Collapse
|
9
|
Fullen AR, Gutierrez-Ferman JL, Rayner RE, Kim SH, Chen P, Dubey P, Wozniak DJ, Peeples ME, Cormet-Boyaka E, Deora R. Architecture and matrix assembly determinants of Bordetella pertussis biofilms on primary human airway epithelium. PLoS Pathog 2023; 19:e1011193. [PMID: 36821596 PMCID: PMC9990917 DOI: 10.1371/journal.ppat.1011193] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 03/07/2023] [Accepted: 02/09/2023] [Indexed: 02/24/2023] Open
Abstract
Traditionally, whooping cough or pertussis caused by the obligate human pathogen Bordetella pertussis (Bp) is described as an acute disease with severe symptoms. However, many individuals who contract pertussis are either asymptomatic or show very mild symptoms and yet can serve as carriers and sources of bacterial transmission. Biofilms are an important survival mechanism for bacteria in human infections and disease. However, bacterial determinants that drive biofilm formation in humans are ill-defined. In the current study, we show that Bp infection of well-differentiated primary human bronchial epithelial cells leads to formation of bacterial aggregates, clusters, and highly structured biofilms which are colocalized with cilia. These findings mimic observations from pathological analyses of tissues from pertussis patients. Distinct arrangements (mono-, bi-, and tri-partite) of the polysaccharide Bps, extracellular DNA, and bacterial cells were visualized, suggesting complex heterogeneity in bacteria-matrix interactions. Analyses of mutant biofilms revealed positive roles in matrix production, cell cluster formation, and biofilm maturity for three critical Bp virulence factors: Bps, filamentous hemagglutinin, and adenylate cyclase toxin. Adherence assays identified Bps as a new Bp adhesin for primary human airway cells. Taken together, our results demonstrate the multi-factorial nature of the biofilm extracellular matrix and biofilm development process under conditions mimicking the human respiratory tract and highlight the importance of model systems resembling the natural host environment to investigate pathogenesis and potential therapeutic strategies.
Collapse
Affiliation(s)
- Audra R. Fullen
- The Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Jessica L. Gutierrez-Ferman
- The Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Rachael E. Rayner
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Sun Hee Kim
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Phylip Chen
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Purnima Dubey
- The Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Daniel J. Wozniak
- The Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
- Department of Microbiology, The Ohio State University, Columbus, Ohio, United States of America
| | - Mark E. Peeples
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States of America
| | - Estelle Cormet-Boyaka
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Rajendar Deora
- The Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
- Department of Microbiology, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
10
|
Zaуtsev EM, Britsina MV, Ozeretskovskaya MN, Bazhanova IG. Effect of trypsin, lidase and fluimucil on the growth of <i>Bordetella pertussis</i> biofilms on an abiotic substrate. JOURNAL OF MICROBIOLOGY, EPIDEMIOLOGY AND IMMUNOBIOLOGY 2022. [DOI: 10.36233/0372-9311-218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aim. Study the effect of trypsin, lidase (hyaluronidase) and fluimucil (N-acetyl-L-cysteine) on the growth of biofilms of Bordetella pertussis strains on the abiotic substrate.
Materials and methods. In the experiments, the strains of the main B. pertussis serotypes isolated in the Russian Federation from whooping cough patients in 20012010 were used: No. 178 (serotype 1.2.0), No. 287 (serotype 1.0.3) and No. 317 (serotype 1.2.3), grown on a dense nutrient medium. The intensity of biofilm formation in a liquid nutrient medium in the presence of trypsin, lidase and fluimucil in round-bottomed polystyrene 96-well plates was estimated by staining with 0.1% gentian-violet solution.
Results. Trypsin suppressed the growth of biofilms and destroyed the formed biofilms. Lidase suppressed the growth of biofilms less actively, without affecting the formed biofilms. Fluimucil did not affect both the growth of biofilms and the formed biofilms. The growth of colonies typical for B. pertussis was noted when planting fluids from cultures in the presence of preparations, as well as from culture control wells on a dense nutrient medium.
Conclusion. The different effect of the drugs studied by us may be related to the different quantitative content of targets for trypsin (proteins), lidase (mucopolysaccharides, containing uronic acids), fluimucil (acid mucopolysaccharides) in the biofilm matrix. The growth of the typical morphological properties of the colony of B. pertussis during the sowing of culture seedlings on a dense nutrient medium testifies to the destruction of the biofilm matrix by trypsin and lidase in the absence of influence on plankton cells.
Collapse
|
11
|
Holban AM, Gregoire CM, Gestal MC. Conquering the host: Bordetella spp. and Pseudomonas aeruginosa molecular regulators in lung infection. Front Microbiol 2022; 13:983149. [PMID: 36225372 PMCID: PMC9549215 DOI: 10.3389/fmicb.2022.983149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/17/2022] [Indexed: 11/27/2022] Open
Abstract
When bacteria sense cues from the host environment, stress responses are activated. Two component systems, sigma factors, small RNAs, ppGpp stringent response, and chaperones start coordinate the expression of virulence factors or immunomodulators to allow bacteria to respond. Although, some of these are well studied, such as the two-component systems, the contribution of other regulators, such as sigma factors or ppGpp, is increasingly gaining attention. Pseudomonas aeruginosa is the gold standard pathogen for studying the molecular mechanisms to sense and respond to environmental cues. Bordetella spp., on the other hand, is a microbial model for studying host-pathogen interactions at the molecular level. These two pathogens have the ability to colonize the lungs of patients with chronic diseases, suggesting that they have the potential to share a niche and interact. However, the molecular networks that facilitate adaptation of Bordetella spp. to cues are unclear. Here, we offer a side-by-side comparison of what is known about these diverse molecular mechanisms that bacteria utilize to counteract host immune responses, while highlighting the relatively unexplored interactions between them.
Collapse
Affiliation(s)
- Alina M. Holban
- Research Institute of the University of Bucharest (ICUB), Bucharest, Romania
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Courtney M. Gregoire
- Department of Microbiology and Immunology, Louisiana State University Health Science Center, Shreveport, LA, United States
| | - Monica C. Gestal
- Department of Microbiology and Immunology, Louisiana State University Health Science Center, Shreveport, LA, United States
- *Correspondence: Monica C. Gestal, ;
| |
Collapse
|
12
|
Arenas J, Szabo Z, van der Wal J, Maas C, Riaz T, Tønjum T, Tommassen J. Serum proteases prevent bacterial biofilm formation: role of kallikrein and plasmin. Virulence 2021; 12:2902-2917. [PMID: 34903146 PMCID: PMC8677018 DOI: 10.1080/21505594.2021.2003115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Biofilm formation is a general strategy for bacterial pathogens to withstand host defense mechanisms. In this study, we found that serum proteases inhibit biofilm formation by Neisseria meningitidis, Neisseria gonorrhoeae, Haemophilus influenzae, and Bordetella pertussis. Confocal laser-scanning microscopy analysis revealed that these proteins reduce the biomass and alter the architecture of meningococcal biofilms. To understand the underlying mechanism, the serum was fractionated through size-exclusion chromatography and anion-exchange chromatography, and the composition of the fractions that retained anti-biofilm activity against N. meningitidis was analyzed by intensity-based absolute quantification mass spectrometry. Among the identified serum proteins, plasma kallikrein (PKLK), FXIIa, and plasmin were found to cleave neisserial heparin-binding antigen and the α-peptide of IgA protease on the meningococcal cell surface, resulting in the release of positively charged polypeptides implicated in biofilm formation by binding extracellular DNA. Further experiments also revealed that plasmin and PKLK inhibited biofilm formation of B. pertussis by cleaving filamentous hemagglutinin. We conclude that the proteolytic activity of serum proteases toward bacterial adhesins involved in biofilm formation could constitute a defense mechanism for the clearance of pathogens.
Collapse
Affiliation(s)
- Jesús Arenas
- Department of Molecular Microbiology and Institute of Biomembranes, Utrecht University, Utrecht, The Netherlands.,Unit of Microbiology and Immunology, Faculty of Veterinary, University of Zaragoza, Zaragoza, Spain
| | - Zalan Szabo
- Research and Development Department, U-Protein Express BV, Utrecht, The Netherlands
| | - Jelle van der Wal
- Department of Molecular Microbiology and Institute of Biomembranes, Utrecht University, Utrecht, The Netherlands
| | - Coen Maas
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Tahira Riaz
- Department of Microbiology, University of Oslo, Oslo, Norway
| | - Tone Tønjum
- Department of Microbiology, University of Oslo, Oslo, Norway
| | - Jan Tommassen
- Department of Molecular Microbiology and Institute of Biomembranes, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
13
|
Are Bordetella bronchiseptica Siphoviruses (Genus Vojvodinavirus) Appropriate for Phage Therapy-Bacterial Allies or Foes? Viruses 2021; 13:v13091732. [PMID: 34578315 PMCID: PMC8471281 DOI: 10.3390/v13091732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/31/2022] Open
Abstract
Bordetella bronchiseptica is a respiratory animal pathogen that shows growing resistance to commonly used antibiotics, which has necessitated the examination of new antimicrobials, including bacteriophages. In this study, we examined the previously isolated and partially characterized B. bronchiseptica siphoviruses of the genus Vojvodinavirus (LK3, CN1, CN2, FP1 and MW2) for their ability to inhibit bacterial growth and biofilm, and we examined other therapeutically important properties through genomic analysis and lysogeny experiments. The phages inhibited bacterial growth at a low multiplicity of infection (MOI = 0.001) of up to 85% and at MOI = 1 for >99%. Similarly, depending on the phages and MOIs, biofilm formation inhibition ranged from 65 to 95%. The removal of biofilm by the phages was less efficient but still considerably high (40–75%). Complete genomic sequencing of Bordetella phage LK3 (59,831 bp; G + C 64.01%; 79 ORFs) showed integrase and repressor protein presence, indicating phage potential to lysogenize bacteria. Lysogeny experiments confirmed the presence of phage DNA in bacterial DNA upon infection using PCR, which showed that the LK3 phage forms more or less stable lysogens depending on the bacterial host. Bacterial infection with the LK3 phage enhanced biofilm production, sheep blood hemolysis, flagellar motility, and beta-lactam resistance. The examined phages showed considerable anti-B. bronchiseptica activity, but they are inappropriate for therapy because of their temperate nature and lysogenic conversion of the host bacterium.
Collapse
|
14
|
Dubois V, Chatagnon J, Thiriard A, Bauderlique-Le Roy H, Debrie AS, Coutte L, Locht C. Suppression of mucosal Th17 memory responses by acellular pertussis vaccines enhances nasal Bordetella pertussis carriage. NPJ Vaccines 2021; 6:6. [PMID: 33420041 PMCID: PMC7794405 DOI: 10.1038/s41541-020-00270-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022] Open
Abstract
Pertussis has made a spectacular rebound in countries that have switched from whole-cell (wPV) to acellular pertussis vaccines (aPV). Here, we show that, unlike wPV, aPV, while protective against lung colonization by Bordetella pertussis (Bp), did not protect BALB/c mice from nasal colonization, but instead substantially prolonged nasal carriage. aPV prevented the natural induction of nasal interleukin-17 (IL-17)-producing and interferon-γ (IFN-γ)-producing CD103+ CD44+ CD69+ CD4+-resident memory T (TRM) cells. IL-17-deficient, but not IFN-γ-deficient, mice failed to clear nasal Bp, indicating a key role of IL-17+ TRM cells in the control of nasal infection. These cells appeared essential for neutrophil recruitment, crucial for clearance of Bp tightly bound to the nasal epithelium. Transfer of IL-17+ TRM cells from Bp-infected mice to IL-17-deficient mice resulted in neutrophil recruitment and protection against nasal colonization. Thus, aPV may have augmented the Bp reservoir by inhibiting natural TRM cell induction and neutrophil recruitment, thereby contributing to the pertussis resurgence.
Collapse
Affiliation(s)
- Violaine Dubois
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017-CIIL-Center for Infection and Immunity of Lille, Univ. Lille, 59000, Lille, France.
| | - Jonathan Chatagnon
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017-CIIL-Center for Infection and Immunity of Lille, Univ. Lille, 59000, Lille, France
| | - Anaïs Thiriard
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017-CIIL-Center for Infection and Immunity of Lille, Univ. Lille, 59000, Lille, France
| | - Hélène Bauderlique-Le Roy
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US41-UMS 2014-PLBS, Univ. Lille, 59000, Lille, France
| | - Anne-Sophie Debrie
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017-CIIL-Center for Infection and Immunity of Lille, Univ. Lille, 59000, Lille, France
| | - Loïc Coutte
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017-CIIL-Center for Infection and Immunity of Lille, Univ. Lille, 59000, Lille, France
| | - Camille Locht
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017-CIIL-Center for Infection and Immunity of Lille, Univ. Lille, 59000, Lille, France
| |
Collapse
|
15
|
Morgane Canonne A, Roels E, Menard M, Desquilbet L, Billen F, Clercx C. Clinical response to 2 protocols of aerosolized gentamicin in 46 dogs with Bordetella bronchiseptica infection (2012-2018). J Vet Intern Med 2020; 34:2078-2085. [PMID: 32790103 PMCID: PMC7517846 DOI: 10.1111/jvim.15843] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/13/2020] [Accepted: 06/13/2020] [Indexed: 11/30/2022] Open
Abstract
Background Bordetella bronchiseptica (Bb) infection commonly causes respiratory disease in dogs. Gentamicin delivered by aerosol maximizes local drug delivery without systemic absorption but clinical response to protocols remains undetermined. Objectives To compare the clinical response to 2 protocols of aerosolized delivery of gentamicin in bordetellosis. Animals Forty‐six dogs with Bb infection confirmed by culture or quantitative polymerase chain reaction on bronchoalveolar lavage. Methods Retrospective study. Administration of aerosolized gentamicin for ≥10 minutes q12h for ≥3 weeks using 4 mg/kg diluted with saline (group 1) or undiluted 5% solution (group 2). Clinical response firstly assessed after 3‐4 weeks and treatment pursued by 3‐weeks increments if cure not reached. Cure defined as absence of cough persisting at least a week after treatment interruption. Results Demographic data were similar between both groups. Clinical cure at 3‐4 weeks was more frequently observed with the use of undiluted solution (19/33 vs 3/13 dogs, P = .03) in association with a shorter median duration of treatment (4 vs 6 weeks, P = .01). Dogs from group 2 having less than 1000 cells/μL in lavage were also more likely to be cured at 3‐4 weeks than dogs with more than 1000 cells/μL [9/9 vs 10/19, P = .006] and median duration of treatment in that subgroup of animals was reduced (3 vs 5 weeks, P = .02). Conclusion and Clinical Importance Aerosolized delivery of gentamicin seems effective for inducing clinical cure in Bb infection. Clinical response appears better using undiluted 5% solution, particularly in the subgroup of dogs having less than 1000 cells/μL in lavage.
Collapse
Affiliation(s)
- Aude Morgane Canonne
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium.,Small Animals Internal Medicine Unit, National Veterinary School of Alfort, Maisons-Alfort, France
| | - Elodie Roels
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Maud Menard
- Small Animals Internal Medicine Unit, National Veterinary School of Alfort, Maisons-Alfort, France
| | - Loïc Desquilbet
- Unit of Biostatistics, National Veterinary School of Alfort, Maisons-Alfort, France
| | - Frédéric Billen
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Cécile Clercx
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| |
Collapse
|
16
|
Affiliation(s)
- Audra R. Fullen
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, United States of America
| | - Kacy S. Yount
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, United States of America
| | - Purnima Dubey
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, United States of America
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail: (RD); (PD)
| | - Rajendar Deora
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, United States of America
- Department of Microbiology, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail: (RD); (PD)
| |
Collapse
|
17
|
Wang P, Huo CX, Lang S, Caution K, Nick ST, Dubey P, Deora R, Huang X. Chemical Synthesis and Immunological Evaluation of a Pentasaccharide Bearing Multiple Rare Sugars as a Potential Anti-pertussis Vaccine. Angew Chem Int Ed Engl 2020; 59:6451-6458. [PMID: 31953912 PMCID: PMC7141973 DOI: 10.1002/anie.201915913] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Indexed: 01/11/2023]
Abstract
With the infection rate of Bordetella pertussis at a 60-year high, there is an urgent need for new anti-pertussis vaccines. The lipopolysaccharide (LPS) of B. pertussis is an attractive antigen for vaccine development. With the presence of multiple rare sugars and unusual glycosyl linkages, the B. pertussis LPS is a highly challenging synthetic target. In this work, aided by molecular dynamics simulation and modeling, a pertussis-LPS-like pentasaccharide was chemically synthesized for the first time. The pentasaccharide was conjugated with a powerful carrier, bacteriophage Qβ, as a vaccine candidate. Immunization of mice with the conjugate induced robust anti-glycan IgG responses with IgG titers reaching several million enzyme-linked immunosorbent assay (ELISA) units. The antibodies generated were long lasting and boostable and could recognize multiple clinical strains of B. pertussis, highlighting the potential of Qβ-glycan as a new anti-pertussis vaccine.
Collapse
Affiliation(s)
- Peng Wang
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, MI, 48824, USA
| | - Chang-Xin Huo
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, MI, 48824, USA
| | - Shuyao Lang
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, MI, 48824, USA
| | - Kyle Caution
- Department of Microbial Infection and Immunity, The Ohio State University, 460 W 12th Ave, Columbus, OH, 43210, USA
| | - Setare Tahmasebi Nick
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, MI, 48824, USA
| | - Purnima Dubey
- Department of Microbial Infection and Immunity, The Ohio State University, 460 W 12th Ave, Columbus, OH, 43210, USA
| | - Rajendar Deora
- Department of Microbial Infection and Immunity, The Ohio State University, 460 W 12th Ave, Columbus, OH, 43210, USA
- Department of Microbiology, The Ohio State University, USA
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, MI, 48824, USA
- Department of Biomedical Engineering, Michigan State University, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, USA
| |
Collapse
|
18
|
Analysis of the lung microbiota in dogs with Bordetella bronchiseptica infection and correlation with culture and quantitative polymerase chain reaction. Vet Res 2020; 51:46. [PMID: 32209128 PMCID: PMC7092585 DOI: 10.1186/s13567-020-00769-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/02/2020] [Indexed: 12/29/2022] Open
Abstract
Infection with Bordetella bronchiseptica (Bb), a pathogen involved in canine infectious respiratory disease complex, can be confirmed using culture or qPCR. Studies about the canine lung microbiota (LM) are recent, sparse, and only one paper has been published in canine lung infection. In this study, we aimed to compare the LM between Bb infected and healthy dogs, and to correlate sequencing with culture and qPCR results. Twenty Bb infected dogs diagnosed either by qPCR and/or culture and 4 healthy dogs were included. qPCR for Mycoplasma cynos (Mc) were also available in 18 diseased and all healthy dogs. Sequencing results, obtained from bronchoalveolar lavage fluid after DNA extraction, PCR targeting the V1–V3 region of the 16S rDNA and sequencing, showed the presence of Bb in all diseased dogs, about half being co-infected with Mc. In diseased compared with healthy dogs, the β-diversity changed (P = 0.0024); bacterial richness and α-diversity were lower (P = 0.012 and 0.0061), and bacterial load higher (P = 0.004). Bb qPCR classes and culture results correlated with the abundance of Bb (r = 0.71, P < 0.001 and r = 0.70, P = 0.0022). Mc qPCR classes also correlated with the abundance of Mc (r = 0.73, P < 0.001). Bb infection induced lung dysbiosis, characterized by high bacterial load, low richness and diversity and increased abundance of Bb, compared with healthy dogs. Sequencing results highly correlate with qPCR and culture results showing that sequencing can be reliable to identify microorganisms involved in lung infectious diseases.
Collapse
|
19
|
Wang P, Huo C, Lang S, Caution K, Nick ST, Dubey P, Deora R, Huang X. Chemical Synthesis and Immunological Evaluation of a Pentasaccharide Bearing Multiple Rare Sugars as a Potential Anti‐pertussis Vaccine. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915913] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Peng Wang
- Department of ChemistryMichigan State University 578 South Shaw Lane East Lansing MI 48824 USA
| | - Chang‐xin Huo
- Department of ChemistryMichigan State University 578 South Shaw Lane East Lansing MI 48824 USA
| | - Shuyao Lang
- Department of ChemistryMichigan State University 578 South Shaw Lane East Lansing MI 48824 USA
| | - Kyle Caution
- Department of Microbial Infection and ImmunityThe Ohio State University 460 W 12th Ave Columbus OH 43210 USA
| | - Setare Tahmasebi Nick
- Department of ChemistryMichigan State University 578 South Shaw Lane East Lansing MI 48824 USA
| | - Purnima Dubey
- Department of Microbial Infection and ImmunityThe Ohio State University 460 W 12th Ave Columbus OH 43210 USA
| | - Rajendar Deora
- Department of Microbial Infection and ImmunityThe Ohio State University 460 W 12th Ave Columbus OH 43210 USA
- Department of MicrobiologyThe Ohio State University USA
| | - Xuefei Huang
- Department of ChemistryMichigan State University 578 South Shaw Lane East Lansing MI 48824 USA
- Department of Biomedical EngineeringMichigan State University USA
- Institute for Quantitative Health Science and EngineeringMichigan State University USA
| |
Collapse
|
20
|
Szymczak M, Grygorcewicz B, Karczewska-Golec J, Decewicz P, Pankowski JA, Országh-Szturo H, Bącal P, Dołęgowska B, Golec P. Characterization of a Unique Bordetella bronchiseptica vB_BbrP_BB8 Bacteriophage and Its Application as an Antibacterial Agent. Int J Mol Sci 2020; 21:ijms21041403. [PMID: 32093105 PMCID: PMC7073063 DOI: 10.3390/ijms21041403] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 02/12/2020] [Accepted: 02/17/2020] [Indexed: 02/07/2023] Open
Abstract
Bordetella bronchiseptica, an emerging zoonotic pathogen, infects a broad range of mammalian hosts. B. bronchiseptica-associated atrophic rhinitis incurs substantial losses to the pig breeding industry. The true burden of human disease caused by B. bronchiseptica is unknown, but it has been postulated that some hypervirulent B. bronchiseptica isolates may be responsible for undiagnosed respiratory infections in humans. B. bronchiseptica was shown to acquire antibiotic resistance genes from other bacterial genera, especially Escherichia coli. Here, we present a new B. bronchiseptica lytic bacteriophage—vB_BbrP_BB8—of the Podoviridae family, which offers a safe alternative to antibiotic treatment of B. bronchiseptica infections. We explored the phage at the level of genome, physiology, morphology, and infection kinetics. Its therapeutic potential was investigated in biofilms and in an in vivoGalleria mellonella model, both of which mimic the natural environment of infection. The BB8 is a unique phage with a genome structure resembling that of T7-like phages. Its latent period is 75 ± 5 min and its burst size is 88 ± 10 phages. The BB8 infection causes complete lysis of B. bronchiseptica cultures irrespective of the MOI used. The phage efficiently removes bacterial biofilm and prevents the lethality induced by B. bronchiseptica in G. mellonella honeycomb moth larvae.
Collapse
Affiliation(s)
- Mateusz Szymczak
- Department of Molecular Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (M.S.); (J.A.P.); (H.O.-S.)
| | - Bartłomiej Grygorcewicz
- Department of Laboratory Medicine, Chair of Microbiology, Immunology and Laboratory Medicine, Pomeranian Medical University in Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (B.G.); (B.D.)
| | - Joanna Karczewska-Golec
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (J.K.-G.); (P.D.)
| | - Przemysław Decewicz
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (J.K.-G.); (P.D.)
| | - Jarosław Adam Pankowski
- Department of Molecular Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (M.S.); (J.A.P.); (H.O.-S.)
| | - Hanna Országh-Szturo
- Department of Molecular Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (M.S.); (J.A.P.); (H.O.-S.)
| | - Paweł Bącal
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Ksiecia Trojdena 4, 02-109 Warsaw, Poland;
- Laboratory of Theory and Applications of Electrodes, Faculty of Chemistry, University of Warsaw, 02-093 Warsaw, Poland
| | - Barbara Dołęgowska
- Department of Laboratory Medicine, Chair of Microbiology, Immunology and Laboratory Medicine, Pomeranian Medical University in Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (B.G.); (B.D.)
| | - Piotr Golec
- Department of Molecular Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (M.S.); (J.A.P.); (H.O.-S.)
- Correspondence: ; Tel.: +48-225-541-414
| |
Collapse
|
21
|
Vestby LK, Grønseth T, Simm R, Nesse LL. Bacterial Biofilm and its Role in the Pathogenesis of Disease. Antibiotics (Basel) 2020; 9:E59. [PMID: 32028684 PMCID: PMC7167820 DOI: 10.3390/antibiotics9020059] [Citation(s) in RCA: 518] [Impact Index Per Article: 103.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 12/31/2022] Open
Abstract
Recognition of the fact that bacterial biofilm may play a role in the pathogenesis of disease has led to an increased focus on identifying diseases that may be biofilm-related. Biofilm infections are typically chronic in nature, as biofilm-residing bacteria can be resilient to both the immune system, antibiotics, and other treatments. This is a comprehensive review describing biofilm diseases in the auditory, the cardiovascular, the digestive, the integumentary, the reproductive, the respiratory, and the urinary system. In most cases reviewed, the biofilms were identified through various imaging technics, in addition to other study approaches. The current knowledge on how biofilm may contribute to the pathogenesis of disease indicates a number of different mechanisms. This spans from biofilm being a mere reservoir of pathogenic bacteria, to playing a more active role, e.g., by contributing to inflammation. Observations also indicate that biofilm does not exclusively occur extracellularly, but may also be formed inside living cells. Furthermore, the presence of biofilm may contribute to development of cancer. In conclusion, this review shows that biofilm is part of many, probably most chronic infections. This is important knowledge for development of effective treatment strategies for such infections.
Collapse
Affiliation(s)
- Lene K. Vestby
- Department of Immunology and Virology, Norwegian Veterinary Institute, P.O. Box 750 Sentrum, N-0106 Oslo, Norway;
| | - Torstein Grønseth
- Department of Otolaryngology, Head and Neck Surgery, Oslo University Hospital HF, Postboks 4950 Nydalen, 0424 Oslo, Norway;
| | - Roger Simm
- Institute of Oral Biology, University of Oslo, P.O. Box 1052, Blindern, 0316 Oslo, Norway;
| | - Live L. Nesse
- Department of Food Safety and Animal Health Research, Norwegian Veterinary Institute, P.O. Box 750 Sentrum, N-0106 Oslo, Norway
| |
Collapse
|
22
|
Booth WT, Davis RR, Deora R, Hollis T. Structural mechanism for regulation of DNA binding of BpsR, a Bordetella regulator of biofilm formation, by 6-hydroxynicotinic acid. PLoS One 2019; 14:e0223387. [PMID: 31697703 PMCID: PMC6837509 DOI: 10.1371/journal.pone.0223387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/19/2019] [Indexed: 12/12/2022] Open
Abstract
Bordetella bacteria are respiratory pathogens of humans, birds, and livestock. Bordetella pertussis the causative agent of whopping cough remains a significant health issue. The transcriptional regulator, BpsR, represses a number of Bordetella genes relating to virulence, cell adhesion, cell motility, and nicotinic acid metabolism. DNA binding of BpsR is allosterically regulated by interaction with 6-hydroxynicotinic acid (6HNA), the first product in the nicotinic acid degradation pathway. To understand the mechanism of this regulation, we have determined the crystal structures of BpsR and BpsR in complex with 6HNA. The structures reveal that BpsR binding of 6HNA induces a conformational change in the protein to prevent DNA binding. We have also identified homologs of BpsR in other Gram negative bacteria in which the amino acids involved in recognition of 6HNA are conserved, suggesting a similar mechanism for regulating nicotinic acid degradation.
Collapse
Affiliation(s)
- William T. Booth
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - Ryan R. Davis
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - Rajendar Deora
- Department of Microbial Infection and Immunity, and Department of Microbiology, The Ohio State University, Columbus, Ohio, United States of America
| | - Thomas Hollis
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
- * E-mail:
| |
Collapse
|
23
|
Sanz Moreno JC, Ramos Blázquez B. Papel del estado de portador en el control de enfermedades infecciosas y su relación con la vacunación. REVISTA MADRILEÑA DE SALUD PÚBLICA 2019. [DOI: 10.36300/remasp.2019.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
El reservorio natural de Streptococcus pneumoniae,
Neisseria meningitidis y Bordetella pertussis es el ser
humano. De este modo, en caso de disponer de vacunas
efectivas que impidieran la colonización por estas bacterias
se podría interrumpir su transmisión.
La respuesta inmune frente a los antígenos capsulares
de Streptococcus pneumoniae condiciona el estado
de portador de los diferentes serotipos. La vacuna
neumocócica polisacárida 23 valente (PPV23) induce
una respuesta inmune T independiente que es de corta
duración y no previene la colonización. Por el contrario
las vacunas conjugadas 10 valente (PCV10V) y 13 valente
(PCV13) generan una inmunidad T dependiente que
si reduce la colonización por los serotipos incluidos en
su composición. Por este motivo las vacunas conjugadas
proporcionan inmunidad de grupo.
La vacunación de adolescentes frente a Neisseria menigintidis
puede modificar el patrón de transmisión de la
infección con una reducción de la incidencia en niños. En
la actualidad se dispone de vacunas conjugadas frente
a meningococo C, conjugadas tetravalantes frente a los
serogrupos ACWY y de proteínas recombinantes frente a
meningococo B. La inmunidad de grupo generada por vacunas
conjugadas ha sido demostrada para Neisseria menigintidis
C. Desafortunadamente existe escasa evidencia
del impacto de las vacunas frente a meningococo B en la
reducción del estado de portador entre adultos jóvenes.
La infección natural por Bordetella pertussis estimula la
producción de linfocitos T de memoria e induce una intensa
respuesta de IgA secretora en la nasofaringe. En
contraste con la infección natural y con las vacunas de
células completas las actuales vacunas acelulares, no
generan inmunidad en mucosas y no otorgan inmunidad
de grupo. En un intento de resolver este problema se
están desarrollando vacunas alternativas frente a Bordetella
pertussis como las nuevas de células completas y
las vivas atenuadas.
Collapse
Affiliation(s)
- Juan Carlos Sanz Moreno
- Unidad de Microbiología Clínica. Laboratorio Regional de Salud Pública. Dirección General de Salud Pública. Consejería de Sanidad. Comunidad de Madrid
| | - Belén Ramos Blázquez
- Unidad de Microbiología Clínica. Laboratorio Regional de Salud Pública. Dirección General de Salud Pública. Consejería de Sanidad. Comunidad de Madrid
| |
Collapse
|
24
|
Bordetella Colonization Factor A (BcfA) Elicits Protective Immunity against Bordetella bronchiseptica in the Absence of an Additional Adjuvant. Infect Immun 2019; 87:IAI.00506-19. [PMID: 31308083 DOI: 10.1128/iai.00506-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 07/03/2019] [Indexed: 11/20/2022] Open
Abstract
Bordetella bronchiseptica is an etiologic agent of respiratory diseases in animals and humans. Despite the widespread use of veterinary B. bronchiseptica vaccines, there is limited information on their composition and relative efficacy and on the immune responses that they elicit. Furthermore, human B. bronchiseptica vaccines are not available. We leveraged the dual antigenic and adjuvant functions of Bordetella colonization factor A (BcfA) to develop acellular B. bronchiseptica vaccines in the absence of an additional adjuvant. BALB/c mice immunized with BcfA alone or a trivalent vaccine containing BcfA and the Bordetella antigens FHA and Prn were equally protected against challenge with a prototype B. bronchiseptica strain. The trivalent vaccine protected mice significantly better than the canine vaccine Bronchicine and provided protection against a B. bronchiseptica strain isolated from a dog with kennel cough. Th1/17-polarized immune responses correlate with long-lasting protection against bordetellae and other respiratory pathogens. Notably, BcfA strongly attenuated the Th2 responses elicited by FHA and Prn, resulting in Th1/17-skewed responses in inherently Th2-skewed BALB/c mice. Thus, BcfA functions as both an antigen and an adjuvant, providing protection as a single-component vaccine. BcfA-adjuvanted vaccines may improve the efficacy and durability of vaccines against bordetellae and other pathogens.
Collapse
|
25
|
Dorji D, Graham RM, Singh AK, Ramsay JP, Price P, Lee S. Immunogenicity and protective potential of Bordetella pertussis biofilm and its associated antigens in a murine model. Cell Immunol 2019; 337:42-47. [PMID: 30770093 DOI: 10.1016/j.cellimm.2019.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/13/2018] [Accepted: 01/29/2019] [Indexed: 10/27/2022]
Abstract
The resurgence of whooping cough reflects novel genetic variants of Bordetella pertussis and inadequate protection conferred by current acellular vaccines (aP). Biofilm is a source of novel vaccine candidates, including membrane protein assembly factor (BamB) and lipopolysaccharide assembly protein (LptD). Responses of BALB/c mice to candidate vaccines included IFN-γ and IL-17a production by spleen and lymph node cells, and serum IgG1 and IgG2a reactive with whole bacteria or aP. Protection was determined using bacterial cultured from lungs of vaccinated mice challenged with virulent B. pertussis. Mice vaccinated with biofilm produced efficient IFN-γ responses and more IL-17a and IgG2a than mice vaccinated with planktonic cells, aP or adjuvant alone. Vaccination with aP produced abundant IgG1 with little IgG2a. Mice vaccinated with aP plus BamB and LptD retained lower bacterial loads than mice vaccinated with aP alone. Whooping cough vaccines formulated with biofilm antigens, including BamB and LptD, may have clinical value.
Collapse
Affiliation(s)
- Dorji Dorji
- School of Pharmacy and Biomedical Sciences & Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia; Jigme Dorji Wangchuck National Referral Hospital, Khesar Gyalpo Medical University of Bhutan, Thimphu, Bhutan
| | - Ross M Graham
- School of Pharmacy and Biomedical Sciences & Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Abhishek K Singh
- School of Pharmacy and Biomedical Sciences & Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Joshua P Ramsay
- School of Pharmacy and Biomedical Sciences & Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Patricia Price
- School of Pharmacy and Biomedical Sciences & Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Silvia Lee
- School of Pharmacy and Biomedical Sciences & Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia; Department of Microbiology, Pathwest Laboratory Medicine, Fiona Stanley Hospital, Murdoch, Australia.
| |
Collapse
|
26
|
Lambert EE, Buisman AM, van Els CACM. Superior B. pertussis Specific CD4+ T-Cell Immunity Imprinted by Natural Infection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1183:81-98. [PMID: 31321753 DOI: 10.1007/5584_2019_405] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pertussis remains endemic in vaccinated populations due to waning of vaccine-induced immunity and insufficient interruption of transmission. Correlates of long-term protection against whooping cough remain elusive but increasing evidence from experimental models indicates that the priming of particular lineages of B. pertussis (Bp) specific CD4+ T cells is essential to control bacterial load. Critical hallmarks of these protective CD4+ T cell lineages in animals are suggested to be their differentiation profile as Th1 and Th17 cells and their tissue residency. These features seem optimally primed by previous infection but insufficiently or only partially by current vaccines. In this review, evidence is sought indicating whether infection also drives such superior Bp specific CD4+ T cell lineages in humans. We highlight key features of effector immunity downstream of Th1 and Th17 cell cytokines that explain clearing of primary Bp infections in naïve hosts, and effective prevention of infection in convalescent hosts during secondary challenge. Outstanding questions are put forward that need answers before correlates of human Bp infection-primed CD4+ T cell immunity can be used as benchmark for the development of improved pertussis vaccines.
Collapse
Affiliation(s)
- Eleonora E Lambert
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Anne-Marie Buisman
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Cécile A C M van Els
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands.
| |
Collapse
|
27
|
Karamooz E, Yap VL, Barker AF, Metersky ML. Bordetella bronchiseptica in non-cystic fibrosis bronchiectasis. Respir Med Case Rep 2018; 25:187-188. [PMID: 30191122 PMCID: PMC6125826 DOI: 10.1016/j.rmcr.2018.08.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 08/27/2018] [Indexed: 10/31/2022] Open
Abstract
Bordetella bronchiseptica is a rare pulmonary infection, often associated with zoonotic transmission. It has been described in immunocompromised patients and those with underlying pulmonary disease. However, there are no case series describing the spectrum of disease caused by Bordetella bronchiseptica in patients with non-cystic fibrosis bronchiectasis. Here, we report three cases of Bordetella bronchiseptica infection in patients with non-cystic fibrosis bronchiectasis and highlight the pathophysiology of the microbe. While the clinical presentation can be quite variable, it is important to note that Bordetella bronchiseptica can be a cause of pulmonary exacerbations and can be difficult to eradicate.
Collapse
Affiliation(s)
- Elham Karamooz
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR 97239, USA
| | - Vanessa L Yap
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Connecticut, Farmington, CT 06030, USA
| | - Alan F Barker
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR 97239, USA
| | - Mark L Metersky
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Connecticut, Farmington, CT 06030, USA
| |
Collapse
|
28
|
Cattelan N, Yantorno OM, Deora R. Structural Analysis of Bordetella pertussis Biofilms by Confocal Laser Scanning Microscopy. Bio Protoc 2018; 8:e2953. [PMID: 30160901 PMCID: PMC6108551 DOI: 10.21769/bioprotoc.2953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/15/2018] [Accepted: 08/09/2018] [Indexed: 08/22/2023] Open
Abstract
Biofilms are sessile communities of microbial cells embedded in a self-produced or host-derived exopolymeric matrix. Biofilms can both be beneficial or detrimental depending on the surface. Compared to their planktonic counterparts, biofilm cells display enhanced resistance to killing by environmental threats, chemicals, antimicrobials and host immune defenses. When in biofilms, the microbial cells interact with each other and with the surface to develop architecturally complex multi-dimensional structures. Numerous imaging techniques and tools are currently available for architectural analyses of biofilm communities. This allows examination of biofilm development through acquisition of three-dimensional images that can render structural features of the sessile community. A frequently utilized tool is Confocal Laser Scanning Microscopy. We present a detailed protocol to grow, observe and analyze biofilms of the respiratory human pathogen, Bordetella pertussis in space and time.
Collapse
Affiliation(s)
- Natalia Cattelan
- Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI, CONICET-CCT-La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Osvaldo Miguel Yantorno
- Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI, CONICET-CCT-La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Rajendar Deora
- Department of Microbial Infection and Immunity; Department of Microbiology, Ohio State University, Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
29
|
Guragain M, Jennings-Gee J, Cattelan N, Finger M, Conover MS, Hollis T, Deora R. The Transcriptional Regulator BpsR Controls the Growth of Bordetella bronchiseptica by Repressing Genes Involved in Nicotinic Acid Degradation. J Bacteriol 2018; 200:JB.00712-17. [PMID: 29581411 PMCID: PMC5971473 DOI: 10.1128/jb.00712-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/19/2018] [Indexed: 12/12/2022] Open
Abstract
Many of the pathogenic species of the genus Bordetella have an absolute requirement for nicotinic acid (NA) for laboratory growth. These Gram-negative bacteria also harbor a gene cluster homologous to the nic cluster of Pseudomonas putida which is involved in the aerobic degradation of NA and its transcriptional control. We report here that BpsR, a negative regulator of biofilm formation and Bps polysaccharide production, controls the growth of Bordetella bronchiseptica by repressing the expression of nic genes. The severe growth defect of the ΔbpsR strain in Stainer-Scholte medium was restored by supplementation with NA, which also functioned as an inducer of nic genes at low micromolar concentrations that are usually present in animals and humans. Purified BpsR protein bound to the nic promoter region, and its DNA binding activity was inhibited by 6-hydroxynicotinic acid (6-HNA), the first metabolite of the NA degradative pathway. Reporter assays with the isogenic mutant derivative of the wild-type (WT) strain harboring deletion in nicA, which encodes a putative nicotinic acid hydroxylase responsible for conversion of NA to 6-HNA, showed that 6-HNA is the actual inducer of the nic genes in the bacterial cell. Gene expression profiling further showed that BpsR dually activated and repressed the expression of genes associated with pathogenesis, transcriptional regulation, metabolism, and other cellular processes. We discuss the implications of these findings with respect to the selection of pyridines such as NA and quinolinic acid for optimum bacterial growth depending on the ecological niche.IMPORTANCE BpsR, the previously described regulator of biofilm formation and Bps polysaccharide production, controls Bordetella bronchiseptica growth by regulating the expression of genes involved in the degradation of nicotinic acid (NA). 6-Hydroxynicotinic acid (6-HNA), the first metabolite of the NA degradation pathway prevented BpsR from binding to DNA and was the actual in vivo inducer. We hypothesize that BpsR enables Bordetella bacteria to efficiently and selectively utilize NA for their survival depending on the environment in which they reside. The results reported herein lay the foundation for future investigations of how BpsR and the alteration of its activity by NA orchestrate the control of Bordetella growth, metabolism, biofilm formation, and pathogenesis.
Collapse
Affiliation(s)
- Manita Guragain
- Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Jamie Jennings-Gee
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Natalia Cattelan
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Facultad de Ciencias Exactas, Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI, CONICET-CCT-La Plata), Universidad Nacional de La Plata, La Plata, Argentina
| | - Mary Finger
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Matt S Conover
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Thomas Hollis
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Rajendar Deora
- Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Department of Microbiology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
30
|
González JF, Hahn MM, Gunn JS. Chronic biofilm-based infections: skewing of the immune response. Pathog Dis 2018; 76:4956043. [PMID: 29718176 PMCID: PMC6251518 DOI: 10.1093/femspd/fty023] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 03/13/2018] [Indexed: 12/20/2022] Open
Abstract
Many of the deadliest bacterial diseases that plague humanity in the modern age are caused by bacterial biofilms that produce chronic infections. However, most of our knowledge of the host immune response comes from the study of planktonic pathogens. While there are similarities in the host response to planktonic and biofilm bacteria, specific immune responses toward biofilms have not been well studied; the only apparent difference is the inability to clear the bacteria allowing the biofilm infection to become chronic. In some cases, the biofilms skew T-cell response toward a balance that allows a stalemate between the host and the pathogen, in which the infection can become persistent. In this minireview, we will summarize well-known examples of this phenomena as well as some emerging studies that may indicate that this situation is much more common than initially thought.
Collapse
Affiliation(s)
- Juan F González
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Mark M Hahn
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
| | - John S Gunn
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
31
|
Screening and Genomic Characterization of Filamentous Hemagglutinin-Deficient Bordetella pertussis. Infect Immun 2018; 86:IAI.00869-17. [PMID: 29358336 DOI: 10.1128/iai.00869-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/18/2018] [Indexed: 11/20/2022] Open
Abstract
Despite high vaccine coverage, pertussis cases in the United States have increased over the last decade. Growing evidence suggests that disease resurgence results, in part, from genetic divergence of circulating strain populations away from vaccine references. The United States employs acellular vaccines exclusively, and current Bordetella pertussis isolates are predominantly deficient in at least one immunogen, pertactin (Prn). First detected in the United States retrospectively in a 1994 isolate, the rapid spread of Prn deficiency is likely vaccine driven, raising concerns about whether other acellular vaccine immunogens experience similar pressures, as further antigenic changes could potentially threaten vaccine efficacy. We developed an electrochemiluminescent antibody capture assay to monitor the production of the acellular vaccine immunogen filamentous hemagglutinin (Fha). Screening 722 U.S. surveillance isolates collected from 2010 to 2016 identified two that were both Prn and Fha deficient. Three additional Fha-deficient laboratory strains were also identified from a historic collection of 65 isolates dating back to 1935. Whole-genome sequencing of deficient isolates revealed putative, underlying genetic changes. Only four isolates harbored mutations to known genes involved in Fha production, highlighting the complexity of its regulation. The chromosomes of two Fha-deficient isolates included unexpected structural variation that did not appear to influence Fha production. Furthermore, insertion sequence disruption of fhaB was also detected in a previously identified pertussis toxin-deficient isolate that still produced normal levels of Fha. These results demonstrate the genetic potential for additional vaccine immunogen deficiency and underscore the importance of continued surveillance of circulating B. pertussis evolution in response to vaccine pressure.
Collapse
|
32
|
Dorji D, Mooi F, Yantorno O, Deora R, Graham RM, Mukkur TK. Bordetella Pertussis virulence factors in the continuing evolution of whooping cough vaccines for improved performance. Med Microbiol Immunol 2018; 207:3-26. [PMID: 29164393 DOI: 10.1007/s00430-017-0524-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 10/19/2017] [Indexed: 02/07/2023]
Abstract
Despite high vaccine coverage, whooping cough caused by Bordetella pertussis remains one of the most common vaccine-preventable diseases worldwide. Introduction of whole-cell pertussis (wP) vaccines in the 1940s and acellular pertussis (aP) vaccines in 1990s reduced the mortality due to pertussis. Despite induction of both antibody and cell-mediated immune (CMI) responses by aP and wP vaccines, there has been resurgence of pertussis in many countries in recent years. Possible reasons hypothesised for resurgence have ranged from incompliance with the recommended vaccination programmes with the currently used aP vaccine to infection with a resurged clinical isolates characterised by mutations in the virulence factors, resulting in antigenic divergence with vaccine strain, and increased production of pertussis toxin, resulting in dampening of immune responses. While use of these vaccines provide varying degrees of protection against whooping cough, protection against infection and transmission appears to be less effective, warranting continuation of efforts in the development of an improved pertussis vaccine formulations capable of achieving this objective. Major approaches currently under evaluation for the development of an improved pertussis vaccine include identification of novel biofilm-associated antigens for incorporation in current aP vaccine formulations, development of live attenuated vaccines and discovery of novel non-toxic adjuvants capable of inducing both antibody and CMI. In this review, the potential roles of different accredited virulence factors, including novel biofilm-associated antigens, of B. pertussis in the evolution, formulation and delivery of improved pertussis vaccines, with potential to block the transmission of whooping cough in the community, are discussed.
Collapse
Affiliation(s)
- Dorji Dorji
- School of Biomedical Sciences and Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, 6102, Australia
- Jigme Dorji Wangchuck National Referral Hospital, Khesar Gyalpo Medical University of Bhutan, Thimphu, Bhutan
| | - Frits Mooi
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud University Medical Centre, Nijmegen, The Netherlands
- Nijmegen Institute for Infection, Inflammation and Immunity, Radboud University Medical Centre, Nijmegen, The Netherlands
- Netherlands Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Osvaldo Yantorno
- Laboratorio de Biofilms Microbianos, Centro de Investigación y Desarrollo de Fermentaciones Industriales (CINDEFI-CONICET-CCT La Plata), Facultad de Ciencias Exactas, UNLP, La Plata, Argentina
| | - Rajendar Deora
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Medical Center Blvd., Winston Salem, NC, 27157, USA
| | - Ross M Graham
- School of Biomedical Sciences and Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, 6102, Australia
| | - Trilochan K Mukkur
- School of Biomedical Sciences and Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, 6102, Australia.
| |
Collapse
|
33
|
Hyperbiofilm Formation by Bordetella pertussis Strains Correlates with Enhanced Virulence Traits. Infect Immun 2017; 85:IAI.00373-17. [PMID: 28893915 DOI: 10.1128/iai.00373-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/03/2017] [Indexed: 01/01/2023] Open
Abstract
Pertussis, or whooping cough, caused by the obligate human pathogen Bordetella pertussis is undergoing a worldwide resurgence. The majority of studies of this pathogen are conducted with laboratory-adapted strains which may not be representative of the species as a whole. Biofilm formation by B. pertussis plays an important role in pathogenesis. We conducted a side-by-side comparison of the biofilm-forming abilities of the prototype laboratory strains and the currently circulating isolates from two countries with different vaccination programs. Compared to the reference strain, all strains examined herein formed biofilms at high levels. Biofilm structural analyses revealed country-specific differences, with strains from the United States forming more structured biofilms. Bacterial hyperaggregation and reciprocal expression of biofilm-promoting and -inhibitory factors were observed in clinical isolates. An association of increased biofilm formation with augmented epithelial cell adhesion and higher levels of bacterial colonization in the mouse nose and trachea was detected. To our knowledge, this work links for the first time increased biofilm formation in bacteria with a colonization advantage in an animal model. We propose that the enhanced biofilm-forming capacity of currently circulating strains contributes to their persistence, transmission, and continued circulation.
Collapse
|
34
|
The Bordetella Bps Polysaccharide Is Required for Biofilm Formation and Enhances Survival in the Lower Respiratory Tract of Swine. Infect Immun 2017; 85:IAI.00261-17. [PMID: 28559403 DOI: 10.1128/iai.00261-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 05/18/2017] [Indexed: 12/21/2022] Open
Abstract
Bordetella bronchiseptica is pervasive in swine populations and plays multiple roles in respiratory disease. Additionally, B. bronchiseptica is capable of establishing long-term or chronic infections in swine. Bacterial biofilms are increasingly recognized as important contributors to chronic bacterial infections. Recently the polysaccharide locus bpsABCD has been demonstrated to serve a critical role in the development of mature biofilms formed by the sequenced laboratory strain of B. bronchiseptica We hypothesized that swine isolates would also have the ability to form mature biofilms and the bpsABCD locus would serve a key role in this process. A mutant containing an in-frame deletion of the bpsABCD structural genes was constructed in a wild-type swine isolate and found to be negative for poly-N-acetylglucosamine (PNAG)-like material by immunoblot assay. Further, the bpsABCD locus was found to be required for the development and maintenance of the three-dimensional structures under continuous-flow conditions. To investigate the contribution of the bpsABCD locus to the pathogenesis of B. bronchiseptica in swine, the KM22Δbps mutant was compared to the wild-type swine isolate for the ability to colonize and cause disease in pigs. The bpsABCD locus was found to not be required for persistence in the upper respiratory tract of swine. Additionally, the bpsABCD locus did not affect the development of anti-Bordetella humoral immunity, did not contribute to disease severity, and did not mediate protection from complement-mediated killing. However, the bpsABCD locus was found to enhance survival in the lower respiratory tract of swine.
Collapse
|
35
|
Highlights of the 11th International Bordetella Symposium: from Basic Biology to Vaccine Development. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2016; 23:842-850. [PMID: 27655886 DOI: 10.1128/cvi.00388-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pertussis is a severe respiratory disease caused by infection with the bacterial pathogen Bordetella pertussis The disease affects individuals of all ages but is particularly severe and sometimes fatal in unvaccinated young infants. Other Bordetella species cause diseases in humans, animals, and birds. Scientific, clinical, public health, vaccine company, and regulatory agency experts on these pathogens and diseases gathered in Buenos Aires, Argentina from 5 to 8 April 2016 for the 11th International Bordetella Symposium to discuss recent advances in our understanding of the biology of these organisms, the diseases they cause, and the development of new vaccines and other strategies to prevent these diseases. Highlights of the meeting included pertussis epidemiology in developing nations, genomic analysis of Bordetella biology and evolution, regulation of virulence factor expression, new model systems to study Bordetella biology and disease, effects of different vaccines on immune responses, maternal immunization as a strategy to prevent newborn disease, and novel vaccine development for pertussis. In addition, the group approved the formation of an International Bordetella Society to promote research and information exchange on bordetellae and to organize future meetings. A new Bordetella.org website will also be developed to facilitate these goals.
Collapse
|
36
|
Dorji D, Graham RM, Richmond P, Keil A, Mukkur TK. Biofilm forming potential and antimicrobial susceptibility of newly emerged Western Australian Bordetella pertussis clinical isolates. BIOFOULING 2016; 32:1141-1152. [PMID: 27669900 DOI: 10.1080/08927014.2016.1232715] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 08/30/2016] [Indexed: 05/23/2023]
Abstract
Whooping cough caused by Bordetella pertussis is increasing in several countries despite high vaccine coverage. One potential reason for the resurgence is the emergence of genetic variants of the bacterium. Biofilm formation has recently been associated with the pathogenesis of B. pertussis. Biofilm formation of 21 Western Australian B. pertussis clinical isolates was investigated. All isolates formed thicker biofilms than the reference vaccine strain Tohama I while retaining susceptibility to ampicillin, erythromycin, azithromycin and streptomycin. When two biofilm-forming clinical isolates were compared with Tohama I, minimum bactericidal concentrations of antimicrobial agents increased. Isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic analysis revealed significant differences in protein expression in B. pertussis biofilms, providing an opportunity for identification of novel biofilm-associated antigens for incorporation in current pertussis vaccines to improve their protective efficacy. The study also highlights the importance of determining antibiograms for biofilms to formulate improved antimicrobial therapeutic regimens.
Collapse
Affiliation(s)
- Dorji Dorji
- a School of Biomedical Sciences and Curtin Health Innovation Research Institute (CHIRI) , Curtin University , Perth , Australia
- c Jigme Dorji Wangchuck National Referral Hospital , Khesar Gyalpo University of Medical Sciences of Bhutan , Thimphu , Bhutan
| | - Ross M Graham
- a School of Biomedical Sciences and Curtin Health Innovation Research Institute (CHIRI) , Curtin University , Perth , Australia
| | | | - Anthony Keil
- b Princess Margaret Hospital , Perth , Australia
| | - Trilochan K Mukkur
- a School of Biomedical Sciences and Curtin Health Innovation Research Institute (CHIRI) , Curtin University , Perth , Australia
| |
Collapse
|
37
|
Xu Z, Liang Y, Lin S, Chen D, Li B, Li L, Deng Y. Crystal Violet and XTT Assays on Staphylococcus aureus Biofilm Quantification. Curr Microbiol 2016; 73:474-82. [DOI: 10.1007/s00284-016-1081-1] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 05/06/2016] [Indexed: 11/24/2022]
|
38
|
Lamberti Y, Cafiero JH, Surmann K, Valdez H, Holubova J, Večerek B, Sebo P, Schmidt F, Völker U, Rodriguez ME. Proteome analysis of Bordetella pertussis isolated from human macrophages. J Proteomics 2016; 136:55-67. [DOI: 10.1016/j.jprot.2016.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/05/2016] [Accepted: 02/07/2016] [Indexed: 12/13/2022]
|